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Statistical Methods for the Interpretation of Recent Results in Neutrino Physics

Neutrino oscillations have become a well established phenomenon in particle physics during
the past years. Recently the last unknown neutrino mixing angle has been measured to be
non-zero. This has been done independently by experiments of two different concepts. In
both cases special statistical methods are utilised to address the problem of small signal rates
compared with large backgrounds. The analysis methods of the Double Chooz experiment, an
experiment of the reactor concept, and the T2K experiment, an experiment of the accelerator
concept, are investigated and underlying statistical concepts are prepared in a mathemati-
cally closed form. Furthermore, statistical methods for the combination of both results are
developed. Special focus is set on methods to address the remaining, yet unknown, oscillation
parameter dcp and the neutrino mass hierarchy.

Statistische Verfahren zur Interpretation aktueller Resultate aus der
Neutrinophysik

Das Phianomen der Neutrinooszillation ist in den letzen Jahren zu einem fest etablierten
Teilgebiet innerhalb der Teilchenphysik geworden. Kiirzlich gelang es den letzten unbekann-
ten Neutrinomischungswinkel als nicht verschwindend zu messen. Diese Messung wurde un-
abhénging mit verschiedenen experimentellen Konzepten durchgefiithrt. In beiden Experi-
menten wurden spezielle statistische Verfahren angewendet, um das Problem der geringen
Signalrate im Vergleich zur Untergrundrate zu handhaben. Die Verfahren des Double Chooz
Experiments, eines Reaktorexperiments, und des T2K Experiments, eines Beschleuningerex-
periments, werden untersucht und die zugrunde liegenden statistischen Verfahren in mathe-
matisch geschlossener Form aufbereitet. Weiterhin wird ein Verfahren zur Vereinigung beider
Ergebnisse erarbeitet. Besonderes Augenmerk liegt dabei auf der Bestimmung des verbleiben-
den unbekannten Oszillationsparameters dcp und der Neutrinomassenhierarchie.
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Chapter 1

Introduction

Although known for several years, neutrino oscillations have been subject of increased efforts
until the present date [I; 25 B} [4 [5; [6]. Due to the smallness of one of the three mixing
angles, this last mixing angle 6135 was determined not before 2011 [7; [§]. Further experiments
were able to measure this angle in 2012 [0; [I0]. These experiments are expected to deliver
further and more precise results in the future. With the determination of #13 the possibility
opens to infer on the charge-parity violation phase cp. This parameter describes the different
behaviour of neutrinos and antineutrinos in the context of neutrino oscillations. Furthermore,
the neutrino mass hierarchy can be addressed. The question for the neutrino mass hierarchy
is the question if two neutrino masses are very small compared to the third one or very large.

One idea for the investigation of these parameters is the combination of measurements from
different experiment types. An accelerator experiment, when aiming for a ;3 measurement,
always measures a combination of 613, dcp and the mass hierarchy; in contrast to this measures
a reactor experiment 013 directly. This can be utilised to render the combination of such two
experiments sensitive to dop or the mass hierarchy. Since both experiment types deal with
rather small signals compared to their backgrounds, a thorough understanding of the analysis
techniques and their correlations, especially the correlations between the experiments, are
crucial for a significant inference.

In chapter [6], such a combination scenario will be investigated using the Double Chooz and
the T2K experiment as concrete representatives of the respective experiment types. Chapter
introduces these experiments in a general matter. Both experiments employ special tech-
niques to deal with the issue of large backgrounds which are investigated with special focus
lying on the statistical methods in chapter |p| and resumed in the combination scenario. The
related theory of these methods is the topic of chapter [ while the theory necessary for the
understanding of the combination idea and the phenomenon of neutrino oscillations is given
in chapter [2] After developing a combination scenario a conclusion and outlook will be given
in chapter [7]



Chapter 2

Theory of Neutrino Oscillations

This thesis deals with recent results from neutrino physics. Hence, the following chapter
introduces the theory of neutrino oscillations.

2.1 The Neutrinos

The existence of neutrinos was postulated for the first time in the year 1933 when Wolfgang
Pauli suggested the participation of an unknown particle in the g-decay in order to solve
the measured violation of energy and angular momentum conservation [I1, p. 119]. The
suggested particle must be free of electrical charge and interacts only via the weak force and
the force of gravity. In the year of 1956, the postulated particle was measured for the first
time at the Savannah River Site nuclear power plant [I2]. The particle was later called v,
the electron neutrincﬂ The measured cross-section of the discovered particle of 1044 cm?
[12, p. 104] and the mass of < 2eV/c? [13, p. 555] were rather small. This explains the fact,
why this particle was not recognised in the year of 1933 and confirms Pauli’s postulation.

In the year 1962 the existence of a second type of neutrino, the muon neutrino v, was
discovered at the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Lab-
oratory [I4]. A third neutrino type, called tauon neutrino v, was discovered in 2001 at the
Fermilab [I5]. Data from the Large Electron-Positron Collider (LEP) [13, p. 561] yield to-
wards the existence of precisely the three discovered neutrino generations. By these results,
neutrinos have the same number of generations as other types of elementary particles and
confirm the standard model of elementary particles.

2.2 Neutrino Oscillations

While the discoveries of the three neutrino generations confirmed the standard model, several
discoveries [T} 2; 3} 4 [5; 6] made an extension to the standard model necessary:

The effect of neutrino oscillation was theorised for the first time by Bruno Pontecorvo [16].
In 1957 he discussed the possibility of the transformation between neutrinos and antineutrinos.
Today, neutrino oscillation is understood as the transformation of neutrinos of a certain flavour
into neutrinos of another flavour [I7], e.g. muon neutrinos into electron neutrinos. Within the
framework of quantum mechanics, this transformation is possible due to the inequality of the

"More precise, not the electron neutrino v., but the electron antineutrino 7, was discovered in 1956.
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neutrino eigenstates of energy and the neutrino eigenstates of the weak force. Mathematically,
a neutrino has to be seen as a vector in a vector space [I8, pp. 111-125]. In this vector space,
two operators of our interest exist. To each operator three eigenvectors or eigenstates exist.
One operator is the Hamilton operator and if a neutrino is in an eigenstate to this operator,
i.e. its state is represented by an eigenvector of the Hamilton operator, the neutrino has a
certain mass. The second operator is the flavour operator. If a neutrino is in an eigenstate
to this operator, the neutrino has a certain flavour. The eigenvectors of the afore-mentioned
operators make up two distinct orthonormal bases of the underlying vector space. The three
flavour eigenstates or eigenvectors are labeled as electron neutrino |v.), muon neutrino |v,)
and tauon neutrino |v,) and build the first basis. The three mass eigenstates are labeled with
integers: |v1), |v2) and |v3). They build the second basis [I9, p. 255]. The vector which
represents the neutrino in this space |v,) can be represented as a linear combination of the
three basis vectors of both bases [13], p. 165]:

3

va) =D ajlvg), with j € {1,2,3} and [vz) = Y _ Balva), with a € {e, i, 7} (2.1)
7=1 a=1

It is possible to change between the two bases by applying a change of basis matrix. This
matrix is called Pontecorvo-Maki-Nakagawa-Sakata-Matrix (PMNS) and is denoted as the
Upmns 20, p. 2]. For this change of basis, one considers an arbitrary neutrino |v,) as
represented by its coordinate vector

(a1,az2,a3)" (2.2)

and finds the coordinate vector of this neutrino |v,) in the changed basis asEl

(Beaﬁuaﬁ‘r)T = UJTDMNS X (ala a2, OZS)T- (2.3)

The principals of quantum mechanics require a neutrino |v,) to be in a certain flavour eigen-
state when created, e.g. |v,) = |ve), since it is created in a weak interaction [I8, p. 113]. On
the other hand, while the neutrino propergates through space (as it would from a source to
a detector) the time evolution of the neutrino’s quantum state is generated by the Hamilto-
nian according to the Schrodinger equation and thus the mass eigenstates are present [19] p.
255]. Thus, in analogy to equation the initial neutrino with certain flavour is now to be
considered in the basis of mass eigenstates, hence:

Vp) = |va) = Z ilvj), with o € {e, p, 7} (2.4)

The time evolution according to the Schrodinger equation reads as
[vj () = [v;(0))e ™" F*7P2) with j € {1,2,3} (2.5)

were t denotes the time from the creation, FE the energy of the neutrino, p the momentum
and z the position along the z-axis, while the neutrino is assumed to travel along this axis.

The usage of the inverse U}, vg = Uppsng instead of the unitary matrix Uparns itself is definition.
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Utilising equation we get the time evolution of the initial neutrin(ﬂ as [13, p. 165]
Vo (t) Z ajvi(0) e~ UE=P2) with o € {e, u, 7} (2.6)

In equation assuming ultrarelativistic neutrinos, the time can be substituted by the
travel distance L (¢ = 1). By additionally Taylor expanding the energy to leading order in
this equation and dropping the phase factorsEI, one gets the good approximation of

va(L Z UZ;[v;(0)e ™M @) wiith o € {e, p, 3. (2.7)

Due to different mass eigenvalues m;, j € {1,2,3} of the three mass eigenstates, the time
evolution of the three mass eigenstates is slightly different [I9 p. 255]. This means that the
neutrino |v, (L)) is in general no longer in an eigenstate for L > 0. One can see this directly
from equatlon for L > 0 the ratio of the three coefficients U}, e —im}L/(2E) / U;Qe*imgL/(QE)
/ Ukse _Zm3L/(2E is different from the initial ratio for L = 0 and hence |v;(L = 0)) # |v;(L >
0)) in general holdsﬂ

We assumed that the neutrino travels from a source to a detector. The detection works
via the weak force, thus the neutrino has to have a certain flavour in this reaction. Thus it
has to be in a certain flavour eigenstate. The theory of quantum mechanics dictates that the
neutrino takes on a certain flavour eigenstate e.g. |v3) with a probability equal to the square
of the projection of its current state, e.g. |vo(L)), onto the certain flavour eigenstate |v3) [I8,
p. 117]. Hence, the probability can be expressed as

P(va — vg)(L) = [(vslva(D))?, with a, 3 € {e, 1,7}, (2.8)

where (v5| = |v3)T denotes the complex conjugate of |vg). The term (vg|va(L)) is thus to be
understood as a bilinear mapping (v3|(|vo(L))), in which |v, (L)) is an element of the original
vector space and (vg| denotes the element of the dual space corresponding unambiguously to
|vg) by the Riez representation theorem. Equationcan be understood as the probability to
measure the initial neutrino |v,) after a travel distance L as a neutrino of type |v3). Applying
equations [2.4] and . and keeping in mind that (v3| = |v5)T, equation [2.8| read as

2

3
P(va — v5)(L) = |3 UajUpye ™M B (2.9)
j=1

This probability undergoes periodical changes with the travel time and travel distance, re-
spectively. Figure[2.2)shows some of these probability graphs for the case of the Double Chooz
and the T2K experiments.

In order to compute this probability, the actual representation of the PMNS matrix be-
comes important. The common representation utilises the notion of Euler angles and reads

3To be precise, the neutrino is in general no longer in a flavour eigenstate for L > 0 (see later) and should
better be referred to as |vz (L)), but as equation[2.6]describes the time evolution of the vector |va) = |va(L = 0))
the usage of |vo (L)) is mathematically correct.

4These factors are irrelevant in the later derived oscillation equation.

5More precisely it even holds in general that |v;(L = 0)) # €|lv;(L > 0)), € € R, i.e. |v;(L = 0)) and
|v;(L > 0)) are in general not linear dependent. Only from this additional inequality follows that the neutrino
is no longer in the initial eigenspace.
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N

Figure 2.1: Change of basis between the basis of flavour eigenstates and the basis of mass
eigenstates. The mixing angles are the Euler angles. The application of the submatrices in
equation [2.10| corresponds to the figures from left to right. The angles are drawn approxi-
mately realistic. [2I], p. 6]

[13, p. 179]
€12€13 512€13 s13e”% 10 0
B s s ,
Upuns = | —s12¢23 — s13523¢12€"°  c12023 — S12513523€" se3c13 | x 10 et 0
s 5 .
512523 — S13C12€23€"0  —S23C12 — $12513C23€"  C13C23 0 0 e
1 0 0 Cc13 0 8136_i5 C12 s12 0 1 0 0
=10 C23 S93 | X 0 1 0 X | —S12 C12 0] x et 0
0 —S823 (€23 —813625 0 C13 0 0 1 0 0 era2
with s = sin (0;) and ¢y = oS (O ). (2.10)

The variables 6j; represent the Euler angles as seen in figure and § = dop is the CP-
violating phase. This accounts for different oscillation probabilities between neutrinos and
antineutrinos [22 p. 36]. Its influence on the change of basis matrix can be seen in the
mixture of flavour and mass eigenstates in figure The variables «j, j € {1,2} are the
Majorana phases and are only of importance if neutrinos are equal to antineutrinos [13, p.
179]. In our context these phases can be neglected since they are on the main diagonal of the
PMNS matrix. With this representation and equation [2.9] together with the unitarity of the
PMNS matrix one can compute the vacuum oscillation probabilities in leading order as [23]
p. 97]

Am2, L
P(0, — 7e) = 1 — 4sin? (13) cos? (#13) sin’ (E) (2.11)

. o (Am3,L
— cos? (013)81n2(2012)sm2< Z%l )

Am2, L  Am2,L Am3, L
+ 2sin? (613) cos? (613) sin? (612) (cos ( B2 S 21 > — CoS < 31 >>

2F 2F 2F
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Figure 2.2: Vacuum oscillation probability functions of the Double Chooz and the T2K ex-
periment. The survival probability of electron antineutrinos P(7, — 7) (red) is plotted along
with the appearance probability of electron neutrinos P(v, — v.) (black). The experimen-
tally accessible parts of these graphs are highlighted for the DC-far (blue), DC-near (red) and
T2K-SK (black) detectors. The % with highest expected number of events is denoted by a
solid line in the same COIOUIﬁ. The T2K-ND280 detector is out of range at 4.7-10~% Af/@”v The
following values are assumed: sin?(20;3) = 0.1, sin?(2012) = 0.8, sin?(203) = 1.0, Am3, =
7-1075 eV?, Am3; = Am3, =2.3-1073 eV? and dcp = 0.

for a reactor experiment and [22 p. 40]

Am3 L
P(v, — ve) = sin®(fa3) sin*(2613) sin® (Z%) (2.12)

+ 2sin (923) sin (2913) sin (2(912) COS(923) COS((913)

. Am?ﬂL . Am%lL Am%lL
- sin <4E sin —iE cos T—l—(scp

2
+ cos” (B23) cos? (613) sin® (2612) sin’ (AZEIL)

for an accelerator experiment. The abbreviation

Am?k = m? —mj (2.13)

has been used in these equations. The graphs of both functions are given in figure [2.2
The equations yield that the position of the minima/maxima in the graphs of figure are

5For T2K the neutrino flux is peaked very narrow around 0.6 GeV such that most of the events are expected
close to the solid line [T, p. 5]. For Double Chooz the neutrino spectrum is wider and events are expected
throughout the entire shaded areas [8, p. 6].
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Figure 2.3: Influence of CP-violation and the neutrino mass hierarchy on the vacuum oscil-
lation probability functions of the Double Chooz and the T2K experiments. Both figures are
detailed views of figure (See there for explanation). (a) Influence of dcp on the appear-
ance probability. Graphs for dcp = 0 (solid black), 37 (dashed cyan), = (dotted orange)
and 37 (dotted-dashed magenta) are added. The coordinates of the first (second) maximum
are connected by a small dashed red (blue) graph. (b) Influence of Am3, on the appearance
probability. Added are graphs for inverted mass hierarchy (Am3, = —2.3 - 1073 eV) for
P(v. — 1) (dashed green) and P(v, — v.) (dashed blue).



8 CHAPTER 2. THEORY OF NEUTRINO OSCILLATIONS

Vel  Vpu vV
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Figure 2.4: View of the two neutrino mass hierarchies and the effect of CP-violation on
the mixing between flavour and mass eigenstates. The bottom of the bars correspond to
cos (bcp) = —1 the top to +1. Fixed in this plot are the mixing angles: sin? (612) = 0.30,
sin? (013) = 0.03 and sin? (f23) = 0.50. One can see that the variation in the flavour admixture
is in the order of sin (613). [24, p. 3]

determined by the mass differences, while the amplitude is determined by the mixing angles.
In this figure, the smaller oscillation with higher frequency is due to 613, the other due to 01s.
One should recognise that equation [2.11] is not dependent on dcp while is dependent.
Due to this dependency, the T2K experiment can only measure a combination of #13 and dop.
This is illustrated in figure since for a fixed ratio of distance and energy % it is possible
to shift all graphs in figure by tuning the value of sin?(26;3) such that they have their

common intersection point at this ratio % Hence, T2K cannot directly infer on the value of

Sop-.

A further dependency of the oscillation probability is due to the mass hierarchy of the
neutrinos. Up to the present date, it was only possible to measure two differences of neutrino
masses. As a consequence, two possible hierarchies for the neutrino masses exist [24]. In the
normal mass hierarchy scenario m; < mg < ms holds, in the inverted mass hierarchy scenario
m3 < my < mg holds. This can be seen in figure Although the form of equations
and is unaffected by this, the values of the probabilities are affected, since the values of
the mass differences are affected. Hence, each probability graph splits up in two graphs as
shown in figure [2.3bl The influence for the Double Chooz experiment is negligible, but an
additional dependency on the mass hierarchy exists for the T2K experiment.

Since the experiments are not located in vacuum, matter effects have to be considered.
The effect on equation [2.11] is negligible in the Double Chooz experiment due to the short
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distance of 1.05km, but equation [2.12] gets modified to [22} p. 45]

sin? (A%%L — aL) Am2. L\ 2
P(VM — Ve) = SiIl2 (923) Sin2 (2913) A2 L 2 ( 4;?1 ) (214)
(o)
4F

. AmglL
sm( i —alL

AmglL
( i —alL

Amj3, Lsin (aL) Am3,; L cos <Am§1L N (5CP)

+ sin (2923) sin (2913) sin (2912)

4F aL 4F 4F
.92 2 2
9 . 9 sin® (aL) (Ams, L
0 20 .
+ cos” (023) sin” (2612) (al)? < 1B

Here, a describes the effect of the interaction between the neutrinos and the matter. It is in
the order of 1073 km~! [22, p. 45].



Chapter 3

Overview of the Experiments

In this thesis, results from two experiments will be analysed. This chapter focuses on their
experimental setup and their function principals. In general, a neutrino oscillation experiment
works by comparing neutrino fluxes in different distances from a neutrino source. At least
one source and two flux measurements are required. The difference between the fluxes can
have two reasons: first, the fluxes differ due to the different distances from the source(s). The
flux decreases inversely proportional to the square of the distance from the source, since the
neutrinos distribute in a spherical segment away from the source and a ball surface increases
proportionally with the square of the radius of the ball. The (average) distance from the
sources to the far detector(s) is called the baseline of the experiment. Secondly, the flux
difference can be due to neutrino oscillations. This effect is in general much smaller than the
first.

Two measurement principles exist. Appearance experiments measure the appearance of
neutrinos of different flavour than the initial flavour. Disappearance experiments measure
the disappearance of neutrinos of the same flavour as the initial flavour. Depending on their
actual setup some experiments can measure both effects.

Furthermore, neutrino oscillation experiments separate in different types according to
their sources. The early experiments measured solar and atmospheric neutrinos while the
recent neutrino experiments focus more on reactor and accelerator generated neutrinos.

3.1 The Double Chooz Experiment

The Double Chooz (DC) experiment [25] is a reactor experiment. It aims for the measurement
of the survival probability of electron antineutrinos and thereby for the measurement of the
lepton mixing angle 613, a parameter of the lepton mixing matrix Uppsnyg as given in equation
2.10] By its measurement principle it is characterised as a pure disappearance experiment.
The Double Chooz experiment consists of two detectors measuring the neutrino flux from
two nuclear reactors. The near detector is currently under construction and will have an
approximate distance of 400 m to the reactor cores, the far detector has a distance of ap-
proximately 1050 m to the cores. The exact geometry can be seen in figure In the two
detector setup, the near detector provides a first measurement of the neutrino flux. This is
taken as the unoscillated reference flux. The far detector then measures a second flux in a
greater distance to the cores. This flux is called the oscillated neutrino flux. Assuming that
the neutrino flux is isotropic, a prediction of the flux in the far detector can be made by

10
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Figure 3.1: Geographical setup of the Double Chooz experiment: The large map shows the
nuclear power plant site [25, p. 5]. The small map in the lower left corner shows the location
of the experiment within Central Europe [26]. The small map in the upper right corner shows
the precise distances of the reactors and detectors [27), p. 18].

extrapolating the measured flux of the near detector. The difference in the ratio between the
measured far detector flux and its unoscillated prediction is due to neutrino oscillations and
can be transformed in a value for 613 by equation In the current one detector setup, the
prediction of the neutrino flux in the far detector has to be done by measuring the thermal
output of the two reactors and converting it into the primary neutrino flux.

3.1.1 The Reactors

The source of the neutrinos are the two nuclear reactors CHOOZ-B1 and CHOOZ-B2. They
belong to the Chooz nuclear power plant (Centrale nucléaire de Chooz) of the french electric
utility company EDF (Electricité de France). The plant is located in France near the town
of Chooz next to the Belgian border. The reactors are pressure water reactors of the type
N4 and have an electrical power output of 2:1500 MW [28], p. 23]. In the one detector setup
the thermal output of the reactors is used to predict the neutrino flux from the reactors.
This flux calculation has large uncertainties due to changing reactor components and power
output regulations. The evolution of the reactor components can be seen in figure [3.:2l The
evolution is caused by fission of certain isotopes on the one hand, and enrichment of certain
isotopes, e.g. by neutron capture and subsequent nuclear transformation, on the other hand
[28, p. 17]. Unlike other fission products, neutrinos can escape the reactor building due to
their small cross section and can be measured in a detector outside the building.



12 CHAPTER 3. OVERVIEW OF THE EXPERIMENTS

Evclution of fission rate
Fib

50_- 13§U
50
404

30 et

Percentage of fissions

Days

Figure 3.2: Evolution of the four dominating components of the Chooz reactors during a
typical reactor cycle. [28, p. 19]

3.1.2 The Detectors

The Double Chooz detectors are liquid scintillator detectors. The far detector is located in
the cavern of the dismantled CHOOZ-A reactor in the surrounding rock of the nuclear plant
(cf. figure 3.). It has an overburden of 300 m.w.e. (meter water equivalent) rock [25] p. 4].
The near detector is built in a new cavern next to the reactors and will have an overburden
of 120 m.w.e. [29, p. 4]. The two detectors are designed equal in order to reduce systematic
uncertainties between the two neutrino flux measurements. As shown in figure the
main detector component is cylindrical, has a height and diameter of approximately 7m and
consists of several volumes enclosing each other. The detector components are in detail [25]
pp. 63-67]:
» Inner Detector: The Inner Detector (ID) consists of the three cylindrical inner volumes
of the detector. They are separated by transparent acrylic. To the outside volume, the ID
is optically separated by a steel tank. On the inside of this steel tank 390 Photomultiplier
tubes (PMT) are installed. Details can be found elsewhere [30)]. They are all oriented towards
the same central volume. In figure these PMTs are displayed in red and blue. The three
volumes are from the inside to the outside:
e Neutrino Target: The Neutrino Target (NT) is filled with liquid scintillator and has
a volume of 10.2m?. In this volume the detection reaction for the neutrinos shall take
place. The scintillator is loaded with Gadolinium, which is necessary for the neutrino
detection. The details of this will be described in section B.1.3l The scintillator is
responsible for the conversation of the neutrino energy into light visible for the PMTs.
Wavelength shifters are mixed with the scintillator to shift the light to a wavelength for
which the acrylic becomes transparent. Details on the scintillator components can be
found elsewhere [31].
e v-Catcher: The -Catcher (GC) encloses the NT volume. It is a hollow cylinder of
21.5m? volume. It is filled with a similar mixture of liquid scintillator as the NT but
without Gadolinium. In the case of a neutrino detection reaction near to the boundary
of the NT, it has the purpose to convert escaping photons of this reaction into visible
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Figure 3.3: Sketch of the Double Chooz detectors: (a) Sectional drawing of the detector.
(1)-(3) Inner Detector (with (1) Target, (2) y-Catcher and (3) Buffer), (4) Inner Veto and
(5) Outer Veto. The Inner Veto PMTs are not drawn correctly with respect to position and
orientation. [33] (b) Arrangement of the Inner Veto PMTs in 5 rings. The PMTs are drawn
correctly. [25, p. 87] (c) Arrangement of the Inner Detector PMTs (red and blue) and the
Inner Veto PMTs (grey). All PMTs are drawn correctly. [34, p. 48]

light. Details on the exact composition of the scintillator can be found in reference [31].

e Buffer: The Buffer is the outer hollow cylinder of the Inner Detector enclosing the
v-Catcher. It has a volume of 100m? and is filled with non scintillating mineral oil.
It accommodates the PMTs. Since the mineral oil is non scintillating, only the central
region of the ID produces light. By this, neutrino detection reactions only take place in
a volume in-between all PMTs and hence observed by all PMTs.

» Inner Veto: The Inner Veto (IV) volume encloses the ID. It is optically separated from
the ID by a steel tank and is of hollow cylindrical geometry. It is filled with liquid scintillator
and on the inside of the outer wall 78 PMTs are installed. The PMTs are oriented parallel to
the walls as pictured in figure Most of the PMTs observe different volumes of the IV
since the central steel tanks prevents the PMTs from observing the whole IV volume. The
IV has the purpose to detect particles other than neutrinos coming from the outside into the
detector. Many of these particles are able to mimic neutrinos and hence need to be rejected
as background events. The IV is enclosed by a 17 cm thick steel shield in order to reduce the
flux from atmospheric muons in the detector.

» Outer Veto: The Outer Veto consists of two double layers of plastic scintillator stripes
mounted on the floor and 5m above on the ceiling, respectively, of the laboratory [32 p. 4].
The lower layer is mounted directly above the steel shield and is visible in green in figure
[3:3al The OV outreaches the cylindrical part of the detector. By this, it is possible to detect
atmospheric muons penetrating into the surrounding rock of the detector. Such muons can
produce secondary particles which can then laterally enter the detector. More details on the
OV can be found elsewhere [32].
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Figure 3.4: Expected neutrino energy spectrum in the Double Chooz detector compared with
the neutrino flux and inverse 3 decay cross section. [35, p. 10]

3.1.3 The Neutrino Detection

In the last section, the detectors of the Double Chooz experiment have been described. In
the central volume, the Neutrino Target, neutrinos are detected by the reaction of inverse 3
decay [25], p. 10]:

e+pt —et+n (3.1)

In this reaction, an electron antineutrino 7, hits a proton of the scintillator and converts into
a positron and a neutron. The positron annihilates with an electron of the scintillator and
deposits in the consequence 2 - 511keV rest energy [I3, p. 515] and kinetic energy from the
initial neutrino in the scintillator |25, p. 10]. The neutrino energy can be computed from the
corresponding positron energy via the equation [28] p. 18]

By, = Epr + (my —my) + O(Ey, /my). (3.2)

Here, the positron energy is denoted as E.+, the neutrino energy is denoted as Ej, and
the masses of the proton and neutron are denoted as m,, and m,,, respectively. The energy
spectrum of the positrons as seen in figure [5.1] is by equation [3.2] similar to the predicted
neutrino energy spectrum in figure The signal due to the positron annihilation is called the
prompt signal. The neutron in reaction[3.I] produces a second signal, called the delayed signal,
when it is captured by a Gadolinium nucleus. The nucleus gets excited by the capture and
emits during its deexcitation a couple of photons with an approximate energy of 8 MeV [28] p.
69]. The neutron needs to thermalise, i.e. to decelerate to thermal energies, before the cross
section for neutron capture on Gadolinium becomes so high that the capture actually takes
place. This causes a delay between the prompt and the delayed signal of a few microseconds
and is the characteristic signal of an inverse 5-decay. Thus, for the selection of neutrino events
in the detector, a cut on the prompt signal and delayed signal energy as well as the signal
delay is used.

Atmospheric muons are able to enter the detector and fissure carbon atoms, which are a
major component of the scintillator. Thus spallation products get generated in the detector
by a large fraction of the entering muons. Some of these spallation products can mimic
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inverse 3 decays, which leads to fake signals. These backgrounds can be rejected by inventing
a veto time after each muon event in the Inner Veto in which no inverse 3 decay signals are
accepted as valid. More selection criteria are invented in order to reject different types of
other backgrounds. Details on the exact physics selection can be found elsewhere [8, p. 4].

3.1.4 Simulation and Reconstruction Software of the Double Chooz Ex-
periment

The Double Chooz experiment uses for the analysis of its data and the simulation of the exper-
iment a tailor-made software written in C++. The Double Chooz Offline Group Software
(DOGS) is based on the particle physics analysis framework ROOT [36; [37], which is it-
self written in C++. The simulation package of the DOGS, which is responsible for the
physics simulation in the detector, is the Generic Liquid-scintillator Anti-Neutrino Detector
“GenericLAND” Geant4 simulation (GLG4sim) and is a Geant4 [38] application based on
KGL4sim [39], the simulation software of the KamLAND experiment [3]. Aside of this simu-
lation software, the DOGS simulates the electronics behaviour of the detector using its own
electronic simulation package Readout Simulation Software (RoSS). After being processed by
GLG4sim and RoSS, the simulated events are in the exact same format as the real data. Both
data types are then processed by the Common Trunk (CT) which is responsible for the event
reconstruction and low level event analysis. By this, the properties of the measured neutrino
events can directly be compared with the full detector simulation of the measurement.

3.2 The T2K Experiment

The Tokai-to-Kamioka (T2K) experiment [40] is an accelerator neutrino experiment located
in Japan. It is primarily designed for the study of oscillations between muon neutrinos and
electron neutrinos; hence it is mainly an appearance experiment. For this studies, a muon
neutrino beam is produced at the Japan Proton Accelerator Research Complex (J-PARC)
located in Tokai and sent to the Super-Kamiokande (SK) detector located in Kamioka. The
trajectory of the beam across Japan can be seen in figure [3.5, The SK detector is the far
detector of the experiment. The near detector (ND280) is located on the J-PARC site 280 m
behind the target, the point where the primary beam is converted into secondary particles
which later decay and form the neutrino beam. The T2K experiment has a baseline of 295 km
[40, p. 10]. The neutrino beam is not directly focused onto the far detector but in an angle
of 2.5° to it 40, p. 10]. By this, T2K is characterised as an off-axis beam experiment.
This technique is used to gain a cleaner muon neutrino beam which a sharper peak energy.
The peak energy is adjusted to 0.6 GeV [40)}, p. 3], since at this energy the oscillation effect
becomes maximal with respect to the baseline by equation This can be seen in figures

2.2 and 2.3

3.2.1 The Neutrino Beam

The T2K neutrino beam is produced at J-PARC using as primary particles protons from a
MW-class proton synchrotron. The setup of the beam is given in figure At first, an H™
beam is accelerated to 400 MeV by a linear collider (called LINAC in figure . It is then
charge-striped into an H' beam and in steps further accelerated. The final proton beam has
a kinetic energy of 30 GeV. It is extracted from the main ring synchrotron (called 50 GeV PS
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Figure 3.5: Geographical setup of the T2K experiment: on a political map of Japan (upper
left figure) [26], on a physical map of Japan (upper right figure) [41] and in a schematic view
of the neutrino beam through the main island of Japan (lower figure) [40, p. 3].

in figure and Main Ring in figure respectively) in a fast extraction mode. By this,
a spill of eight proton bunches is sent to SK. Due to this time structure, various backgrounds
can be discriminated [40, p. 4]. The setup of the beamline after the extraction can be seen in
figure [3.6D] After the extraction the proton beam is directed towards SK and focused on the
target. In the graphite target, the protons interact with the graphite and produce a secondary
beam of mainly pions and kaons. The secondary beam is focused by three magnetic horns
and the pions and kaons decay in the following decay tunnel. This beamline part is depicted
in figure [3.6c] The decaying particles form the tertiary neutrino beam, since the decay of
a pion produces with 99.99 % a muon neutrino [I3, p. 31]. The decay of a kaon produces
with 5.07% an electron neutrino, though. This is a major background for the appearance
signal. The electron neutrino contamination of the muon neutrino beam is tracked by the
near detector. Aside of neutrinos, leptons are produced in the decay tunnel as counterparts
to the neutrinos. The leptons are stopped in a beam dump behind the decay tunnel.

3.2.2 The Detectors

The T2K experiment uses two different detector concepts for its far and its near detector.

— Near Detector: The near detector (ND) itself consists of two detector parts. One is
installed in on-axis direction and monitors the beam properties. The second detector is
installed off-axis on the direct connection line between target and far detector [40, pp. 11—
22]. A view of the near detector complex can be found in figure In this figure, the upper
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Figure 3.6: Sketch of J-PARC beamline: (a) Overview on the whole accelerator beamline at
J-PARC [42, p. 8]. (b) Detailed view of the final segments of the J-PARC beamline including
the near detector site [40, p. 5]. (c) Detailed view of the secondary beamline [40, p. 7].

part is the off-axis detector called ND280, because it has a distance from the target of 280 m.
The lower part is the on-axis detector called INGRID.
» ND280: The off-axis detector is drawn in an explosion sketch in figure[3.7b] It consits
of several subdetectors. They are separated by their position in the inner detectors and
the outer detectors.
e Inner Detectors: The inner detectors are the 7° detector (POD) and following
in downstream direction (with respect to the neutrino beam) a setup of two fine
grained detectors (FGD) being interlaced with three time projection chambers
(TPC). The POD tracks muon neutrinos which produce a uncharged pion. It works
via a series of fine grids of perpendicular scintillator stripes interlaved with brass,
lead and water planes. The TPCs are capable of identifying charged particles by
their energy deposition and the curvature of their tracks due to the magnetic field
in the detector. The magnetic field is generated by the former Underground Area
1 (UA1) magnetﬂ which encloses the TPCs. The FGDs provide target mass for the
neutrino interactions being measured with the TPCs. Moreover, the FGDs them-
selves can measure tracks of charged particles coming from the neutrino interactions
points via scintillator bars. These are oriented in perpendicular directions and in
several planes.

!This magnet is recycled from the 1981-1993 UA1 CERN experiment [43].
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Figure 3.7: Sketch of the T2K detectors: (a) Overview on the near detector site with the
off-axis detector in the upper picture and the partly covered on-axis detector beneath [40,

p. 11].

(b) Explosion sketch of the off-axis near detector [40, p. 15]. (c) Front view of the

on-axis near detector [40, p. 13]. (d) Sketch of the far detector [42, p. 13].

e Outer Detectors: Enclosing the three inner detectors, several electromagnetic
calorimeters (ECal) measure the energy of escaping particles. The ECals are sam-
pling calorimeter, being built of plastic scintillator bars and lead absorber sheets.
They separate into POD-ECal and Barrel-ECal/Downstream-ECal according to the
inner subdetectors they complement. Their position can again be seen in figure
3.7bl The last of the outer subdetectors is the side muon range detector (SMRD).
It consist of scintillator stripes being installed in-between the steel plates of the
return yoke of the magnet. They measure tracks and momenta of escaping muons.
These muons cannot be captured in the ECals. Furthermore, the SMRD is used as a
veto detector against atmospheric muons and can detect events in the walls and the
yoke being induced by the outer parts of the beam. By the functional interaction of
all the subdetectors, the primary composition of the neutrino beam can be probed
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in a sufficient manner.
» INGRID: The lower part in figure [3.7a] shows the on-axis near detector. It is called
interactive neutrino grid (INGRID) and shown again in figure It consists of 16
segments of interlaced iron and perpendicular oriented scintillator planes. The modules
are arranged in a cross of seven modules in horizontal and seven modules in vertical
direction. The centre of the beam coincides with the centre of the cross. By the design
of INGRID, the position of the beam centre can be sufficiently measured. From this
information, the off-axis angle, i.e. the angle between the neutrino beam direction and
the connection line from SK to the target, can be computed and corrections in the
expected neutrino flux and energy can be made on a daily basis. As seen in figure [3.7¢
two additional modules are installed outside the original cross geometry. They are used
for probing the axial symmetry of the neutrino beam.
— Far Detector: The far detector of the T2K experiment is the Super-Kamiokande (SK) de-
tector located in the Kamioka mine. It is a water Cherenkov detector of 50 kton and equipped
with approximately 13000 PMTs. It has a cylindrical geometry and its inner detector (ID)
volume is 33.8 m in diameter and 36.2m in height. 11129 inward-facing PMTs are mounted
on the inside of the outer boundary of the ID. Optically separated is the outer detector (OD).
It is a hollow cylinder which is in lateral direction and in axis direction 2m thick. On the
inside of its inner boundary, 1885 outward-facing PMTs are mounted. The OD is used as a
veto against atmospheric muons and other types of backgrounds. A detailed report on the
SK detector can be found elsewhere [44].

3.2.3 The Neutrino Detection

The idea of the T2K experiment is to measure the appearance of electron neutrinos in an
initial muon neutrino beam. This measurement is done in two steps:
In the off-axis near detector, the measurement of muon neutrino interactions like

vu+B— pu+B +nr (3.3)

is performed to gain the number of muon neutrino events in the initial beam. Here B and B’
represent Baryons and n € N counts the number of produced pions. By this, an expectation
for the number of events in the far detector is achieved. For a valid event in this measurement,
it is required that no veto signals are present. Moreover, only the most energetic track in
the FGDs which enters the downstream TPC is selected. This track has to correspond to a
negative charged particle and its energy loss must be compatible to a muon. Additionally, the
upstream TPC may not contain a track to reject trajectories starting outside the detector.
More details on the selection can be found elsewhere [7), p. 5]

Knowing this number, a search for electron neutrinos is performed in the far detector.
Since the neutrino beam can make signals in the OD of the far detector, which would lead to
a veto, the precise bunching information and time from the neutrino beam spill is transferred
to the far detector to trigger the measurement. In the far detector, neutrinos are measured
by Cherenkov light which is generated in water when a neutrino participates in a charged
current quasi elastic (CCQE) interaction. In this interaction the corresponding lepton to the
initial neutrino is produced. If the kinetic energy of the newly generated lepton is so high that
it travels through the water of the detector faster than light would, a cone of light is produced
similar to the supersonic cone of a plane in air. The SK far detector is able to measure the
energy of the particle by the energy dependent opening angle of the cone. Moreover, it is
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able to distinguish between electrons and muons by their cone geometries. The cone of an
electron is fuzzier than the cone of a muon because an electron produces an electromagnetic
shower on its way through the water. The cone of an electron can hence be seen as the sum
of several single cones giving a fuzzy overall cone. A valid electron neutrino event in the SK
far detector is defined by seven cuts:

The reconstructed vertex of the CCQE interaction must be within the fiducial volume,
within the trigger window and must be fully contained in it. It must have an electron like
single ring. The ring corresponds to the Cherenkov cone projected onto the surface of the
detector where the PMTs are mounted. The visible energy must be above 100 MeV and no
delayed electrons must be in the detector. The misidentification of 7 mesons as electrons
is suppressed by artificially forcing the reconstruction of a second cone and discriminating
events with a thereby reconstructed invariant mass of more than 105 MeV. This rejects 7°
which decay in two photons giving two cones with an invariant mass of 135 MeV [13] p. 623].
A last cut rejects the electrons from the kaon background in the secondary beam component
by requiring the energy of the electrons to be below 1250 MeV. Details on the selection in
the far detector can be found elsewhere [7, pp. 5-6].

3.2.4 Simulation and Reconstruction Software of the T2K Experiment

The T2K experiment uses different software packages for the entire simulation process. The
simulation of proton interactions in the target is done by FLUKA [45], the horn simulation
and secondary beamline simulation is done by GEANT3 [46]. The interactions in the ND280
detector is done redundantly by GENIE [47] and NEUT [48]. Both packages are GEANT4
[38] based. The interactions in SK are done by the established GEANT3 based software of
the former SK collaboration. The event selection is done by a tailor-made C++ program
utilising the common ROOT [36; 37] packages.



Chapter 4

Statistical Methods in Neutrino
Physics

In this chapter, statistical methods which are repeatedly used throughout the following anal-
yses are explained in a general manner. This includes function fitting methods, correlated
random draws and the calculation of confidence sets.

4.1 Function Fitting

It is often the case that one wishes to describe certain numbers measured in several classes by
an analytical function, which then expresses the predicted number as a function of the classes.
For example the classes could be the energy of the measured neutrinos and the numbers are
the numbers of neutrinos in each class. The function then describes the expected number of
neutrinos in each class as a function of energy. The classes are often called bins in physics.
The optimal function is found by minimising a goodness-of-fit statistic. This statistic is a
generalisation of Pearson’s x? goodness-of-fit test statistic 49, p. 168]

n

O — Ey)?
X%D = Z”Ekk)v (4.1)
k=1

where X% is Pearson’s test statistic which asymptotically approaches a x? distribution. The
number of classes in which the statistic is evaluated is n (in the upper example this is the
number of energy bins), Oy, is the observed frequency in the kM class and Ej, is the expected
frequency in the k™ class. This expectation is dependent on the function

Fw :N—- Rk E, = E(k, @), (4.2)

which shall be fitted. This function is not only a function of the class number k but also of
additional parameters o which are varied during the minimisation such that the value of X%;
in equation becomes minimal. Thus the fitting of E coincides with the optimisation of
a.

The statistic used in physics is not exactly Pearson’s y? statistic, but a modification of
this statistic that accounts for the uncertainties in the measurement. The used statistic is

21
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called Neyman’s x? statistic and reads as [50, p. 438]:

" (O — Ei)?
k=1

A pathological case in Neyman’s y? can occur when the number of measured events in a
certain class Oy, is zero. To prevent the denominator to become zero in such cases, a modified
version of Neyman’s x? statistic is widely used [51} p. 386]:

n

X% = Z M (4.4)

However, in this thesis the case of zero events is never encountered and thus Neyman’s y?
always refers to X?V given in equation

A way to motivate Neyman’s y2 statistic is the idea that the number of events in the k"
class X}, is a random variable distributed according to a Poisson distribution with parameter
A. This assumption is common for counting experiments [51, p. 386]. Taking Oy as the
estimator for A and keeping in mind that

E[X4] = Var[X}] (4.5)

holds for a Poisson distribution, the variance of the Poisson distribution becomes Oy. This
is the Oy, in the denominator of equation [£.3] It is then generally assumed that the Poisson
distribution can be approximated by a binomial distributions which itself is assumed to be
approximable by a Gaussian distributions N(Og, O). Writing this as N(my,0}) one can
show that minimisation of X?V coincides with a maximisation of the goodness-of-fit likelihood
assuming Gaussian uncertainties. The likelihood function is given as [52] p. 440]

N
L=]]r"@la), (4.6)
=1

where f** (x| @) is the density of a random variable X}, and all X} with 1 < k < n are in-
dependently and identically distributed. The parameters of the density function are collected
in . Now, if the densities f(xx| @) are Gaussian density functions with parameters (mg, o)
from
1  (zx — my)*
L= exp | — —_— 4.7
H |:O'k\/271':| P [ Z 20,% (4.7)

k=1 k=1

I (o —mp)? 1 o 1
k

k=1 k=1
1, 1 o 1
=log L = —3XN T 5 ,;log(ak) - 5n10g(27r) (4.8)
1 [o0%:
LOBL O g vi<k<n (4.9)

8mk 8mk

follows that finding the maximum value of £ coincides with minimising Neyman’s x? statistic,
since the logarithm is a strictly monotone function [52, p. 442][53| p. 125].
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In practice, often advantage is taken of the addition theorem for Gaussian distributions
[52, p. 150]. It is assumed that each effect, which causes the number of events in a class
to fluctuate, causes this number to fluctuate according to a Gaussian distribution. The
variances according to each effect are evaluated and due to the addition theorem added to
the overall variance. This is then used as the denominator in equation justified by the
upper explanation.

In the case of vanishing denominator, e.g. O = 0, it is, apart from equation [£.4] in
principle also possible to use

Oy, — Fj)?
X =) (O —Ew)” 5 k) (4.10)
{(k|Op>0} k

as x? statistic. This is disfavoured with respect to because the value of x% is often
interpreted in terms of goodness-of-fit. When using information about the goodness-of-
fit in the “empty” (O = 0) classes is effectively ignored. Since the case of O = 0 is only
likely to happen for a Poissonian density function (zero events counted in a class) and not
for a Gaussian density function (o7 = 0 gives no proper distribution) uses in this case
the variance of the next greater possible outcome of a Poisson distribution (O = 1) as lower
bound for the denominator.

For the minimisation of Neyman’s x? statistic in practice, a subroutine of the ROOT
framework [36] called Minuit [54] is used. In the Minuit program itself, several minimisation
routines are implemented. The default method is called MIGRAD and is a implementation
of Fletcher’s switching variant [55] of the original Davidon-Fletcher-Powell algorithm [56], a
quasi-Newtonian minimisation algorithm. This method is used unless a different method is
stated in this thesis.

4.2 The MultiSim Method

At several points in the following analyses it is necessary to derive a distribution for a certain
random variable, which is dependent on several other random variables. These are called the
(random) parameters of the first random variable. These random parameters can possibly be
correlated to each other. The computation of the dependent random distribution is normally
done by the so called multiple simulation (MultiSim) method. The method belongs to
the family of Monte Carlo (MC) methods [57]. The idea of this method is to perform a
random draw on the value of each parameter according to its random distribution. The
value of the dependent random variable is then calculated using the current realisation of the
random parameters. Then a new set of random parameters is randomly drawn according to
their respective distribution and the new value of the dependent random variable is again
computed. This is repeated until a sufficiently smooth random distribution of the dependent
variable is gained.

In the default implementation of this method, the first step is to determine the distribu-
tions of the random parameters. The analytical form of the distributions is in principle not
needed in the MultiSim method, thus a repeated measurement of the parameters until one
gains a smooth distribution is sufficient. Nevertheless, in the most cases it is assumed that
the random parameters are distributed according to a Gaussian distribution.

In the case of uncorrelated random parameters the first step is a random draw from a
standard normal distribution for each parameter. The outcome of the i*" random draw is
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multiplied with the variance of the i*" random parameter and added to the i*" mean. If
the thereby gained value of the parameter is outside a physical boundary, the value is reset
into the physically allowed region. Finally, the value of the dependent random variable is
calculated from the current realisations of the parameters.

In the case of correlated random parameters, the first steps coincide with the above
method. Then the outcomes are arranged in a vector. The vector is then matrix multiplied
with the covariance matrix of the correlated parameters. In practise, Cholesky’s decomposi-
tion [58, p. 524]

D=1L"L (4.11)

of the covariance matrix D is determined and the gained triangular matrix L is multiplied
with the vector x of drawn deviations.

Lr=y (4.12)

The gained vector y includes now the correlated random shifts to the means (central values).
Cholesky’s decomposition is applicable since covariance matrices are for not linear dependent
variables of the symmetric positive definite type [59, pp. 234-235].

Since, the analytical form of the random parameter distributions were not of interest for
the MultiSim method, this method works in principle for arbitrary random distributions.

4.3 Random Draws and Physical Boundaries

It is often the case that within a simulation method like the one in section draws of
a random variable according to a probability distribution function are performed. Often
this is done assuming a Gaussian distribution or other symmetric distributions with the real
numbers as support. Not seldom, a theoretical reason restricts the physically allowed region of
the parameter to a proper subset of the real numbers. In this case, two common methods exist
to handle the case of an unphysical random draw outcome: the outcome is resetted into the
physical region by accounting every unphysical outcome as an outcome to be exactly at the
physical boundary or the outcome is dumped. By doing so, the Gaussian probability density
function (pdf) is implicitly modified. This is illustrated in ﬁgure The physically allowed
region in this example is the set of the non-negative real numbers. The original unmodified
distribution is plotted in green. The dumping method modifies this pdf to the orange one.
Due to normalisation this graph is above the original green graph. The distribution of the
resetting method is plotted in blue. Here the number zero has an explicit probability and
the distribution is therefore a compound of a probability density function for z # 0 and a
probability mass functiorEl (pmf) for 2 = 0. Both methods have the disadvantage that the
means of both modified distributions do not coincide with the modes of these functions. For
the unmodified function, the mode coinsides with its mean. The mode is not affected by the
modification of the original function, but the mean is affected. This is visualised in figure
in which the dashed lines show the means of the functions of same colour. As the mean is
the value that is measured in an experiment, the modification introduces a bias with respect
to the true value (which coincides with the green dashed line). The resetting method has the
additional disadvantage of a discontinuous point within the physically allowed region. The
discontinuity is located at the physical boundary (cf. blue graph in figure at r =0). By

'The compound pdf/pmf could technically be restored to a pure pdf by the utilisation of Dirac’s § function.
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Figure 4.1: Random draws at physical boundaries. (a) shows the original pdf (green) and
the default methods of truncating this pdf at the physical boundary (orange) and the mixed
pdf/pmf of the resetting method (blue) as described in the text. (b) shows the pdf of the
truncated tuned O’Hagan-Leonhard skew Gaussian distribution (red) as explained in the
text. For comparison, the not truncated distribution with the same parameter set is plotted
(black). In both figures, the corresponding means of the pdfs/pmfs are denoted by dashed
vertical lines of the same colour as the pdfs/pmfs.

shifting the distribution until the mean again coincides with the true value, the bias issue can
be solved. Nevertheless, the issue of not coinciding mode and mean remains.

It is possible to regain a physically meaningful distribution, i.e. with coinciding mode
and mean, without a bias and without discontinuities in the physical allowed region, by
introducing a skewness to the truncated Gaussian distribution. The pdf of O’Hagan’s and
Leonard’s skew Gaussian distribution of the parameters (§,w, «) is given as [60]

fX(w)=%¢ <$—§><I><a$_€>, (4.13)

w w

where ¢ and ® are the pdf and cummulative density function (cdf) of the standard normal
distribution, respectively. If the shape « is set to zero, a Gaussian pdf with mean ¢ and
variance w? is regained. The truncated orange pdf in figure can now be tuned by the
shape parameter o until the mean coincides with the mode. During this, the mode is fixed to
the true value. The resulting distribution is shown in figure [£.1b]in red. The scale parameter
w can be tuned such that the variance of the skew distribution coincides with the original
variance of the original not truncated Gaussian distribution. By this procedure an unbiased
realistic physically meaningful distribution can be rendered.

4.4 Confidence Sets

When performing a measurement, it is of general interest to not only give a maximum likeli-
hood point estimator for the measured variable. It is also of essential importance to provide a
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set which covers the true value of the measurand with a certain probability. This is especially
important as the latter gives essentially a statement on the reliability of the former.

4.4.1 The x? Approach

A common method for the construction of such point estimates and confidence sets is based
on the x? function used in section Let our parameter of interest be one of the components
of @ in equation called &. Neyman’s x? function is minimised by solving equation and
the value apegr, which minimises X?V is taken as point estimate for a. Now, the X?V statistic is
taken as function of the only parameter a. For finding the confidence set that covers the true
value of & with 0 < v < 1 probability, the v quantile of the x? distribution with 1 degree of
freedom is evaluated. This is denoted with X%w in the following. Next, the values for a are
computed for which

X?V(&> - X?V(&best) - X%;'y (4'14)
holds. Let us denote the values of o that satisfy equation with ..., where x € {O; ®}
and © denotes the smaller value of & satisfying equation and @ denotes the larger value
doing so. As x3; could have some skewness it might be that

A&%@ = aébest - 5&7;@ ?é &’y;@ - &best = A&%@. (415)
As a conservative variant, the v confidence set is given as the interval

Opest — Ma; AQy 4 }; Qpest + ma; A, 4.16
et — e (AT )i+ max (AT (4.10)

or more often stated as

Qpest = ma A4} 4.17
best *e{@%}{ %*} ( )

This is often referred to as a symmetric uncertainty. If it is plausible that inequality is
true due to a physical reason and not due to a statistical fluctuation, the asymmetric interval

[0 Ay (4.18)
is taken as the confidence set. This is again more often stated as

~ AC~.
(Toest) na - (4.19)

It is common practice in physics to derive a point estimate and an uncertainty for a measured
parameter with the x? approach and to state either or for v = 68% conﬁdenceﬂ

This approach relies on the assumption that the relevant uncertainties are distributed
according to a Gaussian distribution, since in this case maximum likelihood estimation and
minimum y? estimation coincide as proven in section

2This number is motivated by the fact that 68% = P(—1 < z < 1) for = being a realisation of a standard
normal distributed random variable.
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4.4.2 The Confidence Belt Approach

A more sophisticated way of gaining the confidence set is given by the confidence belt ap-
proach. This approach is often favoured when the interval in [4.18| includes unphysical values.
The confidence belt approach aims for the construction of an interval that covers the true
value (gue Of a physical parameter ¢ with a given probability. In general, ¢ is a parameter of
a theoretical model that gives a prediction on the value of the measurand x. It is also possible
that ¢ itself is the measurand. However, with every measurement of x a (direct or indirect)
measurement of ¢ is performed. Thus, ( is also called measurand in the following, although
strictly speaking only x can be measured directly. The probability of coverage is known as
confidence level (C.L.) in physics and will be denoted as 1 — « in the following. A confidence
interval is defined as follows [52], p. 490]:
Let
N
X =(Xy,..,X,),neN (4.20)

be the random vector of n draws of the random variable X. Let the probability distribution
of X be dependent on a parameter (. The true value (yye of ¢ must not be known for this.
Let further be
— _ =
L(X)<L(X) (4.21)

two statistics of X . These statistics are implicitly dependent on ( as X is dependent on (. If
it holds that
— — =
PILIX)<(<LX))>1-« (4.22)

the interval - - . _
[L(X); L(X)] = [L(X(C)); L(X (Q))] (4.23)

is called a confidence interval of the 1 — « confidence level. Note that in equation [£.22]
the parameter ¢ is fixed, so expresses the probability that the interval covers the
parameter (. For a continuous random variable X equation [£.22] can be replaced by

PILX)<¢<I(X)=1-a. (4.24)

Intervals satisfying equation are said to have correct coverage. Intervals satisfying only
equation [£:22] are said to overcover. By finding other pairs of statistics satisfying equation [.22]
other confidence intervals to the same confidence level can be found resulting in an ambiguity.
Common confidence intervals are the one-sided confidence intervals

— — =
[L,,(X); 00] and [—o00; Ly(X)] (4.25)
where equation [4.22] is modified to either
— — =
P(L,(X)<Q)z1-ao PC<L(X) = 1-a (4.26)
and the central confidence interval
- = =
[Le(X); Le(X)] (4.27)
where additionally to equation the equation

P(¢ < LX) = P(T(X) < ¢) (4.28)
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holds. In any case, it is desireable to find the smallest confidence interval for which equation
[£:22] or its modifications hold, i.e. the interval with correct coverage.

In the confidence belt approach, an interval as described above is constructed in two steps
[53, pp. 105-107]. In the first step, an interval ¢((4ss,) is constructed such that

P (Cmeas € C(Cassu)) =1-a. (429)

This is done for each possible value (ys5u Of Cirue. Thus, (ussy is the assumed true value.
Cmeas denotes the outcome of the experiment that wants to measure (yrye; hence (peqs can
be understood as the estimate of (ye. Under the assumption that (550 = (irue and by
construction, ¢((ussy) is an interval such that the probability that the estimator (peqs is
realised within ¢((4ssu) equals 1 — . This is different from equation where the interval
423 was the random variable. Here the estimator is the random variable.

The construction of ¢((4ssy) is done by assuming a value for (4 and fixing this value
in the first place. Let us denote the fixed value as (55, as already done before. Under the
assumption that (s, is the true value of (, i.e. assuming (yssu = Grue, the probability
density function of (peqs is computed by a MultiSim. The inputs of the MultiSim are the
constants and parameters relevant in the experiment that wants to measure (yrye and their
uncertainties. The outputs of the MultiSim is the pdf of (peqs, i-e. the pdf of the possible
measurement results of the considered experiment under the assumption that (s, is the
true value of . The pdf reflects in principle the fluctuation in the result of the measurement
due to the imperfections of the experiment. For an absolute precise experiment the support
of the pdf would be the set containing only (4ssy. From the pdf, the interval ¢((gssu) is
determined such that equation is satisfied. The gained interval is drawn as horizontal
line with ordinate (455, into a graph like figure If (ussu was fixed for instance to 5, then
the interval would be drawn at the ordinate (455, = 5.

In principle, this has to be repeated for every value of (4ss,. In practice, this is done only
for some values. Normally, the chosen values for (s, are equidistantly distributed over the
region around the maximum likelihood point estimate (neqs Of the real experiment. After
having constructed all intervals, a belt is rendered which could look similar to figure [.2]

In a second step, the value (peqs Of the measurand that was measured by the real ex-
periment is considered. The final confidence set C' is the set of all values of (55, Whose
corresponding intervals constructed in the first step contain (peqs:

C(Cmeas) = U{CassuKmeas € C(Cassu)}- (430)

Note that C((meqs) is an interval satisfying equation while the ¢((ussu) satisfy equation
4,291

Graphically the final confidence set can be determined as the projection of the intersection
set of the belt in figure [£:2] and the dashed line in figure [£.2] onto the ordinate.

It can be proven by elementary set theory that if is satisfied for all (,ss,, also equation
[4.24] is satisfied. For this, the following definition and lemma are needed:

Definition: (4.31)

Let T'C A x B be a relation on two arbitrary sets A, B. Let (a,b) € A x B. Let aTb denote
the common relation notation, i.e. aTb := (a,b) € T'. The slice through T" at ag € A is defined
as

a0l = {b € BlagTb} (4.32)
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Figure 4.2: Example of a constructed confidence belt. The ordinate shows the assumed
values for the measurand. The abscissa shows the measured values of the measurand. For
each assumed value of the measurand the horizontal line at this value represents the 1 — «
confidence interval constructed for this value as described in the text. The vertical dashed
line is located at the value of the measurand that was measured in the real experiment. [61,

p. 3875]

and the slice through T at by € B is defined as

Tb() = {CL S A|aTbo}

Preliminary Lemma:
With definition [£.37] it holds that

bo € o4y 1 & ag € Tp,.
PROOF:

bo € 4T < by € {b € BlagTh} < agThy < ap € {a € AlaThby} < ag € Ty,

Theorem:
Let C((meas) # 0. In the confidence belt approach it holds for all (;eqs that

P(Cmeas S C(Cassu)) =l-aV Cassu € P(Cassu € C(Cmeas)) =l-«

is satisfied.
PROOF:

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Define the relation T by

(Cmeasa Cassu) €T3 Cmeas such that Cassu S C(Cmeas) (439)

Let 4,1 = C((meas) be the final confidence set. Thereby ag = (neqs- Let further be Ty, =
¢(Cassu) and thereby by = (gssu- Now, from it follows that

CCLSS’U, G C(Cmeas) = Cmeas 6 C(CCLSS’U,) (4'40)

If C(Cmeas) # 0, at least one (455, exist which satisfies the left hand side of equivalence m
Now it holds (cf. equation 4.29) that

l-—a= P(Cmeas c C(Cassu)) vCassu (441)

by construction of ¢((yssy ). Thus, by equivalence it follows that

1 — o = P(Cassu € C(Crmeas))- (4.42)

Since (meqs was arbitrary equation [£:42) holds for all (neqs-
O

Recalling that here C'((meaqs) is the random variable, it holds that the final confidence interval
C'(Cmeas) covers the true value of ¢ with the desired confidence level 1 — . Thus, by the last
construction step the desired confidence interval for the true parameter is gained, while in the
first step only intervals which include the outcome of the experiment with probability 1 — «
where constructed.

To get a higher precision in the final confidence set construction, the method of finding all
intervals containing (,.eqs 1S changed. Instead, an interpolation function between the upper
bounds of all intervals /() and an interpolation function between the lower bounds of all
intervals [(¢) is computed and the final confidence set is defined as

[Z(Cmeas); é(Cmeas)]' (443)

Typically a linear spline is used for the interpolation. In principle it is possible that the
interpolation is not a function. This is the case if the values of the upper (lower) bounds are
not increasing with the measurand due to a random fluctuation in the simulation. In this case
[ and [ can be understood as proper relations. Then I((meas) ([(Cmeas)) is the set of all values
being in relation with (neqs by relation I (I). The final confidence interval is then given as

Cpol = [minl(Cmeas); max L(Cmeas)]- (4.44)

This interval always contains the set constructed in equation [£.30] Hence, the coverage of
the constructed interval is a bit larger than the aimed confidence level, but C),; still satisfies
equation .22

It is possible to replace the measurand by a different variable which is dependent on the
measurand. The equations in this subsection can for such case remain in their stated form.
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4.4.2.1 The ordering principle of Feldman-Cousins

As described in subsection an ambiguity in choosing a confidence interval for a given
confidence level exists, since several intervals can cover the true value of the measurand with
the same probability. This ambiguity still exists, even when the minimality of the confidence
interval in equation is requestecﬂ The ordering principle of Feldman-Cousins (FC)
[61] is a popular algorithm in neutrino physics that provides for every given confidence level
precisely one confidence set. In contrast to the confidence intervals stated in subsection
the FC confidence interval accounts for the existence of physical boundaries of the measurand.
It provides always a none empty final set even if the measurand is in an unphysical region.
It decides between a central and limit confidence interval depending on the realisation of the
measurand. As we later see, it has these advantages for the price of incorrect coverage.

4.4.2.1.1 Construction Like the classical confidence interval construction, the FC confi-
dence interval construction starts with the probability density function of the estimator for an
assumed true value (455, Of the measurand. Although the original method of FC is developed
for statistical probability density functions only, the method is also applicable if systematic
uncertainties are incorporated in the density function [62]. In contrast to the classical confi-
dence intervals, the density function is not directly used but is modified to the rank function.
The rank function R is given as

P(¢(#)[Cassu)
SUPze, P (((93) ‘Z‘)

R(C(-T)Kassu) = (4.45)

where (gss 18 the (assumed) true value of the physical parameter that gives a prediction
on the value of the measurand, z is the realisation of the measurand, ((x) is the physical
parameter corresponding to z, p(e|(assy) is the probability density function of ¢ and Z,,.
is the set of all physically allowed values of the parameter, i.e. (us5u € Zp.q. is required by
physical reasons. The value of E that maximises the denominator in equation is denoted
by Cpest = Cpest(C(z)). Thus equation can be rewritten as

p(¢(@)|Cassu)
P(C(2)|Gpest (C()))

Again, ( is also called measurand although only x can be measured directly. In the notation
of subsection the intervals of the first step can be computed as the intervals cpo(Cassu)
that satisfy

R(C(LE) ’Cassu) =

(4.46)

P(C € CFC(Cassu)) >1—-« (447)
and
inf  R(C(%)[Cassu) = sup  R({(2)|Cassu)- (4.48)
CECFC(Cassu) C€CFC(Cassu)

This means that the interval consists of the union of all points for with the rank function
anticipates their highest values such that the probability of this union equals 1 — « or greater
with respect to the pdf p(e|(sssu)-

3There are several minimal confidence intervals, but not the minimal confidence interval. Nevertheless, the
minimal central/upper/lower confidence intervals exist.
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The final confidence interval is then again computed as the union of all assumed true values
Cassu Whose associated intervals contain the measured value (;,eqs 0f the real experiment:

C;C’(Cmeas(m)) = U{Cassu‘gmeas € CFC(Cassu)} (449)

If dist(Cre(Gmeas): Zga.) = 0, i.e. if the confidence interval reaches the unphysical region, a
one-sided confidence interval is rendered by setting

Cro(Cmeas) = Cio(Gmeas) U{C € Zp o ¢ < inf Zpa } (4.50a)
or by setting
CFC(Cmeas) = C;‘C(Cmeas) U {C € Z;E.a.‘c > sup Zp.a.} (4-50b)
depending on which physical boundary is encountered; otherwise
CFC(Cmeas) = C;C(Cmeas)- (450C)

The remarks on the numerical computation of the final confidence interval made at the end
of subsection are applicable to the FC confidence intervals as well.

In principle, the construction of a FC confidence interval is also applicable for more than
one parameter. The equations remain the same, only (,ss, has to be replaced by a tuple

(Q%lu, - cé’;ﬁu), n € N. The final confidence set is an n-dimensional set, though.

4.4.2.1.2 Physical Meaningful Confidence Intervals The ordering principle of Feld-
man Cousins is designed to solve the common problem of gaining an empty confidence interval
if the measured value of the measurand lies in or close to an unphysical region. This is in fig-
ure [£.2) the case for a measured value of 1.4 or less. Due to equation [£.46a FC confidence belt
extends further to oo than a classical belt and shall provide a non-empty final confidence
interval.

While it has already been shown that the ordering principle of FC does not provide
non-empty confidence sets in general [63] it seem that it has yet not been proven that the
ordering principle of FC always succeeds in providing a non-empty interval under very weak
assumptions. This proof shall be given here.

Definition: (4.51)
We use the notation of this subsection. If p(¢|Cassu) = 0 Vassu € Zp.o. We define

o . p(C’Cassu) N 9
0= R = el ~ 0 52

This definition coincides with intuition: the value ¢ has a priori zero probability and hence
should never be in any confidence set.

Definition: (4.53)

We define the set of all possible outcomes of (peqs as D.
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Theorem: (4.54)
We use the notation of this subsection. If

V Cmeas €D 3 € Zpa. : Cmeas € supp(p(e[C)) (4.55)
holds, then it also holds that

CFC(Cmeas(x» 7é 0 v Cmeas eD (4'56)

and that
Cbest(Cmeas) c CFC(Cmeas) 4 Cmeas e D. (4.57)

PROOF:

CFC(Cmeas (-75)) 7‘é @ v Cmeas eD
&V (meas €D 3 Cassu € Zp.a. : R(Cmeas’Cassu) > R(dCassu) veeD (458)

Claim: Cassu == Cbest(é-meas)
To show:

R(Cmeas ’Cbest (Cmeas ) ) > R(C ‘ Cbest (Cmeas)) VC eD

p(Cmeas |Cbest (Cmeas )) P(C | Cbest (Cmeas))

= p(Cmea8|Cbest(Cmeas)) = p(<|Cbest(<)) VC €D (459)
p(ngest(gmeas))

i’ Z o lGen©) P (1.60)

But p(¢|¢") < p(¢|Grest(€)) V¢ € D, ¢ € Z, 4 holds by definition of (pest (cf. equations
and [4.46)). Hence
Cmeas € CFC(Cassu = (best(gmeas)) (461)

and by equation it follows that
Cbest(Cmeas) S CFC({meas) 7& @ (462)
]

Without assumption it might be possible that p((meas|() = 0 V¢ € Z, 4. and by definition
R(Cmeastest (Cmeas)) =0.

Corollary: (4.63)

For the common case of Gaussian and Poisson distributions, the FC approach always gives a
non-empty confidence set.

PROOF:

Both distribution have maximal support, thus theorem is applicable.
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The last result can also be shown directly from the probability density functions. This is done
in appendix [A]l

For a physical meaningful confidence interval, it is essential that the final confidence
region always includes the measured value of the measurand. For an unphysical measured
value of the measurand it is additionally important that the final confidence region includes
the (nearest) physical boundary. Under slightly stronger assumptions compared to theorem
this properties can be proven for the ordering principle of Feldman-Cousins:

Lemma: (4.64)

We use the notation of this subsection. W.l.o.g. the physical allowed set Z,, has a lower
boundary. Let inf Z, .. =: (pound- Let further

v Cmeas eD d g € Zp.a. : Cmeas € SuPp(p(.K)) (4'65)
and let
Chest(C) = Coouna V¢ & Zp.a. (4.66)
Cbest(() =( V¢ € Zp.a. (467)
hold. Then
Cmeas € CFC(Cmeas) vaeas eD (468)
Cbound S CFC(Cmeas) vaeas € Zp.a. (469)
hold.
PROOF:

Due to theorem holds and by this proposition holds. Now claim follows
directly from when looking at Additionally, claim [£.68] follows for all (meas € Zp.a.

directly from when looking at It is still to show that holds for all neas &
Zp.a.: Since has already been proven, it holds that dist(Crc((meas); Z, c ) = 0. Hence,

p.a.
construction step is performed and claim holds in general.

O

The abstract assumptions of lemma can be expressed in a more convenient way:
Corollary: (4.70)

Let p(e|Cyssu) be the probability density function of ¢ such that

supp(p(|Cassu)) = D Vlassu € Zp.a. (4.71)
EEBP(C |Cassu) = const. VCassu € Zp.a. (4.72)
ilelgp(C |Cassu) = P(CassulCassu) Vassu € Zp.a. (4.73)
P(¢|Cassu) strictly monotonically increasing for ¢ < (ussu (4.74)

P(C|Cassu) strictly monotonically decreasing for ¢ > Cassu (4.75)
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Figure 4.3: Example of an FC confidence belt. The ordinate shows the assumed values for
the measurand. The abscissa shows the measured values of the measurand. The confidence
intervals denoted by blue solid lines have by construction the same probability. The green
confidence intervals have in general pairwise different probabilities as explained in the text

below. [61) p. 3885]

Then .68 and E.69 also hold.
PROOF:
From follows From [.72] and [£.73] follow [£.67] From [£.74) and respectively,

follow since for | — Cassu| — 0 follows p((|Cassu) — sup {p({|Cassu) [¢ € D} for inf Z,, o #
—00 and sup Zp.q. # +00, respectively. Thus, lemma [.64]is applicable.

]

If [4.72] does not hold, it is possible that p(¢'[¢") > p(¢|¢") > p(¢[¢) for some ¢, (" € Zp.q. and
hence (pest(¢) # ¢. Thus does not hold.

By corollary it holds that the ordering principle of Feldman-Cousins has the desired
properties and for a normal distribution N ((ssu, 02) if o is independent on (ygsy-
Otherwise it might be possible that these properties, especially for small confidence levels, do
not hold.

In the Gaussian regime, instead of using the probability ratio for the rank function, it is
often more convenient to use the difference in the X?V between (gssy and Cpest [61, p. 3885].
This is justified by equation and will be used in the following chapters.

4.4.2.1.3 Coverage An issue arises when the final FC interval includes a physical bound-
ary. Apparently this issue has been unrecognised in literature and shall thus be explained
here.

According to the design of the FC interval, an upper limit is provided by the algorithm
in the above mentioned case (cf. equation [£.50)). Consider a FC confidence belt as drawn in
figure [4.3] It is computed according to the FC ordering principle, thus

P(Cmeas S CFC(Cassu)) =1l—-a N Cassu S Zp.a,- (476)
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If (neas < d, this belt shall provide an one-sided confidence interval Cpc((neqs) With

P(Cassu S CFC(Cmeas)) ; 1—oa. (477)

As a reminder, Cpc(Gmeas) denotes the final “vertical” confidence set. By construction
CFC(Cmeas) = (_OO; ;ssu] (4'78)
for some (o = Cosu(Cmeas) € Zp.q. if equation was used. Thus,

P(Cassu S CFC(Cmeas)) = P(Cmeas c CFC(Cassu) U {C’C > sup CFC(Cassu)}) >1—-a« (479)

according to theorem [4.37] when one uses definition in the definition of relation
which is then used in the proof of theorem [£.37] An analogue statement is true when equation
instead of equation was used in the construction of Cre((meas)-

In figure [£.3] the vertical green arrow represents the set on the left hand side of equation
and the horizontal green arrows represent the union on the right hand side. The issue
arises essentially from the fact that in equations [£.50a] and [£.50b] the relation necessary in
lemma gets infiltrated. If one would generalise the FC belt in the unphysical region,
i.e. Cassu € Zp.a. is no longer required, intervals with correct coverage would be gained, but
these intervals would include unphysical values. However, the FC approach does provide valid
confidence sets with respect to equation [4.22] as it only overcovers, but not undercovers in the
case of an one-sided interval.

The effect remains in a higher dimensional parameter space when at least one physical
boundary is reached. However, in the Double Chooz and T2K analyses this case is not
encountered for the discussed confidence levels.



Chapter 5

Oscillation Analyses

The analysis in case of a neutrino oscillation experiment is normally performed by comparing
the measured number of neutrino events in the far detector with the expected number of
neutrino events in the far detector. The expectation is usually based on the near detector
information. Hence, a neutrino oscillation experiment is in principle a counting experiment.
As the energy of the neutrinos can often be determined in the experiments, the possibility to
count neutrinos in distinct classes of certain energy, called bins, is given. Since the expectation
on the number of neutrino events in each bin is dependent on the oscillation parameters, the
aim of the oscillation analysis can then be understood as optimising the values of the oscillation
parameters such that the difference between the expectation and the measurement becomes
minimal over all bins. Since some of the oscillation parameters have already been determined
with sufficient precision by other experiments, it is common to fix some or all of the previously
determined parameters in order to reduce the number of free variables in the optimisation.
In this optimisation, uncertainties in the paramaters being used in the prediction have to be
considered. Additionally, when using more than one bin, correlations between the number of
events in each bin have to be taken into account.

5.1 The Analysis of the Double Chooz Experiment

The Double Chooz analysis uses 18 variable sized energy bins to measure the deficit of electron
antineutrinos. As described in more detail in section [3.1] in the Double Chooz experiment
the expectation of an energy dependent neutrino flux in one far detector is compared with
the neutrino flux actually measured in the far detector. The expectation is currently not
computed from the data of a near detector, but from thermal data of the two reactors, which
are the sources of the neutrinos. The measured energy spectrum of the prompt events along
with the expected contributions of signal and background events to this spectrum can be seen
in ﬁgure The best point estimate of the neutrino mixing angle of sin? (2613) = 0.086 [§] is
determined as the particular value which minimises a certain x? goodness-of-fit statistic. The
utilised method for the minimisation is explained in section [f.1] Two goodness-of-fit statistics
are used in the Double Chooz analysis for comparison. The first statistic is known as the

37
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covariance approach and is given as [64], p. 6]

—1
R B
2 _ meas v,r reactor detector stat b
Xeovar = (Ni - ZNZ‘ ) X (Mij + M;; + M;;™ + ZM1]>
b=1

r=1

R T
% (ijeas o Z]\U{ﬂ") . (51)

r=1

Herein, 1 <7 < 18 is the index of the energy bins, /V"*** is the number of measured neutrino
candidates in the i*" energy bin, r denotes the index in the enumeration of all R nuclear
fuel sources of neutrinos of both reactors (cf. subsection , N;" denotes the number of
neutrino events expected in the i energy bin due to source r and 1 < j < 18 is another
index of the energy bins. As IV; and Nj, respectively, are 18 dimensional vectors, the M;;
(with all different superscripts) are 18x18 dimensional matrices, with b € B being an index
numbering all sources of backgrounds. This goodness-of-fit statistic is a generalisation of
Neyman’s x? goodness-of-fit test statistic given in equation The sum in equation is
implicitly contained in the matrix product in equation and the term Oik in equation is
generalised in equation [5.1] by the inverse sum of the mafrices. This will be explained in detail
in the following subsections. However, the general idea is that the matrices represent different
sources of statistical fluctuations in the frequencies in each bin. Each fluctuation is assumed
to be Gaussian distributed and the entries in the matrices are then given as the variances
(main diagonal) and covariances (off diagonal) of this particular Gaussian distributions.

The second x? goodness-of-fit statistic in the Double Chooz analysis is known as pulls
approach and is given as [64, p. 6]

R B
X;%ulls _ (Nimeas - (Z Nil/,r + Z NZZ)(Pb)>> > (Mzrjeactors + Misfat)—l
r=1 b=1
R B T
(g (o 3ot )
r=1 b=1
B
b=

J
2
+Z(];%)

1

+ (Pa o PQC@nVal) % (Mg%tector*>_1 % (Pﬁ _ PﬁC’enVal)T_ (52)
In this equation, the nomenclature of equation is kept. Additionally, Nib represents the
number of expected events of background b in the measurement. In the pulls approach,
the numbers Nib are dependent on pulls P, (e.g. the rate of background events of type b)
which themselves are present in the Xfm” . statistic as penalty terms. These pulls are fitted
simultaneously with the mixing angle in order to compute the minimal Xgu” s- The pulls are
assumed as random variables and to be Gaussian distributed with mean P, and variance ag.
The variance is present as denominator in the according penalty term.

The last term in equation [5.2| consists of pulls P, of the parameters of the later explained
energy scale correction function. The PCe"Vel refer to the central values of this parameters
or the pre-fitting-values. Midjetedm"* is a different detector covariance matrix as in equation
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Figure 5.1: Top: Measured prompt energy spectrum of the Double Chooz experiment. Apart
from the data points the expected contributions to these data points from the signal and
the backgrounds are plotted. The post fitting values for signal and backgrounds are used.
Additionally the expected spectrum for no oscillation is given. Inset: Detailed view of the
backgrounds in the top figure as stacked diagram. Bottom: Difference between data/no
oscillation and additionally between signal expectation/no oscillation. [§, p. 6]

[.1] as it now contains the covariances with respect to the parameters of the energy correction
function.

It is provable that the two x? statistics give the same point estimator for 6,3 as done in
[65, p. 12].

Apart from getting a point estimate on sin?(203), the y? statistics are used for the
construction of a first confidence interval as described in subsection [£.4.11 The result of this
method is sin? (2613) = 0.086 +0.071. The range of the interval is broken up into a statistical
and a systematical contribution. This is done by repeating the analysis with the data sample
enlarged by the factor of 100. The thereby rendered interval of sin? (2613) = 0.086 + 0.030 is
assumed to be only caused by systematic effects. The final result is thus stated as [§]

sin? (2013) = 0.086 & 0.041(stat.) + 0.030(sys.). (5.3)

The evaluation of the pulls approach statistic yields [64, p. 38] sin? (2613) = 0.085 <+ 0.050.
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Figure 5.2: The two applied energy correction functions. In figure (a) the fitted correction
function along with the data points is drawn. While on the ordinate the ratio of measured
to simulated energy is given, the abscissa shows the total event charge which is a prestage of
the true energy in the analysis. The calibration sources are labeled by their chemical symbol.
For neutron emitters, the type of capture is denoted by nH for Hydrogen capture and nGd
for Gadolinium capture [64, p. 8]. In figure (b) the correction function and data points of the
position dependent measurement is given. The ordinate is similar to (a). The abscissa shows
the axial distance to the centre line of the cylindrical detector volume. [64, p. 9]

5.1.1 Detector Covariance Matrix

The detector covariance matrix accounts for discrepancies in the energy scale of the detector.
Due to an incomplete optical simulation of the detector, discrepancies between the expected
energy depositions and the measured energy depositions of several events occur. This is mea-
sured by inserting radioactive sources with a known energy spectrum into the detector and
comparing the measured spectra with the simulated ones. Several sources with different ener-
gies are inserted at several positions. Instead of fine tuning the parameters of the simulation,
an empirical correction function with respect to the true energy and a second correction func-
tion with respect to the position are applied. The function correcting the energy dependent
discrepancies is [66) p. 11]

corg(E) = 0.0287 - In(E — 56.1478) + 0.8423, (5.4)

where the energy F is expressed in photoelectrons (PE). The function correcting for the
discrepancies due to the position of the events is [66l, p. 6]

cor,(z) = 0.9982 — 9.5148 - 107% . » — 3.2598 - 1078 - 22, (5.5)

In this function, z refers to the vertical distance from the centre of the cylindrical detector
volume and is given in millimeters. The functional forms are motivated by the origin of the
discrepancies which are essentially not simulated reflexions, but are empirical. The graphs
of these functions can be seen in figure [5.2l The numbers in the functions are gained by
performing a x? minimisation according to equation The Minuit program is again used
for the fit as described in The used variances are also drawn at each data point in figure
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(-2l Along with the numbers, uncertainties of the parameters and correlations between the
parameters are provided. The parameters of the two functions are assumed uncorrelated since
the first correction accounts for energy dependent effects and the second correction accounts
for position dependent effects. The covariance matrix of the two fits is thus a 6 x 6 block
diagonal matrix and reads as [64], p. 10]

256-100%  —0.02 —1.98-107°
1.02 - 102 0.10

F7Det _ 1.10-10~*
Par 840-1077 —265-1071 —1.29.10712
1.86-10"2  4.17-10716
4.85.10718
(5.6)

This matrix is modified in order to not underestimate the uncertainties of the parameters.
This is done by evaluating the value of the minimised x? goodness-of-fit statistic and dividing
it by its number of degrees of freedom (n.d.f.). The resulting number is called the reduced x>
and denoted as x?/n.d.f.. This gives for the first correction function a value of X% /n.d.f. = 4.0
and for the second function a value of x?/n.d.f. = 4.9. It is now possible to renormalise
the reduced x? value of both fits to precisely one by multiplying all the variances in the
denominators of by x%/n.d.f. and x2/n.d.f., respectively. A x?/n.d.f. of precisely one
is assumed to indicate best estimated uncertaintied]l This renormalisation also causes the
entries of matrix to be multiplied by 4.0 and 4.9, respectively. The matrix is further
modified by removing all correlations between parameters and thus keeping only diagonal
elements. This modification is motivated by a result [67] showing that correlations between
fit parameters of an empirical fit function are unphysical and lead to spurious correlations in
the later evaluated detector covariance matrix [64, p. 10]. This is visualised in figure[5.3] For
this figure, the MultiSim method (cf. section is applied to the parameters in equation
and respectively. In the procedure, a Gaussian distribution is assumed. This procedure
is done in equidistant energy (z-axis position) steps in figure . At each point, the
derived distribution of the correction function values is plotted in grey in figure and
The correlations in matrix [5.6]lead to a discrepancy between the dashed black line connecting
the central values of the random distributions and the fitted functions. This effect is larger
for the energy dependent correction functions and thus only visible in figure Since
the MultiSim method will later be used in the generation of the proper detector covariance
matrix, the correlations in matrix are removed by hand such that the connection line of
the means coincides with the fitted function.

A last modification is made to the block of the position dependent correction function
only. In figure two data points of cobalt (Co) and two data points of ceasum (Cs) have
large residuals. The four data points are taken at the very edge of the target volume. To
cover these residuals, the variances are again increased such that the new Gaussian spread of
the correction function covers this residuals. The necessary factor to achieve this is 40.

!This is motivated by the fact that the mean of a x? distribution equals the number of degrees of freedom.
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Figure 5.3: Randoms draws of the Double Chooz energy correction function parameters. In
both figures the dashed black line is the connection of the means of all distributions derived
as described in the text. The solid red line is the fitted function according to either equation
or Figure (a) corresponds to the energy dependent correction function. The energy
is measured in PE [67, p. 4]. Figure (b) shows the same situation for the position dependent
correction function [67, p. 5].
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The modified parameter covariance matrix is then [64, p. 10]

1.03-107°

4.06 - 10
Det 4.40 - 10~*
MPar = 1.65-1074

3.65-1071°

9.50 - 10~1¢
(5.7)

This matrix is used directly in the pulls approach x? statistics. For the covariance approach
x? statistic, the MultiSim method is used to generate the final covariance matrix. The input
parameters are the six detector correction parameters with their uncertainties given by matrix
and the dependent variable is the number of selected neutrino events. To gain this number,
for each drawn set of correction parameters a full neutrino selection from the Monte Carlo
sample of all neutrino candidates is performed. The entries of the final covariance matrix are
then computed as the scatter matrix entries [64, p. 12]

N
etector 1 n = n -
Midjt tor — N Z:(I/Z — ) (Vi — ;) (5.8)

n=1

wherein 1 < < 18 (1 < j < 18) denote the i*! (j'1) energy bin, v/ the number of selected
events in the i*" energy bin with the n'" set of parameters and N denotes the total number
of randomly drawn parameter sets in the MultiSim method. In this case N = 590.

5.1.2 Reactor Covariance Matrix

The reactor covariance matrix accounts for uncertainties in the primary neutrino flux mea-
surement based on the reactor thermal data. The expected neutrino rate in the far detector
N{{? in the i*® energy bin and at time ¢ is calculated from different variables of the reactors
as’[68, p. 11]

NEP — GNP af(o 5.9
ZL2 Zk%f’f Zk f 59
wherein NN, is the number of protons in the detector and € is the detection efficiency of the far
detector. Furthermore, for each reactor R, for each isotope k and for each energy bin ¢, L
denotes the baseline to the reactor, PE the reactor thermal power (Ef)p the mean energy
released per fission, <Uf> the mean cross section per fission and off the ratio between fissions
of isotope k and total fissions.
The unbinned variables are given by the weighted sums of the associated binned variables,

e.g. ‘
= > af ) (op) (5.10)

keK %

In this equation, the set K = {23°U, 239Pu, 238U, 241 Pu} contains the isotopes present in the

reactor cores (cf. section [3.1.1)).

Since the number in each energy bin N *P is given in an analytical form, the final reactor
covariance matrix M{jead‘”" is rendered by the Jacobian formalism and therefore by linear
uncertainty propagation. The specific parameters are treated uncorrelated such that the
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final reactor covariance matrix is calculated as the sum of the covariance matrices of each
uncertainty parameter U [68], p. 12]:

Mipector =" M. (5.11)
U

In the Jacobian formalism, the matrices MZ-(]J- are given as

M} = J (ou)? T} (5.12)
with the Jacobian HNEP
! o7 (5.13)

Some of the parameters are constant in time such that no cross terms have to be considered.
An example is the number of target protons N,. Here, the matrix is given as

2
N, ON,
M= > Nf N > Nf, (5.14)
t.R p t.R

wherein O'JQVP represents the variance in the number of free target protons. When correlations

between parameters are present, the covariance matrix of these parameters is required and
the sum over all correlated parameters is used. Thus the single covariance matrix for the set
of the parameters U is given as

U, U.
MY =g mly T (5.15)
By

Herein, m%’7 is the covariance matrix of the parameters Ug € U. (In contrary, MZ is the
covariance matrix of the number of neutrinos in each energy bin, due to the set of parameters

R

U.) In the case of the fuel inventory numbers akR, the covariance matrix méj is calculated by

simulating the conversion of the fuel components over time. More details on the calculations
can be found elsewhere [68} [69; [70]. After calculating the covariance matrix M{f“cmr in the
described way, this matrix has to be modified before it can be used in equation since it
was calculated in terms of true neutrino energy, while the measurement in the detector takes
place in terms of reconstructed positron energy. The conversation is made by the MultiSim
method (cf. section. The input are the numbers of events in each energy bin with respect
to the true neutrino energy and the outputs are the numbers of events in each energy bin
with respect to the reconstructed positron energy. The number of random draws is 180000
for this simulation. Details on the simulations can be found elsewhere [71].

5.1.3 Accidental Background Matrix

The accidental background in the Double Chooz experiment are delayed coincidences which
are not caused by correlated event pairs, e.g. a radioactive decay followed by a single neutron
capture is an accidental background event. The number of events is measured by using the
off-time method. In this method, the number of inverse 3 decay signals in a series of shifted
time windows is counted. While for a correct inverse 3 decay the on-time window is the
interval [0.002; 0.1]ms after the prompt signal (cf. section[3.1.3), the off-time windows are the
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intervals [n-0.5+0.002;2-0.5+0.1]ms with 1 < n < 200. The remaining selection criteria for
on-time selection are applied unchanged to the off-time selection. The uncertainties in this
measurement are dominated by the amount of Boron contamination in the off-time windows
[64, p. 20]. Due to the measured character of the accidental background, the uncertainties
are treated as uncorrelated and added binwise in a diagonal matrix to the total covariance
matrix.

5.1.4 °Li Background Matrix

Since the decay signals of Lithium-9 are very similar to the neutrino induced inverse (3 decays,
Lithium-9 decays are a major contribution to the final uncertainty of the Double Chooz
measurement. For the same reason, the spectrum of the Lithium-9 decays cannot be measured
from the data. The spectrum is therefore simulated. The binwise uncertainties are dominated
by the uncertainties in the breakup scenarios of the daughter nucleus. The uncertainties are
propagated in the covariance matrix by the MultiSim method.

5.1.5 Fast Neutron and Stopped Muon Background Matrix

The amount of background events due to fast neutrons and stopping muons is determined by
extrapolation. The rate of these events is determined in the energy region between 12 MeV
and 30 MeV and a flat distribution is assumed. This distribution is then used in the relevant
region between 0.7 MeV and 12.2MeV. The uncertainties enter the total covariance matrix
by the usage of the MultiSim method.

5.1.6 Statistical Uncertainty Matrix

The statistical uncertainties in the measurement are incorporated in the final covariance
matrix in terms of a diagonal matrix. For the distribution of the statistical uncertainties, the
assumption of a Poisson distribution is made. This is motivated by the counting experiment
character of the Double Chooz experiment, which respects the Poisson postulates [53], p. 36].
The entries of the diagonal are thus the number of measured neutrinos. When calculating
the result in equation [5.3] by enlarging the measured ensemble by a factor of 100 as described
in the text before equation [5.3] the only affected matrix is the statistical uncertainty matrix.
By enlarging the ensemble, the relative uncertainties in this matrix decrease by the inverse
square root.

5.1.7 Computation of the Confidence Intervals

For the computation of the confidence intervals, the confidence belt approach and the ordering
principle of Feldman-Cousins (cf. subsections [4.4.2| and 4.4.2.1] respectively) is used. The
ordering principle is applied in terms of the Ax? criterion. The analysis uses the covariance
approach statistic x2,, defined in equation for the computation of this variable. Ay? is
given as

assu

AXP(]035™) = X2 (n1015™) — XZou (n]6757) (5.16)
wherein n denotes the realisation of the random variable IV of measured neutrino events and
013 denotes the neutrino mixing angle. Since neutrino events are counted in 18 energy bins,
the random variable N is strictly speaking a vector of 18 random variables and n the vector
of all 18 realisations.
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Figure 5.4: Pseudo experiments in the Double Chooz confidence belt approach for (a) an
assumed value of sin?(20¢5%%) = 0.02 and (b) an assumed value of sin?(20¢355%) = 0.25.

For the first step of the FC confidence belt computation, a value of 83 is fixed. This value
will be called 6¢3°“. With this value, a high statistics sample of the expected neutrino prompt
energy spectrum is generated. This sample gives the central values for the number of neutrino
events in each bin. The numbers are arranged in an 18 dimensional vector n®***(63*"). Then
the MultiSim method is applied to the spectrum: For each energy bin a random draw of
the number of neutrino events is done from a standard normal distribution. Thereby a 18
dimensional vector is gained. The vector is multiplied with the total covariance matrix and
added to the central value vector. The result is a modified prompt energy spectrum n with
respect to the generated high statistics sample n®¥**(6¢5°*). This modified spectrum is called
a pseudo experiment. Then Ax?(n 5°%) is calculated for this pseudo experiment n. For the
analysis, approximately 10% pseudo experiments are performed within the MultiSim method.
This is done at each value of §{53°" considered in the analysis. The considered values are listed
in table[5.1] To calculate the confidence interval for an assumed value of ;3, for each pseudo
experiment, performed at this assumed value, its Ax? is plotted over its sin?(26%%*"). Two of
this plots, generated for different 63°“ are given in ﬁguren In the official analysis, a critical
value Ax?.., is computed such that the number of pseudo experiments with a Ax? below the
critical value equals the confidence level 1 — .. For numerical reasons, small overcoverage is
allowed, hence:

A 1% = c. 5.17

Xcrzt( ) {ZeR: #{n\AXZ(n|0a““)<E}217Q} ( )

This critical value is then translated into an interval in the sin2(2913) range. The lower
(upper) bound of this interval is the maximal (minimal) value of all sin?(26%%*") of all pseudo
experiments with its Ax? above the critical value and its sin?(26%5*") below (above) the

sin?(2095°%)
0.00 [ 0.03 [ 0.05 [ 0.080.10 [ 0.12]0.15 [ 0.17 [ 0.19 [ 0.20 | 0.21 [ 0.22 [ 0.25

Table 5.1: Assumed values of sin?(26;3) in the Double Chooz confidence belt analysis.
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Figure 5.5: Confidence belt construction in the Double Chooz analysis. Figure (a) shows the
graphical construction of the confidence interval for sin?(20¢55%) = 0.02. Figure (b) shows
the official confidence belt (black) along with the official interpolation graph (red) and the
measured result sin?(2072°%*) = 0.086 (vertical line).
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assumed value. More precisely the interval is given as:

max sin? (260%5°") (n); min sin?(20%5°") (n)
n|AX2(nI0F5") > AxZ, (035 nlAX (n]6F5°) > AxZ,, (0857
Asin?(20%5°)(n) < sin?(20§5°%) Asin?(2095°)(n) > sin?(20§5°%)

(5.18)
In figure the interval construction is executed graphically. This construction is executed
at every value of sin?(2695%) listed in table The final confidence set is then determined by
interpolation between the constructed interval boundaries and finding the intersections of the
interpolation functions and the measured value of sin?(26;3) as described in subsection
This is graphically executed in figure As interpolation function a cubic spline is used
[58, p. 166]. As end condition for this spline, the not-a-knot condition is used [58, p. 171].
The 90% confidence level belt is plotted in figure m along with the line representing the
measured value of sin?(2613). Since the official belt in this figure is drawn from a linear spline
interpolation, the used cubic spline interpolation function is superimposed for comparison.
The resulting 90% confidence level interval is

sin?(26013) € [0.017;0.16] (90%C.L.). (5.19)

5.1.8 Improvement of the Confidence Interval Computation

The official confidence belt construction of the Double Chooz analysis described in subsection
suffers from a few issues. These shall be pointed out in this subsection and possible
solutions will be discussed.

A first issue is given by the choice of the interpolation method. As visible in figure [5.5b
a minor discrepancy between the two interpolation lines exist. This is especially the case
for the abscissa region around the measured value of sin?(2613). The discrepancy is in fact
significant as the confidence set, when constructed form the linear spline interpolation, reads

sin?(26013) € [0.019;0.16] (90%C.L.). (5.20)

This issue can on the one hand be solved by choosing a different end condition. The not-a-
knot condition together with the small number of interpolation points effectively neutralises
the advantage of splines. Especially for the lower bound, the spline interpolation with only
three points is identically to a polynomial interpolation. On the other hand, the issue can
more efficiently be solved by increasing the number or better the density of sin2(2¢9§§5“) values
in this particular region. Thereby the dependencies on the interpolation method and their
possible end conditions are decreased.

A different issue arises from the chosen construction method of the individual boundaries.
As shown in figure the boundaries for the interval are depending only on the sin?(26%5*)
value of two pseudo experiments. The two pseudo experiments are the outermost outliers of
all the pseudo experiments with a Ay? larger than the critical one. This method is prone
to statistical fluctuations on the one hand and divergent on the other hand: in a repetition
of the pseudo experiment generation it is likely to have an outlier at a different position;
moreover, for increasing the number of generated pseudo experiments, the probability to
get an extreme outlier increases. Hence, as the number of pseudo experiments increases
towards infinity, the boundaries diverge towards infinity, as well. The resulting interval is
thus [+00; —oc] = ). This issue can be solved by choosing either the average sin®(26%5)
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Figure 5.6: Improved confidence belt construction in the Double Chooz analysis. Figure
(a) shows the graphical construction of the confidence interval for sin?(26¢5°) = 0.02. The
dashed line corresponds to the fitting method as described in the text. The solid coloured
graphs are the fitted functions. The official lines are copied from ﬁgure Figure (b) shows
the confidence belt by the fitting method (green) along with the official belt (black) and the
measured result sin?(2072°%*) = 0.086 (vertical line).
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left right
sin?(20955%) || official | average | fitting || official | average | fitting
0.00 || 0.000 —oot | —oo! || 0.058 | 0.071 | 0.071
0.01 3 2 ] -0.241 31 0.082 | 0.082
0.02 31 -0.126 | -0.125 31 0.094 | 0.094
0.03 || 0.000 | -0.086 | -0.086 || 0.102 | 0.107 | 0.107
0.04 31 -0.064 | -0.065 31 0122 | 0.122

0.05 || 0.000 | -0.048 | -0.049 || 0.123 0.136 | 0.135
0.08 || 0.004 | -0.011 | -0.013 || 0.153 0.170 | 0.170
0.10 || 0.020 0.008 0.009 | 0.166 0.190 | 0.191
0.12 || 0.035 0.030 | 0.030 || 0.201 0.210 | 0.210
0.15 || 0.068 0.059 0.059 || 0.231 0.241 0.241
0.17 || 0.091 0.079 0.080 | 0.254 0.260 | 0.260
0.19 || 0.105 0.099 0.099 || 0.273 0.280 | 0.281
0.20 || 0.120 0.108 0.109 || 0.287 0.291 0.291
0.21 | 0.129 0.119 0.119 | 0.296 0.301 0.300
0.22 || 0.136 0.129 0.130 || 0.303 0.310 | 0.310
0.25 || 0.172 0.159 0.160 || 0.330 0.340 | 0.341

final || 0.017 | 0.013 | 0.013 | 0.163 | 0.177 | 0.177 |

! not calculated
2 too less data
3 not included in official analysis

Table 5.2: Comparison of the confidence interval boundaries for the
official, the average and the fitting method as described in the text.

value of all pseudo experiments around the critical Ax? value or by fitting a function to the
point cluster. This is graphically executed in figure Two parabolic functions were chosen
to approximate the x? difference as a function of the sin2(20l1’§“) value. The support of the
first function is the range above sin2(29‘f§5“), the support of the second function is the range
below. The parabolic function is motivated by the fact that the pseudo experiments were
generated according to a Gaussian distribution. The resulting horizontal confidence intervals
and final vertical confidence intervals are listed in table The average value method and
the fitting method are in good agreement, while the official method is systematically off.
This is also true for the final interval. For the computation of the average method and the
computation of the fitting method values, a 13 times larger statistical ensemble of pseudo
experiments was used and the density of simulated sin?(2095°") was increased around the
critical lower bound region of the final interval. This can be seen in figure |5.6b|and table
The result for the improved 90% confidence interval is thus

sin?(26013) € [0.013;0.177] (90%C.L.). (5.21)

With respect to the critical lower bound of this interval, the difference between the official
and the improved method is 24%.

Another method to calculate the confidence set avoids the conversation of the y? difference
into a sin?(2613) value. It compares at every sin?(20¢5°%) directly the Ax? of the real data
under the assumption of sin?(2095°") with the critical Ax? value at this sin?(26¢5°%). The
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results are also in agreement with this improved method.

A last issue in the pseudo experiment generation is due to some pseudo experiments having
sin?(260%5%") = 0 and widely spread Ax2. These experiments are visible in figure as a
dense point cluster around sin?(2613) = 0. They affect the official belt construction by forcing
the lower bound of every horizontal interval to be at least zero (cf. figure [5.6b]). This effect
is not possible in the improved methods as they are no longer dependent on only one pseudo
experiment. Nevertheless, these pseudo experiments can be understood as evidence for a
in general not perfectly converging x? minimisation. Further investigation of the numerical
methods are needed to solve this issue.

5.2 The Analysis of the T2K Experiment

The T2K experiment measures the electron neutrino flux in a muon neutrino beam at two
positions from the source. The details of this experiment setup were given in section
The analysis of the oscillation is performed as a pure rate analysis. This means, only one
energy bin is considered. The T2K analysis relies entirely on the Feldman-Cousins confidence
belt approach. The best fit value is given as the parameter configuration that explains the
measured number of events in the only considered bin and no y? minimisation is used.

The central variable in the confidence belt construction is the number of measured neutri-
nos. The belt is constructed by an augmented MultiSim method. This augmented MultiSim
method starts with a default execution of the normal MultiSim process (cf. section 4.2)). The
output of this MultiSim is the number of expected neutrinos. The inputs are the parameters
relevant for the overall T2K measurement and their uncertainties, respectively. The number
of expected events in the T2K far detector Nea;p is given as [72], p. 5]

R Ndata
Newp = (m‘) 3 (05  Anorm () - Pose(O13, Am?,6cp, By v) - w(E,,v)) (5.22)

NMC
ND280,1p i€Epc

with the neutrino species v = v, 7, e, the Monte Carlo normalisation factor v,orm(v),
the oscillation probabilities P,s.(613, Am?,dcp, E,,v), the beam tuning reweighting factor
w(E,,v), the binary physics selection factor ©“** and the near detector single muon event
rates of the Monte Carlo N ]]\\,4528071 ., and the data N]C\l,%%so,l o Tespectively. The ratio of these
last two rates is used for scaling purposes. The set Ejs¢ is the set of all Monte Carlo events
considered in the simulation of the T2K experiment. Equation [5.22 is the central equation
in the MultiSim method to which random shifts are added. With these added random shifts,
the equation expressing the realisation 7., of the random variable of the expected number
of events Ny, is given as [72, p.6]

N]%%%Bo,lu
Z{m,l/,EV} <N1]\‘74D0280,1u(m7 v, Ey) - HjeJ (1 + 59’))

Nexp = (1 + 6near/far(913> Am27 5CP)) .

Z <@§Uts : 'Ynorm(l/) : Posc(el?n A’I’)’LQ, 5CPa Eua V) : w(E,,, V) : H (1 + 5k)> s

i€EBnc keK
(5.23)

where J and K are the sets of systematic uncertainty sources of the subdetectors and the § are
random shifts in parameters of this equation. The uncertainties in the oscillation parameters
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are expressed in 0,04/ for as they directly effect the extrapolation between the two detectors.
The uncertainties in the far detector parameters are given in the J; and the uncertainties
in the near detector are given in the ¢;. A further modification between equation and
equation[5.23 has been made by binning the events of the near detector in classes of interaction
mode m, neutrino type v and energy FE,. Hence, the uncertainty shifts are applied bin-wise
to the near detector events and event-wise to the far detector events. The remaining variables
are defined as for equation [5.22

When performing the MultiSim random draws according to this equation, all errors are
treated uncorrelated except the cross section uncertainties for both detectors. These are
treated 100% correlated. All uncertainties are drawn from a symmetric Gaussian distribution.
When an asymmetric distribution is given for an uncertainty, it is conservatively expanded to
a symmetric distribution. An exception is present for the statistical uncertainties. These are
drawn from a Poisson distribution. If a random shift within the MultiSim method is smaller
than —100%, i.e. the parameter becomes unphysical, the shift is set to exactly —100%.

After the normal MultiSim, the gained distribution of N, is transferred into a distri-
bution of observable neutrinos N,,s. This is done by taking the n.., as the parameters of
Poisson distributions and integrating over all n,, by respecting the distribution. Hence, [72,

p.9]
ENobS(N):/O Pni(N)Ln,,,(N")dN' (5.24)

describes the probability density function of N, wherein Py (V) is the Poisson probability
of observing NV events when N’ are expected and Ly,,, is the probability density function of
the expected number of events Nz, i.e. the output of the MultiSim.

According to the ordering principle of FC (cf. subsection a confidence region
is computed utilising the probability density function in equation For this, a grid of
325 x 325 is spanned across the dop — sin2(2613) oscillation parameter plane. At each grid
point the above described augmented MultiSim method is performed with an ensemble size
of 5000 parameter set draws. Let N denote the random variable that expresses the number
of neutrino events in such a pseudo experiment. The FC ordering ratio in the T2K analysis
is given as
Ln,,. (N| sin2(2013), dop)
Ly (N]sin?(2085°), dcp)

R(N|sin?(2613),0cp) = (5.25)
The value of §¢p is fixed in this ratio, so only sin2(2913) is allowed to vary in the determination
of the maximal probability. This is indicated in the denominator of equation by the
usage of the superscript “best” in analogy to equation [4.46] This approach is called the raster
scan approach contrarily to the global scan approach, in which all parameters are allowed to
vary. The raster scan effectively reduces the two dimensional problem to 325 one dimensional
problems; one problem for each of the 325 values of dop considered in the original grid. This
approach is chosen since the T2K experiment has no real sensitivity to dcp as explained in
section

In each one dimensional problem and for each assumed value of sin?(263), a confidence
interval in terms of Ny, is calculated according to the FC ordering ratio in equation [5.25
(cf. subsection [1.4.2.1). The final one dimensional confidence interval is then gained as the
union of all assumed values of sin?(26;3) for which the according confidence intervals contain
the number of measured neutrinos. This number is 6 [7]. The final confidence set of the
two dimensional problem is given as the union of all final confidence intervals of the one
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dimensional problems. This set is shown in figure Two such sets are computed due to
the neutrino mass hierarchy ambiguity (cf. section .

The best point estimate of sin?(20;3) for an assumed value of dcp is derived directly
from equation [5.22] The best point estimate is given as the set of oscillation parameters
(5cp; sin2(2913)) for which equation becomes exactly 6. Due to the neutrino mass hier-
archy ambiguity, two such sets exist. They are plotted in figure as solid black graphs. For
an assumed value of dcp = 0 this value is [7]

sin?(2613) = 0.11 (0.14) (5.26)

for normal (inverse) mass hierarchy.

ﬂ B T T T T | T T T T | T T T I_
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Figure 5.7: Confidence sets of the T2K experiment. The 68% (pink) and 90% (red) C.L. re-
gions together with the best fit graph (black) is shown for normal (top) and inverted (bottom)
mass hierarchy. [7, p. 7]



Chapter 6

A Joint Analysis

The combination of a reactor and an accelerator neutrino experiment offer the opportunity
to gain sensitivity to oscillation parameters to which the single experiments are not sensitive.
This is due to the different oscillation processes which are measured by the experiments. Both
experiments are dependent on 613, but T2K has, in addition to DC, a dependency on d¢cp
and the neutrino mass hierarchy. While T2K as a single experiment can only measure the
combination of d¢op, 013 and the mass hierarchy, a joint analysis with a reactor experiment
like DC can cancel the 613 dependency in the T2K result. Thereby the joint analysis has for
instance sensitivity on dcp for a fixed hierarchy scenario.

6.1 Statistical Method for a écp Measurement

One of the parameters, which a joint analysis is sensitive to, is the charge-parity violating
phase dcp. The determination is possible, since the dop independent measurement of 613
with a reactor experiment can exclude certain regions of the confidence set of an accelerator
experiment at a certain confidence level. This idea is illustrated in figure[6.1] If the excluded
region at this confidence level contains some values of §op for all values of 013, a non trivial
confidence set for dcop is rendered. This set will not necessarily be an interval. Assume that
6cp = 0, then a value of dop around 7 will be equally likely. This can be seen from figure
. Assuming normal hierarchy, dcp = 0 yields sin?(2613) = 0.11, but the solid black best
fit graph yields also dcp ~ w. The second intersection point is not exactly dcp = m, since
the interference term in equation causes the probability graphs for dcp = 0 (solid black)
and dcp = m (dotted orange) in figure to be shifted. Nevertheless, for dop = %ﬂ' or
dcp = %77 only one value of sin2(2013) corresponds to these dcp values. Thus, an interval
can be gained. The recent results of Double Chooz and T2K in figure let the second case
seem more likely.

An crucial question in the combined oscillation analysis towards the dcp measurement is
the compatibility of the official Double Chooz and T2K analysis. As pointed out in chapter
both experiments compute their confidence sets by the confidence belt method and the
ordering principle of Feldman-Cousins. Thus, the analyses are in principle compatible. More-
over, the method of FC can be adopted for a joint analysis, as will be pointed out in the
following. Nevertheless, some modifications need to be made, since the exact implementation
differ between both experiments.

'For Double Chooz, the corrected values from subsection are used.

o4
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A possible joint analysis method is given by considering the measurement of both experi-
ments as a single experiment. This experiment adds up the 18 energy bins of DC and the one
energy bin of T2K to a 19 energy bin combined experiment. The enlarged experiment has
then a 19 x 19 covariance matrix similar to the official Double Chooz analysis. This matrix
can be added up from several covariance matrices, as done in the Double Chooz analysis.
Assuming that DC and T2K are uncorrelated, this matrix would decompose into a block
diagonal matrix with two submatrices. However, small correlations between the experiments
are given, since e.g. neutrino cross sections are considered in both analyses. Thus, the co-
variance matrix is not a pure block diagonal matrix. Furthermore, the experiments use the
same oscillation parameters and are located in a similar % region, as visible in figure
Hence, additional correlations are present. The covariance matrix can be gained like in the
DC analysis framework in MultiSims, where for the first bins the DC equations have to be
used and for the 19" bin the T2K equations have to be used. The same random shifts have
to be used for the common parameters in both sets of equations to account for the correlation
correctly.

As in the official analyses, parameters that a drawn to be out of the physical region have
to be handled specially. Instead of the standard methods of the DC and T2K analyses, the
alternative method developed in section [4.3| can be used. An a posteriori comparison of
the different methods could give information on the uncertainty introduced by the physical
boundary issue.

After the computation of the covariance matrix, a 2 minimisation can be used to deter-
mine the ¢ pfsin2(2913) tuple that explains the measured number of events of both experi-
ments best. This is analogue to the DC method. The simple T2K method of optimising the
parameter set cannot be used any more, since more than one energy class has to be considered
in the joint analysis. The x? statistic in this fit is analog to the DC covariance approach y?2
statistic (cf. equation , but with the new 19 x 19 covariance matrix instead. This has to
be performed assuming normal and inverted neutrino mass hierarchy, respectively.

The confidence set computation is performed on a grid in the dcp-sin?(2613) parameter
space plane. At each point, a MultiSim of the neutrino events in each bin is performed. This
is similar to the T2K approach. Nevertheless, the MultiSim has to adopt the DC method
as it has to deal with correlated random draws from the covariance matrix. The 18 DC
bins are in fact unaffected by the value of dop. Nevertheless, the full simulation has to be
performed at every grid point, since some of the parameters of both experiments can turn
out to be significantly correlated. After performing the MultiSim at a parameter space grid
point, a confidence set at this point can be gained from the produced ensemble of pseudo
experiments. For this, the ordering principle of Feldman-Cousins can be utilised. A Ax?
criterion as used in the Double Chooz analysis has to be used for the joint experiment, as a
multi-bin measurement is present. This criterion reads as

AX(IO%™, 0EE) = X (nl6%™, 6EE) — X (ol 6853 (6.1)

This means that for each pseudo experiment the x? under the condition of the assumed
parameter tuple (0355, 6&5%) and the x? of the tuple with highest likelihood (bt 5bceff) has
to be computed. The last x? computation coincides with the x? minimisation for the best
point estimate method. The T2K analysis used a so called raster scan to find the physical
boundaries for sin?(#;3) for each fixed value of 6cp. This means that only 613 was optimised,
while 5bC€1‘?-,t is replaced by the fixed §&5" (cf. equation . This was done since the T2K
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experiment has no sensitivity on docp. The joint experiment has sensitivity on dop, thus a
global scan has to be done. This means, the ordering principle of Feldman-Cousins is given
precisely as equation [6.1] Evaluating equation [6.1] for every pseudo experiment performed at
a certain parameter space grid point (9“35“ assv) yields a distribution of Ax?(n|0955", §4554).

From this distribution, a critical Ax2(0355%, §&5%) can be computed as
AXGir (0957, 088") = min c. (6.2)

{CGR #{’n|AX (n‘gassu 5assu)<a’}217a}

in analogy to equation [5.17 Equation [6.2] therefore defines the value that separates the worst
a pseudo experiments (with respect to their Ax?) from the best 1 — a. Now, for the real
data the Ax?(Nmeas|0355%, 6&5) has to be computed at every parameter grid point. The final
confidence set is then rendered as the set of all grid points where this value is less or equal to
the critical value. Hence, the final set is given as

C(nmeas) — {(eassu assu)|AX (nmeaswassu assu) < AXcrzt(Hassu %S;U)} (63)

The usage of this criterion avoids issues discussed in section[5.1.8 If the set reaches a physical
boundary, the remarks in paragraph have to be considered. However, this can only
happen with respect to 03, since the parameter space for ¢ p is periodical (cf. equation.
This analysis has to be performed under the assumption of normal and inverted hierarchy.
As the confidence sets of both experiments are similar for normal and inverted hierarchy, it
is nevertheless possible to exclude some values of dcp in both hierarchy scenarios. By this, a
hierarchy independent confidence set for dcp might be established.

6.2 Statistical Method for a Mass Hierarchy Measurement

Apart from dcp, it is further possible to infer to some extend on the neutrino mass hierarchy.
For a fixed dcp, a similar method to the one in section can in principle be used for this
purpose. Problematic is the fact that only two neutrino mass hierarchies exist. Hence, the
discrete set of neutrino mass hierarchies is likely too coarse for a numerical method as the
above, thus it is likely to always get the trivial confidence set regardless of the dop.

Alternatively, the neutrino mass hierarchy can be addressed with a different method.
On the one hand, it is possible to test how likely it is that the gained best fit parameter
tuple (613, dcp) from section assuming normal hierarchy (NH) really proves NH. This is
also possible for inverted hierarchy (IH). On the other hand, a test on the likelihood of the
complete parameter set (H, 03, 6cp) is possible. Herein, H stands for the hierarchy. Let for
the rest of this chapter (013 ,5 Iy denote the best fit parameters in the NH scenario and
(013 oL P) denote the best fit parameters in the IH scenario. Both questions can be addressed
with a likelihood ratio test (cf. appendix.

6.2.1 Test on the hierarchy assuming a best fit parameter tuple

In the first case, we choose the parameter tuple (913 ,(5 ) and generate an ensemble of
pseudo experiments additionally assuming NH and a second ensemble of pseudo experiments
additionally assuming IH. In principle the ensembles generated in section can be reused.
A common random variable, which can be compared without assuming a certain hierarchy
scenario, is needed for the implementation of the test. Such a variable is for example the best
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fit parameter tuple (055! (n), 625! (n)). For each pseudo experiment n, the best fit parameter
tuple is determined as for the real data. This was also done in section [6.1] and the result
can again be reused. By this, two distributions of parameter tuples are rendered. It is now
possible to address the question: “How significant does the parameter set (913 ,(5 ) prove
that NH is the true hierarchy?” For this, the likelihood ratio

L(NH|(613,dcp), 075", 65F)
SUPyec{NH,IH} L(n[(613,cp), 6713 >5 )

Ang((013,0cp)) == (6.4)

has to be considered. This is the standard likelihood ratio of a likelihood ratio test. The
likelihood function £ can be computed from the pseudo experiment ensembles. Additionally,
the probability function of A((613,dcp)) can be computed from the ensembles. Now

Pnr(An((613,60p)) < Anvu (0157, 60F))) (6.5)

is the requested signiﬁcanceﬂ. If this would turn out to be sufficiently insignificant, the NH
scenario can be rejected. Similarly the IH scenario can be rejected by repeating the above
test with IH instead of NH.

6.2.2 Test on the entire parameter set

In the second case, the question to address is: “How signiﬁcant does the measured oscillation
probability of the T2K experiment prove that (NH, 913 ,5 ) is the true parameter set?”
Analog to the above test, two pseudo experlment ensembles have to be generated. The
first ensemble is generated assuming (N H, 913 ,5 ) and the second ensemble is generated
assuming (I H, Q{f oL P). For each ensemble, the electron neutrino appearance probability has
to be calculated. This is the same probability that was measured by the T2K experiment. This
probability is measurable without assuming a certain hierarchy scenario, thus very sufficient
for the purposes of this test. Although the pseudo experiments are generated for the joint
experiment, only the T2K relevant probability is chosen as random variable. This is due to
the fact that the DC oscillation probability, i.e. the electron antineutrino survival probability,
is nearly unaffected by the mass hierarchy. This was visualised in figure Similar to the
likelihood ratio in the above test, the likelihood ratio in this test is defined as

LONH, 0N 6NE)| Posc)
N oy 6.6
NH( OSC) Supne{NHJH} L((n’e?g,(sgvp)‘Posc) ( )

and the requested significance is

Py (Anw(Pose) < Anu(PE2R)), (6.7)

where Pg;gK is the electron neutrino appearance probability measured in the real T2K ex-
periment. A low significance in this test allows to reject the NH scenario. Similar the TH
scenario can be investigated by replacing NH by IH in the above equations. This test checks
in principle if one of the P,s. distribution is very flat compared to the other distribution,
since both distributions are centered around PL2K. The likelihood functions can again be

oSsc
computed from the ensemble distributions.

2While 0257 and 65E were parameters of the model in equation they are to be understood as the
measured data in equation In the notation of appendix is holds that ¥ = z*.
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6.3 Combined Analysis with Imperfect Information

Apart from the Double Chooz and T2K experiments, further experiments have recently mea-
sured or constrained 613 or a combination of 613, dcp, the neutrino mass hierarchy and other
oscillation parameters [9 [T0} [73]. Their results are summarised in appendix The statistical
method described in section [6.1] can be utilised to incorporate those experiments by simply
expanding the number of analysis bins in the above described manner. However, the method
of section obtains its major advantage from the detailed information of the individual
uncertainty treatments and statistical methods utilised in the experiments. This allows a
unification of all considered experiments to a joint experiment. Moreover, a unified simula-
tion and evaluation of this joint experiment allows correlations between the experiments to
enter the simulation in an early stage. Since this information is not necessary available for all
the experiments listed in table [C.I] or will not necessarily be for future experiments, a method
for a combined analysis with imperfect information is needed.

Necessary for this is more information than normally provided in a common publication.
The minimum data set includes the expected number of events at each parameter space point;
furthermore, the number of data events is needed. The expected numbers have to be pro-
vided in every bin considered in the individual analyses. Additionally, the covariance matrix
is needed. From this information, it is possible to construct a combined covariance matrix by
adding up the existing matrices to a block diagonal matrix. Using this matrix, an analysis
similar to the one described in section [6.1]is realisable. However, this method suffers from un-
simulated correlations between experiments, since the covariance matrix in its representation
as block diagonal matrix considers only experiment-internal correlations. Moreover, it is not
possible to correct for possible compound measurands, e.g. 2sin®(260;3) sin?(fa3) in the case
of MINOS, and for different assumptions in the oscillation parameters, cross sections &c.



Chapter 7

Conclusion and Outlook

Aiming for the development of measurement strategies for dcp and the neutrino mass hi-
erarchy, the analysis methods of the reactor experiment Double Chooz and the accelerator
experiment T2K were investigated thoroughly. The statistical methods for the computation
of best point estimates and confidence sets of both experiments were analysed. Furthermore,
the underlying mathematical concepts of these methods were examined. Issues in these meth-
ods and in the implementation of these methods in the individual experiment analyses were
pointed out and improvements suggested. Utilising the distinct dependencies on the oscilla-
tion parameters of both experiments, a joint analysis strategy with sensitivity on the aimed-at
parameter dcp was pointed out. The joint analysis method takes up the statistical analyses of
the Double Chooz and the T2K experiment. Modifications of these individual analyses, which
are necessary for a joint analysis, were pointed out and discussed. It was shown that the joint
analysis is capable to incorporate experiment-internal and cross-experiment correlations to a
high degree. Moreover, statistical tests for the probing of the neutrino mass hierarchy were
developed. These tests use the results of the joint analysis.

Finally, it was shown that the developed joint analysis can incorporate further exper-
iments. This is also possible even if not the entire individual analysis method is known,
though less powerful. Such incorporations can be made with current experiments like the MI-
NOS experiment as an accelerator experiment on the one hand and Daya Bay and RENO as
reactor experiments on the other hand. In addition, future experiments will be combineable.
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Appendices

A Additional Proofs Concerning the Feldman-Cousins Ap-

proach

Lemma:

(A.1)

Using the notation in subsection 4.4.2.1| and assuming that ¢ ~ N(u,0?) or ( ~ Pois(u) it

holds that
CFC’(Cmeas) 7é @ vaeas eR

PROOF:
The proposition holds if

vCmeas eR 3Cowsu such that Cmeas € CFC(Cassu)

by definition of cpc or equivalently iff

vaeas 3g(zssu such that VC : R(gmeasmassu) > R(qgassu)

Case 1: (meas € Zp.a.
Claim: C(lSSU == Cmeas

Clearly R(CmeasKassu) =1if Cassu = Cmeas
Case a: ( ~ Pois(u). To show:

V¢ 1> R(C[Cmeas)

¢
% exp(—Cmeas) <1

(& exp(—¢)

SV

¢
<:>\V/C : <Cmgas> exp(( - Cmeas) S 1
This inequality is easily to verify by elementary derivation.

Case b: ¢ ~ N(p,0?)

Again it holds that R(Cmeas‘éassu) = 1if Cassu = Cmeas
Moreover, it generally follows that

P(C1[Crest) = p(C1]¢1) = p(C2|¢2) V(1, (2 € Zpa.

and

p(C1]¢1) = p(lCr) VG2 # G

61

(A.2)

(A.8)

(A.9)
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from the definition of the probability density functions. Again, it is to show that

VC : R(CmeasKmeas) > R(C’Cmeas) (AlO)

. p(gmeas‘Cmeas) p(CKmeas) A
¢> V< i p(gmeas‘Cmeas) Z p(C‘C) ( .11)
BIVC - p(Cmeas|Cmeas) = D(ClCmeas) (A.12)
& (A.13)

Case 2: (meas € Zp.a.
W.lo.g. assume that Z,q = [(im;00). The case is obviously proven if a * exist such that

V¢ : R(Cmeasm*) > R(CK*) (A~14)

Claim: G = Gim
For ¢ & [(im; 00) it obviously holds that

Cbest = Clim (A15)

as the probability density functions have their only maximum at their respective medians. It
is to show that

VC : R(CmeasKlim) > R(CKlzm) (Alﬁ)

T p(CmeasKlim) p(C‘Clzm) Zou: p(CmeasKlim) P(C’Clzm) A.
%VC © e p(CmeasKlim) = p(CK) /\VC € e p(CmeasKlim) = p(C’Clzm) ( 17)
. p(d(lim)
& V€ Zpai 12 E 2B (A.18)
& (A.19)
]

B The Likelihood Ratio Test

The likelihood-ratio test is a hypothesis test. Its purpose is the test of a hypothesis Hg of the

type
Hy:ne To (Bl)

against
H, Z?’]GTl, (BQ)

where ToUY; = Y are parameter sets. This hypothesis is tested under consideration of a
given realisation
2" = (21,22, .y Tp) (B.3)

of n € N realisations z; 1 <7 < n of an n-dimensional random variable
Z = (X1,Xs,...,X,) (B.4)

with n random variables X;, 1 < ¢ < n. The distributions of these random variables
depend on an element of the parameter set T and possibly additionally fixed parameters
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U = {41, ..., 00m }, with m € N. The test itself gives a statement about which of the param-
eters or which subset of Y is the likeliest considering the given realisation z*. If fZ(z|n, ¥)
denotes the density function of Z, then let

L7 (n]z,¥) = f#(z[n, V) (B.5)
denote the likelihood function of 7. Now consider the likelihood-ratio test statistic

supyer, £ (0|2, V)

M2 = Spor L2001 Z,0)

(B.6)

It compares the likelihood of the tested parameter set with the entire parameter set and can
be understood as the relative likelihood. It exist a critical value \..;; for which

a = sup P(A(Z) < Aerit|n) (B.7)
n€To
holds.
Given the realisation z*, the hypothesis Hy would be rejected if the corresponding likeli-
hood ratio 7
SuanTo L (7]|Z*7 ‘1])
sup, ey £7(n]z*, ¥)

A(z*) = (B.8)

yields a too low significance

a=a(z*) = sup P(A(Z) < A(z")|n). (B.9)
n€YTo

In the case of section [6.2] the parameter sets are one-element sets containing the unit and
its inverse:

T = {+1;-1}. (B.10)

These are the possible signs of Am3,. For convenience reasons Y is denoted as { NH; H} in
section The n-dimensional realisation z* in both tests is given as the tuple (Q%H , (5g g )
and PI2K | respectively.

For a more thorough introduction in the topic of likelihood ratio tests cf. [52, p. 580] and
59, p. 291].
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C Comparison of Recent Neutrino Experiment Results

normal hierarchy inverted hierarchy!

left | centre | right left ‘ centre ‘ right
Daya Bay 0.071 | 0.092 | 0.113 [10]
RENO 0.081 | 0.113 | 0.145 [9]
Double Chooz 0.015 | 0.086 | 0.157 8]

T2KZ || 0.05 | 0.11 | 0.21 | 0.07 | 0.14 | 0.26 | [72]
MINOSZ3[[ 0.010 | 0.041 | 0.088 || 0.026 | 0.079 | 0.150 || [7]
! for reactor experiments same as normal hierarchy

2 for 6cp =0
3 for 2sin?(f23) = 1

Table C.1: 68% confidence sets of all neutrino experiments sensitive on 613
that have published their results between January 2011 and July 2012.

Daya Bay —

........................................................... =S —]
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......................................................... 68%CL ]
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sin*(26,,)

Figure C.1: Extract from figure See there for explanation.
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Figure C.2: 68% confidence sets for (a) normal and (b) inverted hierarchy of T2K (black),
Double Chooz (red), RENO (blue), Daya Bay (orange) and MINOS (green). The solid lines
refer to the respective best fit values. All graphs are reproduced approximatively from the
respective publications. Values and annotations cf. table
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Glossary

AGS: Alternating Gradient Synchrotron
CCQE: charged current quasi elastic

cdf: cummulative density function

C.L.: confidence level

Co: cobalt

Cs: ceasum

CT: Common Trunk

DC: Double Chooz

DOGS: Double Chooz Offline Group Software
ECal: electromagnetic calorimeters

EDF: Electricité de France

FC: Feldman-Cousins

FD: Far Detector

FGD: fine grained detectors

GC: y-Catcher

GLG4sim: “GenericLAND” Geant4 simulation
ID: Inner Detector

IH: inverted neutrino mass hierarchy
INGRID: interactive neutrino grid

IV: Inner Veto

J-PARC: Japan Proton Accelerator Research Complex
LAND: Liquid-scintillator Anti-Neutrino Detector
LEP: Large Electron-Positron Collider

MC: Monte Carlo

MultiSim: multiple simulation

m.w.e.: meter water equivalent

ND: Near Detector

ND280: T2K off-axis Near Detector 280 meter
n.d.f.: number of degrees of freedom

NT: Neutrino Target

OD: Outer Detector

OV: Outer Veto

POD: 7¥ detector

p-a.: physically allowed

PE: photo electron

pdf: probability density function

pmf: probability mass function
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PMNS: Pontecorvo-Maki-Nakagawa-Sakata-Matrix
PMT: Photomultiplier tubes

POD: cf. POD

RoSS: Readout Simulation Software

NH: normal neutrino mass hierarchy

SK: Super-Kamikoande detector

SMRD: side muon range detector

T2K: Tokai-to-Kamioka experiment

TPC: time projection chambers

UA1: Underground Area 1
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