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A Multi-Phase Transport (AMPT) model is used to study the detection sensitivity of two of the primary 
correlators – �γ and R�2 – employed to characterize charge separation induced by the Chiral Magnetic 
Effect (CME). The study, performed relative to several event planes for different input “CME signals”, 
indicates a detection threshold for the fraction fCME = �γCME/�γ , which renders the �γ -correlator 
insensitive to values of the Fourier dipole coefficient a1 � 2.5%, that is larger than the purported signal 
(signal difference) for ion-ion(isobaric) collisions. By contrast, the R�2 correlator indicates concave-
shaped distributions with inverse widths (σ−1

R�2
) that are linearly proportional to a1, and independent of 

the character of the event plane used for their extraction. The sensitivity of the R�2 correlator to minimal 
CME-driven charge separation in the presence of realistic backgrounds, could aid better characterization 
of the CME in heavy-ion collisions.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Ion-Ion collisions at both the Relativistic Heavy Ion Collider 
(RHIC) and the Large Hadron Collider (LHC) create hot expand-
ing fireballs of quark-gluon plasma (QGP) in the background of 
a strong magnetic field [1–3]. Topologically nontrivial sphaleron 
transitions [via the axial anomaly] [4–6] can induce different den-
sities of right- and left-handed quarks in the plasma fireballs, 
resulting in a quark electric current along the �B-field. This phe-
nomenon of the generation of a quark electric current (�J Q ) in the 
presence of a magnetic field is termed the chiral magnetic effect 
(CME) [7,8]:

�J Q = Ncμ5
Q 2

2π2
�B, (1)

where, Nc is the color factor, μ5 is the chiral chemical potential 
that quantifies the axial charge asymmetry or imbalance between 
right- and left-handed quarks in the plasma, and Q is the electric 
charge [8–11].
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Full characterization of the CME, which manifests experimen-
tally as the separation of electrical charges along the �B-field [7,8], 
can give fundamental insight on anomalous transport and the in-
terplay of chiral symmetry restoration, axial anomaly and gluon 
topology in the QGP [12–16].

Charge separation stems from the fact that the CME prefer-
entially drives charged particles, originating from the same “P-
odd domain”, along or opposite to the �B-field depending on their 
charge. This separation can be quantified via measurements of 
the first P -odd sine term a1, in the Fourier decomposition of the 
charged-particle azimuthal distribution [17]:

dNch

dφ
∝ 1 + 2

∑
n

(vn cos(n�φ) + an sin(n�φ) + ...) (2)

where �φ = φ − �RP gives the particle azimuthal angle with re-
spect to the reaction plane (RP) angle, and vn and an denote the 
coefficients of P -even and P -odd Fourier terms, respectively. A di-
rect measurement of the P-odd coefficients an , is not possible due 
to the strict global P and CP symmetry of QCD. However, their 
fluctuation and/or variance ãn = 〈

a2
n

〉1/2
can be measured with suit-

able correlators.
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The CME-driven charge separation is small because only a few 
particles from the same P -odd domain are correlated. Moreover, 
both the initial axial charge and the time evolution of the magnetic 
field (cf. Eq. (1)) are unconstrained theoretically, and it is uncer-
tain whether an initial CME-driven charge separation could survive 
the signal-reducing effects of the reaction dynamics, and still pro-
duce a signal above the detection threshold. Besides, it is uncertain 
whether a charge separation that survives the expansion dynam-
ics would still be discernible in the presence of the well-known 
background correlations which contribute and complicate the mea-
surement of CME-driven charge separation [14,18–22]. Thus, the 
correlators used to characterize the CME, not only need to sup-
press background-driven charge-dependent correlations, such as 
the ones from resonance decays, charge ordering in jets, etc., but 
should also be sensitive to small charge separation signals in the 
presence of these backgrounds. The latter requirement is espe-
cially important for ongoing measurements [at RHIC] designed to 
detect the small signal difference between the Ru+Ru and Zr+Zr 
isobars [23].

In this work we use the AMPT model [24] with varying 
amounts of input charge separation �S , characterized by the par-
tonic dipole term a1, to study the detection sensitivity of the 
�γ and the R�2 (�S) correlators. The model is known to give 
a good representation of the experimentally measured particle 
yields, spectra, flow, etc., [24–29]. Therefore, it provides a real-
istic estimate of both the magnitude and the properties of the 
background-driven charge separation one might encounter in the 
data sets collected at RHIC and the LHC.

For these sensitivity tests, we simulated Au+Au collisions at √
sNN = 200 GeV with the new version of the AMPT model that 

incorporates string melting and local charge conservation. There 
are four primary ingredients for each of these collisions: (i) an 
initial-state, (ii) a parton cascade phase, (iii) a hadronization phase 
in which partons are converted to hadrons, and (iv) a hadronic 
re-scattering phase prior to kinetic freeze-out. The initial-state 
mainly simulates the spatial and momentum distributions of mini-
jet partons from QCD hard processes and soft string excitations as 
encoded in the HIJING model [30,31]. The parton cascade takes 
account of the strong interactions among partons through elas-
tic partonic collisions controlled by a parton interaction cross 
section [32]. Hadronization, or the conversion from partonic to 
hadronic matter, is simulated via a coalescence mechanism. Subse-
quent to hadronization, the ART model is used to simulate baryon-
baryon, baryon-meson and meson-meson interactions [33].

A formal mechanism for the CME is not implemented in AMPT. 
However, modifications can be made to the model to mimic CME-
induced charge separation [34] by switching the p y values of a 
fraction of the downward moving u (d̄) quarks with those of the 
upward moving ū (d) quarks to produce a net charge-dipole sep-
aration in the initial-state. Here, the x axis is along the direction 
of the impact parameter b, the z axis points along the beam direc-
tion, and the y axis is perpendicular to the x and z directions, i.e., 
the direction of the proxy �B-field. The strength of the proxy CME 
signal is regulated by the fraction f0 of the initial input charge 
separation [34,35]:

f0 = N+(−)
↑(↓)

− N+(−)
↓(↑)

N+(−)
↑(↓) + N+(−)

↓(↑)

, f0 = 4

π
a1 (3)

where N is the number of a given species of quarks, “+” and “−” 
denote positive and negative charges, respectively, and ↑ and ↓
represent the directions along and opposite to that of the y axis. 
Eq. (3) also shows that the fraction f0, is related to the P -odd 
dipole term a1, defined in Eq. (2). Note that this initial partonic 
charge separation a1, is different from the final hadrons’ charge 
separation a1, often referred to in the literature and implemented 
in other models. Cross-checks made with the Anomalous-Viscous 
Fluid Dynamics model [36,37] suggests that the two are linearly 
proportional to a very good approximation. Simulated events, gen-
erated for a broad set of f0 values, were analyzed with both the 
�γ and the R�2 (�S) correlators, to evaluate their respective sen-
sitivity as discussed below quantitatively.

The charge-dependent correlator, �γ [17], has been widely 
used at RHIC [38–44] and the LHC [22,45] in ongoing attempts to 
identify and quantify CME-driven charge separation:

γαβ = 〈
cos

(
φα + φβ − 2�EP

)〉
, �γ = γOS − γSS,

where �EP is the azimuthal angle of the event plane, φ denote 
the particle azimuthal emission angles, α, β denote the electric 
charge (+) or (−) and SS and OS represent same-sign (++, −−) 
and opposite-sign (+ −) charges. The question as to whether the 
experimental measurements for �γ indicate the CME, remain in-
conclusive because of several known sources of background cor-
relations that can account for most, if not all, of the measure-
ments [14,18–21].

A recent embellishment to the �γ correlator is the proposal 
to leverage the ratios of �γ and elliptic flow (v2) measurements, 
obtained relative to the reaction plane (�RP) and the participant 
plane (�PP)

r1 = �γ (�RP)

�γ (�PP)
, r2 = v2(�RP)

v2(�PP)
, (4)

to simultaneously constrain the CME and background (Bkg) contri-
butions to �γ [46,47]:

�γ (�PP) = �γCME(�PP) + �γBkg(�PP),

�γ (�RP) = �γCME(�RP) + �γBkg(�RP), (5)

and

�γCME(�PP) = r2 × �γCME(�RP),

�γBkg(�RP) = r2 × �γBkg(�PP), (6)

where it is assumed that the CME is proportional to the magnetic 
field squared and the background (Bkg) is proportional to v2. The 
fraction of the measured �γ (�PP), attributable to the CME, can 
then be estimated as [46];

fCME = �γCME(�PP)/�γ (�PP) = f1/ f2,

where f1 = r1

r2
− 1 and f2 = 1

r2
2

− 1. (7)

The underlying idea behind the constraints expressed in Eqs. (4)
– (7) is that the v2-driven background is more strongly corre-
lated with �PP [determined by the maximal particle density in the 
elliptic azimuthal anisotropy and the beam axis], than with �RP
[determined by the impact vector �b and the beam direction]. By 
contrast, the �B-field, which drives the CME, behaves oppositely – 
weaker correlation with �PP and stronger correlation with �RP. 
We will employ this new method of leveraging the measurements 
of r1 and r2 to extract fCME from AMPT events as discussed below.

The operational details of the construction and the response of 
the R�m (�S) correlator is described in Refs. [48] and [49]. It is 
constructed for each event plane �m , as the ratio:

R�m (�S) = C�m (�S)/C⊥
�m

(�S), m = 2,3, (8)

where C�m (�S) and C⊥
�m

(�S) are correlation functions that quan-
tify charge separation �S , parallel and perpendicular (respectively) 
to the �B-field. C�2 (�S) measures both CME- and backgrond-driven 
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Fig. 1. Comparison of the simulated v2(pT ) obtained in 10–50% Au+Au collisions 
(
√

sNN = 200 GeV) with �RP, �SP and �PP, see text.

charge separation while C⊥
�2

(�S) measures only background-
driven charge separation. The absence of a strong correlation be-
tween the orientation of the �3 plane and the �B-field, also renders 
C�3 (�S) and C⊥

�3
(�S) insensitive to a CME-driven charge separa-

tion, but not to the background, so it can give crucial additional 
insight on the relative importance of background-driven and CME-
driven charge separation. However, they are not required for the 
sensitivity studies presented in this work.

The correlation functions used to quantify charge separation 
parallel to the �B-field, are constructed from the ratio of two distri-
butions [50]:

C�m (�S) = Nreal(�S)

NShuffled(�S)
, m = 2,3, (9)

where Nreal(�S) is the distribution over events, of charge separa-
tion relative to the �m planes in each event:

�S =
〈
Sh+

p

〉
−

〈
Sh−

n

〉
, (10)

�S =

p∑
1

sin(m
2 �ϕm)

p
−

n∑
1

sin(m
2 �ϕm)

n
, (11)

where n and p are the numbers of negatively- and positively 
charged hadrons in an event, �ϕm = φ − �m and φ is the az-
imuthal emission angle of the charged hadrons. The NShuffled(�S)

distribution is similarly obtained from the same events, follow-
ing random reassignment (shuffling) of the charge of each particle 
in an event. This procedure ensures identical properties for the 
numerator and the denominator in Eq. (9), except for the charge-
dependent correlations which are of interest. The correlation func-
tions C⊥

�m
(�S), that quantify charge separation perpendicular to 

the �B-field, are constructed with the same procedure outlined for 
C�m (�S), but with �m replaced by �m + π/m, to ensure that 
a possible CME-driven charge separation does not contribute to 
C⊥

�m
(�S).

The magnitude of the CME-driven charge separation is reflected 
in the width σ�2 of the concave-shaped distribution for R�2 (�S), 
which is also influenced by particle number fluctuations and the 
resolution of �2. That is, stronger CME-driven signals lead to nar-
rower concave-shaped distributions (smaller widths), which are 
made broader by particle number fluctuations and poorer event-
plane resolutions. The influence of the particle number fluctua-
tions can be minimized by scaling �S by the width σ�Sh of the 
distribution for Nshuffled(�S) i.e., �S ′ = �S/σ�Sh . Similarly, the 
effects of the event plane resolution can be accounted for by scal-
ing �S ′ by the resolution factor δRes, i.e., �S ′′ = �S ′ × δRes , where 
δRes = σRes × e(1−σRes)

2
and σRes is the event plane resolution [48]. 
Fig. 2. Comparison of the simulated �γ obtained in 10–50% Au+Au collisions 
(
√

sNN = 200 GeV) with respect to �RP, �SP and �PP, for several input charge sep-
aration fractions characterized by the P -odd dipole coefficient a1.

Fig. 3. The dependence of f1, f2 and fCME on different input charge separation 
characterized by the dipole coefficient a1, see Eqs. (3) and (7). Results are shown 
for 10–50% central Au+Au (√sNN = 200 GeV) AMPT events.

The empirical exponential factor is obtained from extensive data-
driven studies involving both experimental and simulated data.

The 10–50% central AMPT events, generated for several input 
values of charge separation f0 (cf. Eq. (3)), relative to the reaction-
�RP, spectator- �SP and the participant plane �PP, were analyzed 
to extract fCME via the �γ correlator and σ�2 via the R�2 (�S)

correlator. Approximately 106 events were generated for each value 
of f0. The analyses included charged particles with |η| < 1.0 and 
transverse momentum 0.2 < pT < 2 GeV/c. To enhance the statis-
tical significance of the measurements, the participant plane �PP
was determined with charged hadrons in the range 2.5 < η < 4.0. 
The charge separation of charged hadrons in |η| < 1.0 were then 
measured relative to �PP. Representative results are summarized 
in Figs. 1 – 4.

Fig. 1 compares the v2(pT ) obtained with �RP, �SP and �PP for 
10–50% Au+Au collisions. It shows the expected similarity between 
the results for �RP and �SP, as well as larger values for �PP that 
confirm the enhanced fluctuations associated with the participant 
geometry and consequently, the initial-state eccentricity ε2. This 
difference is essential for the procedure outlined in Eqs. (4) – (7).

A similar comparison of the �γ results for the three planes 
is given in Fig. 2. It shows that for a1 � 3%, the �γ values ob-
tained with �PP are larger than those obtained with �RP and �SP; 
there is also little, if any, difference between the values obtained 
with �RP and �SP over the full range of the input a1 values. This 
latter trend is to be expected since the fluctuation of �SP about 
�RP is small. For a1 � 4%, the �γ values for �RP and �SP become 
larger than the ones for �PP (not shown in Fig. 2), consistent with 
a stronger influence from the proxy CME-driven charge separation.
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Fig. 4. Comparison of the R�2 (�S) correlators obtained with respect to �RP, �SP and �PP for several a1 values, as indicated, for 10–50% Au+Au collisions at √sNN = 200
GeV (a) – (e). Panel (f) shows the a1 dependence of the inverse widths σ−1

R�2
, extracted from the R�2 (�S) distributions; the dotted line represents a linear fit.
The extracted values of v2 and �γ , with respect to �PP and 
�SP were used to evaluate f1, f2 and fCME following the pro-
cedure outlined in Eqs. (4) – (7) [46]. Fig. 3 summarizes the a1

dependence of f1, f2 and fCME. It indicates a flat f2, consistent 
with the expectation that the v2 fluctuations should be relatively 
insensitive to the introduction of small a1 signals. By contrast, f1

and fCME, which are both negative for a1 � 2.5%, show an increase 
with a1 and become positive for a1 � 2.5%. The negative values ob-
served for fCME suggests that for a1 � 2.5%, the correlator is either 
(i) unable to make the robust distinction between signal and back-
ground required to measure the input proxy CME-signal or (ii) the 
assumptions used to estimate fCME are invalid. Note that fCME is 
only 0.6 even for a relatively large input signal of a1 = 4.0%.

The change from negative to positive values for fCME (cf. Fig. 3) 
suggests a “turn-on” a1 value, below which, the modified �γ cor-
relator (cf. Eqs. (4) – (7)) is unable to detect a CME-driven signal. 
This detection threshold could pose a significant limitation for CME 
detection and characterization with this correlator, because it is 
comparable to, or larger than the magnitude of the CME-driven 
charge separation expected in actual experiments. Equally impor-
tant is the fact that fCME ≤ 0.0 does not give a robust indication 
of the absence of a CME signal. The latter could have important 
implications for the interpretation of current and future fCME mea-
surements.

The sensitivity of the R�XX (�S) (XX = RP,SP,PP) correlator to 
varying degrees of input CME-driven charge separation (character-
ized by a1) was studied using the same AMPT events employed in 
the leveraged �γ study. Figs. 4(a) – (e) show the R�XX (�S) corre-
lator distributions obtained for 10 − 50% central Au+Au collisions, 
relative to �RP, �SP and �PP for several values of a1 as indicated. 
In each of these plots, �S is scaled to account for the effects of 
number fluctuations and event plane resolution as outlined earlier 
and in Ref. [48].

The concave-shaped distribution, apparent in each panel of 
Fig. 4 (b) – (e), confirms the input charge separation signal in 
each case; note the weakly convex-shaped distribution for a1 = 0
in Fig. 4 (a). Note as well that in contrast to the �γ correlator, 
the R�XX (�S) distributions are independent of the plane used to 
measure them, suggesting that they are less sensitive to the v2

driven background and their associated fluctuations. The apparent 
decrease in the widths of these distributions with a1, also confirms
the expected trend.
To quantify the implied signal strengths, we extracted the width 
σR�2

of the R�2 (�S) distributions obtained for the respective val-

ues of a1. Fig. 4(f) shows the inverse widths σ−1
R�2

vs. a1. They in-

dicate an essentially linear dependence on a1 (note the dotted line 
fit). Here, it is noteworthy that for a1 � 0.5%, significant additional 
statistics are required to determine σR�2

with good accuracy. These 
results suggests that the R�m (�S) correlator not only suppresses 
background, but is sensitive to very small CME-driven charge sep-
aration in the presence of such backgrounds.‘

In summary, we have used both the R�2 (�S) correlator and 
an event-plane-leveraged version of the �γ correlator to ana-
lyze AMPT events with varying degrees of input proxy CME sig-
nals. Our sensitivity study indicates a turn-on threshold for fCME =
�γCME/�γ , which renders the leveraged �γ -correlator insensitive 
to input signals with a1 � 2.5%. The magnitude of this detection 
threshold, which is comparable to that for the purported signal in 
heavy ion collisions and less than the signal difference for isobaric 
collisions, could pose significant restrictions on its use to detect 
the CME. By contrast, the a1-dependent R�2 (�S) correlators indi-
cate inverse widths σ−1

R�2
, that are linearly dependent on a1, and 

independent of the character of the event plane (�RP, �SP or �PP) 
used for their extraction. These results not only have implications 
for the interpretation of current and future fCME = �γCME/�γ
measurements; they further indicate that the R�2 (�S) correlator 
can provide robust quantification of minimal CME-driven charge 
separation in the presence of realistic backgrounds, that could aid 
characterization of the CME in RHIC and LHC collisions.
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