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 A B S T R A C T

During the so-called Run 3 data taking, the center-of-mass energy for proton–proton collisions at the Large 
Hadron Collider (LHC) of CERN is 13.6 TeV. The CMS experiment has collected more than 180 fb−1 of 
integrated luminosity for the period of 2022 to 2024. The CMS RPC system faces the challenge of increased 
LHC instantaneous luminosity up to 2 × 1034 cm−2 s−1, providing redundant information for robust muon 
triggering, reconstruction and identification. To ensure stable data taking, the CMS RPC collaboration has 
performed a series of detector operation, calibration and performance studies, including the development and 
maintenance of various software monitoring tools. The detector operation and overall performance at 13.6 
TeV, as well as the encountered problems and their corresponding solutions, are documented in this report.
1. Introduction

Four different gaseous detector technologies are used to build up 
the Muon system [1] of the Compact Muon Solenoid (CMS) experi-
ment [2,3], ensuring its focus on delivering excellent muon triggering 
and identification, as well as charge and transverse momentum mea-
surement. Drift Tubes (DT), covering pseudorapidity (|𝜂| < 1.2), are 
used in the central barrel region, while Cathode Strip Chambers (CSC) 
(0.9 < |𝜂| < 2.4) and Gas Electron Multipliers (GEM) (1.5 < |𝜂| < 2.2) 
constitute the endcap region. Resistive Plate Chambers (RPC) are used 
in both regions, covering pseudorapidity up to (|𝜂| < 1.9), as shown in 
Fig.  1

With a total number of 1056 double-gap chambers, covering an area 
of about 3950 m2, the CMS RPC system is the largest muon detector in 
the experiment. Each chamber has a copper strips readout plane located 
between the top and the bottom gaps [1] and consists of 2 gas gaps with 
2 mm width each. High-pressure laminate (HPL) with bulk resistivity 
in the range of 2–5 × 1010 Ω cm is used to build each of the detecting 
gaps, where the High Voltage (HV) is applied to graphite electrodes 
coated on it. In the barrel, the strips run parallel to the direction of the 
beam axis and have rectangular shape with a pitch width in the range 
between 2.28 and 4.10 cm, while in the endcaps, they are trapezoidal 
with a pitch width between 1.74 and 3.63 cm and run radially to the 
beam axis direction [3]. In both cases, they measure the phi direction 
of the particles that pass through them.

To ensure good and stable performance of the chambers, RPCs are 
operated in avalanche mode at 35%–45% relative humidity with a 
mixture of 3 pure gases: 95.2% C2H2F4, 4.5% iC4H10 and 0.3% SF6. 
The latter component is particularly effective in reducing the formation 
 of streamers, while iC4H10 in absorbing the UV photons produced in 
2 
the recombination process during the formation of the avalanche. The 
C2H2F4 is enhancing the ionization caused by incident particles.

The barrel region of CMS RPC system is divided in the direction 
along the beam axis into 5 separate wheels (W0, W±1 and W±2), 
covering the pseudorapidity up to (|𝜂| < 1.2), while each endcap region 
has a total number of 4 stations (RE±1, RE±2, RE±3, RE±4), covering 
the pseudorapidity range (0.9 < |𝜂| < 1.9) [1]. Each barrel wheel has 
12 sectors in azimuthal angle 𝜙 and 4 stations (RB1, RB2, RB3, RB4), 
while every endcap station has 36 sectors. Due to requirements in the 
trigger logic, the chambers are divided into two or three pseudorapidity 
(𝜂) partitions, called rolls. In most of the barrel detectors, there are two 
rolls: forward and backward. Only 60 barrel chambers are divided into 
three rolls, 1 per each azimuthal sector in every wheel (RB2in in W±1 
and W0 and RB2out in W±2), called forward, middle and backward 
(stations RB1 and RB2 have two chambers per sector called IN and 
OUT, the IN chamber is closer to the center and the OUT chamber is 
farther away). The endcap RPC detectors are divided into three rolls: 
A, B, and C, where roll C is the one located towards the center [3–5]. 

The specific design of the CMS RPC system, as shown in Fig.  1, 
combined with the well calibrated operating conditions, allows the 
chambers to cope with high background rates and ensures an excellent 
time resolution of about 2 ns. It also contributes to the lower absolute 
number of adjacent fired strips in a single muon hit (called cluster 
size) of less than 3. These are important parameters that directly 
impact the assignment of the muon to the correct bunch crossing 
(BX) (particles in the Large Hadron Collider (LHC) travel in bunches, 
colliding every 25 ns [6]), ensuring precise and fast muon detection 
and identification [3].

During the ongoing LHC Run 3 data taking, for the period from 
2022 to 2024, the CMS detector recorded ∼180 fb−1 and the RPC 
system contributed very efficiently with its stable performance during 
the entire period.
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Fig. 1. Schematic view in the 𝑟–𝑧 plane of a CMS detector quadrant at the start of 
Run 3 [3].

Fig. 2. RPC HV scan Sigmoid fit of the efficiency data points, taken at effective voltage 
(corrected for pressure variations). The efficiency for every single RPC eta partition 
(roll) is calculated and fitted for each calibration HV scan run [7].

2. CMS RPC operation in Run 3

2.1. RPC calibration

To ensure stable operation of the RPC system during data taking, 
the high voltage (HV) applied to each chamber is corrected according 
to environmental conditions. The optimal operating voltage for every 
chamber, called Working Point (WP), is determined after a series of 
high voltage scans [7], regularly performed once or twice per year, 
typically in low and high luminosity conditions.

The HV scan is taken at effective, equidistant voltages within the 
working range of 8600 to 9800 V. The RPC hit efficiency is obtained 
using the Segment Extrapolation Method [4], where the RPC efficiency 
is measured as the ratio between the number of detected and the 
number of expected hits. To measure this efficiency, aligned hits of DT 
in the barrel and CSC in the endcaps, called segments, are selected. 
Hits associated with a segment must belong to a standalone muon track 
with times corresponding to the time of the RPC readout windows. 
These segments are then extrapolated to the plane of a given RPC. 
The detector unit is considered efficient if an RPC reconstructed hit is 
found within ± 4 strips from the position extrapolated from the DT/CSC 
segments. 

A sigmoid function is used to fit the efficiency data points, taken 
at effective voltage, as shown in Fig.  2. Here, 𝜖𝑚𝑎𝑥, HVeff, HV50 and 
𝜆 represent the maximum efficiency, the effective high voltage, the 
voltage at which the fit efficiency is 50% of its maximum value, and 
the slope of the sigmoid function calculated at HV50 [8], respectively. 
The HV WP is defined as the voltage at 95% efficiency, also known as 
the Knee (before the plateau) of the efficiency curve, increased of 100 V 
3 
Fig. 3. RPC HV scan Working Point (WP) distribution for 2022 [9].

Fig. 4. Temporal evolution of efficiency determined from HV scan data at the WP and 
the HV at 50% efficiency, for the barrel [9]. In light blue are shown the histograms of 
the distributions, where the width of the band represents the population of channels 
having the corresponding efficiency value.

for barrel and 120 V for endcap [8]. A few differences in the assembly 
parameters of the chambers (geometry, size, layout, electronics) define 
the small difference in HV between barrel and endcap detectors [3].

Fig.  3 presents the HV WP distribution for the different parts of 
the RPC system, as obtained with 2022 data. All sigmoid fits which 
have failed to fit the data are excluded from the sample, therefore the 
underflows and the overflows of the distribution are zeros. The clean 
sample (without the excluded rolls), containing approximately 75% of 
the rolls, is quite representative. What causes fits to fail may vary be-
tween missing extrapolations from other muon detectors and hardware 
problems like chambers OFF, chambers in single-gap operation mode 
or rolls with higher number of inactive (masked) electronic channels 
(strips). In 2024, a new machine learning approach was used to analyze 
RPC HV scan data with the aim of minimizing the number of failed 
fits [10].

HV scans of RPCs are also used to study the stability of HV working 
points over time, as well as the efficiency at WP. Fig.  4 shows the 
efficiency at WP as a function of time (blue points), the WP (red 
squares) and the HV at 50% efficiency (magenta triangles) during LHC 
Run 1 (from 1/2011 to 1/2013), Run 2 (from 1/2016 to 6/2018), 
and Run 3 (1/2022). Despite the changes in the environmental and 
luminosity conditions, the different calibrations implemented in the 
detector allowed the system to keep the efficiency stable.

In addition to all WP validation scans, the good and stable operation 
and performance of the RPC system is regulated by special HV and 
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Fig. 5. Distribution of leaking and recovered gas chambers per wheel: the gas status 
of CMS RPC barrel chambers as of March 2024.

low voltage (LV) maintenance procedures, following regulated access 
time slots, called technical stops (TS), during the data taking. The HV 
maintenance aims to identify all problematic channels and parts of the 
HV power system and fix them in the best feasible way. This allows the 
recovery of HV lines and change of the detector operation mode from 
a single-gap to a double-gap one, resulting in better performance of the 
detectors. The LV maintenance aims to ensure flawless operation along 
the communication buses, precise functionality of the LV power boards, 
as well as proper operation and configuration of the on-detector elec-
tronics, including the Front-end Boards (FEBs) and the LV distribution 
boards (LVDB).

2.2. RPC gas system and green-house emission strategy

The standard CMS RPC gas mixture is composed mainly of fluorine 
composed gases (F-gases) with high global warming potential (GWP) of 
about 1400. In accordance with CERN wide emission reduction policy, 
RPCs were obliged to reduce Green House Gases (GHG) emissions. In 
order to achieve this goal a newly developed ‘‘freon (R134a) recu-
peration system’’ developed by CERN EP-DT group (Cern gas group) 
was implemented in Run 3 (2023) [11]. RPC group defined a strategy 
to reduce overall gas loss of the system by disconnecting the leaking 
channels (each gas channel provides gas to 2 RPC chambers) in order 
to have gas in the exhaust and to operate the freon recuperation system 
in the most efficient way. The freon recovered from the recuperation 
system was further reinjected into RPC gas system.

The RPC gas system is a 13 m3 closed-loop volume with re-circulation
of 7.3 m3∕h nominal mixture flow: 5 m3∕h for the barrel and 2.3 m3∕h
for the endcaps. The increase in the leak rate of the system can be 
caused by a combination of factors including bad quality components 
(gas tubes and connectors) and operation (unscheduled gas stops). In 
addition, switching from freon to Nytrogen (N2) and back to freon 
during technical stops, as well as environmental conditions in the 
experimental cavern, such as humidity and temperature, can accelerate 
the degradation process of the different components of the system.

The main cause for development of gas leaks in the CMS RPC 
system are the low-density polyethylene pipes that deteriorate in time 
becoming brittle or cut due to time aging, as well as the T-shaped or 
L-shaped polycarbonate gas connectors that break due to stress applied 
through the gas pipes [3].

The distribution of the gas leak repairs and the number of leaks in all 
five barrel wheels as of March 2024 is shown in Fig.  5. A total number 
of 111 gas leaking chambers, caused by cracked or broken pipes are 
identified in the RPC system barrel region. The number of chambers 
disconnected from the gas system is 145, of which 110 are leaking gas, 
while the remaining 35 do not leak gas, but share a gas channel with 
4 
Fig. 6. Representation of the new full extraction gas leak reparation protocol: extracted 
chamber for leak repairs in W−2 during YETS 23/24 (a) and repaired chamber with 
external (blue) pipes (b).

the gas-leaking chamber. The latter can be recovered and put back into 
operation if access is available during any of the LHC ‘‘End’’ of the Year 
Technical Stops (YETS).

Following the CMS GHG reduction strategy, about 14% of the RPC 
system in the barrel has been disconnected. In order to recover this 
large fraction of disconnected chambers, a new gas leak reparation 
protocol was validated during the YETS 23/24. A full DT/RPC barrel 
station (two RPC chambers with a DT chamber in between) was fully 
extracted, as shown in Fig.  6(a), which allows access for improvement 
of all weak points, relevant for leak development — replacement of all 
polyethylene pipes and T-shaped and L-shaped connectors inside the 
RPC detectors.

During YETS 23/24, two DT/RPC stations in W−2 were fully ex-
tracted and all four RPC detectors (2 leaking chambers + 2 connected 
to them) got new pipes attached outside the chamber and new robust 
connectors, as shown in Fig.  6(b). The chambers with gas leak were 
fully recovered and operational during the data taking in 2024.

The already tested procedure of gas leak repair using full extraction 
is a permanent solution to the gas leak problem in barrel RPC chambers 
and could be applied thoroughly. No leak is observed in the repaired 
chambers almost 1 year after reparation. Therefore a massive lifesaving 
leak repair campaign must be addressed in upcoming YETS or Long 
Shutdown (LS3) period.

3. CMS RPC performance in Run 3 collisions

LHC Run 3 data taking started with reaching the 13.6 TeV record 
value of the center-of-mass energy in proton–proton collisions. The 
CMS experiment started the new data taking period with stable per-
formance, ready to collect good quality data on all possible new phe-
nomena [3].

To validate the RPC system operation after the extensive prepara-
tion for Run 3 [12], the CMS RPC system performance has been closely 
monitored, while a special comparison study on the main RPC detector 
working parameters has been carried out.
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Fig. 7. RPC overall efficiency distribution comparison for the barrel, obtained using 
2018, 2022, 2023 and 2024 proton–proton collisions data (a) and RPC barrel average 
efficiency vs time, obtained using Run 3 proton–proton collisions data (b) [5].

The RPC overall efficiency distribution for the barrel and the endcap 
regions is shown in Fig.  7(a) and 8(a), respectively. The RPC hit 
efficiency is obtained using the Segment Extrapolation Method [4], 
described in Section 2.

For correct estimation on the performance of the RPC system con-
figuration during the different years of data taking, all RPC chambers 
with known hardware problems or switched off due to the CMS gas leak 
reduction policy are excluded. The underflow entries in the efficiency 
distributions for both the barrel and the endcap regions are coming 
from detector units with efficiency lower than 70%, caused by known 
hardware problems, e.g. chambers working in single gap operation 
mode. The numbers in the graphs show the average efficiency of good 
performing RPC units, as well as the fraction of problematic ones.

Fig.  7(b) and Fig.  8(b) show the RPC efficiency history for the barrel 
and endcap regions respectively. The drops in the efficiency, appearing 
for different periods in time, are due to known hardware problems, 
which were successfully fixed.

Comparing the efficiency of the RPC system with previous mea-
surements and CMS requirements to maintain efficiency at the 95%
level [1], the RPC efficiency measured in Run 3 (up to 2024) is stable 
and in accordance with expectations. The stable fraction of detector 
units operating at lower efficiency (shown in Figs.  7(a) and 8(a)) 
demonstrates the success of the HV, LV and gas system maintenance 
during the data taking period.

Another important RPC working parameter, which affects the RPC 
spacial resolution, is the cluster size — number of adjacent fired strips 
in a single muon hit. One of the most important prerequisites for the 
correct functioning of the RPC system is the stability of the cluster 
size over time, which also guarantees the stability of the system. The 
comparison of the cluster size distribution of RPC hits associated with 
muons in the barrel and the endcap are shown in Fig.  9(a) and Fig. 
10(a), respectively, while the average cluster size history is presented 
in Fig.  9(b) for the barrel and Fig.  10(b) for the endcap regions.
5 
Fig. 8. RPC overall efficiency distribution comparison for the endcap regions, obtained 
using 2018, 2022, 2023 and 2024 proton–proton collisions data (a) and RPC endcap 
average efficiency vs time, obtained using Run 3 proton–proton collisions data (b) [5].

Fig. 9. RPC cluster size distribution comparison for the barrel, obtained using 2018, 
2022, 2023 and 2024 proton–proton collisions data (a) and RPC barrel average cluster 
size vs time, obtained using Run 3 proton–proton collisions data (b) [5].
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Fig. 10. RPC cluster size distribution comparison for the endcap regions, obtained 
using 2018, 2022, 2023 and 2024 proton–proton collisions data (a) and RPC endcap 
average cluster size vs time, obtained using Run 3 proton–proton collisions data (b) [5].

Even though, with respect to the distance to the beam pipe, the RPC 
readout strips pitch width varies from 1.7 cm in the innermost stations 
to 4.1 cm for the outermost stations [3], resulting in possible larger 
cluster size number for the different detector parts, the RPC system 
mean cluster size measured in Run 3 is below 2, which is comparable 
and in agreement with the expectations.

4. Conclusion

The CMS RPC system kept its stable performance during the ongoing 
Run 3 data taking. The RPC group performed a series of calibration 
studies and scans on the HV working parameters, gas leaks and LV to 
ensure the optimal operation conditions.

Following the CMS experiment aim to minimize the environmental 
impact of the RPC operational gas mixture, a new policy to disconnect 
all leaking chambers from the gas distribution was established. This 
allowed the successful validation and calibration of the new freon 
recuperation system.

In addition, a new gas leak reparation procedure was successfully 
tested and validated at the CMS experiment site to keep the number 
of gas disconnected detectors to a minimum and ensure the repaired 
chambers are fully operational with no side effects from the reparation 
and no observed gas leak.

The results from the Run3 data analysis show stable performance of 
the RPC system, with average efficiency of ∼ 95% and average cluster 
6 
size below 2. Results obtained from the Run 3 data analysis confirm the 
success and importance of all calibration activities performed during 
the data taking period, resulting in the RPC system optimal and smooth 
operation.
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