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Abstract
We solve theD- dimensional Klein–Gordon equationwith a newly proposed generalized hyperbolic
potentialmodel, under the condition of equal scalar and vector potentials. The relativistic bound state
energy equation has been obtained via the functional analysismethod.We obtained the relativistic and
non-relativistic ro-vibrational energy spectra for different diatomicmolecules. The numerical results
for these diatomicmolecules tend to portray inter-dimensional degeneracy symmetry. Variations of
the energy eigenvalues obtainedwith the potential parameters have been demonstrated graphically.
Our studies willfind relevant applications in the areas of chemical physics and high-energy physics.

Introduction

Researchers over the years have continually sought for solutions of wave equationswith potential energies both
in the non-relativistic and relativistic quantummechanical systems [1, 2]. These solutionswill provide all the
necessary information needed to explain the behavior of any physical system. In addition, the solutions of these
wave equations are highly applicable in chemical physics and high-energy physics at higher spatial dimensions
[3]. Klein–Gordon (KG) equation is a basic relativistic wave equation that is well known to describe themotion
of spin zero particles [4]. Different investigations have been carried out to obtain the exact and approximate
solutions of theKG equationwith different potentials, via variousmethods including the asymptotic iteration
method (AIM) [5], Nikiforov-Uvarov (NU)method [6], supersymmetric quantummechanics (SUSYQM) [7],
algebraic approach [8], exact and proper quantization rules [9], modified factorizationmethod [10, 11] and
others [12–16].Many authors have studied the solutions of theD-dimensional Klein–Gordon equationwith
diatomicmolecular potential energymodels [17–25]. Analytical solutions of theKG equation andDirac
equation have been obtained for the conventional formof the Rosen-Morse (RM) potential energymodel
[26, 27]. Chen and his collaborators [28] studied the relationship between theD-dimensional relativistic ro-
vibrational energies with applications to the Lithiumdiatomicmolecule. In addition, RM type scalar and vector
potential energymodel was employed to obtain the s-wave bound state energy spectra [29]. Villalba et al [30]
considered the bound state solution of a one-dimensional Cusp potentialmodel, confined in theKG equation.
The bound state solution of theKG equationwithmixed vector and scalar PT potential energywith a nonzero
angularmomentumparameter was investigated byXu et al [31]. Badalov et al [32] usedNU to study any l-state of
the KG equation, with the help of a Pekeris-like approximation scheme. In similar development, Ikot et al [33]
solved theKG equationwith theHylleraas potentialmodel and obtained its exact solution. Also,Hassanabadi
and his collaborators [20] studied a combined Eckart potential andmodifiedHylleraas potential energy in
higher dimensional KG equations using supersymmetric quantummechanicsmethod. Jia et al [22] investigated
the bound state solution of theKG equationwith an improved version of theManning-Rosen potentialmodel.
Ortakaya [34] solved theD-dimensional KG equation and obtained the bound state energy spectrum for three
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different diatomicmolecules using pseudoharmonic oscillator potentialmodel. Chen et al [28] employed the
improvedMRpotential energy inD-spatial dimensions to obtain the relativistic bound state energy equation.
Also, Ikot et al [35] analyzed the improvedMRpotential energy for arbitrary angularmomentumparameter
using an approximatemethod inD-dimensions. Xie et al [36] studied the bound state solutions of theKG
equationwith theMorse potential energy inD-spatial dimensions. Ikot and his co-authors [37] employedNU
method to investigate theD-dimensional KG equationwith an exponential typemolecule potentialmodel.
Hyperbolic potentialmodels have been used as the empiricalmathematicalmodels in describing various inter-
atomic interactions for diatomic and polyatomicmolecules [38]. Deformed hyperbolic functions have also been
studied and its non-relativistic energy spectra obtained via differentmethods [39–44].Most recently, Durmus
[45] studied theDirac equationwith equal scalar and vector hyperbolic potential function using the AIM,with
the help ofGreene andAldrich approximation scheme. The author also investigated the relativistic vibrational
energy spectra for various electronic states of some alkalimetal diatomicmolecules.Motivated by thework of
Durmus [45], we propose a generalized hyperbolic potential (GHP) of the form

U r V r V r V h r V h rtanh coth sec csc , 1GHP 1
2

2
2

3
2

4
2a a a a= + - -( ) ( ) ( ) ( ) ( ) ( )

whereV V V V, , ,1 2 3 4 are potential parameters, and a is the range of the potential.
Using the functional analysismethod, we investigate the approximate bound state solution of theKG

equationwithGHP in higher spatial dimensions.We also explore the properties of theD-dimensional
relativistic and non-relativistic ro-vibrational energy spectra for theGHP analytically and numerically for some
selected diatomicmolecules.

Bound state solutions

TheKlein–Gordon equationwith a scalar potential S r( ) and a vector potentialV r( ) inD-dimensions reads [46]

c c S r E V r r, 0, 2D D
2 2 2 2 2 2 m - + + - Y W =[ ( ( )) ( ( )) ] ( ) ( )

where D represents the spatial dimensionality and D 2, D
2  represents the Laplace operator in

D-dimensions,  is the reduced Planck constant, c and E are the speed of light and relativistic energy of the

system, respectively. Also, thewave function can be given as r r u r Y, ,D
D

vJ Jm D
1

2Y W = W- -
( ) ( ) ( ) where

YJm DW( ) is the generalized spherical harmonic function. Employing the eigenvalues of the generalized angular
momentumoperator L ,D D

2 W( ) where

L Y J J D Y2 , 3D Jm D Jm D
2 W = + - W( ) ( ) ( ) ( )

wewrite the radial part of theD-dimensional Klein–Gordon equation (2) as
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where K J D 3 ,1

2
= + -( ) EvJ represents the relativistic ro-vibrational energy eigenvalues inD-dimensions,

v Jand represents the vibrational and rotational quantumnumbers, respectively. For equal scalar and vector
potentials, S r V r ,=( ) ( ) equation (4) becomes
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Rescaling the scalar potential S r( ) and vector potential V r( ) under the non-relativistic limit, we adopt the
Alhaidari et al [47] scheme towrite equation (4) as
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With the equal scalar and vector potential being taken as the generalized hyperbolic
potential,S r V r U r ,HGP= =( ) ( ) ( ) we obtain the following second-order Schrodinger-like equation as,
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Due to the presence of the centrifugal term in equation (7), we employ theGreene-Aldrich approximation
scheme [48]
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As noted in [45], the above approximation is seen to be valid only for short range potential with small potential
range, .a This approximation tends to break down for large .a

Substituting equation (8) and introducing coordinate transformation of the form s rtanh ,2 a= ( ) we get
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Also, we propose thewave function as

u s s s f s1 , 13vJ vJ= -l s( ) ( ) ( ) ( )

where
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Wefind that equation (9) turns into aGauss hypergeometric-type equation of the form
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The solution of equation (16) can be expressed in terms of the hypergeometric function given below
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c
1

2
2 . 21l= + ( )

To obtain the energy relation, we equate either equations (19) or (20) to a negative integer (say v- ). Hence, we
choose

v
1

4
. 22l s f+ + - = - ( )

Substituting equations (10)–(12), (14), (15) and (17) into (22), we obtain theD-dimensional relativistic ro-
vibrational energy spectra for theGHP in the form
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To obtain the nonrelativistic ro-vibrational energy spectra for theGHP,we employ the followingmapping:
E c c E c E2 and .vJ vJ vJ

2 2 2m m m+  -  With thesemappingwe obtain
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The normalization of thewave function can be determined as shown in appendix appendix.

Results and discussion

Weconsider different diatomicmolecules (HCl NiC CO I, , , 2)with spectroscopic parameters as shown in
table 1. These parameters were adopted from [49] and applied to equation (24) to compute the numerical values
of the non-relativistic ro-vibrational energies for arbitrary quantumnumbers in different dimensions, as shown
in tables 2–5.We observe from the tables presented that the non-relativistic ro-vibrational energies for the
selected diatomicmolecules decrease as the quantumnumbers (v J, ) increase. Also, for any quantum state, there
is a decrease in ro-vibrational energies as the dimension increases. This trend is consistent with the relation of
energy eigenvalues and quantumnumbers, as observed in [49] for the selected diatomicmolecules. In addition,
we observe that there exist an inter-dimensional degeneracy symmetry for the selected diatomicmolecules
(E Ev J

D
v J
D

, , 1
2= -

+ ). This implies that the nonrelativisticro-vibrational energy spectra for theGHP is invariant under
a transformation of an increase in theD-dimension by two (D D 2 + ) and a decrease in the rotational
quantumnumber by one (J J 1 - ).

Table 1. Spectroscopic Parameters for the
selected diatomicmolecules.

Molecule Åa( ) amum ( )

HCl 1.8677 0.9801045

NiC 2.25297 9.974265

CO 2.2994 6.8606719

I2 1.8643 63.45223502
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Table 2.Energy spectra E in eVvj ( ) of HCl for arbitrary v jand quantumnumbers at
different dimensions with c 1973.29 eVÅ, V 2, V 2, V 4 and V 4.1 2 3 4 = = = = = -

v j Evj
D 3= Evj

D 4= Evj
D 5= Evj

D 6=

0 0 3.992 561 016 3.992 363 344 3.992 028 341 3.991 547 708

1 0 3.933 049 146 3.932 458 722 3.931 469 539 3.930 073 901

1 3.931 469 539 3.930 073 901 3.928 261 090 3.926 017 406

2 0 3.814 025 405 3.813 042 230 3.811 398 865 3.809 088 223

1 3.811 398 865 3.809 088 223 3.806 100 428 3.802 422 859

2 3.806 100 428 3.802 422 859 3.798 040 210 3.792 934 558

3 0 3.635 489 793 3.634 113 867 3.631 816 322 3.628 590 675

1 3.631 816 322 3.628 590 675 3.624 427 896 3.619 316 441

2 3.624 427 896 3.619 316 441 3.613 242 314 3.606 189 122

3 3.613 242 314 3.606 189 122 3.598 138 150 3.589 068 449

4 0 3.397 442 311 3.395 673 633 3.392 721 908 3.388 581 256

1 3.392 721 908 3.388 581 256 3.383 243 494 3.376 698 152

2 3.383 243 494 3.376 698 152 3.368 932 548 3.359 931 814

3 3.368 932 548 3.359 931 814 3.349 678 989 3.338 155 080

4 3.349 678 989 3.338 155 080 3.325 339 141 3.311 208 372

Table 3.Energy spectra E in eVvj ( ) of NiC for arbitrary v jand quantumnumbers at
different dimensions with c 1973.29 eVÅ, V 2, V 2, V 4 and V 4.1 2 3 4 = = = = = -

v j Evj
D 3= Evj

D 4= Evj
D 5= Evj

D 6=

0 0 3.998 936 343 3.998 925 695 3.998 907 833 3.998 882 582

1 0 3.990 427 085 3.990 395 196 3.990 341 934 3.990 267 130

1 3.990 341 934 3.990 267 130 3.990 170 545 3.990 051 877

2 0 3.973 408 571 3.973 355 439 3.973 266 777 3.973 142 419

1 3.973 266 777 3.973 142 419 3.972 982 135 3.972 785 627

2 3.972 982 135 3.972 785 627 3.972 552 536 3.972 282 432

3 0 3.947 880 799 3.947 806 425 3.947 682 363 3.947 508 452

1 3.947 682 363 3.947 508 452 3.947 284 466 3.947 010 120

2 3.947 284 466 3.947 010 120 3.946 685 062 3.946 308 875

3 3.946 685 062 3.946 308 875 3.945 881 084 3.945 401 147

4 0 3.913 843 769 3.913 748 153 3.913 588 691 3.913 365 226

1 3.913 588 691 3.913 365 226 3.913 077 541 3.912 725 356

2 3.913 077 541 3.912 725 356 3.912 308 331 3.911 826 061

3 3.912 308 331 3.911 826 061 3.911 278 086 3.910 663 877

4 3.911 278 086 3.910 663 877 3.909 982 851 3.909 234 363

Table 4.Energy spectra E in eVvj ( ) of CO for arbitrary v jand quantumnumbers at
different dimensions with c 1973.29 eVÅ, V 2, V 2, V 4 and V 4.1 2 3 4 = = = = = -

v j Evj
D 3= Evj

D 4= Evj
D 5= Evj

D 6=

0 0 3.998 389 228 3.998 369 374 3.998 336 020 3.998 288 766

1 0 3.985 503 049 3.985 443 611 3.985 344 290 3.985 204 702

1 3.985 344 290 3.985 204 702 3.985 024 308 3.984 802 416

2 0 3.959 730 692 3.959 631 668 3.959 466 381 3.959 234 459

1 3.959 466 381 3.959 234 459 3.958 935 382 3.958 568 482

2 3.958 935 382 3.958 568 482 3.958 132 944 3.957 627 808

3 0 3.921 072 156 3.920 933 547 3.920 702 294 3.920 378 038

1 3.920 702 294 3.920 378 038 3.919 960 277 3.919 448 368

2 3.919 960 277 3.919 448 368 3.918 841 526 3.918 138 822

3 3.918 841 526 3.918 138 822 3.917 339 193 3.916 441 430

4 0 3.869 527 441 3.869 349 248 3.869 052 028 3.868 635 438

1 3.869 052 028 3.868 635 438 3.868 098 994 3.867 442 076

2 3.868 098 994 3.867 442 076 3.866 663 929 3.865 763 658

3 3.866 663 929 3.865 763 658 3.864 740 239 3.863 592 508

4 3.864 740 239 3.863 592 508 3.862 319 173 3.860 918 810
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Furthermore, we represent equation (24) in 3-dimensions as follows (where K Jº in 3-dimensions)
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ForV V 0,2 4= = the generalized hyperbolic potential of equation (1) reduces to

U r V r V h rtanh sec 261
2

3
2a a= -( ) ( ) ( ) ( )

Table 5.Energy spectra E in eVvj ( ) of I2 for arbitrary v jand quantumnumbers at different
dimensions with c 1973.29 eVÅ, V 2, V 2, V 4 and V 4.1 2 3 4 = = = = = -

v j Evj
D 3= Evj

D 4= Evj
D 5= Evj

D 6=

0 0 3.999 885 513 3.999 885 138 3.999 884 511 3.999 883 630

1 0 3.998 969 616 3.998 968 491 3.998 966 614 3.998 963 983

1 3.998 966 614 3.998 963 983 3.998 960 595 3.998 956 447

2 0 3.997 137 823 3.997 135 948 3.997 132 820 3.997 128 439

1 3.997 132 820 3.997 128 439 3.997 122 801 3.997 115 903

2 3.997 122 801 3.997 115 903 3.997 107 740 3.997 098 308

3 0 3.994 390 134 3.994 387 508 3.994 383 130 3.994 376 999

1 3.994 383 130 3.994 376 999 3.994 369 110 3.994 359 462

2 3.994 369 110 3.994 359 462 3.994 348 049 3.994 334 866

3 3.994 348 049 3.994 334 866 3.994 319 908 3.994 303 167

4 0 3.990 726 547 3.990 723 171 3.990 717 544 3.990 709 662

1 3.990 717 544 3.990 709 662 3.990 699 523 3.990 687 124

2 3.990 699 523 3.990 687 124 3.990 672 461 3.990 655 528

3 3.990 672 461 3.990 655 528 3.990 636 319 3.990 614 829

4 3.990 636 319 3.990 614 829 3.990 591 048 3.990 564 970

Table 6.Comparison of energy spectra E in eVvj ( ) for special case of generalized hyperbolic
potential inD-dimensions for arbitrary quantum states
with 1, V 2, and V 4.1 3 m= = = =

States a Present work AIM [45] Algebraicmethod [50]

p2 0.05 −3.575 101 020 −3.575 101 016 −3.575 101 02

0.10 −3.166 384 390 −3.166 384 378 −3.166 384 38

0.15 −2.773 782 467 −2.773 782 451 −2.773 782 46

0.20 −2.397 227 654 −2.397 227 633 −2.397 227 65

0.25 −2.036 652 400 −2.036 652 376 −2.036 652 40

p3 0.05 −3.246 181 840 −3.246 181 829 −3.246 181 83

0.10 −2.543 491 901 −2.543 491 882 −2.543 491 90

0.15 −1.891 808 441 −1.891 808 414 −1.891 808 44

0.20 −1.291 009 778 −1.291 009 744 −1.291 009 77

0.25 −0.740 974 322 −0.740 974 285 −0.740 974 32

p4 0.05 −2.927 262 658 −2.927 262 642 −2.927 262 65

0.10 −1.960 599 413 −1.960 599 387 −1.960 599 41

0.15 −1.099 834 416 −1.099 834 381 −1.099 834 41

0.20 −0.344 791 902 −0.344 791 861 −0.344 791 90

0.25 0.304 703 7560 0.304 703 798 0.304 703 753

d5 0.05 −2.771 553 066 −2.771 553 048 −2.771 553 06

0.10 −1.684 153 169 −1.684 153 139 −1.684 153 17

0.15 −0.737 597 4030 −0.737 597 365 −0.737 597 40

0.20 0.068 317 0360 0.068 317 079 0.068 317 035

0.25 0.733 792 7940 0.733 792 837 0.733 792 792
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and its corresponding nonrelativisticro-vibrational energy spectra is obtained as

E V v J V V
2

2
3

2

1

4

2
27vJ 1

2 2

2 2 1 3

2


a
m

m
a

= - + + - + +⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

The result in equation (27) is very consistent with [45, 50]. This results’ accuracy have been tested by calculating
the ro-vibrational energy spectra of the equation (27)numerically for different quantum states and various
potential range, .a Wehave compared our result with other results obtained using differentmethods such as
AIM [45] and algebraicmethod [50], as shown in table 6.

We also setV V 01 3= = to have hyperbolic Rosen-Morse potential from theGHP in the form

U r V r V h rcoth csc 282
2

4
2a a= -( ) ( ) ( ) ( )

The non-relativistic ro-vibrational energy spectra of the hyperbolic Rosen-Morse potential is obtained to be

E V v

J V V
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2

1 1 2
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29

vJ 2

2 2

2
2 2 2 4

2


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Figure 1.Nonrelativistic ro-vibrational energy versus a for various diatomic.Molecules and v J1, 0.= =

Figure 2.Nonrelativistic ro-vibrational energy versus D for various diatomic.Molecules and v J1, 0.= =
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Wealso plot the graphs of the non-relativistic ro-vibrational energies with respect to the potential range,
dimensions, rotational and vibrational quantumnumbers, potential parameters, as shown infigures 1–8,
respectively. Fromfigures 1–4 respectively, it is seen that there is amonotonic decrease in the non-relativistic
energies as D J v, , , anda increases for the selected diatomicmolecules. Figures 5 and 6 show the increase in
EvJ as the potential parametersV Vand1 2 increases, respectively. Infigures 7 and 8, the non-relativistic ro-
vibrational energies increases to a peak value and later decreased as the potential parametersV Vand3 4 increases,
respectively. In addition, we considered the variation of EvJ with spatial dimension D for various quantum states
of HCl molecule as shown infigure 9. As the spatial dimension increases, the non-relativistic ro-vibrational
energy EvJ decreases slowly and later decreases in amonotonicmanner. Figure 10 shows a sharp decrease in EvJ

as the vibrational quantumnumber increases for different spatial dimensions of HCl molecule.

Conclusion

In our study, we solve theD-dimensional Klein–Gordon (KE) equationwith our newly proposed generalized
hyperbolic potential (GHP)model using the functional analysismethod. By employing theGreene-Aldrich-like
approximation scheme, we obtain an expression for theD-dimensional relativistic ro-vibrational energy spectra

Figure 3.Nonrelativistic ro-vibrational energy versus J for various diatomic.Molecules and v D1, 3.= =

Figure 4.Nonrelativistic ro-vibrational energy versus v for various diatomic.Molecules and D J3, 0.= =
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for theGHP. Also, this expressionwas reduced to the non-relativistic case by employing the necessarymapping
scheme.Numerical results for theD-dimensional non-relativistic ro-vibrational energy spectra were obtained
for different diatomicmolecules (HCl NiC CO I, , , 2), for arbitrary quantumnumbers. Special cases were
obtainedwhere our results agreewith the results obtained in the literature. Our results for different diatomic
molecules show inter-dimensional degeneracy symmetry as the dimensions increase and the rotational
quantumnumber decreases. Different plots of non-relativistic ro-vibrational energy spectra versus theGHP
parameters were also analyzed and discussed. These plots show amonotonic decrease in the energy eigenvalues
as the potential parameters increase for the diatomicmolecules considered. A specific considerationwas given to

HCl molecule, as the variation of its non-relativistic ro-vibrational energy eigenvalues with bothD-spatial
dimension and vibrational quantumnumbers, respectively, were discussed.

Acknowledgments

The authors thank the kind reviewers for the positive comments and suggestions that lead to an improvement of
ourmanuscript

Figure 5.Nonrelativistic ro-vibrational energy versus V1 for various diatomic.Molecules and v J D1, 0, 3.= = =

Figure 6.Nonrelativistic ro-vibrational energy versus V2 for various diatomic.Molecules and v J D1, 0, 3.= = =
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AppendixA

U r dr 1 A.1
0
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¥

∣ ( )∣ ( )
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Figure 7.Nonrelativistic ro-vibrational energy versus V3 for various diatomic.Molecules and v J D1, 0, 3.= = =

Figure 8.Nonrelativistic ro-vibrational energy versus V4 for various diatomic.Molecules and v J D1, 0, 3.= = =
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The standard integral is given as [32]
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Figure 9.Nonrelativistic ro-vibrational energy for HCl molecule versus D for. various quantum states.

Figure 10.Nonrelativistic ro-vibrational energy for HCl molecule versus v for. various D and J 1.=
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Thus, the normalization constant can be found as
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