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Abstract We review recent attempts to address the cosmological constant prob-
lem and the late-time acceleration of the Universe based on braneworld models.
In braneworld models, the way in which the vacuum energy gravitates in the 4D
spacetime is radically different from conventional 4D physics. It is possible that
the vacuum energy on a brane does not curve the 4D spacetime and only affects the
geometry of the extra-dimensions, offering a solution to the cosmological constant
problem. We review the idea of supersymmetric large extra dimensions that could
achieve this and also provide a natural candidate for a quintessence field. We also
review the attempts to explain the late-time accelerated expansion of the universe
from the large-distance modification of gravity based on the braneworld. We use
the Dvali–Gabadadze–Porrati model to demonstrate how one can distinguish this
model from dark energy models in 4D general relativity. Theoretical difficulties in
this approach are also addressed.

1 Introduction

The cosmological constant problem is a long-standing problem in physics [1]. Par-
ticle physics predicts the existence of the vacuum energy density which is related
to the fundamental scale of the theory, like the electroweak scale, ρvac ∼ (TeV)4.
This is typically more than 50 orders of magnitude larger than the observed value,
ρΛ ∼ (10−3 eV)4. Before the discovery of the accelerated expansion of the Uni-
verse, physicists tried to answer this question by seeking a theory that predicts the
cosmological constant should be zero. However, the discovery of the accelerated
expansion of the Universe makes this answer insufficient [2; 3; 4]. Now, we should
explain why it is non-zero and yet it is so small. Moreover, there is a coincidence
problem. The cosmological constant dominates the energy density of the Universe
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only recently. If the cosmological constant is really a constant, we should explain
why now, does it become dominant.

One direction to answer these questions is to appeal to the anthropic principle
[1]. If the cosmological constant is too large, the accelerated expansion started
too early and it prevents structure from growing and we cannot exist. On the other
hand, a universe with negative comsological constant re-collapses. Then observers
will only exist within a tiny anthropic range of cosmological constant (see for ex-
ample [5]). This idea is strengthened by the discovery in string theory that there
are millions of low-energy vacua in the theory (the string theory landscape) [6].
It is argued that we might need the anthropic principle to select the low-energy
vacuum. However, many theorists still hope to explain the problem without invok-
ing the existence of ourselves in the Universe. Although significant efforts have
been devoted to this attempt, we still have not succeeded yet to provide convincing
models. However, the rapid progress of string theory has provided a new perspec-
tive for solving this problem. In this review, we focus on the attempts of using
higher-dimensional gravity and branes to address the problem.

String theory is formulated in a 10D spacetime. On the other hand, our ob-
served Universe is a 4D spacetime. Thus there should be a mechanism to hide the
extra dimensions. The conventional idea is to compactify the extra dimensions by
the Kaluza–Klein (KK) mechanism. The size of the extra dimensions L should
be small, L < TeV−1, in order not to spoil the success of the standard model of
particle physics that is formulated in a 4D spacetime. Below the energy scale de-
termined by the size of the extra dimensions, L−1, the universe looks completely
4D if the radius of the extra dimensions is stabilized. Recently, a completely new
way of hiding the extra dimensions has been proposed. This is the brane world
mechanism where matter fields are confined to a 4D membrane in a higher di-
mensional spacetime (see [7] for a review). Only gravity and non-standard model
particles can propagate into the whole higher-dimensional bulk spacetime. In this
picture, the size of the extra dimensions can be much larger than that in the con-
ventional KK compactification. In fact, the size of the extra dimensions could even
be infinite. If the bulk is a spacetime with a negative cosmological constant, that
is, an Anti-de Sitter (AdS) spacetime, it is shown that gravity behaves like 4D on
scales larger than the AdS curvature length, even if the size of the extra dimensions
is infinite [8]. Another way is to introduce induced gravity on a brane [9] (see [10]
for an early attempt). If we assume there is an Einstein-Hilbert term on a brane,
4D gravity is recovered, in this case, on small scales even if the bulk is an infinite
Minkowski spacetime. In these braneworld models, the behaviour of gravity can
be dramatically different from the 4D theory, providing a new perspective to solve
the cosmological constant and the dark energy problem.

This article will review several approaches to address the cosmological con-
stant and the late-time acceleration problem based on braneworld gravity. Firstly,
we explain the attempts to address the “old” cosmological constant problem—why
the vacuum energy is incredibly small compared with the prediction of particle
physics. These attempts exploit the modification of 4D gravity in the braneworld
and change the way in which the vacuum energy gravitates in a 4D spacetime.
Secondly, we introduce an idea to explain the late-time acceleration without in-
troducing the cosmological constant. This idea also relies on the modification of
gravity on large scales based on the braneworld idea.
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In Sect. 2, we give a brief introduction to braneworlds. In Sect. 3, the attempts
to solve the old cosmological constant problem are discussed. In Sect. 4, the idea
to realize late-time acceleration without introducing a cosmological constant is
explained. Section 5 is devoted to conclusions.

2 Braneworld models

The idea that ordinary matter fields are confined to a lower-dimensional domain
wall was proposed in the 1980’s [11; 12]. It was shown that fermion fields can
be confined to a field theoretic domain wall. The progress in string theory, espe-
cially the discovery of D-branes, has revived these attempts [13]. The D-brane is
defined by a membrane on which end-points of open strings lie. At the end-points
of open strings, gauge fields can be attached. Then gauge fields are confined to the
D-brane. On the other hand, closed strings that contain the graviton can propagate
into the whole bulk. Then there arises a braneworld picture where usual matter
fields are confined to a brane while gravity propagates into the whole bulk space-
time. A schematic picture of the braneworld is shown in Fig. 1. Based on this idea,
several simplified braneworld models have been proposed that capture the basic
features of the braneworld, yet in which we can address many important problems
from a new perspective.

2.1 Arkani–Hamed-Dimopoulos–Dvali model

An interesting possibility in braneworld models is that some of the extra dimen-
sions can be large [14; 15; 16]. In a conventional picture, extra dimensions are
rolled up small so that we never observe them. More precisely, in order not to spoil
the success of the standard model of particle physics that is formulated in a 4D
spacetime, the size of the extra dimensions should be smaller than TeV−1 ∼ 10−19

m. However, in the braneworld, the standard model particles are confined to the
4D brane. Thus we do not need to worry about this constraint. The gravitational
interactions are very weak and the 4D behaviour of the Newtonian force is only
verified down to 44µm [17]. Thus the size of the extra-dimensions is allowed to
be as large as 44µm (Fig. 2).

This opens up a new perspective to solve another serious problem in parti-
cle physics, namely the hierarchy problem: why the gravitational interaction is so
weak compared with the other interactions. The answer could be that the gravita-
tional field of an object on a brane leaks out into the large extra-dimensions and
this leakage weakens the gravitational interactions on a brane. The gravitational

Fig. 1 A schematic picture of the braneworld. From [7]

Fig. 2 Constraints on Yukawa violations of the gravitational 1/r potential, V (r) ∝ (1/r)(1 +
α exp(−r/λ )). The shaded region is excluded at the 95% confidence level. From [17]
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potential generated by an object with mass M is given by

Ψ(r) = −G4M
r2 (r > L), (1)

Ψ(r) = −GDM
rD−2 (r < L), (2)

where L is the size of the (D− 4) dimensional extra-dimensions. Then the 4D
gravitational constant is given in terms of the higher-dimensional gravitational
constant as
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G4 =
GD

LD−4 , M4 = M(D−2)/2
D L(D−4)/2, (3)

where 8πGD = M−(D−2)
D . Then even if the fundamental scale of gravity MD is

TeV, the 4D gravitational constant can be 1019 GeV as long as L is appropriately
large. For example, for D = 6, the current constraint on the deviation from the
gravitational inverse-square law L < 44µm implies M6 > 3.2 TeV.

2.2 Randall–Sundrum model

The most difficult problem in the braneworld in terms of gravity is the inclusion
of the self-gravity of the branes. In the ADD model, the self-gravity of the branes
is implicitly neglected. The model proposed by Randall and Sundrum (RS) offers
a consistent framework to deal with higher-dimensional gravity including the self-
gravity of the branes [8]. They consider a 5D spacetime described by the action

S =
1

2κ2
5

∫
d5x
√
−g((5)R−2Λ)−σ

∫
d4x
√
−γ +

∫
d4xLm, (4)

where κ2
5 = 8πG5 and Lm represents the matter lagrangian confined to a brane.

The introduction of the singular objects enforces the junction condition (Israel
junction condition) at the location of the brane. The junction condition relates
the extrinsic curvature at the brane to the energy momentum tensor localized on
a brane. By solving the 5D bulk spacetime and imposing the junction condition
at the brane, the solution for the gravitational field on the brane is obtained. The
simplest solution is a solution with a Minkowski brane. The 5D metric is given by

ds2 = dy2 + exp(−2|y|/`)ηµν dxµ dxν . (5)

A brane is located at y = 0 and the reflection symmetry (Z2 symmetry) across the
brane is imposed. The exponential “warp factor” is an essential ingredient of the
model. Even if the physical size of the fifth dimension is infinite, low-momentum
gravity is confined near the brane due to the curvature of the bulk spacetime and
4D gravity is recovered. It is shown that the solutions for weak gravity at large
distances r � ` are given by [18]

ds2 = −(1+2Ψ)dt2 +(1+Φ)δi jdxidx j, (6)

Ψ =
2G4M

r

(
1+

2`2

3r2

)
, Φ =

2G4M
r

(
1+

`2

3r2

)
, (7)

where κ2
4 = 8πG4 and is determined by

G4 = G5`. (8)

Comparing this with Eq. (3), we notice that ` acts as the effective size of the extra
dimension. Thus the RS model provides an “alternative to compactification”.

Despite the remarkably simple setup of the model, gravity in this model is
incredibly complicated. Fortunately, for a homogeneous and isotropic brane, the
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generalized Birkoff theorem ensures that the bulk spacetime is AdS spacetime or
AdS-Schwarzchild spacetime. Then the Friedmann equation on the brane is easily
derived as [19; 20; 21]

H2 =
Λ4

3
+

κ2
4

3
ρ +

κ4
5

36
ρ

2 +
C
a4 , (9)

where

Λ4 =
Λ5

2
+

κ4
5 σ2

12
, κ

2
4 =

κ2
5 σ

6
. (10)

The constant C is proportional to the black hole mass in the bulk. In accord with
weak gravity, cosmology also shows the transition from 4D to 5D. At high ener-
gies H` > 1 where the horizon size H−1 is smaller than the effective size of the
extra-dimension `, the Friedmann equation is significantly modified and H ∝ ρ .
At low energies H` < 1, we recover the 4D Friedmann equation.

3 Cosmological constant problem in the braneworld

3.1 Self-tuning 5D braneworld

The relation between the vacuum energy and the effective cosmological constant
on a brane is different from that in the usual 4D theory. In the RS braneworld,
the vacuum energy in the brane σ is not directly related to the cosmological con-
stant Λ4 on the brane in the effective Einstein equation as in Eq. (10). In the RS
braneworld, there should be a cancellation between the 4D and 5D contribution
of the vacuum energy in order to have a vanishing cosmological constant on the
brane. This requires a fine-tuning for the parameters in the action. Instead of hav-
ing the cosmological constant in the bulk and tension on the brane, let us consider
a scalar field with potentials [22; 23]. The action is given by

S =
1

2κ2
5

∫
d5x
√
−g
(

R− 4
3
(∂µ φ)2−V (φ)

)
−
∫

d4x
√
−γ f (φ). (11)

The potentials can be taken as

V (φ) = Λ0 exp(aφ), f (φ) = V0 exp(bφ). (12)

with this choice, the action describes a family of theories parametrized by V0,Λ0,a
and b. For simplicity, we take Λ0 = 0. We look for a solution with a Minkowski
spacetime on a brane. The 5D metric is given by

ds2 = dy2 + e2A(y)
ηµν dxν dxµ . (13)

The 5D Einstein equation gives the relation between the warp factor A(y) and the
scalar field φ(y)

φ
′(y) =±1

3
A′(y). (14)
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The solution for φ in the bulk is then obtained as

φ(y) =
3
4

log
(

4
3

M5y+ c1

)
+d1, y < 0, (15)

φ(y) = −3
4

log
(

4
3

M5y+ c2

)
+d2, y > 0, (16)

where c1,c2,d1 and d2 are integration constants. The continuity of φ determines
d2. Then the junction conditions for the scalar field and the warp factor determine
c1 and c2 in terms of b,V0 and d1 if b 6=±4/3. This means that for a scalar coupling
given by b, there is a Minkowski solution on a 4D brane for any value of the brane
tension V0. This is the idea of the “self-tuning”. The vacuum energy in a 4D brane
is cancelled by the integration constants in the solutions, not by the parameters
in the original action. Thus this is not a fine-tuning. The hope is that the solution
in the bulk adjusts itself so that the contribution from the vacuum energy on the
brane is exactly cancelled.

Although the idea of self-tuning is very attractive, there are several problems
in the original proposal [24; 25; 26; 27]. Firstly, there is a naked singularity in
the above model with a scalar field. Any procedure that regularizes the singularity
in the solutions would cause the re-introduction of the fine tuning. There is also
a problem of stability. In the case of vanishing potential in the bulk, the static
solution is unstable, leading to a singularity. A modified version of the model
using the bulk black hole to hide the singularity inside the horizon was proposed
[28], but it was argued that this model also cannot avoid the fine tuning [29].

3.2 6D braneworld

Another approach to realize the self-tuning is to consider a 6D bulk spacetime
[30]. The action is given by

S =
∫

d6x
√
−g
(

1
2κ2

6
R−Λ6−

1
4

FabFab
)

, (17)

where the gauge field Fab is required to stabilize the size of the extra dimensions.
We decompose the coordinates into four macroscopic dimensions and the two
extra dimensions. The metric is taken as

ds2 = ηµν dxµ dxν + γi jdxidx j. (18)

The gauge field is taken to consist of magnetic flux threading the extra dimensional
space so that the field strength takes the form

Fi j =
√

γB0εi j, (19)

where B0 is a constant, γ is the determinant of γi j and εi j is the antisymmetric
tensor normalized as ε12 = 1. All other components of Fab vanish. A static and
stable solution is obtained by choosing the extra-dimensional space to be a two-
sphere

γi jdxidx j = a2
0(dθ

2 + sin2
θdϕ

2). (20)
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Fig. 3 Removing a wedge from a sphere and identifying opposite sides to obtain a football
geometry. Two equal-tension branes with conical deficit angles are located at either pole; outside
the branes there is constant spherical curvature. From [30]

The magnetic field strength B0 and the radius a0 are fixed by the cosmological
constant

B2
0 = 2Λ6, a2

0 =
M4

6
2Λ6

. (21)

It should be noted that B0 has to be tuned so that a Minkowski spacetime is induced
in 4D. Now we add branes to this solution. The brane action is given by

S4 =−σ

∫
d4x
√
−γ. (22)

The solution for the extra dimensions is now given by

γi jdxidx j = a2
0(dθ

2 +α
2 sin2

θdϕ
2), (23)

where

α = 1− σ

2πM2
6
, a2

0 =
M4

6
2Λ6

. (24)

The coordinate ϕ ranges from 0 to 2π . Thus the effect of the brane makes a deficit
angle δ = 2π(1−α) in the bulk. This is a 6D realization of the ADD model
including the self-gravity of branes (Fig. 3).

The most interesting feature of this solution is that the 4D geometry is inde-
pendent of the brane tension σ . The tension enters only in the deficit angle and
not the radius a0 and the magnetic field B0 that need to be tuned to obtain a flat
4D spacetime. Thus the vacuum energy on the brane does not gravitate in the
4D spacetime but merely changes the geometry of the extra dimensions. Thus the
outcome is similar to the self-tuning solutions discussed in Sect. 3.1. It should be
noted that the cosmological constant problem is not fully solved even if this idea
works. In order to obtain a flat spacetime, we need to tune the magnetic field and
the bulk cosmological constant as in Eq. (21). However one could hope that some
kinds of symmetry like supersymmetry in the bulk can ensure this tuning.

However, there have been objections to the self-tuning in this model [31]. Con-
sider that a phase transition occurs and the tension of the brane changes from σ1 to
σ2. Accordingly, α changes from α1 = 1−σ1/(2πM4) to α2 = 1−σ2/(2πM4).
The magnetic flux is conserved as the gauge field strength is a closed form, dF = 0.
Then the magnetic flux which is obtained by integrating the field strength over the
extra dimensions should be conserved

ΦB = 4πα1B0,1 = 4πα2B0,2. (25)

The fine-tuning of Λ6 and B0, Eq. (21), that ensures the existence of Minkowski
branes cannot be imposed both for B0 = B0,1 and B0 = B0,2 when α1 6= α2. This
becomes clear if we rewrite the conditions Eq. (21) as

α
2 =

(
ΦB

4π

)2
Λ6

M4
6
. (26)
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The left-hand side changes by the phase transition but the right-hand side cannot
change. Moreover, the quantization condition must be imposed on the flux ΦB.
Then if the condition Eq. (21) is satisfied for some value of α , it will not be
satisfied by neighbouring values. Thus after the phase transition, the 4D spacetime
cannot be static [32].

3.3 Supersymmetric large extra dimensions

In the Einstein–Maxwell theory discussed in Sect. 3.2, the tuning between the
magnetic flux and the cosmological constant in the 6D spacetime, Eq. (21), was
necessary to obtain the flat 4D spacetime. This was the origin of the difficulty in
realizing the self-tuning. To evade this problem, the Supersymmetric Large Extra
Dimensions (SLED) model was proposed (see [33; 34] for a review). This is a
supersymmetric version of the 6D model and the action is given by [35]

S =
∫

d6x
√
−g
[

1
2κ2

6

(
R−∂Mφ∂

M
φ
)
− 1

4
e−φ FMNFMN − eφ

Λ6

]
. (27)

There exists a solution where the dilaton φ is constant, φ = φ0, and the solution in
the Maxwell–Einstein theory is a solution just by replacing Λ6 →Λ6eφ0 and B2

0 →
B2

0e−φ0 . The constant value φ0 is determined by the condition that the potential for
φ has minimum [36]

V ′(φ0) =−1
2

B2
0e−φ0 +Λ6eφ0 = 0. (28)

This is exactly the condition to have a flat geometry on the brane (see Eq. (21))

B2
0e−φ0 = 2Λ6eφ0 . (29)

Thus unlike the Einstein–Maxwell system, one might not need a tuning condition
in the bulk. In fact, The known solutions in this model which have maximally
symmetric 4D metric all have vanishing vacuum energy.

Again there were several objections to this version of the self-tuning [31; 36].
It is possible to derive the 4D effective theory by putting the metric in the form

ds2 = gµν(x)dxµ dxν +M−2
6 e−2ψ(x)(dr2 + sin2 rdθ

2), (30)

and assuming φ = φ(x). The potential which results from the two scalar fields is
[31]

V (ψ,φ) = M−4
6 eσ2U(σ1), U(σ1) =

B2
0

2α2 e−2σ1 −2M2
6 e−σ1 +2Λ6, (31)

where σ1 = 2ψ + φ and σ2 = 2ψ − φ . Unlike the Einstein–Maxwell theory, σ2
ensures that U(σ1) vanishes at the minimum of the potential. We should note that
σ2 is related to the classical scaling property of the model. The 6D equation of
motion is invariant under the constant rescaling gMN → eω gMN and eφ → eφ−ω

and the lagrangian is scaled as L → e2ωL . The modulus σ2 can be identified as
the one associated with this scaling property. Thus the flatness of the 4D spacetime
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is ensured by the scaling property of the theory. However, this eventually leads to
the same tuning condition (29) as in the Einstein–Maxwell theory. Then we can
apply the same arguments as in the previous section. Suppose that the tension of
the brane changes. Flux conservation (and flux quantization) means that the tuning
condition cannot be maintained and U(σ1) 6= 0. What happens would be that σ2
acquires a runaway potential and the 4D spacetime becomes non-static.

A caveat in this argument is that the metric ansatz (30) is restrictive. In fact,
there is a class of static solutions where there is a warping in the bulk. The solution
has the form [37; 38]

ds2
6 = W (η)2

ηµν dxµ dxν +a2
0(W (η)8dη

2 +dθ
2), φ = φ0 +4lnW (η)+2λ3η ,

(32)
where W (η) is the warp factor. If both branes, at the north pole and the south pole,
have the same tension, the warp factor becomes trivial. However, if the tensions
are not equal, there is a warping. For λ3 6= 0, the metric near the branes no longer
corresponds to that of a simple conical singularity. These solutions cannot be de-
scribed by the ansatz (30). Thus one can still hope that the solutions will go to
these solutions after a change of tension. An unambiguous way to investigate this
problem is to study the dynamical solutions directly in the 6D spacetime. How-
ever, once we consider the case where the tension becomes time dependent, we
encounter a difficulty to deal with the branes. This is because for co-dimension 2
branes, we encounter a divergence of metric near the brane if we put matter other
than tension on a brane. Hence, without specifying how we regularize the branes,
we cannot address the question what will happen if we change the tension. Is the
self-tuning mechanism at work and does it lead to a 4D static solution? Or do
we get a dynamical solution driven by the runway behaviour of the moduli field?
There was a negative conclusion on the self-tuning in this supersymmetric model
for a particular kind of regularization [36]. However, the answer could depend on
the regularization of branes and the jury remains out. It is important to study the
time-dependent dynamics in the 6D spacetime and the regularization of the branes
[39; 40; 41; 42].

If the self-tuning mechanism works, then we should seek an explanation for the
accelerated expansion today. The supersymmetry in the bulk would also provide
a very interesting mechanism (see [33; 34] and references therein for detailed
discussions). Supersymmetry is supposed to be broken at least at the electroweak
scale Mw. Then in the 4D spacetime, this gives a vacuum energy of the order
ρ ∼ M4

w as the cancellation between the contribution to the vacuum energy from
boson fields and fermion fields ceases to exist at Mw. However, if the self-tuning
mechanism is at work, this vacuum energy does not give any contribution to the
cosmological constant on the brane. However, the breakdown of supersymmetry
is mediated to the bulk at least gravitationally. Then there arises a supersymmetry
breaking scale in the bulk given by

Msb =
M2

w

M4
. (33)

Interestingly, this scale is related to the size of the extra dimensions. If we want to
solve the hierarchy problem between the Planck scale and the electroweak scale,
M6 should be of the order Mw. Then from the relation between M6, M4 and the size
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of the extra-dimension L, Eq. (3), the supersymmetry breaking scale in the bulk is
given by

Msb =
1
L

. (34)

If L is 10µm, we get the correct order of magnitude for the cosmological constant
if ρΛ ∼M4

sb. In order to confirm this expectation, we should compute the effective
potential for the radion which describes the size of the extra dimensions generated
by supersymmetry breaking. The potential for the radion obtained by integrating
out the bulk loops is given by

V (L) =
c2M2

6
L2 +

c3

L4 (log(M2
6 L2)+C). (35)

The calculation of c2 depends on the details of the spectrum of the theory at Mw
and c2 = 0 is critical for this model to work. If c2 = 0, the potential leads to a natu-
ral realization of the quintessence model where the radion L acts as a quintessence
field.

Thus SLED gives a consistent framework to address the cosmological con-
stant problem and the dark energy model provided that the self-tuning mechanism
works and the supersymmetry breaking on the brane generates the desired poten-
tial for the radion, V (L) ∼ L−4. In SLED, the 6D Planck scale is supposed to be
Mw and the size of the extra dimensions today are L ∼ 10µm. This leads to a lot
of interesting phenomenology in local tests of gravity, collider physics and so on
[33; 34].

4 Late-time acceleration in the braneworld

A new twist to the cosmological constant problem is the late time acceleration
of the Universe. The simplest way to realize this is to assume that a tiny amount
of the cosmological constant is left after cancelling the vacuum energies. But the
vacuum energy is typically more than 50 orders of magnitude larger than the ob-
served value of the cosmological constant. Thus this is an incredible fine-tuning.
Moreover, if the self-tuning idea works and the vacuum energy does not gravi-
tate, it is in general difficult to realize the accelerated expansion of universe (see
however the SLED proposal discussed in Sect. 3.3). Alternatively, it is possible
that there is no cosmological constant but that large-distance modification of GR
accounts for the late-time acceleration. The braneword gravity provides a natural
framework for the study of this possibility. For example in the model proposed
by Dvali, Gabadadze and Porrtati (DGP), 4D GR is modified on large scales [9].
It is in fact possible to realize the accelerated expansion of the universe without
a cosmological constant [43; 44]. This solution is known as the self-accelerating
universe. We should note that in these attempts, we do not solve the old cosmo-
logical constant problem. In addition, in the DGP model, the coincidence problem
is not solved and we should introduce a fine-tuned dimensional parameter related
to the scale of the cosmological constant, ρΛ ∼ 10−3 eV. However this is a novel
alternative to dark energy models in GR and it gives a new perspective to approach
the problem.
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4.1 Dvali–Gabadadze–Porrati model

In the DGP model, gravity leaks off the 4D Minkowski brane into the 5D bulk
Minkowski spacetime at large scales. The 5D action describing the DGP model is
given by

S =
1

2κ2
5

∫
d5x
√
−gR+

1
2κ2

4

∫
d4x
√
−γ

(4)R−
∫

d4x
√
−γLm. (36)

Instead of having the bulk cosmological constant and the tension on a brane as in
the RS model, there is an induced Einstein–Hilbert term on the brane.

On small scales, gravity is effectively bound to the brane and 4D Newtonian
dynamics is recovered to a good approximation. The transition from 4D to 5D
behaviour is governed by a crossover scale
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rc =
κ2

5

2κ2
4
. (37)

The weak-field gravitational potential behaves as

Ψ ∼
{

r−1 for r < rc,
r−2 for r > rc.

(38)

Unlike the RS model, gravity becomes 5D at large distances. The DGP model was
generalized by Deffayet to a Friedman–Robertson–Walker brane in a Minkowski
bulk [44]. The energy conservation equation remains the same as in general rela-
tivity, but the Friedman equation is modified:

ρ̇ +3H(ρ + p) = 0 , (39)
H
rc

= H2− 8πG4

3
ρ . (40)

The modified Friedmann equation shows that at late times in a CDM universe with
ρ ∝ a−3 → 0, we have

H → H∞ =
1
rc

. (41)

Since H0 > H∞, in order to achieve acceleration at late times, we require rc & H−1
0 ,

and this is confirmed by fitting SN observations [50]. Like the LCDM model,
the DGP model has simple background dynamics, with a single parameter rc to
control the late-time acceleration.

On small scales, the Newtonian potential behaves as 4D. The Friedmann equa-
tion also shows that the universe behaves as 4D at early times, Hrc � 1. How-
ever, the recovery of GR is very subtle in this model [45]. In fact, although the
weak-field gravitational potential behaves as 4D on scales smaller than rc, the
linearized gravity is not described by GR. This is because there is no normalized
zero-mode in this model and 4D gravity is recovered as a resonance of the massive
KK gravitons. The massive graviton contains 5◦ of freedom compared with 2◦ of
freedom in a massless graviton. One of them is a helicity-0 polarization. Due to
this scalar degree of freedom, linearized gravity is described by Brans-Dicke (BD)
gravity with vanishing BD parameter in the case of Minkowski spacetime. Thus
this model would be excluded by solar system experiments. However, the non-
linear interactions of the scalar mode becomes important on larger scales than
expected [45; 46; 47; 48]. Let us consider a static source with mass M. Gravity
becomes non-linear near the Schwarzshild radius rg = 2GM. However, the scalar
mode becomes non-linear at r∗ = (rgr2

c)
1/3 (the Vainstein radius) which is much

larger than rg if rc ∼H−1
0 . In fact, for the Sun r∗ is much larger than the size of the

solar system. A remarkable finding is at once the scalar mode becomes non-linear,
GR is recovered. This non-linear shielding of the scalar mode is crucial to escape
from the tight solar system constraints. Fig. 4 summarizes the behaviour of gravity
in the DGP model (see [49] for a review on the DGP model).
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Fig. 4 Summary of the behaviour of gravity in the DGP model. At large scales r > rc, the
theory is 5D. On small scales r < rc, gravity becomes 4D but the linearized theory is described
by a Brans-Dicke theory. This affects the large scale structure (LSS) and the Integrated Sachs-
Wolfe (ISW) effect and its cross-correlation to LSS. Below the Vainstein radius r < r∗, the
theory approaches GR. This transition can be probed by weak lensing and cluster abundance
as the non-linear dynamics is important for these measures. The solar system tests also provide
constraints on the model in the 4D Einstein phase

Fig. 5 Joint constraints (solid thick) on DGP models from the SNe data (solid thin), the BO
measure A (dotted) and the CMB shift parameter S (dot-dashed). The left plot uses SNe Gold
data, the right plot uses SNLS data. The thick dashed line represents the flat models, ΩK = 0.
From [52]

4.2 Observational constraints on the self-accelerating universe

The self-accelerating universe provides useful example where we can study how
various observations can be combined to test the model. It also provides a pos-
sibility to find a failure of GR at cosmological scales. A key is the complicated
behaviour of gravity. We have various cosmological observations that cover var-
ious scales. Then combining the various data sets, we can probe the complicated
behaviour of gravity in this model. A central question is whether we can distin-
guish the DGP model from dark energy models in GR.

4.2.1 Expansion history

The first question is whether one can distinguish between the self-accelerating
universe and the simple ΛCDM model in GR. Both models have the same number
of parameters and phenomenologically both theories have the same simplicity. In
terms of density parameters, the Friedmann equation in the ΛCDM model is given
by

ΩM +ΩΛ +ΩK = 1. (42)

On the other hand in the DGP, we have [50]

ΩM +2
√

Ωrc

√
1−ΩK +ΩK = 1, (43)

where we defined
Ωrc =

1
4H2

0 r2
c
. (44)

In order to constrain the density parameters, we can combine data from super-
novae, the cosmic microwave background shift parameter, and possibly the baryon
oscillation peak [51; 52; 53; 54; 55; 56]. Interestingly, the current observations al-
ready give us a hint how we can distinguish the models. While the ΛCDM model
fits the three data sets comfortably, there is some tension between the data and
DGP (Fig. 5) [52]. It is suggested that a slightly open universe can fit the data set
better in the DGP (Fig. 6) [53].

Note that the baryon acoustic oscillation measure requires the knowledge of
the power spectrum thus the knowledge of perturbations. Precisely speaking, the
analysis must be redone for the DGP model. We expect that only small corrections
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Fig. 6 The ∆ χ2 between the best fit flat and open DGP versus that of a flat ΛCDM model. The
Gold supernova (SN) data set is used in the top panel and the SNLS SN data set is used in the
bottom panel. The DGP model requires curvature and a high Hubble constant. With the addition
of Key Project (KP) direct Hubble constant measurements, open DGP is a marginally poorer fit
to the data than flat ΛCDM. From [53]

Table 1 Best-fit parameters from SNe-CMB shift-Baryon Oscillation constraints, and χ2 values,
for the DGP and LCDM models

Best-fit acceleration Best-fit density Best-fit curvature χ2 value
parameter parameter parameter

DGP Ωrc = 0.125 Ωm = 0.270 ΩK = +0.0278 185.0
LCDM ΩΛ = 0.730 Ωm = 0.285 ΩK =−0.0150 177.8

The

Gold data is used for the SNe. From [52]

Table 2 As in Table 1 for the Legacy SNe data

Best-fit acceleration Best-fit density Best-fit curvature χ2 value
parameter parameter parameter

DGP Ωrc = 0.130 Ωm = 0.255 ΩK = +0.0300 128.8
LCDM ΩΛ = 0.740 Ωm = 0.270 ΩK =−0.0100 113.6

From

[52]

Fig. 7 Comparison between the results of fitting DGP and ΛCDM to the SNLS and ESSENCE
supernova data set (filled in 68%, 95% and 99% confidence regions) and the Riess 07 Gold set
(dotted lines). The solid black line corresponds to spatially flat universes. From [55]

are involved, but this problem must be addressed. The conclusion also seems to
depend on the data set for supernovae (Tables 1 and 2) [52]. This is also true using
the latest results from the ESSENCE and SNLS supernova data set and the Riess
07 Gold set (Fig. 7) [55].

In the future, precision data will enable us to distinguish between the DGP
and the ΛCDM more clearly. Figure 8 shows the prediction of the baryon acoustic
peak oscillation observed by a future WFMOS survey which is assumed to contain
2.1× 106 galaxies, over 200 deg2, at 0.5 < z < 1.3 [57]. Clearly the difference
between the two is much larger than the error bars.

4.2.2 Linear growth of structure

Although the DGP model can be distinguished from the ΛCDM model, back-
ground tests will never distinguish the DGP model from dark energy models in
GR. This is because there always exists a dark energy model in GR that has ex-
actly the same expansion history as in DGP. In fact as far as the background evolu-

Fig. 8 Theoretical predictions for d lnP(k)/d lnk assuming a sample WFMOS, where P(k) is the
power spectrum of galaxies. The squares with error bars are evaluated with the simple simulation
of the power spectrum for the ΛCDM model. The asterisks are the DGP model, but the error bars,
which are almost the same as that of the ΛCDM model, are omitted for simplicity. Theoretical
curves are the DGP model (dashed red curve) and the ΛCDM model (solid black curve). The
parameters are ns = 0.95, Ωb = 0.044, Ωm = 0.27 and the linear bias is taken as b0 = 1.5. From
[57]
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tion of the Universe is concerned, the DGP is equivalent to the dark energy model
whose equation of state is given by Lue et al. [58]

w =− 1
1+Ωm(a)

. (45)

For small red-shift, this is well fitted by w = w0 + wa(1− a) where w0 = −0.78
and wa = 0.32 if Ωm = 0.3 today [59]. Then we cannot distinguish the DGP from
the dark energy model in GR.

However, even if the background dynamics is the same, this does not mean
that the dynamics of perturbations is the same. Koyama and Maartens obtained
the solutions for metric perturbations on sub-horizon scales by consistently solv-
ing the 5D perturbations under quasi-static approximations [60]. Scalar metric
perturbations are given in longitudinal gauge by

ds2 =−(1+2Ψ)dt2 +a2(1+2Φ)δi jdxidx j , (46)

and the perturbed energy-momentum tensor for matter is given by

δT µ

ν =

(
−δρ aδq,i

−a−1δq,i δ p δ i
j

)
. (47)

The solutions for the brane metric perturbations are [60]

k2

a2 Φ = 4πG4

(
1− 1

3β

)
ρδ , (48)
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Fig. 9 The comoving distance r(z) is shonw for ΛCDM (long dashed), DGP (solid, thick) and
the equivalent GR dark energy model on the left. On the right, the growth history g(a) = δ (a)/a
is shown for LCDM (long dashed) and DGP (solid, thick). The growth history for a dark en-
ergy model (short dashed) is also shown, with the same expansion history as DGP. Due to the
time variation of Newton’s constant through β in Eq. (53), the growth factor g(a) receives an
additional suppression compared with the dark energy model. DGP-4D (solid, thin) shows the
incorrect result in which the inconsistent assumption is adopted. We set the density parameter
for matter today as Ωm0 = 0.3. From [60]

k2

a2Ψ = −4πG4

(
1+

1
3β

)
ρδ , (49)

where

β = 1−2rcH
(

1+
Ḣ

3H2

)
, (50)

and
δ = δρ−3Hδq. (51)

This agrees with the results obtained by Lue, Scoccimarro and Starkman. They
find spherically symmetric solutions by closing the 4D equations using an anzatz
for
the metric and checking in retrospect that the obtained solutions satisfy regularity
in the bulk. It was shown that the solutions (48) and (49) are uniquely determined
by the regularity condition in the bulk within our approximations.

The modified Poisson equation (48) shows the suppression of growth. The rate
of growth is determined by δ , and for CDM,

δ̈ +2Hδ̇ =− k2

a2Ψ , (52)

which leads to

δ̈ +2Hδ̇ = 4πG4

(
1+

1
3β

)
ρδ . (53)

Thus the growth rate receives an additional modification from the time variation
of Newton’s constant through β .

In Fig. 9, we show the linear growth factor δ/a for the DGP model, and com-
pare it with ΛCDM and with the GR dark energy model whose background evo-
lution matches that of the DGP model. We also show the incorrect DGP result,
in which the inconsistent assumption of neglecting 5D perturbations is effectively
adopted [61]. This inconsistent assumption has been made in various treatments
but it leads to unreliable results. The correct equations for subhorizon density per-
turbations are crucial for meaningful tests of DGP predictions against structure
formation observations. This highlights the fact that the growth rate is very sensi-
tive to the modification of gravity.

There are several observations that can probe the growth of structure. Weak
lensing measures the deflection of light generated by matter fluctuations (see [62]
for a review). The deflection potential is given by

φ = Φ +Ψ . (54)
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Fig. 10 The galaxy-ISW cross-correlation coefficient Ri
l in each galaxy bin from z = 0 to z = 3.

Solid curves denote flat ΛCDM and dashed curves denote open DGP. Note the much larger
correlation at high z in open DGP. From [63]

We can relate φ to the matter overdensity δ :

φ =
8πG4a2

k2 δ . (55)

Interestingly, this formula in the DGP is the same as the one in GR. However,
the change of the growth rate leads to a different prediction of weak lensing. We
should note that current observations measure weak lensing sourced by matter
fluctuations in the non-linear regime. The solutions (48) can be applied only to
linear perturbations and there is no justification to use the linear growth rate and
predict the non-linear power spectrum using the mapping formula developed in
GR. We will come back to this issue in section IV.B.

Another probe is the Integrated Sachs–Wolfe (ISW) effect. This is determined
by the time variation of the deflection potential φ̇ . On large scales, we should deal
with the truly 5D effects and the quasi-static solutions are not applicable. There
is some progress to deal with fully dynamical perturbations by adopting a scaling
ansatz to solve the 5D equations [63]. They find that the quasi-static solution is
an attractor on subhorizon scales. The ISW effects are sub-dominant compared
with the primordial anisotropies formed at the last scattering surface. In order to
extract the ISW effects, it is proposed to take cross correlation between the matter
distributions and the CMB [64; 65; 66]. It was shown that the quasi-static solution
is valid to calculate the corss correlation for large ` where a signal is maximized
[63]. The growth function g(a) changes at earlier times in the self-accelerating
universe than in the ΛCDM model. This gives a larger signal in the cross correla-
tion at high redshift. Thus higher red-shift galaxies can test the predictions in the
self-accelerating universe with high significance (Fig. 10).

Hence, structure formation tests are essential for breaking the degeneracy with
dark energy models in GR [67; 68; 69; 70; 71]. The distance-based SN observa-
tions draw only upon the background 4D Friedman equation (40) in DGP models,
and therefore there are quintessence models in GR that can produce precisely the
same SN redshifts as DGP. By contrast, structure formation observations require
the 5D perturbations in DGP, and one cannot find equivalent GR models. This
leads to an exciting possibility to find a failure of GR [68]. Suppose that our Uni-
verse is described by the DGP model. However, astronomers still try to fit the data
by dark energy models in GR. For example, they use the parametrization of the
equation of state of dark energy

w = w0 +w1z. (56)

Combining SN observations, CMB shift parameter and weak lensing, there ap-
pears an inconsistency. This is because weak lensing probes the growth of struc-
ture and the growth rate in the DGP model cannot be fitted by the growth rate in
GR models given the same expansion history. Figure 11 demonstrates this possi-
bility.
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Fig. 11 Equations of state found using two different combinations of data sets. Solid contours
are for fits to SN Ia and CMB data, while dashed contours are for fits to weak lensing and
CMB data. The significant difference (inconsistency) between the equations of state found using
these two combinations is a signature of the DGP model. The inconsistency is an observational
detection of the underlying modified gravity DGP model (assumed here to generate the data).
From [68]

Fig. 12 Confidence regions at 68% for the benchmark survey zmean = 0.9,d = 35 (outer contour)
and for d = 50,75 (inner contours) for DGP. The dotted line represents the ΛCDM value. From
[74]

In order to quantify the difference in the growth rate, it is convenient to parametrize
the growth rate as [59]

g(a) = exp


a∫

0

d lna(Ω(a)γ −1)

 . (57)

In a quintessence model, γ is well approximated by

γ(w) = 0.55+0.05(1+w(z = 1)). (58)

In the DGP, γ is well approximated as γ = 0.68 [59]. Recently, several authors tried
to estimate how accurately we can constrain γ using weak lensing in future surveys
[72; 73; 74]. These results suggest that in the future, we will be able to discriminate
ΛCDM and the DGP model from the difference in the growth rate. Figure 12
shows the constraint on γ for the DGP model assuming the “bench mark” survey
on weak lensing, where the mean redshift is zmean = 0.9 and the number of sources
per arcmin2 is d = 35,50,75 [74].

However, as we mentioned before, the weak lensing measure requires knowl-
edge of the non-linear power-spectrum. In the DGP, this is a subtle problem. The
DGP approaches GR on small scales. This is essential to evade the tight con-
straints from the solar system experiments. The non-linear power spectrum would
be sensitive to this transition from Brans–Dicke linear theory to GR non-linear
theory. The analyses so far have used the simple mapping formula developed in
GR to derive the non-linear power spectrum. This approach could be inconsistent.
Nevertheless, the conclusion that we will be able to distinguish the difference in
the growth of structure would be valid and this is a very exciting possibility that
we can achieve in future observations.

4.2.3 Non-linear structure formation

For quasi-static perturbations, it is possible to extend the linear result to non-linear
perturbations by taking into account partially the non-linear effects of gravity.
A key is the so called brane bending mode [48; 76; 77]. This mode describes
the perturbations of the location of the brane and mediates an additional scalar
interaction. In the linear regime, this is the scalar mode that makes the theory of
BD type. This scalar mode becomes non-linear on much larger scales than gravity.
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In terms of the brane bending mode ϕ , the effective equations on the brane are
given by [75]

2
a2 ∇

2
Φ =−8πG4δρ +

1
a2 ∇

2
ϕ, (59)

Ψ +Φ = ϕ, (60)

where the equation of motion for ϕ is given by

3β (t)
∇2

a2 ϕ +
r2

c

a4

[
(∇2

ϕ)2− (∇i∇ jϕ)2]= 8πG4δρ. (61)

Again these equations are derived by properly solving the 5D equations and im-
posing the regularity condition in the bulk. Here we assume gravity is linear,
Ψ ,Φ � 1, but we take into account the second order effects of ϕ . Note that the
coefficient of the second order terms is given by r2

c . As we take rc ∼ H−1
0 , the

second order terms can be comparable to the linear term even if gravity remains
linear.

These non-linear equations are difficult to solve in general. If we assume spher-
ical symmetry, the solution for ϕ is given by
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dϕ

dr
=

rg

r2 ∆(r), ∆(r) =
2

3β

(
r
r∗

)3
(√

1+
( r∗

r

)3
−1

)
, (62)

where

r∗ =
(

8r2
c rg

9β 2

)1/3

, (63)

and rg is the Schwarzschild radius rg = 2G4M. The solutions for Φ and Ψ are
obtained as

Φ =
rg

2r
+

ϕ

2
, (64)

Ψ = −
rg

2r
+

ϕ

2
. (65)

For r > r∗, we recover the solutions for linear perturbations (48). For r < r∗, the
solutions for metric perturbations are given by Lue et al. [58]

Φ =
rg

2r
+

1
β

√
β 2rgr
2r2

c
, (66)

Ψ = −
rg

2r
+

1
β

√
β 2rgr
2r2

c
. (67)

In this region, the corrections to the solution in 4D GR are suppressed, so that Ein-
stein gravity is recovered. The radius r∗ is the Vainstein radius in the cosmological
background.

The conservation of the energy momentum tensor holds as in GR. Then the
continuity equation and the Euler equation are the same as in GR:

∂δ

∂ t
+

1
a

∇
i(1+δ )vi = 0, (68)

∂vi

∂ t
+

1
a
(v j

∇ j)vi +Hvi = −1
a

∇iΨ , (69)

where vi is the velocity perturbation of dark matter. Eqs. (59), (60), (61) (68)
and (69) form a closed set of equations that has to be solved to address the non-
linear structure formation problem in the DGP model. In order to see how GR is
recovered dynamically, let us consider the evolution of a spherical top-hat pertur-
bation δ (t,r) of top-hat radius Rt , where ρ(t,r) = ρ(t)(1 + δ ) is the full density
distribution and ρ(t) is the background density [58]. The Newtonian potential Ψ

dominates the geodesic evolution of overdensity. Then the evolution equation for
the over-density δ is given by
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Fig. 13 Numerical solution of spherical collapse. The left panel shows the evolution for a spher-
ical perturbation with δi = 3×10−3 at zi = 1,000 for Ωm = 0.3 in DGP gravity and in ΛCDM.
The right panel shows the ratio of the solutions once they are both expressed as a function of
their linear density contrasts. From [58]

δ̈ − 4
3

δ̇ 2

1+δ
+2Hδ̇ = 4πGρδ (1+δ )

[
1+

2
3β

1
ε

(√
1+ ε−1

)]
, (70)

ε ≡
8r2

c rg

9β 2R3
t

=
8
9

(1+Ωm)2

(1+Ω 2
m)2 Ωmδ . (71)

In the linear regime, δ � 1, ε � 1, we recover the linear evolution of the over-
density, Eq. (53). On the other hand for ε � 1, the right hand side of Eq. (70)
becomes the same as in GR and the dynamics of the non-linear collapse becomes
the same as in GR. Figure 13 shows the behaviour of δ in the DGP compared with
the ΛCDM model.

For the non-spherically symmetric case, we need to solve the equations numer-
ically. We should emphasize again that the analysis of the non-linear transition of
the theory to GR is essential for the prediction of weak lensing and this is an
outstanding open problem.

4.3 Theoretical consistency of the DGP model

Although the DGP model offers a concrete example for a modified gravity alter-
native to dark energy, this model is not free from problems. In fact, this model
demonstrates the difficulties of modifying GR at large distances. One of the prob-
lems is related to the non-linearity of the scalar mode. The non-linear interactions
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of the scalar mode become important at the Vainstein length r∗ ∼ (r2
c rg)1/3. If we

consider a Planck scale mass particle, this length is given by Λ−1
c = (r2

c M−1
pl )−1/3,

which is ∼ 1,000 km for rc ∼ H−1
0 . This defines the length below which quantum

corrections for the scalar mode become important. Thus Λc plays the same role as
the Planck scale in GR. Then below the length Λ−1

c , the classical theory loses its
predictability. This is known as the strong coupling problem [76; 77; 78]. There
have been debates whether this is indeed a problem or not [79]. It is suggested
that there exists a consistent choice of counter-terms for which the model remains
calculable [77].

The most serious problem in this model is that there are ghost-like excitations
around the self-accelerating universe [76; 77; 80; 81; 82; 83]. In fact the growth
rate already manifests this problem. The solution for the linearized perturbations
is described by a BD theory with BD parameter given by [46; 60]

ω =
3
2
(β −1). (72)

For large Hrc, β is always negative. In fact, if ω <−3/2, the BD scalar field has
the wrong sign for its kinetic term and it becomes a ghost. For de Sitter spacetime,
the condition ω < −3/2 implies Hrc > 1/2. This is exactly the condition that
there exists a ghost in the theory. We can understand the extra suppression of
the growth rate as due to the repulsive force mediated by the ghost. If we avoid
the negative norm state when quantizing the theory with ghosts, the ghosts have
unboundedly negative energy density and lead to the absence of a stable vacuum
state. In a Lorentz invariant theory this instability is instant as the decay rate of
the vacuum is infinity. It is suggested that if there is a Lorentz non-invariant cut-
off in the theory and the cut-off scale is enough low, it is possible to keep the
instability at unobservable level [84]. In the DGP model, the strong coupling scale
Λc may serve as the cut-off scale. It is needed to calculate the decay rate of the
vacuum and to see whether the self-accelerating universe can survive beyond the
age of our Universe. It is also necessary to check the validity of the linearized
analysis [75; 85; 86; 87; 88]. Several non-perturbative solutions indicate that the
self-accelerating universe would be unstable [87; 88]. Then we are naturally lead
to ask what does the solution decay to [89]. This is still an open question. See [90]
for a review on the issue of the ghost in the DGP model.

Finally, it was pointed out that time-dependent perturbations around the spher-
ically symmetric spacetime have a sound speed greater than 1 [91]. Again there
are debates whether this is a problem or not. One subtlety is that this argument is
based on the effective theory for the scalar mode and it is not clear this effective
theory captures the property of the full gravitational perturbations in the model
[92]. In addition, causality should be defined in a 5D spacetime and it is not clear
that the super-luminality in the 4D effective theory really means the breakdown of
causality in the full 5D theory.

Although it is still not clear whether we should deny the DGP model as a
consistent theory due to these problems, this certainly demonstrates the difficulty
for the large distance modification of gravity to explain the late time accelerated
expansion of the Universe. It is necessary to seek improved models that can avoid
these problems.
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5 Conclusion

In this article, we review the attempts to address the cosmological constant prob-
lem and the dark energy problem in braneworlds.

The cosmological constant problem has resisted solution for many years. The
conventional approach relies on 4D low-energy physics. This was a natural way
of attacking the problem as in a conventional KK compactification, the size of
extra dimensions must be smaller than TeV−1 and, below the TeV scale, our Uni-
verse can be described by the 4D effective theory. However, the braneworld picture
completely changes the notion of extra dimensions. The extra dimensions can be
large. For 6D spacetime, the size of the extra dimensions can be L∼ 10µm, with
the 6D planck scale 10 TeV. Then above the scale L−1, the Universe is described
by 6D and the 4D effective theory cannot be used. In fact the energy density for
the cosmological constant necessary to explain the present accelerated expansion
is roughly ρΛ ∼ L−4. Moreover, the way the vacuum energy gravitates in our 4D
Universe is completely different in the braneworld. Again in a 6D spacetime, the
vacuum energy on a 4D brane does not curve the 4D spacetime but just changes
the geometry of the extra dimensions. This leads to the self-tuning idea where the
change of the vacuum energy in 4D spacetime is compensated by the modifica-
tion in the geometry of extra dimensions. Although it was shown that the simple
non-supersymmetric model does not work, it is hoped that the supersymmetric
version of the model can realize the self-tuning. A close inspection reveals many
problems in this approach, but further studies are necessary to judge whether the
self-tuning idea really works or not. The outstanding problem is to know whether
the 4D spacetime settles down to a static solution due to the self-tuning mecha-
nism if there is a phase transition in the 4D spacetime. This requires a regular-
ization of the branes and the analysis of the time dependent dynamics in the 6D
spacetime. Based on the hope for the existence of self-tuning, the Supersymmet-
ric Large Extra Dimensions (SLED) model is proposed as a framework to address
the cosmological constant problem and the dark energy simultaneously. The self-
tuning mechanism is supposed to cure the problem of the large vacuum energy
produced by the phase transition in the 4D spacetime. This mechanism relies on
the supersymmetry in the 6D spacetime, but supersymmetry is inevitably broken
on a brane at least at TeV scale. This breakdown is mediated to the bulk only grav-
itationally and creates a weak potential for the radion which is the size of the extra
dimensions. The potential energy is determined by the supersymmetric breaking
scale in the bulk and it is argued that if the size of the extra dimensions is 10µm,
the 6D Planck scale is 10 TeV and the potential energy for the radion has the right
amplitude to explain the present accelerated expansion of the Universe. The po-
tential depends on the details of the spectrum of theory and it remains to be seen
whether this proposal can work or not in a concrete realization of the models in
string theory.

The late-time accelerated expansion of the Universe is a new problem forced
by the discovery made by astronomers in 1998. An interesting possibility to ex-
plain this is a large distance modification of gravity. Again, the braneworld picture
plays an essential role. The braneworld model provides a concrete example where
gravity leaks off the brane and modifies the 4D GR on the brane at large distances.
The DGP model is the simplest model that realizes this idea. The action for the
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model is very simple. The 5D spacetime is just a Minkowski spacetime described
by Einstein gravity. We are living on a 4D brane where 4D gravity is assumed to be
induced. Despite the simple set-up of the model, gravity in this model is remark-
ably complicated. In fact there exists a solution (the self-accelerating universe)
where the accelerated expansion of the Universe is realized just by the modifica-
tion of gravity. We focused on the possibility to distinguish this model from dark
energy models in GR by combining various observations. This leads to an interest-
ing possibility to find a failure of GR at cosmological scales. Although the DGP
model is the simplest model where we can address many issues from a simple
action, the model is not free from problems. In particular, it has been shown that
there exists a ghost in a self-accelerating universe. It is crucial to study how we
can avoid the decay of the self-accelerating universe in order for the observational
tests of the model to make sense.

The attempts to use higher-dimensional gravity and branes to address the cos-
mological constant problem and dark energy are new but there has been much
progress. In this article, we only covered several attempts among them. We see
that these attempts bring us a completely new way of attacking long-standing and
tough problems although none of the models is completely successful so far. We
hope further developments of the models based on these attempts lead to solutions
for the long-standing problems.
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