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A Multi-Phase Transport (AMPT) model is used to study the detection sensitivity of two of the primary
correlators - Ay and Ry, - employed to characterize charge separation induced by the Chiral Magnetic
Effect (CME). The study, performed relative to several event planes for different input “CME signals”,
indicates a detection threshold for the fraction fcvmg = Aycme/Ay, which renders the Ay-correlator
insensitive to values of the Fourier dipole coefficient a; < 2.5%, that is larger than the purported signal

(signal difference) for ion-ion(isobaric) collisions. By contrast, the Ry, correlator indicates concave-
shaped distributions with inverse widths (O‘R_w 12) that are linearly proportional to ai, and independent of
the character of the event plane used for their extraction. The sensitivity of the Ry, correlator to minimal
CME-driven charge separation in the presence of realistic backgrounds, could aid better characterization
of the CME in heavy-ion collisions.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ion-lon collisions at both the Relativistic Heavy lon Collider
(RHIC) and the Large Hadron Collider (LHC) create hot expand-
ing fireballs of quark-gluon plasma (QGP) in the background of
a strong magnetic field [1-3]. Topologically nontrivial sphaleron
transitions [via the axial anomaly] [4-6] can induce different den-
sities of right- and left-handed quarks in the plasma fireballs,
resulting in a quark electric current along the B-field. This phe-
nomenon of the generation of a quark electric current (jq) in the
presence of a magnetic field is termed the chiral magnetic effect
(CME) [7,8]:

- Q2.
]Q:NCMSPB7 (1)

where, N is the color factor, us is the chiral chemical potential
that quantifies the axial charge asymmetry or imbalance between
right- and left-handed quarks in the plasma, and Q is the electric
charge [8-11].
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Full characterization of the CME, which manifests experimen-
tally as the separation of electrical charges along the B-field [7,8],
can give fundamental insight on anomalous transport and the in-
terplay of chiral symmetry restoration, axial anomaly and gluon
topology in the QGP [12-16].

Charge separation stems from the fact that the CME prefer-
entially drives charged particles, originating from the same “P-
odd domain”, along or opposite to the B-field depending on their
charge. This separation can be quantified via measurements of
the first P-odd sine term aq, in the Fourier decomposition of the
charged-particle azimuthal distribution [17]:

dNCh
d¢

x 1 —i-ZX:(v,1 cos(nAg) + ap sin(nA¢) + ...) (2)

where A¢ =¢ — Wgp gives the particle azimuthal angle with re-
spect to the reaction plane (RP) angle, and v, and a, denote the
coefficients of P-even and P-odd Fourier terms, respectively. A di-
rect measurement of the P-odd coefficients ay, is not possible due
to the strict global P and CP symmetry of QCD. However, their

. . - 1/2 . .
fluctuation and/or variance a, = <a%) / can be measured with suit-
able correlators.
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The CME-driven charge separation is small because only a few
particles from the same P-odd domain are correlated. Moreover,
both the initial axial charge and the time evolution of the magnetic
field (cf. Eq. (1)) are unconstrained theoretically, and it is uncer-
tain whether an initial CME-driven charge separation could survive
the signal-reducing effects of the reaction dynamics, and still pro-
duce a signal above the detection threshold. Besides, it is uncertain
whether a charge separation that survives the expansion dynam-
ics would still be discernible in the presence of the well-known
background correlations which contribute and complicate the mea-
surement of CME-driven charge separation [14,18-22]. Thus, the
correlators used to characterize the CME, not only need to sup-
press background-driven charge-dependent correlations, such as
the ones from resonance decays, charge ordering in jets, etc., but
should also be sensitive to small charge separation signals in the
presence of these backgrounds. The latter requirement is espe-
cially important for ongoing measurements [at RHIC] designed to
detect the small signal difference between the Ru+Ru and Zr+Zr
isobars [23].

In this work we use the AMPT model [24] with varying
amounts of input charge separation AS, characterized by the par-
tonic dipole term aq, to study the detection sensitivity of the
Ay and the Rg,(AS) correlators. The model is known to give
a good representation of the experimentally measured particle
yields, spectra, flow, etc., [24-29]. Therefore, it provides a real-
istic estimate of both the magnitude and the properties of the
background-driven charge separation one might encounter in the
data sets collected at RHIC and the LHC.

For these sensitivity tests, we simulated Au+Au collisions at
A/SNN = 200 GeV with the new version of the AMPT model that
incorporates string melting and local charge conservation. There
are four primary ingredients for each of these collisions: (i) an
initial-state, (ii) a parton cascade phase, (iii) a hadronization phase
in which partons are converted to hadrons, and (iv) a hadronic
re-scattering phase prior to kinetic freeze-out. The initial-state
mainly simulates the spatial and momentum distributions of mini-
jet partons from QCD hard processes and soft string excitations as
encoded in the HIJING model [30,31]. The parton cascade takes
account of the strong interactions among partons through elas-
tic partonic collisions controlled by a parton interaction cross
section [32]. Hadronization, or the conversion from partonic to
hadronic matter, is simulated via a coalescence mechanism. Subse-
quent to hadronization, the ART model is used to simulate baryon-
baryon, baryon-meson and meson-meson interactions [33].

A formal mechanism for the CME is not implemented in AMPT.
However, modifications can be made to the model to mimic CME-
induced charge separation [34] by switching the p, values of a
fraction of the downward moving u (d) quarks with those of the
upward moving u (d) quarks to produce a net charge-dipole sep-
aration in the initial-state. Here, the x axis is along the direction
of the impact parameter b, the z axis points along the beam direc-
tion, and the y axis is perpendicular to the x and z directions, i.e.,
the direction of the proxy B-field. The strength of the proxy CME
signal is regulated by the fraction fp of the initial input charge
separation [34,35]:

T
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where N is the number of a given species of quarks, “+” and “—
denote positive and negative charges, respectively, and 1 and |
represent the directions along and opposite to that of the y axis.
Eq. (3) also shows that the fraction fy, is related to the P-odd
dipole term aq, defined in Eq. (2). Note that this initial partonic
charge separation ap, is different from the final hadrons’ charge

separation aq, often referred to in the literature and implemented
in other models. Cross-checks made with the Anomalous-Viscous
Fluid Dynamics model [36,37] suggests that the two are linearly
proportional to a very good approximation. Simulated events, gen-
erated for a broad set of fp values, were analyzed with both the
Ay and the Ry, (AS) correlators, to evaluate their respective sen-
sitivity as discussed below quantitatively.

The charge-dependent correlator, Ay [17], has been widely
used at RHIC [38-44] and the LHC [22,45] in ongoing attempts to
identify and quantify CME-driven charge separation:

Yap = (cos (¢a +dp — 2Wep)). Ay =yos — Vs,

where Wgp is the azimuthal angle of the event plane, ¢ denote
the particle azimuthal emission angles, «, 8 denote the electric
charge (4+) or (—) and SS and OS represent same-sign (++, ——)
and opposite-sign (+ —) charges. The question as to whether the
experimental measurements for Ay indicate the CME, remain in-
conclusive because of several known sources of background cor-
relations that can account for most, if not all, of the measure-
ments [14,18-21].

A recent embellishment to the Ay correlator is the proposal
to leverage the ratios of Ay and elliptic flow (v;) measurements,
obtained relative to the reaction plane (Wgp) and the participant
plane (Wpp)

_ Ay (Wre) L= v2(Wrp)
Ay (Wpp)’ V2 (Wpp)’

to simultaneously constrain the CME and background (Bkg) contri-
butions to Ay [46,47]:

(4)

r

Ay (Wpp) = Ayeme(Wrp) + AVeig (Wpp),
Ay (Wgrp) = Aycme(Wrp) + Ayrg(WRp), (5)

and

Ayeme(Wpp) =12 X AYeme(WRe),
Aygkg(WRrp) =12 X AYBig(Wpp), (6)

where it is assumed that the CME is proportional to the magnetic
field squared and the background (Bkg) is proportional to v,. The
fraction of the measured Ay (Wpp), attributable to the CME, can
then be estimated as [46];

foeme = Ayeme(Wpp) /Ay (Wpp) = f1/ fa,

where f1=r—1—1 and fzzlz—l. (7)
[y) r5

The underlying idea behind the constraints expressed in Egs. (4)
- (7) is that the v,-driven background is more strongly corre-
lated with Wpp [determined by the maximal particle density in the
elliptic azimuthal anisotropy and the beam axis], than with Wgp
[determined by the impact vector b and the beam direction]. By
contrast, the B-field, which drives the CME, behaves oppositely -
weaker correlation with Wpp and stronger correlation with Wgp.
We will employ this new method of leveraging the measurements
of r1 and r, to extract fcue from AMPT events as discussed below.

The operational details of the construction and the response of
the Ry, (AS) correlator is described in Refs. [48] and [49]. It is
constructed for each event plane ¥,,, as the ratio:

Ry, (AS) = Cy,, (AS)/Cy, (AS), m=2,3, (8)

where Cyg,,(AS) and C ém (AS) are correlation functions that quan-
tify charge separation AS, parallel and perpendicular (respectively)
to the B-field. Cy, (AS) measures both CME- and backgrond-driven
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Fig. 1. Comparison of the simulated v,(pr) obtained in 10-50% Au+Au collisions
(4/SNN = 200 GeV) with Wgp, Wsp and Wpp, see text.

charge separation while Céz(AS) measures only background-
driven charge separation. The absence of a strong correlation be-
tween the orientation of the W3 plane and the B-field, also renders
Cy;(AS) and C$3(AS) insensitive to a CME-driven charge separa-
tion, but not to the background, so it can give crucial additional
insight on the relative importance of background-driven and CME-
driven charge separation. However, they are not required for the
sensitivity studies presented in this work.

The correlation functions used to quantify charge separation
parallel to the B-field, are constructed from the ratio of two distri-
butions [50]:

Nreal(AS)
Nshuffted (AS)

where Npea(AS) is the distribution over events, of charge separa-
tion relative to the Wy, planes in each event:

Cy,, (AS) = m=2,3, 9)

AS =<s’;+>— <Sﬂ’>, (10)

p n

Yosin(FAgn) Y sin(3 Agm)
AS =1 - , (11)

D n

where n and p are the numbers of negatively- and positively
charged hadrons in an event, Ay = ¢ — ¥, and ¢ is the az-
imuthal emission angle of the charged hadrons. The Nshuffied (AS)
distribution is similarly obtained from the same events, follow-
ing random reassignment (shuffling) of the charge of each particle
in an event. This procedure ensures identical properties for the
numerator and the denominator in Eq. (9), except for the charge-
dependent correlations which are of interest. The correlation func-
tions C\Jl;m(AS). that quantify charge separation perpendicular to

the B-field, are constructed with the same procedure outlined for
Cy,, (AS), but with Wy replaced by ¥, + 7w /m, to ensure that
a possible CME-driven charge separation does not contribute to
cim(AS).

The magnitude of the CME-driven charge separation is reflected
in the width oy, of the concave-shaped distribution for Ry, (AS),
which is also influenced by particle number fluctuations and the
resolution of W,. That is, stronger CME-driven signals lead to nar-
rower concave-shaped distributions (smaller widths), which are
made broader by particle number fluctuations and poorer event-
plane resolutions. The influence of the particle number fluctua-
tions can be minimized by scaling AS by the width oy, of the
distribution for Ngpumed(AS) ie., AS' = AS/oag,. Similarly, the
effects of the event plane resolution can be accounted for by scal-
ing AS’ by the resolution factor 8ges, i.e., AS” = AS’ x 8ges, Where
SRes = Oes X e(179%¢)” and opes is the event plane resolution [48].
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Fig. 2. Comparison of the simulated Ay obtained in 10-50% Au+Au collisions
(/SNN = 200 GeV) with respect to Wrp, Wsp and Wep, for several input charge sep-
aration fractions characterized by the P-odd dipole coefficient a;.

AMPT Au+Au200GeV. " " £, g |
[ 10-50% f, o |
1r fomg e 7]
0.5 [® O] [CINC} % i
o A =
-~
0 ﬁ
[ |1
o &
05 [¥ ]
L L L " " L " Il L
0 1 2 3 4 5
a;%

Fig. 3. The dependence of fi, f and fcve on different input charge separation
characterized by the dipole coefficient aq, see Eqgs. (3) and (7). Results are shown
for 10-50% central Au+Au (,/SNn = 200 GeV) AMPT events.

The empirical exponential factor is obtained from extensive data-
driven studies involving both experimental and simulated data.

The 10-50% central AMPT events, generated for several input
values of charge separation fq (cf. Eq. (3)), relative to the reaction-
Wrp, spectator- Wsp and the participant plane Wpp, were analyzed
to extract fome via the Ay correlator and oy, via the Ry, (AS)
correlator. Approximately 10° events were generated for each value
of fo. The analyses included charged particles with |n| < 1.0 and
transverse momentum 0.2 < pt < 2 GeV/c. To enhance the statis-
tical significance of the measurements, the participant plane Wpp
was determined with charged hadrons in the range 2.5 < n < 4.0.
The charge separation of charged hadrons in || < 1.0 were then
measured relative to Wpp. Representative results are summarized
in Figs. 1 - 4.

Fig. 1 compares the v, (pr) obtained with Wgp, Wsp and Wpp for
10-50% Au+Au collisions. It shows the expected similarity between
the results for Wgp and Wsp, as well as larger values for Wpp that
confirm the enhanced fluctuations associated with the participant
geometry and consequently, the initial-state eccentricity &;. This
difference is essential for the procedure outlined in Egs. (4) - (7).

A similar comparison of the Ay results for the three planes
is given in Fig. 2. It shows that for a; < 3%, the Ay values ob-
tained with Wpp are larger than those obtained with Wgp and Wsp;
there is also little, if any, difference between the values obtained
with Wgp and Wsp over the full range of the input a; values. This
latter trend is to be expected since the fluctuation of Wsp about
Wgp is small. For a; 2 4%, the Ay values for Wgp and Wsp become
larger than the ones for Wpp (not shown in Fig. 2), consistent with
a stronger influence from the proxy CME-driven charge separation.
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Fig. 4. Comparison of the Ry, (AS) correlators obtained with respect to Wgp, Wsp and Wpp for several a; values, as indicated, for 10-50% Au+Au collisions at ./s\y = 200
GeV (a) - (e). Panel (f) shows the a; dependence of the inverse widths GR_W]z' extracted from the Ry, (AS) distributions; the dotted line represents a linear fit.

The extracted values of v, and Ay, with respect to Wpp and
Wsp were used to evaluate fq, f» and fcme following the pro-
cedure outlined in Egs. (4) - (7) [46]. Fig. 3 summarizes the a;
dependence of fi, f, and fcme. It indicates a flat f,, consistent
with the expectation that the v, fluctuations should be relatively
insensitive to the introduction of small a; signals. By contrast, f;
and fcme, which are both negative for a; < 2.5%, show an increase
with a; and become positive for a; = 2.5%. The negative values ob-
served for feoue suggests that for a; < 2.5%, the correlator is either
(i) unable to make the robust distinction between signal and back-
ground required to measure the input proxy CME-signal or (ii) the
assumptions used to estimate fcyg are invalid. Note that femg is
only 0.6 even for a relatively large input signal of a; = 4.0%.

The change from negative to positive values for fcye (cf. Fig. 3)
suggests a “turn-on” a; value, below which, the modified Ay cor-
relator (cf. Egs. (4) - (7)) is unable to detect a CME-driven signal.
This detection threshold could pose a significant limitation for CME
detection and characterization with this correlator, because it is
comparable to, or larger than the magnitude of the CME-driven
charge separation expected in actual experiments. Equally impor-
tant is the fact that feue < 0.0 does not give a robust indication
of the absence of a CME signal. The latter could have important
implications for the interpretation of current and future fcye mea-
surements.

The sensitivity of the Ry, (AS) (XX =RP, SP, PP) correlator to
varying degrees of input CME-driven charge separation (character-
ized by a;) was studied using the same AMPT events employed in
the leveraged Ay study. Figs. 4(a) - (e) show the Ry,, (AS) corre-
lator distributions obtained for 10 — 50% central Aut+Au collisions,
relative to Wgp, Wsp and Wpp for several values of a; as indicated.
In each of these plots, AS is scaled to account for the effects of
number fluctuations and event plane resolution as outlined earlier
and in Ref. [48].

The concave-shaped distribution, apparent in each panel of
Fig. 4 (b) - (e), confirms the input charge separation signal in
each case; note the weakly convex-shaped distribution for a; =0
in Fig. 4 (a). Note as well that in contrast to the Ay correlator,
the Ry, (AS) distributions are independent of the plane used to
measure them, suggesting that they are less sensitive to the vy
driven background and their associated fluctuations. The apparent
decrease in the widths of these distributions with aq, also confirms
the expected trend.

To quantify the implied signal strengths, we extracted the width
ORy, of the Ry, (AS) distributions obtained for the respective val-

ues of ay. Fig. 4(f) shows the inverse widths aR’q}Z vs. ai. They in-

dicate an essentially linear dependence on a; (note the dotted line
fit). Here, it is noteworthy that for a; < 0.5%, significant additional
statistics are required to determine ORy, with good accuracy. These
results suggests that the Ryg,, (AS) correlator not only suppresses
background, but is sensitive to very small CME-driven charge sep-
aration in the presence of such backgrounds.*

In summary, we have used both the Rg,(AS) correlator and
an event-plane-leveraged version of the Ay correlator to ana-
lyze AMPT events with varying degrees of input proxy CME sig-
nals. Our sensitivity study indicates a turn-on threshold for feyme =
Aycme/ Ay, which renders the leveraged Ay -correlator insensitive
to input signals with a; < 2.5%. The magnitude of this detection
threshold, which is comparable to that for the purported signal in
heavy ion collisions and less than the signal difference for isobaric
collisions, could pose significant restrictions on its use to detect
the CME. By contrast, the a;-dependent Ry, (AS) correlators indi-
cate inverse widths Oy, 12 that are linearly dependent on aq, and

independent of the character of the event plane (Wgp, Wsp or Wpp)
used for their extraction. These results not only have implications
for the interpretation of current and future fove = AyYcme/AY
measurements; they further indicate that the Ry, (AS) correlator
can provide robust quantification of minimal CME-driven charge
separation in the presence of realistic backgrounds, that could aid
characterization of the CME in RHIC and LHC collisions.
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