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Abstract

An infinite dimensional algebra denoted Āq that is isomorphic to a central extension of U+
q - the positive 

part of Uq(ŝl2) - has been recently proposed by Paul Terwilliger. It provides an ‘alternating’ Poincaré-
Birkhoff-Witt (PBW) basis besides the known Damiani’s PBW basis built from positive root vectors. In this 
paper, a presentation of Āq in terms of a Freidel-Maillet type algebra is obtained. Using this presentation: 
(a) finite dimensional tensor product representations for Āq are constructed; (b) explicit isomorphisms from 
Āq to certain Drinfeld type ‘alternating’ subalgebras of Uq(ĝl2) are obtained; (c) the image in U+

q of all 
the generators of Āq in terms of Damiani’s root vectors is obtained. A new tensor product decomposition 
for Uq(ŝl2) in terms of Drinfeld type ‘alternating’ subalgebras follows. The specialization q → 1 of Āq is 
also introduced and studied in details. In this case, a presentation is given as a non-standard Yang-Baxter 
algebra.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum affine algebras are known to admit at least three presentations. For Uq(ŝl2), the first 
presentation originally introduced in [40,29] - referred as the Drinfeld-Jimbo presentation in the 
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literature - is given in terms of generators {Ei, Fi, K
±1
i |i = 0, 1} and relations, see Appendix A. 

The so-called Drinfeld second presentation was found later on [30], given in terms of generators 
{x±

k , h�, K±1, C±1/2|k ∈ Z, � ∈ Z\{0}} and relations. The third one, obtained in [54], takes the 
form of a Faddeev-Reshetikhin-Takhtajan (FRT) presentation [31,32]. In these definitions, note 
that the so-called derivation generator is omitted (see [22, Remark 2, p. 393]). In the following, 
we denote respectively UDJ

q , UDr
q and URS

q these presentations of Uq(ŝl2). In addition, for 
Uq(ŝl2) note that a fourth presentation called ‘equitable’, denoted UIT

q , has been introduced 
in [38]. It is generated by {y±

i , k±
i |i = 0, 1}. For the explicit isomorphism UIT

q → UDJ
q , see [38, 

Theorem 2.1].
The construction of a Poincaré-Birkhoff-Witt (PBW) basis for Uq(ŝl2) [25,18] on one hand, 

and the FRT presentation of Ding-Frenkel [28] on the other hand brought major contributions 
to the subject, by establishing the explicit isomorphisms between UDJ

q , UDr
q and URS

q (see also 
[41,27]). To motivate the goal of the present paper, as a preliminary let us briefly review the main 
results of [25,18] and [28].

• To establish the isomorphism between UDJ
q and UDr

q , the main ingredient is the construc-

tion of a PBW basis. In [25], it is shown that the so-called positive part of Uq(ŝl2) denoted UDJ,+
q

- cf. Notation 1.2 - is generated by positive (real and imaginary) root vectors [25, Section 3.1]. 
The root vectors are obtained using Lusztig’s braid group action on UDJ

q [49]. Based on the 

structure of the commutation relations among the root vectors, a PBW basis for UDJ,+
q is first 

obtained [25, Section 4]. Then, introduce the subalgebras UDJ,−
q , UDJ,0

q of UDJ
q . Thanks to the 

tensor product decomposition UDJ
q

∼= U
DJ,+
q ⊗U

DJ,0
q ⊗U

DJ,−
q [49] and some automorphism of 

UDJ
q , the PBW basis for UDJ,+

q induces a PBW basis for Uq(ŝl2) [25, Section 5]. Then, the ex-
plicit isomorphism UDr

q → UDJ
q [18] maps Drinfeld generators to root vectors. See [19, Lemma 

1.5], [27].
• To establish the explicit isomorphism between URS

q and UDr
q , the main ingredient in [28]

is the construction of a FRT presentation for Uq(ĝl2), which can be interpreted as a central 
extension of Uq(ŝl2) [35]. In this approach, the defining relations are written in the form of a 
Yang-Baxter algebra. Namely, two quantum Lax operators L±(z) which entries are generating 
functions with coefficients in two different subalgebras of UDr

q are introduced. They satisfy cer-
tain functional relations (the so-called ‘RTT’ relations) characterized by an R-matrix. The explicit 
isomomorphism URS

q → UDr
q is obtained as a corollary of the FRT presentation of Uq(ĝl2).

In these works, Damiani’s root vectors (or equivalently the Drinfeld generators), associated 
PBW bases and the Yang-Baxter algebra play a central role. Later on, these objects found several 
applications. For instance, the universal R-matrix is built from elements in PBW bases of Uq(ŝl2)

subalgebras [26]. Also, irreducible finite dimensional representations of Uq(ŝl2) are classified 
using UDr

q [21]. A natural question is the following: for Uq(ŝl2), is it possible to construct a 
different ‘triplet’ of mutually isomorphic algebras other than UDJ

q (or UIT
q ), UDr

q and URS
q ?

Recent works by Paul Terwilliger bring a new light on this subject, and give a starting point 
for a precise answer. Indeed, in [61,62] Terwilliger investigated the description of PBW bases of 
Uq(ŝl2) from the perspective of combinatorics, using a q-shuffle algebra V introduced earlier by 
Rosso [53]. Remarkably, using an injective algebra homomorphism UDJ,+

q → V a closed form 
for the images in V of Damiani’s root vectors of UDJ,+

q - the basic building elements of Dami-
ani’s PBW basis - was obtained in terms of Catalan words [61, Theorem 1.7]. Then, in [62], he 
introduced a set of elements {W−k, Wk+1, Gk+1, G̃k+1|k ∈ N} into the q-shuffle algebra named 
2
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as ‘alternating’ words. It was shown that the alternating words generate an algebra denoted U
[62, Section 5] for which a PBW basis was constructed [62, Theorem 10.1,10.2]. Considering 
the preimage in UDJ,+

q of the alternating words of U , a new PBW in basis - called alternating 
- for UDJ,+

q arises, besides Damiani’s one [25, Theorem 2]. A comparison between the images 
in V of both PBW bases was done, see [62, Section 11]. More recently [63], a central extension 
of the preimage of the algebra U arising from the exchange relations between alternating words, 
denoted U+

q , has been introduced. Its generators are in bijection with ‘alternating’ generators 

recursively built in UDJ,+
q and form an ‘alternating’ PBW basis for the new algebra U+

q [63, 
Section 10].

In this paper, we investigate further these new ‘alternating’ algebras motivated by the con-
struction of a new triplet of presentations for Uq(ŝl2). To this aim, following [63] we introduce 
the algebra Āq with generators {W−k, Wk+1, Gk+1, G̃k+1|k ∈ N} - see Definition 2.1. Note 
that to enable a non-trivial specialization q → 1, the definitions of Āq and U+

q slightly dif-

fer. However, for q �= 1 Āq and U+
q are essentially the same object. Also, the center Z of 

Āq is introduced. Adapting the results of [63], the ‘alternating’ PBW basis of Āq is given, 
see Theorem 2.12. Following [62], similarly we introduce the algebra Āq with generators 
{W−k, Wk+1, Gk+1, G̃k+1|k ∈N}. One has:

Āq
∼= Āq ⊗Z . (1.1)

Let 〈W0, W1〉 denote the subalgebra of Āq generated by W0, W1. The simplest relations satisfied 
by W0, W1 are the q-Serre relations (2.44), (2.45), of UDJ,+

q - see (A.1). Actually, according to 
[62], Āq

∼= U
DJ,+
q

∼= U
DJ,−
q . So, having in mind the isomorphic pair consisting of UDJ,+

q (or 
U

DJ,−
q ) and certain subalgebras of UDr

q [18,19], an ‘alternating’ isomorphic pair is provided by 
〈W0, W1〉 and Āq . Furthermore, by analogy with [18], the explicit isomorphism Āq → 〈W0, W1〉
follows from Lemma 2.9 using a map γ : Āq → Āq . Details are reviewed in Section 2. For 
completeness, the specialization q → 1 of Āq , denoted Ā, is also introduced.

The main result of this paper is a presentation for Āq which sits into the family of Freidel-
Maillet type algebras1 [33] for generic q , see Theorem 3.1. For the specialization Ā, a FRT 
type presentation is obtained. It sits into the family of non-standard Yang-Baxter algebras, see 
Proposition 3.6. This is done in Section 3. This Freidel-Maillet type presentation of Āq gives an 
efficient framework for studying in more details this algebra and clarifying its relation with UDJ

q

(or UIT
q ), UDr

q and URS
q . The following results are obtained:

(a) Tensor product realizations of Āq in Uq(sl2)
⊗N are explicitly constructed. They generate 

certains quotients of Āq , characterized by a set of linear relations satisfied by the fundamental 
generators. See Proposition 4.5. This is done in Section 4.

(b) Explicit isomorphisms between Āq and certain ‘alternating’ subalgebras of Uq(ĝl2), de-
noted Uq(ĝl2)

	,+ and Uq(ĝl2)

,−, are obtained. See Propositions 5.18, 5.20. The main ingredient 

in the analysis is the use of the Ding-Frenkel isomorphism [28]. As a corollary, similar results for 
Āq and the ‘alternating’ subalgebras of Uq(ŝl2) follow. Also, it is shown that Āq can be regarded 
as a left (or right) comodule of alternating subalgebras of Uq(ĝl2). An example of coaction map 
is given in Lemma 5.25. See Example 5.26.

1 See also [51,2,48].
3
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(c) The explicit isomorphism ι : 〈W0, W1〉 → U
DJ,+
q given by (2.46) is extended to the whole 

set of generators of Āq : a set of functional equations that determine the explicit relation between 
Damiani’s root vectors {Enδ+αi

, Enδ|i = 0, 1} ∈ U
DJ,+
q (or {Fnδ+αi

, Fnδ|i = 0, 1} ∈ U
DJ,−
q ) and 

the generators of Āq is derived, see Proposition 5.27.
The results (b) and (c) are given in Section 5. All together, if we denote ĀFM

q as the Freidel-

Maillet type presentation of Āq , we get the isomorphic ‘triplet’

UDJ,+
q

∼= Āq
∼= ĀFM

q .

In the last section, we point out a straightforward application of [62,63] combined with the 
results of Section 5. One has the ‘alternating’ tensor product decomposition of Uq(ŝl2):

Uq(ŝl2) ∼= Ā	
q ⊗ UDJ,0

q ⊗ Ā

q , (1.2)

where Ā	(
)
q (∼= U

DJ,+(−)
q ) are certain alternating subalgebras of UDr

q . The corresponding ‘alter-
nating’ PBW basis is given in Theorem 6.1.

Let us conclude this introduction with some additional comments. In the literature, it is known 
that solutions of the Yang-Baxter equation find many applications in the theory of quantum in-
tegrable systems such as vertex models, spin chains,... They can be obtained by specializing 
solutions of the universal Yang-Baxter equation, the so-called universal R-matrices. As already 
mentioned, the construction of a universal R-matrix for Uq(ŝl2) (and similarly for higher rank 
cases) essentially relies on the tensor product decomposition

Uq(ŝl2) ∼= UDJ,+
q ⊗ UDJ,0

q ⊗ UDJ,−
q , (1.3)

and the use of root vectors [46,45,26,35,42,43]. Now, the ‘alternating’ tensor product decom-
position (1.2) rises the question of an ‘alternating’ universal K-matrix built from a product of 
solutions to a universal Freidel-Maillet type equation. See [24,52,16,55,1] for related problems. 
In view of the importance of the R-matrix in mathematical physics, it looks as an interesting 
problem that might be considered elsewhere.

It should be mentioned that the analysis here presented is also motivated by the subject of 
the q-Onsager algebra Oq [59,4] and its applications to quantum integrable systems. See e.g. 
[10,11,5,15,66,67,13]. The original presentation of Oq is given in terms of generators A, B sat-
isfying a pair of q-Dolan-Grady relations. The algebra Āq studied in this paper can be viewed 
as a limiting case of the algebra Aq introduced in [14,6]. For Aq , the original presentation [8]
takes the form of a reflection algebra introduced by Sklyanin [57], see [14]. Let us denote this 
presentation by AS

q . Using AS
q , it has been conjectured that Aq is a central extension of Oq . 

Initial supporting evidences were based on a comparison between the ‘zig-zag’ basis of Oq [39]
and the one conjectured for Aq [6, Conjecture 1]. Other evidences are also given in [64]. More 
recently, the conjecture is finally proved [65]. So, using a surjective homomorphism Aq → Oq , 
one gets a triplet of isomorphic algebras Oq

∼= Aq
∼= AS

q . Independently, more recently the analog 
of Lusztig’s automorphism and Damiani’s root vectors denoted Bnδ+α0, Bnδ+α1 , Bnδ for the q-
Onsager algebra have been obtained [12] (see also [60]). In terms of the root vectors, a PBW basis 
has been constructed. In addition, a Drinfeld type presentation is now identified [50]. However, at 
the moment the precise relation between the presentation of Oq given in [12] or its Drinfeld type 
presentation denoted ODr

q [50] and Aq is yet to be clarified. To prove Oq
∼= Aq

∼= AS
q provides an 

‘alternating’ triplet of presentation for the q-Onsager algebra and ODr
q

∼= Aq , the analysis here 
presented sketches the strategy that may be considered elsewhere.
4
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Clearly, alternating subalgebras for higher rank affine Lie algebras and corresponding gener-
alizations of (1.2) may be considered as well following a similar approach.

Notation 1.1. Recall the natural numbers N = {0, 1, 2, · · · } and integers Z = {0, ±1, ±2, · · · }. 
Let K denote an algebraically closed field of characteristic 0. K(q) denotes the field of rational 
functions in an indeterminate q . The q-commutator 

[
X, Y

]
q

= qXY −q−1YX is introduced. We 

denote [x] = (qx − q−x)/(q − q−1).

Notation 1.2. UDJ
q is the Drinfeld-Jimbo presentation of Uq(ŝl2). U

DJ,+
q , UDJ,0

q , UDJ,−
q are 

the subalgebras of UDJ
q generated respectively by {E0, E1}, {K0, K1}, {F0, F1}. We also 

introduce the subalgebras U
DJ,+,0
q (resp. U

DJ,−,0
q ) generated by {E0, E1, K0, K1} (resp. 

{F0, F1, K0, K1}).

2. The algebra Āq and its specialization q → 1

In this section, the algebra Āq and its specialization q → 1 denoted Ā are introduced. The 
algebra Āq is nothing but a slight modification of the algebra U+

q introduced in [63, Section 
3]. Compared with U+

q , the modification here considered aims to ensure that the specialization 
q → 1 of Āq is non-trivial. Also, the parameter ρ̄ is introduced for normalization convenience. 
So, part of the material in this section is mainly adapted from [63]. Besides, Lemma 2.3 and 
Lemma 2.4 solve [62, Problem 13.1]. At the end of this section, we prepare the discussion for 
Sections 3 and 5.

2.1. Defining relations

We refer the reader to [63, Definition 3.1] for the definition of U+
q . We now introduce the 

algebra Āq .

Definition 2.1. Let ρ̄ ∈K(q). Āq is the associative algebra over K(q) generated by {W−k, Wk+1,

Gk+1, G̃k+1|k ∈N} subject to the following relations:

[W0,Wk+1] = [W−k,W1] = (G̃k+1 − Gk+1)

q + q−1 , (2.1)

[W0,Gk+1]q = [G̃k+1,W0]q = ρ̄W−k−1, (2.2)

[Gk+1,W1]q = [W1, G̃k+1]q = ρ̄Wk+2, (2.3)

[W−k,W−�] = 0, [Wk+1,W�+1] = 0, (2.4)

[W−k,W�+1] + [Wk+1,W−�] = 0, (2.5)

[W−k,G�+1] + [Gk+1,W−�] = 0, (2.6)

[W−k, G̃�+1] + [G̃k+1,W−�] = 0, (2.7)

[Wk+1,G�+1] + [Gk+1,W�+1] = 0, (2.8)

[Wk+1, G̃�+1] + [G̃k+1,W�+1] = 0, (2.9)

[Gk+1,G�+1] = 0, [G̃k+1, G̃�+1] = 0, (2.10)

[G̃k+1,G�+1] + [Gk+1, G̃�+1] = 0 . (2.11)
5
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Remark 2.2. The defining relations of Āq coincide with the defining relations (30)-(40) in [63]
of the algebra U+

q for the identification:

W−k �→ W−k , Wk+1 �→ Wk+1 , (2.12)

Gk+1 �→ q−1(q2 − q−2)Gk+1 , G̃k+1 �→ q−1(q2 − q−2)G̃k+1 , (2.13)

ρ̄ �→ q−1(q2 − q−2)(q − q−1) . (2.14)

Note that there exists an automorphism σ and an antiautomorphism S (for U+
q , see [63, 

Lemma 3.9]) such that:

σ : W−k �→ Wk+1 , Wk+1 �→ W−k , Gk+1 �→ G̃k+1 , G̃k+1 �→ Gk+1 , (2.15)

S : W−k �→ W−k , Wk+1 �→ Wk+1 , Gk+1 �→ G̃k+1 , G̃k+1 �→ Gk+1 . (2.16)

For completeness (see [63, Note 2.6]) and the discussion in the next section, a set of additional 
relations can be derived from the defining relations (2.1)-(2.11), given in Lemmas 2.3, 2.4 below.

Lemma 2.3. In Āq , the following relations hold:

[W−k,G�]q = [W−�,Gk]q, [Gk,W�+1]q = [G�,Wk+1]q, (2.17)

[G̃k,W−�]q = [G̃�,W−k]q, [W�+1, G̃k]q = [Wk+1, G̃�]q . (2.18)

Proof. Consider the first equation in (2.17). For convenience, substitute � → � + 1 and multiply 
by ρ̄ the equality. From the r.h.s. of the resulting equation, using (2.2) one has:

[ ρ̄W−�−1︸ ︷︷ ︸
=[W0,G�+1]q

,Gk]q = q2W0 G�+1Gk︸ ︷︷ ︸
= GkG�+1

−G�+1W0Gk − GkW0G�+1

+ q−2 GkG�+1︸ ︷︷ ︸
=G�+1Gk

W0 by (2.10)

= q2W0GkG�+1︸ ︷︷ ︸
= q[W0,Gk]qG�+1+GkW0G�+1

− G�+1W0Gk︸ ︷︷ ︸
= q−1G�+1[W0,Gk]q+q−2G�+1GkW0

− GkW0G�+1 + q−2G�+1GkW0

= [[W0,Gk]q,G�+1]q
= ρ̄[W−k,G�+1]q ,

which coincides with the l.h.s. The three other equations are shown similarly. �
Lemma 2.4. In Āq , the following relations hold:

[Gk, G̃�+1] − [G�, G̃k+1] = ρ̄(q + q−1)
([W−�,Wk+1]q − [W−k,W�+1]q

)
, (2.19)

[G̃k,G�+1] − [G̃�,Gk+1] = ρ̄(q + q−1)
([W�+1,W−k]q − [Wk+1,W−�]q

)
, (2.20)

[Gk+1, G̃�+1]q − [G�+1, G̃k+1]q = ρ̄(q + q−1) ([W−�,Wk+2] − [W−k,W�+2]) , (2.21)

[G̃k+1,G�+1]q − [G̃�+1,Gk+1]q = ρ̄(q + q−1) ([W�+1,W−k−1] − [Wk+1,W−�−1]) .

(2.22)
6
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Proof. Consider (2.19). One has:

[Gk, G̃�+1] = [Gk, G̃�+1 − G�+1] = (q + q−1)[Gk, [W0,W�+1]] by (2.1)

= (q + q−1)

(
GkW0︸ ︷︷ ︸

= q2W0Gk−ρ̄qW−k

W�+1 − GkW�+1W0 − W0W�+1Gk

+ W�+1 W0Gk︸ ︷︷ ︸
= q−2GkW0+ρ̄q−1W−k

)

= (q + q−1)
([W0, [Gk,W�+1]q ]q − ρ̄[W−k,W�+1]q

)
.

It follows:

[Gk, G̃�+1] − [G�, G̃k+1] = ρ̄(q + q−1)
([W−�,Wk+1]q − [W−k,W�+1]q

)
+ (q + q−1)[W0, [Gk,W�+1]q − [G�,Wk+1]q︸ ︷︷ ︸

=0 by (2.17)

]q

which reduces to (2.19). One shows (2.20) similarly.
Consider (2.22). One has:

ρ̄[W�+1,W−k−1] = [W�+1, [W0,Gk+1]q ]

= qW0[W�+1,Gk+1] + q−1[Gk+1,W�+1]W0 + q−1

(q + q−1)
Gk+1G̃�+1

− q

(q + q−1)
G̃�+1Gk+1 + (q − q−1)

(q + q−1)
Gk+1G�+1 ,

where (2.2), (2.1) and (2.10) have been used successively. Using (2.8) it follows:

ρ̄ ([W�+1,W−k−1] − [Wk+1,W−�−1]) = q−1

(q + q−1)

(
Gk+1G̃�+1 − G�+1G̃k+1

)
(2.23)

− q

(q + q−1)

(
G̃�+1Gk+1 − G̃k+1G�+1

)
.

From (2.11), note that:

G̃�+1Gk+1 − G̃k+1G�+1 = Gk+1G̃�+1 − G�+1G̃k+1

which implies:

(q − q−1)
(

G�+1G̃k+1 − Gk+1G̃�+1

)
= [G̃k+1,G�+1]q − [G̃�+1,Gk+1]q .

Using this last equality in the r.h.s. of (2.23), eq. (2.22) follows. The other relation (2.21) is 
shown similarly. �
Remark 2.5. The relations (41)-(46) in [63] follow from Lemmas 2.3, 2.4, using the identifica-
tion (2.12)-(2.14).
7
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2.2. The center Z

For the algebra U+
q , central elements denoted Z∨

n+1 are known [63, eq. (52) and Lemma 
5.2] (see also equivalent expressions [63, Corollary 8.4]). With minor modifications using the 
correspondence (2.12)-(2.14), central elements in Āq are obtained in a straightforward manner. 
Thus, we omit the proof of the following lemma and refer the reader to [63, Section 13] for 
details.

Lemma 2.6. For n ∈N , the element

Yn+1 = Gn+1q
−n−1 + G̃n+1q

n+1 − (q2 − q−2)

n∑
k=0

q−n+2kW−kWn+1−k

+ (q − q−1)

ρ̄

n−1∑
k=0

q−n+1+2kG̃k+1Gn−k (2.24)

is central in Āq .

Remark 2.7. Central elements for the algebra U+
q [63, Lemma 5.2, Corollary 8.4] are obtained 

using the identification (2.12)-(2.14):

Yn+1 �→ q−1(q2 − q−2)Z∨
n+1 . (2.25)

Note that the central elements are fixed under the action of (anti)automorphisms of Āq . Ap-
plying σ and S according to (2.15), (2.16), three other expressions for Yn+1 follow (for U+

q , see 
[63, Corollary 8.4]). In particular, for further convenience, define the combination:

	n+1 = 1

qn+1 + q−n−1 (Yn+1 + σ(Yn+1)) . (2.26)

Using (2.5), one has S(	n+1) = 	n+1. Thus, 	n+1 is invariant under the action of σ , S.

Example 2.8.

	1 = G1 + G̃1 − (q − q−1)
(
W0W1 + W1W0

)
, (2.27)

	2 = G2 + G̃2 − (q2 − q−2)

(q2 + q−2)
(q−1W0W2 + qW2W0 + q−1W1W−1 + qW−1W1) (2.28)

+ (q − q−1)

(q2 + q−2)

( G̃1G1 + G1G̃1

ρ̄

)
,

	3 = G3 + G̃3 − (q − q−1)

(q2 + q−2 − 1)
(q−2W0W3 + q2W3W0 + q−2W1W−2 + q2W−2W1)

− (q − q−1)

(q2 + q−2 − 1)
(W2W−1 + W−1W2)

+ (q − q−1)

(q2 + q−2 − 1)

( G̃2G1 + G2G̃1

ρ̄

)
. (2.29)

By construction, the elements 	n+1 are central in Āq . Let Z denote the subalgebra of Āq

generated by {	n+1}n∈N . By [63, Proposition 6.2], Z is the center of Āq .
8
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2.3. Generators and recursive relations

Following [63], combining the defining relations (2.1)-(2.3) together with (2.26) it follows:

Lemma 2.9. In Āq , the following recursive relations hold:

Gn+1 = (q2 − q−2)

2(qn+1 + q−n−1)

n∑
k=0

q−n+2k (W−kWn+1−k + Wk+1Wk−n) (2.30)

− (q − q−1)

2ρ̄(qn+1 + q−n−1)

n−1∑
k=0

q−n+1+2k
(

Gk+1G̃n−k + G̃k+1Gn−k

)
+ (q + q−1)

2

[
Wn+1,W0

] + 1

2
	n+1 ,

G̃n+1 = Gn+1 + (q + q−1)
[
W0,Wn+1

]
, (2.31)

W−n−1 = 1

ρ̄

[
W0,Gn+1

]
q

, (2.32)

Wn+2 = 1

ρ̄

[
Gn+1,W1

]
q

. (2.33)

Iterating the recursive formulae (2.30), (2.31), (2.32), (2.33), given n fixed, the corresponding 
generator is a polynomial in W0, W1 and {	k+1|k = 0, ..., n}.

Example 2.10. The first generators read:

G1 = qW1W0 − q−1W0W1 + 1

2
	1 , (2.34)

W−1 = 1

ρ̄

(
(q2 + q−2)W0W1W0 − W2

0W1 − W1W2
0

)
+ 1

2

	1(q − q−1)

ρ̄
W0 , (2.35)

G2 = 1

ρ̄(q2 + q−2)

(
(q−3 + q−1)W2

0W1
2 − (q3 + q)W1

2W2
0 (2.36)

+ (q−3 − q3)(W0W1
2W0 + W1W2

0W1)

− (q−5 + q−3 + 2q−1)W0W1W0W1 + (q5 + q3 + 2q)W1W0W1W0

)
+ 1

2

	1(q − q−1)

ρ̄

(
qW1W0 − q−1W0W1

) − 1

4

	2
1(q − q−1)

ρ̄(q2 + q−2)
+ 1

2
	2 .

Expressions of G̃1, W2, G̃2 are obtained using the automorphism σ .

Corollary 2.11. The algebra Āq is generated by W0, W1 and Z .

2.4. PBW basis

Following [63, Lemma 3.10], the algebra Āq has an N2-grading. Define deg : Āq →N ×N . 
For the alternating generators one has:
9
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deg(W−k) = (k + 1, k) , deg(Wk+1) = (k, k + 1) ,

deg(Gk+1) = deg(G̃k+1) = (k + 1, k + 1) .

Note that the expressions in Lemma 2.9 are homogeneous with respect to the grading assignment. 
The dimension di,j of the vector space spanned by linearly independent vectors of the same 
degree (i, j) is obtained from the formal power series in the indeterminates λ, μ:

�(λ,μ) = H(λ,μ)Z(λ,μ) ,

=
∑

(i,j)∈N
di,j λ

iμj for |λ|, |μ| < 1

with

H(λ,μ) =
∞∏

�=1

1

1 − λ�μ�−1

1

1 − λ�−1μ�

1

1 − λ�μ�
, Z(λ,μ) =

∞∏
�=1

1

1 − λ�μ�
.

In [63, Section 10], a PBW basis for U+
q is obtained. The proof solely uses the defining 

relations corresponding to (2.1)-(2.11). The following theorem is a straightforward adaptation of 
[63, Theorem 10.2].

Theorem 2.12. (see [63]) A PBW basis for Āq is obtained by its alternating generators

{W−k}k∈N , {G�+1}�∈N , {G̃m+1}m∈N , {Wn+1}n∈N
in any linear order < that satisfies

W−k < G�+1 < G̃m+1 < Wn+1 , k, �,m,n ∈N .

Note that combining σ , S given by (2.15), (2.16), other PBW bases can be obtained.

2.5. The algebra Āq

By construction [63], the algebra U+
q studied in [62] is a quotient of the algebra U+

q . This quo-
tient is characterized by the fact that the images of all the central elements Z∨

n of [63, Definition 
5.1] in U+

q are vanishing, see [63, Lemma 2.8]. Recall (2.25), (2.26).

Definition 2.13. The algebra Āq is defined as the quotient of the algebra Āq by the ideal gen-
erated from the relations {	k+1 = 0|∀k ∈ N}. The generators are {W−k, Wk+1, Gk+1, G̃k+1|k ∈
N}.

Following [63, Lemma 3.3], let us denote by γ : Āq → Aq the corresponding surjective ho-
momorphism. It is such that:

γ : W−k �→ W−k , Wk+1 �→ Wk+1 , Gk+1 �→ Gk+1 , G̃k+1 �→ G̃n+1 . (2.37)

So, they can be obtained as polynomials in W0, W1 applying γ to the expressions given in 
Lemma 2.9, where γ (	k+1) = 0 for all k.

In [62,63], the embedding of UDJ,+
q into a q-shuflle algebra leads to Āq , providing an ‘alter-

nating’ presentation for UDJ,+
q . Adapting this result to our conventions, it follows:
10
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Proposition 2.14. (see ([62,63]) Āq
∼= U

DJ,+
q

∼= U
DJ,−
q .

In [62, Section 10], an alternating’ PBW basis for UDJ,+
q is obtained. We refer to [62, Theo-

rem 10.1].

Theorem 2.15. (see [62]) A PBW basis for Āq is obtained by its alternating generators

{W−k}k∈N , {G�+1}�∈N , {Wn+1}n∈N
in any linear order < that satisfies

W−k < G�+1 < Wn+1 , k, �, n ∈ N ;
Wk+1 < G�+1 < W−n , k, �, n ∈ N .

Using automorphisms of Āq , other PBW bases can be obtained.

2.6. The specialization q → 1 and the algebra Ā

For the specialization q → 1, according to the identification (2.13), (2.14), the defining re-
lations [63, Definition 3.1] of the algebra U+

q drastically simplify to those of a commutative 
algebra. Instead, the specialization q → 1 of the defining relations of the algebra Āq lead to an 
associative algebra called Ā, as explained below. To define properly the specialization, we follow 
the method described in e.g. [47, Section 10] (see also references therein).

Let A = K
[
q
]
q−1 (= S−1K

[
q
]

where S = K
[
q
]\(q − 1)). Let UA be the A-subalgebra of 

Āq generated by {W−k, Wk+1, Gk+1, G̃k+1|k ∈N}. Note that contrary to Uq(ŝl2) [22, page 289], 
according to the structure of the defining relations (2.1)-(2.11) for the specialization q → 1 of 
Āq there is no need to introduce other generators. One has the natural isomorphism of A-algebras 
UA ⊗A K(q) → Āq . Consider K as an A-module via evaluation at q = 1. The algebra

U1 = UA ⊗A K

is the specialization of Āq at q = 1. Similarly, one defines ZA, and Z1 = ZA ⊗A K.

Definition 2.16. Ā is the associative algebra over K with unit and generators {w−k, wk+1, gk+1,

g̃k+1|k ∈ N} satisfying the following relations:[
w−�,wk+1

] = 1

2
(g̃k+�+1 − gk+�+1) , (2.38)[

g̃k+1,w−l

] = [
w−l ,gk+1

] = 16w−k−�−1 , (2.39)[
w�+1, g̃k+1

] = [
gk+1,w�+1

] = 16w�+k+2 , (2.40)[
w−k,w−�

] = 0 ,
[
wk+1,w�+1

] = 0 ,
[
gk+1,g�+1

] = 0 ,
[
g̃k+1, g̃�+1

] = 0 . (2.41)

Remark 2.17. An overall parameter ρ̄c ∈ K∗ may be introduced in the r.h.s. of (2.39), (2.40).

Proposition 2.18. There exists an algebra isomorphism U1 → Ā such that:

W−k �→ w−k , Wk+1 �→ wk+1 , Gk+1 �→ gk+1 ,

G̃k+1 �→ g̃k+1 , ρ̄ �→ 16 , q �→ 1 . (2.42)
11
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Proof. First, we show how to obtain the defining relations for Ā from those of Āq at q = 1
and ρ̄ = 16. From eqs. (2.4), (2.10), one immediately obtains the four equations in (2.41). From 
(2.26), one gets

δk+1 = gk+1 + g̃k+1 , (2.43)

where {δk}k∈N are central with respect to the algebra generated by {w−k, wk+1, gk+1, ̃gk+1|k ∈
N}. This implies the first equalities in (2.39), (2.40). The second equalities in (2.39), (2.40) are 
obtained from elementary computation using the Jacobi identity together with (2.5)-(2.10) and 
(2.1)-(2.4). For instance:[

w−1,wk+1
] = 1

16

[[
w0,g1

]
,wk+1

] = − 1

16

[ [
g1,wk+1

]︸ ︷︷ ︸
= [

gk+1,w0
]=16wk+2

,w0
]

− 1

16

[ [
wk+1,w0

]︸ ︷︷ ︸
= − 1

2 (g̃k+1−gk+1)

,g1
] = [

w0,wk+2
]

= 1

2
(g̃k+2 − gk+2) .

By induction, it follows:[
w−�,wk+1

] = [
w−�+1,wk+2

] = · · · = [
w0,wk+�+1

] = 1

2
(g̃k+�+1 − gk+�+1) .

Similarly, by induction one easily finds:[
g̃k+1,w−�

] = [
g̃k+2,w−�+1

] = · · · = [
g̃k+�+1,w0

] = 16w−k−�−1 ,[
w�+1, g̃k+1

] = [
w�, g̃k+2

] = · · · = [
w1, g̃k+�+1

] = 16w�+k+2 .

Thus, the defining relations (2.38)-(2.41) of Ā are recovered from the specialization q → 1, ρ̄ →
16 of the defining relations (2.1)-(2.11) of Āq . The converse statement is easily checked. �

In the following, we call Ā the specialization q → 1 of Āq .

2.7. Relation with UDJ,±
q and specialization

The following comments give some motivation for Sections 3 and 5. We first describe the 
relation between Āq and Uq(ŝl2) with respect to the Drinfeld-Jimbo presentation, adapting di-
rectly the results of [63]. On one hand, recall that the defining relations for UDJ,+

q , UDJ,−
q are 

respectively given by (A.1), (A.2). On the other hand, inserting (2.35) in (2.4) for k = 0, � = 1
one finds that W0, W1 satisfy the q-Serre relations:

[W0, [W0, [W0,W1]q ]q−1 ] = 0 , (2.44)

[W1, [W1, [W1,W0]q ]q−1 ] = 0 . (2.45)

Let 〈W0, W1〉 denote the subalgebra of Āq generated by W0, W1. According to [63, Proposition 
6.4] combined with Remark 2.2, it follows that the map 〈W0, W1〉 → U

DJ,+
q :

W0 �→ E1 , W1 �→ E0 (2.46)
12
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is an algebra isomorphism. Obviously, a similar statement holds for UDJ,−
q . Let Z+ denote the 

image of Z by the map (2.46), and similarly Z− the image associated with the negative part. In 
both cases, it is a polynomial algebra [63, Section 4]. Adapting [63, Proposition 6.5] and using 
Remark 2.2, by Corollary 2.11 one concludes:

Āq
∼= UDJ,+

q ⊗Z+ ∼= UDJ,−
q ⊗Z− . (2.47)

For this reason, Āq is called the central extension of UDJ,+
q (or UDJ,−

q ).
Let us also add the following comment. In view of the isomorphism (2.46), Āq can be 

equipped with a comodule structure [22]. For instance, examples of left (or right) coaction maps 
can be considered for the subalgebra 〈W0, W1〉. Define the ‘left’ coaction such that

Āq → UDJ,+,0
q ⊗ Āq . (2.48)

Consider its restriction to 〈W0, W1〉 ∼= U
DJ,+
q . As an example of coaction, we may consider:

W0 → E0 ⊗ 1 + K0 ⊗ W0 , (2.49)

W1 → E1 ⊗ 1 + K1 ⊗ W1 . (2.50)

A ‘right’ coaction could be introduced similarly, as well as a coaction Āq → U
DJ,−,0
q ⊗ Āq . In 

Section 5, a comodule algebra homomorphism δ is obtained, see Lemma 5.25.

The relation between Ā and the Lie algebra ŝl2
SC

can be considered through specialization. 
Recall the isomorphism UA ⊗A K(q) → Āq and similarly for 〈W0, W1〉 and Z . One has the 
injection 〈W0, W1〉A ⊗A ZA → UA by [47, Lemma 10.6]. By Lemma 2.9, the latter map is also 
surjective. Using the fact that 〈W0, W1〉A and ZA are free A-modules, one calculates:

U1 = UA ⊗A K= (〈W0,W1〉A ⊗A ZA) ⊗A K

= (〈W0,W1〉A ⊗A K) ⊗K (ZA ⊗A K) .

Let 〈w0, w1〉 denote the subalgebra of Ā. By Proposition 2.18 one has 〈w0, w1〉 ∼= 〈W0, W1〉A ⊗A

K. The generators w0, w1 satisfy the Serre relations (i.e. (2.44)-(2.45) for q = 1). Recall the 
Lie algebra ŝl2

SC
in the Serre-Chevalley presentation of ŝl2 with defining relations reported in 

Appendix A. Denote ŝl2
SC,+

(resp. ŝl2
SC,−

) the subalgebra generated by {e0, e1} (resp. {f0, f1}). 
Combining the isomorphism (2.46) and the well-known result about the specialization q → 1 of 
U

DJ,+
q given by U(ŝl2

SC,+
), it follows that the map 〈w0, w1〉 → U(ŝl2

SC,+
) is an isomorphism. 

Also, Z is a polynomial ring in the {	k+1}k∈N . Z1 = ZA ⊗A K = U(z) where z is the linear 
span of {δk+1}k∈N , see (2.43). Denote z± the images of z in ŝl2

SC,±
. It follows:

Ā ∼= U
(
ŝl2

SC,+ ⊕ Z+) ∼= U
(
ŝl2

SC,− ⊕ Z−)
. (2.51)

The structure of the isomorphisms (2.47) and (2.51) suggests a close relationship between Āq

(resp. Ā) and certain subalgebras of the quantum universal enveloping algebra Uq(ĝl2) (resp. its 
specialization U(ĝl2)). To clarify this relation in Section 5, a new presentation for Āq (and Ā) is 
given in the next section.

3. A Freidel-Maillet type presentation for Āq and its specialization q → 1

In this section, it is shown that the algebra Āq introduced in Definition 2.1 admits a pre-
sentation in the form of a K-matrix satisfying the defining relations of a quadratic algebra 
13
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within the family introduced by Freidel and Maillet [33], see Theorem 3.1. In this framework, 
by Theorem 3.1 and Proposition 3.3, several results obtained in [63] for U+

q are derived in a 
straightforward manner. For the specialization q → 1, a presentation of the Lie algebra Ā - see 
Definition 2.16 - is obtained in terms of a non-standard classical Yang-Baxter algebra, see Propo-
sition 3.6.

3.1. A quadratic algebra of Freidel-Maillet type

Let R(u) be the intertwining operator (called quantum R-matrix) between the tensor product 
of two fundamental representations V1 ⊗V2 for V = C2 associated with the algebra Uq(ŝl2). The 
element R(u) depends on the deformation parameter q and is defined by [17]

R(u) =

⎛⎜⎜⎝
uq − u−1q−1 0 0 0

0 u − u−1 q − q−1 0
0 q − q−1 u − u−1 0
0 0 0 uq − u−1q−1

⎞⎟⎟⎠ , (3.1)

where u is an indeterminate, called ‘spectral parameter’ in the literature on integrable systems. It 
is known that R(u) satisfies the quantum Yang-Baxter equation in the space V1 ⊗V2 ⊗V3. Using 
the standard notation

Rij (u) ∈ End(Vi ⊗ Vj ), (3.2)

the Yang-Baxter equation reads

R12(u/v)R13(u)R23(v) = R23(v)R13(u)R12(u/v). (3.3)

As usual, introduce the permutation operator P = R(1)/(q − q−1). Here, note that R12(u) =
PR12(u)P = R21(u).

We now show that the algebra Āq is isomorphic to a quadratic algebra of Freidel-Maillet 
type [33], which can be viewed as a limiting case of the standard quantum reflection equation 
(also called the boundary quantum Yang-Baxter equation) introduced in the context of boundary 
quantum inverse scattering theory [23,57]. In addition to (3.1), define:

R(0) = diag(1, q−1, q−1,1) . (3.4)

Define the generating functions:

W+(u) =
∑
k∈N

W−kU
−k−1 , W−(u) =

∑
k∈N

Wk+1U
−k−1 , (3.5)

G+(u) =
∑
k∈N

Gk+1U
−k−1 , G−(u) =

∑
k∈N

G̃k+1U
−k−1 , (3.6)

where the shorthand notation U = qu2/(q + q−1) is used. Let k± be non-zero scalars in K(q)

such that

ρ̄ = k+k−(q + q−1)2 . (3.7)

Theorem 3.1. The algebra Āq has a presentation of Freidel-Maillet type. Let K(u) be a square 
matrix such that
14
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K(u) =
⎛⎝ uqW+(u) 1

k−(q+q−1)
G+(u) + k+(q+q−1)

(q−q−1)

1
k+(q+q−1)

G−(u) + k−(q+q−1)

(q−q−1)
uqW−(u)

⎞⎠ (3.8)

with (3.5)-(3.6). The defining relations are given by:

R(u/v) (K(u) ⊗ II ) R(0) (II ⊗ K(v)) = (II ⊗ K(v)) R(0) (K(u) ⊗ II ) R(u/v) . (3.9)

Proof. Inserting (3.8) into (3.9), the system of (sixteen in total) independent equations for the 
entries (K(u))ij coming from the Freidel-Maillet type quadratic algebra (3.9) leads to a system of 
commutation relations between the generating functions W±(u), G±(u). Using the identification 
(3.7), after simplifications these commutation relations read:[

W±(u),W±(v)
] = 0 , (3.10)[

W+(u),W−(v)
] + [

W−(u),W+(v)
] = 0 , (3.11)

(U − V )
[
W±(u),W∓(v)

] = (q − q−1)

ρ̄(q + q−1)
(G±(u)G∓(v) − G±(v)G∓(u)) (3.12)

+ 1

(q + q−1)

(
G±(u) − G∓(u) + G∓(v) − G±(v)

)
,

(U − V )
[
G±(u),G∓(v)

] = ρ̄(q2 − q−2)UV
(
W±(u)W∓(v) −W±(v)W∓(u)

)
, (3.13)

U
[
G∓(v),W±(u)

]
q

− V
[
G∓(u),W±(v)

]
q

+ ρ̄
(
UW±(u) − VW±(v)

) = 0 , (3.14)

U
[
W∓(u),G∓(v)

]
q

− V
[
W∓(v),G∓(u)

]
q

+ ρ̄
(
UW∓(u) − VW∓(v)

) = 0 , (3.15)[
Gε(u),W±(v)

] + [
W±(u),Gε(v)

] = 0 , ∀ε = ± , (3.16)[
G±(u),G±(v)

] = 0 , (3.17)[
G+(u),G−(v)

] + [
G−(u),G+(v)

] = 0 . (3.18)

The commutation relations among the generators of Āq are now extracted. Inserting (3.5), (3.6)
into (3.10)-(3.18), expanding and identifying terms of same order in U−kV −l one finds equiva-
lently the set of defining relations (2.1)-(2.11) together with the set of relations (2.17), (2.18) and 
(2.19)-(2.22) as we now show in details. Precisely, inserting (3.5) into (3.10), (3.11), one gets 
(2.4), (2.5), respectively. Inserting (3.5), (3.6) into (3.12), one gets (2.1), (2.21), (2.22). Insert-
ing (3.5), (3.6) into (3.13), one gets (2.19), (2.20). Inserting (3.5), (3.6) into (3.14) and (3.15), 
one gets (2.2), (2.3) as well as (2.17), (2.18). Inserting (3.5), (3.6) into (3.16)-(3.18), one gets 
(2.5)-(2.11). As the relations (2.17), (2.18) and (2.19)-(2.22) follow from the defining relations 
(2.1)-(2.11) by Lemmas 2.3, 2.4, it follows that the Freidel-Maillet type algebra (3.9) is isomor-
phic to Āq . �
Remark 3.2. The relations (3.10)-(3.18) coincide with the relations [63, Lemmas 13.3,13.4] in 
the algebra U+

q for the identification:

U �→ t−1 , V �→ s−1 , (3.19)

W±(u) �→ tW∓(t) , W±(v) �→ sW∓(s) , (3.20)

G+(u) �→ q−1(q2 − q−2)(G(t) − 1) , G−(u) �→ q−1(q2 − q−2)(G̃(t) − 1) , (3.21)

G+(v) �→ q−1(q2 − q−2)(G(s) − 1) , G−(v) �→ q−1(q2 − q−2)(G̃(s) − 1) , (3.22)

ρ̄ �→ q−1(q2 − q−2)(q − q−1) . (3.23)
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For completeness, let us mention that an alternative presentation of Āq can be considered 
instead, that involves power series in u in the opposite direction. Indeed, consider the system of 
relations (3.10)-(3.18) with (3.5)-(3.6). Applying the transformation:

W±(u) �→ −W∓(u−1q−1) , G±(u) �→ −G±(u−1q−1) ,

u �→ u−1 , q �→ q−1 ,

and similarly for u → v, one finds that

K ′(u) =
⎛⎝ u−1q−1W−(u−1q−1) 1

k−(q+q−1)
G+(u−1q−1) + k+(q+q−1)

(q−q−1)

1
k+(q+q−1)

G−(u−1q−1) + k−(q+q−1)

(q−q−1)
u−1q−1W+(u−1q−1)

⎞⎠
(3.24)

satisfies the Freidel-Maillet type equation:

R(u/v) (K ′(u) ⊗ II ) (R(0))−1 (II ⊗ K ′(v))

= (II ⊗ K ′(v)) (R(0))−1 (K ′(u) ⊗ II ) R(u/v) . (3.25)

This second presentation of Āq will be used in Section 5.

3.2. Central elements

For the Freidel-Maillet type algebra (3.9), central elements can be derived from the so-called 
Sklyanin determinant by analogy with [57, Proposition 5]. Define P −

12 = (1 − P)/2. As usual, 
below ‘tr12’ stands for the trace over V1 ⊗ V2.

Proposition 3.3. Let K(u) be a solution of (3.9). The quantum determinant


(u) = tr12
(
P −

12(K(u) ⊗ II ) R(0)(II ⊗ K(uq))
)
, (3.26)

is such that 
[

(u), (K(v))ij

] = 0.

Proof. Recall the notation (3.2). Introduce the vector space V0. With respect to the tensor product 
V0 ⊗ V1 ⊗ V2, we denote:

K0(u) = K(u) ⊗ II ⊗ II , K1(u) = II ⊗ K(u) ⊗ II , K2(u) = II ⊗ II ⊗ K(u) .

(3.27)

Consider the product (a) ≡ K0(v)
(u):

(a) = K0(v)tr12
(
P −

12K1(u) R
(0)
12 K2(uq)

)
,

= qK0(v)tr12
(
P −

12R
(0)
01 R

(0)
02 K1(u) R

(0)
12 K2(uq)

)
(using P −

12 = qP −
12R

(0)
01 R

(0)
02 )

= qtr12
(
P −

12K0(v)R
(0)
01 R

(0)
02 K1(u) R

(0)
12 K2(uq)

)
(using [K0(v),P −

12] = 0)

= qtr12
(
P −

12K0(v)R
(0)
01 K1(u)R

(0)
02 R

(0)
12 K2(uq)

)
(using [K1(u),R

(0)
02 ] = 0)

= qtr12
(
P −

12R
−1
01 (v/u)K1(u)R

(0)
01 K0(v)R01(v/u)R

(0)
02 R

(0)
12 K2(uq)

)
(using (3.9)) .

Then we use [K0(v), R(0)] = 0, [K2(uq), R01(v/u)] = 0 and
12

16
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R01(v/u)R
(0)
02 R

(0)
12 = R

(0)
12 R

(0)
02 R01(v/u)

to show:

K0(v)tr12
(
P −

12K1(u) R
(0)
12 K2(uq)

)
= qtr12

(
P −

12R
−1
01 (v/u)K1(u)R

(0)
01 K0(v)R

(0)
12 R

(0)
02 R01(v/u)K2(uq)

)
= qtr12

(
P −

12R
−1
01 (v/u)K1(u)R

(0)
01 R

(0)
12 K0(v)R

(0)
02 K2(uq)R01(v/u)

)
Applying again (3.9) to the combination K0(v)R

(0)
02 K2(uq) and using R02(v/uq)R

(0)
01 R

(0)
12 =

R
(0)
12 R

(0)
01 R02(v/uq), it follows:

(a) = qtr12
(
P −

12R
−1
01 (v/u)K1(u)R

(0)
01 R

(0)
12 R−1

02 (v/uq)K2(uq)R
(0)
02 K0(v)R02(v/uq)R01(v/u)

)
= qtr12

(
P −

12R
−1
01 (v/u)K1(u)R−1

02 (v/uq)R
(0)
12 R

(0)
01 K2(uq)R

(0)
02 K0(v)R02(v/uq)R01(v/u)

)
= qtr12

(
P −

12R
−1
01 (v/u)R−1

02 (v/uq)K1(u)R
(0)
12 K2(uq)R

(0)
01 R

(0)
02 K0(v)R02(v/uq)R01(v/u)

)
.

Then, using P −
12R02(x/q)R01(x) = P −

12(x
2 − q2)(x2 − q−2)/x2, qP −

12R
(0)
01 R

(0)
02 = P −

12, eq. (3.9)
and the cyclicity of the trace, the last expression simplifies to:

(a) = qtr12
(
P −

12K1(u)R
(0)
12 K2(uq)R

(0)
01 R

(0)
02 K0(v)P −

12

)
= tr12

(
P −

12K1(u)R
(0)
12 K2(uq)

)
K0(v)

= 
(u)K0(v) . �
Now, define:


(u) = 1

2(q − q−1)

(
	(u) − 2ρ̄

(q − q−1)

)
.

Using the entries of (3.8), by Proposition 3.3 it implies [	(u), W±(v)] = [	(u), G±(v)] = 0. 
Using (3.5), (3.6), it follows:

Corollary 3.4.

	(u) = (q − q−1)u2q2
(
W+(u)W−(uq) +W−(u)W+(uq)

)
− (q − q−1)

ρ̄

(
G+(u)G−(uq) + G−(u)G+(uq)

)
(3.28)

− G+(u) − G+(uq) − G−(u) − G−(uq)

provides a generating function for central elements in Āq .

Expanding 	(u) in power series of U = qu2/(q + q−1), the coefficients produce the central 
elements of Āq given by (2.26). Namely, by straightforward calculations one gets:

	(u) = −
∞∑

n=0

U−n−1q−n−1(qn+1 + q−n−1)	n+1 .

Remark 3.5. In [63, Lemma 13.8], a generating function for central elements is given. By [63, 
Corollary 8.4] and [63, Definition 13.1], alternatively three other generating functions may be 
considered. For instance:
17
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Z∨(t) = G(qt)G̃(q−1t) − qtW+(qt)W−(q−1t) ,

σ (Z∨(t)) = G̃(qt)G(q−1t) − qtW−(qt)W+(q−1t) .

Using the identification (3.19)-(3.23), the image of the generating function 	(u) in the algebra 
U+

q follows:

	(u) �→ −q−1(q2 − q−2)
(
Z∨(q−1t) + σ(Z∨(q−1t)

)
.

3.3. Specialization q → 1

Due to the presence of poles at q = 1 in the off-diagonal entries of K(u) in (3.8), the relations 
(3.9) are not suitable for the specialization q → 1. However, it is possible to solve this problem 
within the framework of the non-standard classical Yang-Baxter algebra [20,56,3,58] in order to 
obtain an alternative presentation of Ā, besides Definition 2.16, viewed as a specialization q → 1
of the Freidel-Maillet type algebra (3.9). Introduce the r-matrix2

r̄(u, v) = 1

(u2/v2 − 1)

⎛⎜⎜⎝
1 0 0 0
0 −1 2u/v 0
0 2u/v −1 0
0 0 0 1

⎞⎟⎟⎠ (3.29)

solution of the non-standard classical Yang-Baxter equation [3]:

[ r̄13(u1, u3) , r̄23(u2, u3) ] = [ r̄21(u2, u1) , r̄13(u1, u3) ] + [ r̄23(u2, u3) , r̄12(u1, u2) ] ,

(3.30)

where r̄21(u, v) = P r̄12(u, v)P (= r̄12(u, v) for (3.29)). Define the generating functions:

w+(u) =
∞∑

k=0

w−kU
−k−1 , w−(u) =

∞∑
k=0

wk+1U
−k−1 , (3.31)

g+(u) =
∞∑

k=0

gk+1U
−k−1 , g−(u) =

∞∑
k=0

g̃k+1U
−k−1 with U = u2/2 . (3.32)

Proposition 3.6. The algebra Ā admits a FRT presentation given by

B(u) = 1

2

( 1
4 g−(u) uw−(u)

uw+(u) 1
4 g+(u)

)
(3.33)

that satisfies the non-standard classical Yang-Baxter algebra

[ B1(u) , B2(v) ] = [ r̄21(v,u) , B1(u) ] + [ B2(v) , r̄12(u, v) ] . (3.34)

Proof. Insert (3.33) into (3.34) with (3.29). Define the formal variables U = u2/2 and V = v2/2. 
One obtains equivalently:

2 Note that this r-matrix can be obtained from a limiting case of a r-matrix considered in [7].
18
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(U − V )
[
w±(u),w∓(v)

] = 1

2
(g±(u) − g∓(u) + g∓(v) − g±(v)) ,

(U − V )
[
gε(u),w±(v)

] ∓ ε16
(
Uw±(u) − V w±(v)

) = 0 , ε = ±1 ,[
g±(u), g∓(v)

] = 0 ,[
w±(u),w±(v)

] = 0 ,
[
g±(u), g±(v)

] = 0 .

These relations are equivalent to the specialization q → 1 of (3.10)-(3.18) (ρ̄ �→ 16). Using 
(3.31), the above equations are equivalent to (2.38)-(2.41). �
Remark 3.7. For the specialization q → 1, the generating function (3.28) reduces to δ(u) =
−2(g+(u) + g−(u)).

4. Quotients of Āq and tensor product representations

In this section, a class of solutions - so-called ‘dressed’ solutions - of the Freidel-Maillet 
type equation (3.9) are constructed and studied in details by adapting known techniques of the 
so-called reflection equation [57], see Proposition 4.1. By Lemma 4.3, it is shown that the en-
tries of the dressed solutions can be written in terms of the ‘truncated’ generating functions 
(4.28)-(4.29), whose generators act on N -fold tensor product representations of Uq(sl2) accord-
ing to (4.16)-(4.19). Realizations of Āq in Uq(sl2)

⊗N are obtained, see Proposition 4.5.

4.1. Dressed solutions of the Freidel-Maillet type equation

The starting point of the following analysis is an adaptation of [57, Proposition 2], [33], to the 
Freidel-Maillet type equation (3.9), thus we skip the proof of the proposition below. Let K0(u) be 
a solution of (3.9). Assume there exists a pair of quantum Lax operators satisfying the exchange 
relations:

R(u/v) (L(u) ⊗ II ) (II ⊗ L(v)) = (II ⊗ L(v)) (L(u) ⊗ II ) R(u/v) , (4.1)

R(u/v) (L0(u) ⊗ II ) (II ⊗ L0(v)) = (II ⊗ L0(v)) (L0(u) ⊗ II ) R(u/v) , (4.2)

R(0) (L0(u) ⊗ II ) (II ⊗ L(v)) = (II ⊗ L(v)) (L0(u) ⊗ II ) R(0). (4.3)

Using (4.1)-(4.3), it is easy to show that L0(uv1)K0(u)L(u/v1) for any v1 ∈K∗ is also a solution 
of (3.9) (similar to [57, Proposition 2]). More generally it follows3

Proposition 4.1. Let K0(u) be a solution of (3.9). Let N be a positive integer and {vi}Ni=1 ∈ K∗. 
Let L(u), L0(u) be such that (4.1)-(4.3) hold. Then

K(N)(u) = (L0(uvN))[N] · · · (L0(uv1))[1]K0(u)(L(u/v1)))[1] · · · (L(u/vN))[N] (4.5)

satisfies (3.9).

3 Here the index [j ] characterizes the ‘quantum space’ V[j ] on which the entries of L(u), L0(u) act. With respect to 
the ordering V[2] ⊗ V[1] used below for (4.16)-(4.19), one has:

((T )[2](T ′)[1](T ′′)[2])ij =
2∑

k,�=1

(T )ik(T ′′)�j ⊗ (T ′)k� . (4.4)
19
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This proposition provides a tool for the explicit construction of so-called ‘dressed’ solutions 
of (3.9). Below, we construct explicit examples of such solutions. To this end, we first intro-
duce some known basic material. Recall the algebra Uq(sl2) consists of three generators denoted 
S±, s3. They satisfy

[s3, S±] = ±S± and [S+, S−] = q2s3 − q−2s3

q − q−1 . (4.6)

The central element of Uq(sl2) is the so-called Casimir operator:

� = q−1q2s3 + qq−2s3

(q − q−1)2 + S+S− = qq2s3 + q−1q−2s3

(q − q−1)2 + S−S+. (4.7)

Let V be the spin-j irreducible finite dimensional representation of Uq(sl2) of dimension 2j +1. 
The eigenvalue ωj of � is such that

ωj ≡ w
(j)
0

(q − q−1)2 with w
(j)

0 = q2j+1 + q−2j−1. (4.8)

Define the so-called quantum Lax operators

L0(u) =
(

uq1/2qs3 0
0 uq1/2q−s3

)
and

L(u) =
(

uq1/2qs3 − u−1q−1/2q−s3 (q − q−1)S−
(q − q−1)S+ uq1/2q−s3 − u−1q−1/2qs3

)
. (4.9)

Recall the R-matrices (3.1) and (3.4). One routinely checks that the relation (4.1) holds. The 
relations (4.2)-(4.3) follow as a limiting case of (4.1). Note that the overall factor uq1/2 in the 
expression of L0(u) is kept for further convenience only. Let k±, ε̄± ∈K. Define:

K0(u) =
(

u−1ε̄+ k+
(q−q−1)

k−
(q−q−1)

u−1ε̄−

)
. (4.10)

It is checked that K0(u) satisfies (3.9). As a basic example of dressed solution, consider the case 
N = 1 of (4.5). Define the four operators in Uq(sl2):

W(1)
0 = k+v1q

1/2S+qs3 + ε̄+q2s3 , (4.11)

W(1)
1 = k−v1q

1/2S−q−s3 + ε̄−q−2s3 , (4.12)

G(1)
1 = k+k−v2

1
(w

(j1)

0 − (q + q−1)q2s3)

(q − q−1)
+ (q2 − q−2)k−ε̄+v1q

−1/2S−qs3

+ (q − q−1)ε̄+ε̄− , (4.13)

G̃(1)
1 = k+k−v2

1
(w

(j1)

0 − (q + q−1)q−2s3)

(q − q−1)
+ (q2 − q−2)k+ε̄−v1q

−1/2S+q−s3

+ (q − q−1)ε̄+ε̄− . (4.14)

Computing explicitly the entries of (4.5) for N = 1, one finds that the dressed solution can be 
written as:
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K(1)(u) =⎛⎜⎝ uqW(1)
0 − u−1v2

1 ε̄+
G(1)

1
k−(q+q−1)

+ k+qu2

(q−q−1)
− k+v2

1w
(j1)

0
(q2−q−2)

− ε̄+ ε̄−(q−q−1)

k−(q+q−1)

G̃(1)
1

k+(q+q−1)
+ k−qu2

(q−q−1)
− k−v2

1w
(j1)

0
(q2−q−2)

− ε̄+ ε̄−(q−q−1)

k+(q+q−1)
uqW(1)

1 − u−1v2
1 ε̄−

⎞⎟⎠ .

(4.15)

4.2. General dressed solutions

The structure of the above solution (4.15) can be generalized to dressed solutions of ar-
bitrary size as we now show. According to the ordering of the ‘quantum’ vector spaces 
V (N) = V[N] ⊗ · · · ⊗ V[2] ⊗ V[1], let us first define recursively the four families of operators 
{W(N)

−k , W(N)
k+1, G

(N)
k+1, G̃

(N)
k+1|k = 0, 1, ..., N}, where N is a positive integer:

W(N)
−k = (q − q−1)

k−(q + q−1)2

(
vNq1/2S+qs3 ⊗ G(N−1)

k

)
+ q2s3 ⊗W(N−1)

−k (4.16)

− v2
N

(q + q−1)
II ⊗W(N−1)

−k+1 + v2
Nw

(jN )
0

(q + q−1)2W
(N)
−k+1 ,

W(N)
k+1 = (q − q−1)

k+(q + q−1)2

(
k−vNq1/2S−q−s3 ⊗ G̃(N−1)

k

)
+ q−2s3 ⊗W(N−1)

k+1 (4.17)

− v2
N

(q + q−1)
II ⊗W(N−1)

k + v2
Nw

(jN )
0

(q + q−1)2W
(N)
k ,

G(N)
k+1 = (q2 − q−2)k−vNq−1/2S−qs3 ⊗W(N−1)

−k (4.18)

− v2
N

(q + q−1)
q2s3 ⊗ G(N−1)

k + II ⊗ G(N−1)
k+1 + v2

Nw
(jN )
0

(q + q−1)2G
(N)
k ,

G̃(N)
k+1 = (q2 − q−2)k+vNq−1/2S+q−s3 ⊗W(N−1)

k+1 − v2
N

(q + q−1)
q−2s3 ⊗ G̃(N−1)

k (4.19)

+ II ⊗ G̃(N−1)
k+1 + v2

Nw
(jN )
0

(q + q−1)2 G̃
(N)
k .

Here for the special case k = 0 we identify4

W(N)
k |k=0 ≡ 0 , W(N)

−k+1|k=0 ≡ 0 , G(N)
k |k=0 = G̃(N)

k |k=0 ≡ k+k−(q + q−1)2

(q − q−1)
II (N)

(4.20)

together with the ‘initial’ conditions for k ≥ 1 (the notation (4.27) is used)

4 Although the notation is ambiguous, one must keep in mind that W(N)
k

|k=0 �= W(N)
−k

|k=0, W(N)
−k+1|k=0 �=

W(N) |k=0 for any N .

k+1
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W(0)
−k ≡

(
α1

q + q−1

)k−1 (
α1

q + q−1

)
|v1=0

W(0)
0 ,

W(0)
k+1 ≡

(
α1

q + q−1

)k−1 (
α1

q + q−1

)
|v1=0

W(0)
1 ,

(4.21)

G(0)
k+1 = G̃(0)

k+1 ≡
(

α1

q + q−1

)k

G(0)
1 , (4.22)

where

W(0)
0 ≡ ε̄+ , W(0)

1 ≡ ε̄− and G(0)
1 = G̃(0)

1 ≡ ε̄+ε̄−(q − q−1) . (4.23)

A crucial ingredient in the construction of dressed solutions by induction from (4.5) is the 
existence of a set of linear relations satisfied by the operators (4.16)-(4.19). We proceed by strict 
analogy with [8, Appendix B], thus we skip most of the details of the proof. For further conve-
nience, introduce the notation:

ε̄
(N)
± = (−1)N

(
N∏

k=1

v2
k

)
ε̄± . (4.24)

Lemma 4.2. The operators (4.16)-(4.19) satisfy the linear relations:

N∑
k=0

c
(N)
k W(N)

−k + ε̄
(N)
+ = 0 ,

N∑
k=0

c
(N)
k W(N)

k+1 + ε̄
(N)
− = 0 , (4.25)

N∑
k=0

c
(N)
k G(N)

k+1 = 0 ,

N∑
k=0

c
(N)
k G̃(N)

k+1 = 0 (4.26)

with5 c
(N)
k = (−1)N−k−1(q + q−1)keN−k(α1, α2, · · · , αN),

α1 = v2
1w

(j1)

0

(q + q−1)
+ ε̄+ε̄−(q − q−1)2

k+k−(q + q−1)
, αk = v2

kw
(jk)

0

(q + q−1)
for k = 2, ...,N . (4.27)

Proof. For N = 1, 2, the four relations (4.25)-(4.26) are explicitly checked. Then we proceed by 
induction. �

The result below is obtained after some straightforward calculations similar to those per-
formed in [8,9], thus we just sketch the proof. Introduce the ‘truncated’ generating functions:

W(N)
+ (u) =

N−1∑
k=0

f
(N)
k+1(u)W(N)

−k , W(N)
− (u) =

N−1∑
k=0

f
(N)
k+1(u)W(N)

k+1 (4.28)

5 For the elementary symmetric polynomials in the variables {xi |i = 1, ..., n}, we use the notation:

ek(x1, x2, ..., xn) =
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · ·xjk
.
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G(N)
+ (u) =

N−1∑
k=0

f
(N)
k+1(u)G(N)

k+1 , G(N)
− (u) =

N−1∑
k=0

f
(N)
k+1(u)G̃(N)

k+1 (4.29)

where

f
(N)
k (u) =

N∑
p=k

(−1)N−p(q + q−1)p−1eN−p(α1, α2, ..., αN)Up−k with

U = qu2/(q + q−1) . (4.30)

Lemma 4.3. Dressed solutions of the form (4.5) can be written as:

K(N)(u) =⎛⎝ uqW(N)
+ (u) + u−1ε̄

(N)
+ 1

k−(q+q−1)
G(N)

+ (u) + k+(q+q−1)

(q−q−1)
f

(N)
0 (u)

1
k+(q+q−1)

G(N)
− (u) + k−(q+q−1)

(q−q−1)
f

(N)
0 (u) uqW(N)

− (u) + u−1ε̄
(N)
−

⎞⎠
(4.31)

with (4.28)-(4.29) and (4.24).

Proof. For N = 1, one checks that (4.31) coincides with (4.15). Then, we proceed by induction. 
Assume K(N)(u) is of the form (4.31) for N fixed. We compute ((L0(uvN+1))[N+1]K(N)(u)(L(u/

vN+1))[N+1])ij for i, j = 1, 2. For instance, consider the entry (11)N+1. Explicitly, it reads:

(11)N+1 = uq

(
(q − q−1)vN+1q

1/2S+qs3

⊗
(

1

k−(q + q−1)
G(N)

+ (u) + k+(q + q−1)

(q − q−1)
f

(N)
0 (u)

)
+ q2s3 ⊗ ε̄

(N)
+

+ (u2qq2s3 − v2
N+1) ⊗W(N)

+ (u)

)
− u−1v2

N+1ε̄
(N)
+ .

Inserting (4.28), (4.29) and using the definitions (4.16)-(4.19), (4.24) for N → N + 1, after some 
simple operations and reorganizing all terms one gets:

(11)N+1 = uq

(
N−1∑
k=0

(
(q + q−1)f

(N)
k (u) − αN+1f

(N)
k+1(u)

)
W(N+1)

−k

+ (q + q−1)f
(N)
N (u)W(N+1)

−N

)
+ u−1ε̄

(N+1)
+ + q2s3

⊗
(

N−1∑
k=0

(
qu2f

(N)
k+1(u) − (q + q−1)f

(N)
k

(u)
)
W(N+1)

−k
− (q + q−1)f

(N)
N

(u)W(N+1)
−N

+ ε̄
(N)
+︸ ︷︷ ︸

≡
(u)

)
.

Identifying (11)N+1 with (K(N+1)(u))11 leads to a set of constraints. They read:

(q + q−1)f
(N)
k (u) − αN+1f

(N)
k+1(u) = f

(N+1)
k+1 (u) for k = 0, ...,N − 1 , (4.32)

(q + q−1)f
(N)

(u) = f
(N+1)

(u) (4.33)
N N+1
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and 
(u) = 0. The solution of the constraints (4.32)-(4.33) is given by (4.30). Using this 
expression, one finds that 
(u) coincides with the l.h.s. of the first equation in (4.25). By 
Lemma 4.2, it follows 
(u) = 0, so (11)N+1 = (K(N+1)(u))11. By similar arguments, one shows 
(ij)N+1 = (K(N+1)(u))ij using (4.25), (4.26). �
4.3. Realizations of Āq in Uq(sl2)

⊗N

According to previous results, dressed solutions of the form (4.31) automatically generate the 
finite set of operators (4.16)-(4.19). In this section, we show (4.16)-(4.19) extends to k ∈ N and 
provide realizations of Āq in Uq(sl2)

⊗N . To this aim, we need a generalization of Lemma 4.2.

Lemma 4.4. For any p ∈N , the operators (4.16)-(4.19) satisfy the linear relations:

N∑
k=0

c
(N)
k W(N)

−k−p + δp,0ε̄
(N)
+ = 0 ,

N∑
k=0

c
(N)
k W(N)

k+1+p + δp,0ε̄
(N)
− = 0 , (4.34)

N∑
k=0

c
(N)
k G(N)

k+1+p = 0 ,

N∑
k=0

c
(N)
k G̃(N)

k+1+p = 0 . (4.35)

Proof. For p = 0 the four relations hold by Lemma 4.2. For N = 1 and any p ≥ 1, the four 
relations are checked using (4.21), (4.22). Then we proceed by induction on N . �

Define Ā(N)
q as the algebra generated by {W(N)

−k , W(N)
k+1, G

(N)
k+1, G̃

(N)
k+1|k ∈ N}. We are now in 

position to give the main result of this section.

Proposition 4.5. The map Āq → Ā(N)
q given by:

W−k �→ W(N)
−k , Wk+1 �→ W(N)

k+1 , Gk+1 �→ G(N)
k+1 , G̃k+1 �→ G̃(N)

k+1

with (4.16)-(4.19) for k ∈N and (3.7) is a surjective homomorphism.

Proof. Consider the image of (3.8) such that the generators in (3.5), (3.6) map to (4.16)-(4.19). 
For instance, one has:

W+(u) �→
∑
k∈N

W(N)
−k U−k−1 =

N−1∑
k=0

W(N)
−k U−k−1 +

∞∑
k=N

W(N)
−k U−k−1 . (4.36)

Using (4.34):

∞∑
k=N

W(N)
−k U−k−1 =

∞∑
p=0

W(N)
−N−pU−N−p−1

= − 1

c
(N)
N

∞∑
p=0

N−1∑
k=0

c
(N)
k W(N)

−k−pU−N−p−1 − ε̄
(N)
+

c
(N)
N

U−N−1

= − 1

c
(N)

(
N−1∑

c
(N)
k Uk−N

)
W+(u)
N k=0
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+ 1

c
(N)
N

N−1∑
k=1

k−1∑
p=0

c
(N)
k W(N)

−p U−N−p−1+k − ε̄
(N)
+

c
(N)
N

U−N−1

= − 1

c
(N)
N

(
N−1∑
k=0

c
(N)
k Uk−N

)
W+(u)

+ 1

c
(N)
N

N−1∑
k=0

U−k−1W(N)
−k

⎛⎝ N−1∑
p=k+1

c(N)
p Up−N

⎞⎠ − ε̄
(N)
+

c
(N)
N

U−N−1 .

Replacing the last expression into (4.36) and using (4.28), (4.29) and (4.30), one gets:

f
(N)
0 (u)W+(u) �→ W(N)

+ (u) + u−2q−1ε̄
(N)
+ .

Similarly, using (4.34), (4.35) one finds:

f
(N)
0 (u)W−(u) �→ W(N)

− (u) + u−2q−1ε̄
(N)
− , f

(N)
0 (u)G±(u) �→ G(N)

± (u) .

It follows f (N)
0 (u)K(u) �→ K(N)(u). Thus, the operators (4.16)-(4.19) for k ∈N generate a quo-

tient of the algebra Āq by the relations (4.34), (4.35). �
Remark 4.6. For the specialization q → 1 in (4.16)-(4.19), realizations of Ā in U(sl2)

⊗N are 
obtained.

5. The algebra Āq , alternating subalgebras of Uq(̂gl2) and root vectors

Recall that the quantum affine Kac-Moody algebra Uq(ŝl2) admits a Drinfeld second pre-
sentation denoted UDr

q with generators {x±
k , h�, K±1, C±1/2|k ∈ Z, � ∈ Z\{0}} [30,18,41]. For 

q → 1, this presentation specializes to the universal enveloping algebra of ŝl2 with generators 
{x±

k , hk, c|k ∈ Z} - called the Cartan-Weyl presentation - see e.g. [18, top of page 566]. Accord-
ing to (2.47) (similarly (2.51)), a natural question concerns the interpretation of Āq in terms of 
subalgebras of UDr

q (and similarly for Ā in terms of subalgebras of ŝl2). Although this problem 
may look complicated at first sight for q �= 1, it is solved using the framework of Freidel-Maillet 
algebras combined with the results of Ding-Frenkel [28], as shown in this section. In this section, 
we fix K =C.

We start with the simplified situation q → 1, see Definition 5.3 and Proposition 5.4.

5.1. The algebra Ā and ‘alternating’ subalgebras of ĝl2

The affine general Lie algebra ĝl2 admits a presentation of Serre-Chevalley type and Cartan-
Weyl type, closely related with the presentations of the affine Lie algebra ŝl2 [44,37]. Consider 
the presentation of Cartan-Weyl type for ĝl2. In the definition below, [., .] denotes the Lie bracket.

Definition 5.1. (Cartan-Weyl presentation ĝl2
CW

) The affine general Lie algebra ĝl2 over C is 
generated by {x±

k , ε1,k , ε2,k, c|k ∈Z} subject to the relations:[
εi,k, εj,�

] = kcδi,j δk+�,0 , (5.1)[
ε1,k, x

±] = ±x± , (5.2)
� k+�
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[
ε2,k, x

±
�

] = ∓x±
k+� , (5.3)[

x+
k , x−

�

] = ε1,k+� − ε2,k+� + δk+�,0kc , (5.4)[
x±
k , x±

k±1

] = 0 (5.5)

and c is central.

Note the automorphism θ such that:

θ : x±
k �→ x∓

k , ε1,k �→ ε2,k , ε2,k �→ ε1,k , c �→ c . (5.6)

Let

hk = ε1,k − ε2,k . (5.7)

The subalgebra generated by {x±
k , hk, c|k ∈ Z}, denoted ŝl2

CW
, is isomorphic to the affine Lie 

algebra ŝl2. The commutation relations are given by (5.4), (5.5) with (5.7) and[
hk,h�

] = δk+�,02kc , (5.8)[
hk, x

±
�

] = ±2x±
k+� . (5.9)

Recall the Serre-Chevalley presentation ŝl2
SC

in Appendix A.

Remark 5.2. An isomorphism ŝl2
SC → ŝl2

CW
is given by:

k0 �→ −h0 − c , k1 �→ h0 , e1 �→ x+
0 , e0 �→ x−

1 , f1 �→ x−
0 ,

f0 �→ x+
−1 , c �→ −c .

In view of (2.51), we now study the relation between Ā and ĝl2. Isomorphisms between 
certain subalgebras of ĝl2 and Ā can be identified through a direct comparison of the defining 
relations (5.1)-(5.5) and (2.38)-(2.41). However, although not necessary for q = 1, to prepare the 
analysis for q �= 1 in the next section it is instructive to exhibit these isomorphisms using the 
FRT presentation of U(ĝl2), which follows from U(ŝl2)’s one.6

Introduce the following classical (traceless) r-matrix for an indeterminate z �= 1 associated 
with ŝl2:

r(z) = 1

z − 1

⎛⎜⎜⎝
− 1

2 (z + 1) 0 0 0
0 1

2 (z + 1) −2 0
0 −2z 1

2 (z + 1) 0
0 0 0 − 1

2 (z + 1)

⎞⎟⎟⎠ . (5.10)

Note that r12(z) = −r21(1/z) = −r12(z)
t1t2 . It satisfies the classical Yang-Baxter equation

[ r13(z1/z3) , r23(z2/z3) ] = [ r13(z1/z3) + r23(z2/z3) , r12(z1/z2) ] . (5.11)

For simplicity, we keep the same notation for the generators of U(ŝl2) and ŝl2. Defining:

6 We expect this presentation appears in the literature, although we could not find a reference. Here it is taken from [7].
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T +(z) =
(

h0/2 2x−
0

0 −h0/2

)
+

∑
k≥1

zk

(
hk 2x−

k

2x+
k −hk

)
, (5.12)

T −(z) =
(−h0/2 0

−2x+
0 h0/2

)
+

∑
k≥1

z−k

( −h−k −2x−
−k

−2x+
−k h−k

)
, (5.13)

one checks that the relations7

[T ±(z), c] = 0 , (5.14)

[T ±
1 (z), T ±

2 (w)] = [T ±
1 (z) + T ±

2 (w), r12(z/w)] , (5.15)

[T +
1 (z), T −

2 (w)] = [T +
1 (z) + T −

2 (w), r12(z/w)] − 2c r ′
12(z/w)z/w , (5.16)

are equivalent to the relations (5.4), (5.5), (5.8), (5.9), where 
[
., .

]
now denotes the usual commu-

tator 
[
., .

]
1. The FRT presentation for U(ĝl2) is obtained from (5.12), (5.13) as follows. Define 

the 2 × 2 matrix

H±(z) = ±
⎛⎝1

2
(ε1,0 + ε2,0) +

∑
k≥1

z±k(ε1,±k + ε2,±k)

⎞⎠ II .

The corresponding pair of Lax operators for U(ĝl2) is given by T ±
ĝl2

(z) = T ±(z) + H±(z), and 
satisfy classical Yang-Baxter relations that follow from (5.14)-(5.16).

We now relate Ā to certain subalgebras of ĝl2 using the FRT presentation. By straightforward 
computation, it is found that

B(u) �→ B̃−(u) = −T −
ĝl2

(u2) − t0 or B(u) �→ B̃+(u) = T +
ĝl2

(u−2) − t0 (5.17)

with t0 = diag(ε1,0, ε2,0), satisfy the non-standard classical Yang-Baxter equation (3.34) for the 
identification r̄(u, v) = −r(u2/v2) − r0, where r0 = diag(1/2, −1/2, −1/2, 1/2). In particular, 
let us consider the first map in (5.17). Applying a similarity transformation:

B−(u) = −M(u)B̃−(u)tM(u)−1 with M(u) =
(

0 −u

1 0

)
one finds for instance that

B−(u) =
(

0 0
2u−1x+

0 0

)
+

∑
k≥1

u−2k

(
2ε1,−k 2ux−

−k

2u−1x+
−k 2ε2,−k

)
(5.18)

satisfies (3.34) for the symmetric r-matrix (3.29). Similarly, from the second map in (5.17) one 
gets a second solution of (3.34) with (3.29):

B+(u) =
(

0 2u−1x−
0

0 0

)
+

∑
k≥1

u−2k

(
2ε1,k 2u−1x−

k

2ux+
k 2ε2,k

)
. (5.19)

According to the structure of the matrices (5.18), (5.19) and the automorphism (5.6), different 
subalgebras that combine half of the positive/negative root vectors, together with half of the 
imaginary root vectors are now introduced.

7 We denote r ′(z) = d r(z).

d
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Definition 5.3.

ĝl2
	,± = {x±

k , x∓
k+1, ε1,k+1, ε2,k+1|k ∈N} , (5.20)

ĝl2

,± = {x±

−k, x
∓
−k−1, ε1,−k−1, ε2,−k−1|k ∈N} . (5.21)

We call ĝl2
	,±

and ĝl2

,±

the right and left alternating subalgebras of ĝl2. The subalgebra gen-
erated by {ε1,0, ε2,0, c} is denoted ĝl2

�
.

Inserting (5.18) (resp. (5.19)) into (3.34), the relations satisfied by the generators {x±
±k, ε1,±�,

ε2,±�} are extracted. They are identical to the defining relations of the subalgebra ĝl2

,+

(resp. 
ĝl2

	,−
). Thus, FRT presentations for ĝl2

	,−
and ĝl2


,+
are given respectively by (5.19), (5.18)

satisfying (3.34). Applying the automorphism (5.6) to (5.19), (5.18), one gets the FRT presenta-
tions of ĝl2

	,+
and ĝl2


,−
, respectively.

In particular, combining above results with those of Section 3 it follows:

Proposition 5.4. There exists an algebra isomorphism Ā → U(ĝl2
	,+

) (resp. Ā → U(ĝl2

,−

)) 
such that:

w−k �→ 21−kx−
k+1 , wk+1 �→ 21−kx+

k , gk+1 �→ 23−kε1,k+1 ,

g̃k+1 �→ 23−kε2,k+1

(resp. w−k �→ 21−kx−
−k , wk+1 �→ 21−kx+

−k−1 , gk+1 �→ 23−kε1,−k−1 ,

g̃k+1 �→ 23−kε2,−k−1 .

Proof. Identify θ(B±(u)) for (5.19), (5.18), to (3.33). �
Observe that the elements δ±

k+1 = ε1,±(k+1) + ε2,±(k+1) are central. If we denote Z± =
{δ±

k+1}k∈N and introduce the alternating subalgebras ŝl2
	,+ = {x+

k , x−
k+1, hk+1|k ∈ N} (resp. 

ŝl2

,− = {x−

−k, x
+
−k−1, h−k−1|k ∈ N}), in addition to (2.51) one has the decompositions ĝl2

	,+ =
ŝl2

	,+ ⊕ Z+ and ĝl2

,− = ŝl2


,− ⊕ Z−. So, the images become:

gk+1 �→ 22−k(hk+1 + δ+
k+1) , g̃k+1 �→ 22−k(−hk+1 + δ+

k+1) (5.22)

(resp. gk+1 �→ 22−k(h−k−1 + δ−
k+1) , g̃k+1 �→ 22−k(−h−k−1 + δ−

k+1)) . (5.23)

In the next section, by analogy we use the Freidel-Maillet type presentation given in Section 3
to derive q-analogs of the isomorphisms of Proposition 5.4.

5.2. The algebra Āq and ‘alternating’ subalgebras of Uq(ĝl2)

The Drinfeld second presentation [36,35] and FRT presentation of Uq(ĝl2) [54,28] are first 
reviewed, see Definition 5.5 and Theorem 5.7. Then, ‘alternating’ subalgebras of Uq(ĝl2) that 
can be viewed as q-analogs of (5.20), (5.21) are identified, see Definition 5.12. Using the Ding-
Frenkel isomorphism [28], K-matrices K±(u) (or K ′+(u)) that satisfy the Freidel-Maillet type 
equation (3.9) (or (3.25)) are constructed using a dressing procedure, see Lemmas 5.15, 5.16 or 
5.17. By a direct comparison of the K-matrix (3.8) (resp. (3.24)) to the K-matrix K−(u) (resp. 
K ′+(u)), explicit isomorphisms from Āq to alternating subalgebras of Uq(ĝl2) are derived, see 
Propositions 5.18, 5.20. For the first generators, Examples 5.19, 5.21 are given.
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5.2.1. Drinfeld second presentation and FRT presentation of Uq(ĝl2)

In this subsection, we review some necessary material. For the quantum affine Kac-Moody 
algebra Uq(ŝl2), there are two standard presentations: the Drinfeld-Jimbo presentation denoted 
UDJ

q and the Drinfeld (second) presentation denoted UDr
q , see e.g. [22, p. 392], [34,27]. For 

Uq(ĝl2), an analog of Drinfeld second presentation is known [36,35].

Definition 5.5. The quantum affine algebra Uq(ĝl2) is isomorphic to the associative algebra over 
C(q) with generators {x±

k , E1,�, E2,�, K±1|k ∈Z, � ∈ Z\{0}}, central elements C±1/2 and the fol-
lowing relations:

C1/2C−1/2 = 1 , KK−1 = K−1K = 1 , (5.24)[
Ei,k,Ej,�

] =
[
k
]
q

k

Ck − C−k

q − q−1 δi,j δk+�,0 , KEi,k = Ei,kK , (5.25)

[
E1,k, x±

�

] = ±
[
k
]
q

k
C∓|k|/2q |k|/2x±

k+� , (5.26)

[
E2,k, x±

�

] = ∓
[
k
]
q

k
C∓|k|/2q−|k|/2x±

k+� , (5.27)

Kx±
k K−1 = q±2x±

k , (5.28)

x±
k+1x±

� − q±2x±
� x±

k+1 = q±2x±
k x±

�+1 − x±
�+1x±

k , (5.29)[
x+
k , x−

�

] = (C(k−�)/2ψk+� − C−(k−�)/2φk+�)

q − q−1 , (5.30)

where the ψk and φk are defined by the following equalities of formal power series in the inde-
terminate z:

ψ(z) =
∞∑

k=0

ψkz
−k = K exp

(
(q − q−1)

∞∑
k=1

hkz
−k

)
, (5.31)

φ(z) =
∞∑

k=0

φ−kz = K−1 exp

(
−(q − q−1)

∞∑
k=1

h−kz

)
, (5.32)

where we denote:

hk = q |k|/2E1,k − q−|k|/2E2,k . (5.33)

Note that there exists a q-analog of the automorphism (5.6) such that:

θ : x±
k �→ x∓

k , E1,k �→ E2,k , E2,k �→ E1,k , K �→ K , C �→ C−1, q �→ q−1 .

(5.34)

In addition, there exists an automorphism:

ν : x+
k �→ Kx+

k , x−
k �→ x−

k K−1 , E1,k �→ E1,k ,

E2,k �→ E2,k, K �→ K , C1/2 �→ C1/2 . (5.35)

The associative subalgebra generated by {x±
k , h�, K±1, C±1/2|k ∈ Z, � ∈ Z\{0}} is isomorphic 

to the quantum affine algebra Uq(ŝl2), known in the literature as the Drinfeld second presentation 
UDr . The corresponding defining relations are given by (5.24), (5.28)-(5.30) and
q
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[
hk,h�

] = δk+�,0
1

k

[
2k

]
q

Ck − C−k

q − q−1 , (5.36)

[
hk, x±

�

] = ±1

k

[
2k

]
q
C∓|k|/2x±

k+� . (5.37)

Remark 5.6. Recall the defining relations of UDJ
q in Appendix A. An isomorphism UDJ

q →
UDr

q is given by (see e.g. [22, p. 393]):

K0 �→ CK−1 , K1 �→ K , E1 �→ x+
0 , E0 �→ x−

1 K−1 , F1 �→ x−
0 , F0 �→ Kx+

−1 .

(5.38)

Note that it is still an open problem to find the complete Hopf algebra isomorphism between 
UDJ

q and UDr
q . Only partial information is known, see e.g. [21, Section 4.4].

Extending previous works [32,54], for the quantum affine Lie algebra of type A such as 
Uq(ĝln) a FRT presentation has been obtained in [28]. For type B, C, D, see [42,43]. The explicit 
isomorphism between the Drinfeld second presentation of Uq(ĝl2) and FRT presentation given 
in [28] is now recalled. Define:

R̃(z) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 z−1
zq−q−1

z(q−q−1)

zq−q−1 0

0 (q−q−1)

zq−q−1
z−1

zq−q−1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ (5.39)

which satisfies the Yang-Baxter equation (3.3). Note that R̃12(z) = R̃
t1t2
21 (z). The above R-matrix 

is related to the symmetric R-matrix (3.1) through the similarity transformations:(u

v
q − v

u
q−1

)−1
R12(u/v) = M(u)1M(v)2R̃12(u

2/v2)M(v)−1
2 M(u)−1

1 , (5.40)

= M(u)−1
1 M(v)−1

2 R̃21(u
2/v2)M(v)2M(u)1 with

M(u) =
(

u−1/2 0
0 u1/2

)
.

Theorem 5.7. (see [54,28]) Uq(ĝl2) admits a FRT presentation given by a unital associative 
algebra with generators {x±

k , k+
j,−�, k

−
j,�, q

±c/2|k ∈ Z, � ∈ N, j = 1, 2}. The generators q±c/2

are central and mutually inverse. Define:

L±(z) =
(

k±
1 (z) k±

1 (z)f±(z)

e±(z)k±
1 (z) k±

2 (z) + e±(z)k±
1 (z)f±(z)

)
(5.41)

in terms of the generating functions in the indeterminate z:

e+(z) = (q − q−1)

∞∑
k=0

qk(c/2−1)x−
−kz

k , e−(z) = −(q − q−1)

∞∑
k=1

qk(c/2+1)x−
k z−k ,

(5.42)
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f+(z) = (q − q−1)

∞∑
k=1

q−k(c/2+1)x+
−kz

k , f−(z) = −(q − q−1)

∞∑
k=0

q−k(c/2−1)x+
k z−k ,

(5.43)

k+
j (z) =

∞∑
k=0

k+
j,−kz

k , k−
j (z) =

∞∑
k=0

k−
j,kz

−k , j = 1,2 . (5.44)

The defining relations are the following:

k+
i,0k−

i,0 = k−
i,0k+

i,0 = 1 , (5.45)

R̃(z/w) (L±(z) ⊗ II ) (II ⊗ L±(w)) = (II ⊗ L±(w)) (L±(z) ⊗ II ) R̃(z/w) , (5.46)

R̃(qcz/w) (L+(z) ⊗ II ) (II ⊗ L−(w)) = (II ⊗ L−(w)) (L+(z) ⊗ II ) R̃(q−cz/w) . (5.47)

For (5.46), the expansion direction of R̃(z/w) can be chosen in z/w or w/z, but for (5.47) the 
expansion direction is only in z/w. Uq(ĝl2) is a Hopf algebra. The coproduct 	 is defined by:

	(L±(z)) = (L±(zq±(1⊗c/2)))[1](L±(zq∓(c/2⊗1)))[2] (5.48)

and its antipode is S(L±(z)) = L±(z)−1.

Remark 5.8. The inverse quantum Lax operators (5.41) are [28, eq. (4.9)]:

(L±(z))−1 =
(

(k±
1 (z))−1 + f±(z)(k±

2 (z))−1e±(z) −f±(z)(k±
2 (z))−1

−(k±
2 (z))−1e±(z) (k±

2 (z))−1

)
. (5.49)

The explicit isomorphism between the FRT presentation of Theorem 5.7 and Drinfeld second 
presentation of Uq(ĝl2) of Definition 5.5 is given in [36, Section 4]. Introduce the generating 
functions [28]:

x±(z) =
∑
k∈Z

x±
k z−k . (5.50)

In terms of (5.42), (5.43), one has:

x+(z) = (q − q−1)−1
(

f+(qc/2+1z) − f−(q−c/2+1z)
)

,

x−(z) = (q − q−1)−1
(

e+(q−c/2+1z) − e−(qc/2+1z)
)

and

C1/2 = qc/2 .

The generating functions {k±
i (z)}i=1,2 are related with the generators {Ei,k}i=1,2 as follows [36, 

Section 4] (see also [35]):

k±
i (z) = k±

i,0 exp

(
±(q − q−1)

∞∑
n=1

ai,∓nz
±n

)
(5.51)

where the new generators

a1,m = qm
(
q |m|/2E1,m − q−|m|/2E2,m

)
+ a2,m , (5.52)

a2,m = q2m+|m|/2
( |m| E1,m + q |m|E2,m

2|m| 1/2 + E2,m

)
, (5.53)
m (1 + q )
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are introduced. The generators k±
i,0 are such that 

[
k±
i,0, aj,m

] = [
kε
i,0, k

ε′
j,0

] = 0 for any i, j and

k−
2,0(k

−
1,0)

−1 = K , k+
2,0(k

+
1,0)

−1 = K−1 . (5.54)

The commutation relations of Uq(ĝl2) presented in terms of the generators {ai,m|i = 1, 2}
are given in [36, Section 4]. Although not reported here, for further analysis some of those are 
displayed in Appendix B.

In the context of the FRT presentation of Uq(ĝl2) [28], the explicit exchange relations between 
the generating functions (5.42)-(5.44) are extracted from (5.46), (5.47) inserting (5.41). We refer 
the reader to [28, p. 288-292] for details. In particular, for the following analysis, we will need 
the asymptotics of some of the exchange relations displayed in [28]. Considering the limits k+

j (0)

and k−
j (∞) of (5.44), from [28, eqs. (4.24), (4.25), (4.40), (4.41)] one gets for instance:

k±
1,0e±(w)(k±

1,0)
−1 = q∓1e±(w) , k±

1,0f±(w)(k±
1,0)

−1 = q±1f±(w) , (5.55)

(k±
2,0)

−1e±(w)k±
2,0 = q∓1e±(w) , (k±

2,0)
−1f±(w)k±

2,0 = q±1f±(w) , (5.56)

and from [28, eqs. (4.13), (4.14), (4.17)] one gets:

k±
i,0k±

j (w) = k±
j (w)k±

i,0 , k±
i,0k±

i (w) = k±
i (w)k±

i,0 , i �= j = 1,2 . (5.57)

To prepare the discussion in further sections, the description of the known embedding 
Uq(ŝl2) ↪→ Uq(ĝl2) is now recalled. First, central elements of Uq(ĝl2) are constructed using 
the FRT presentation. Following [35, Section 2.6], define the generating functions:

y±(z) = k∓
1 (q−1z)k∓

2 (qz) . (5.58)

By [28, eq. (4.17)], note that the ordering of the factors in (5.58) is irrelevant. Using the 
other exchange relations in [28], one finds 

[
y±(z), eε(w)

] = [
y±(z), fε(w)

] = [
y±(z), kε

1(w)
] =[

y±(z), kε
2(w)

] = 0 for ε = ± and any z, w.

Proposition 5.9. (see [35]) The coefficients of the generating function y±(z) are central elements 
of Uq(ĝl2).

Corollary 5.10. The elements

k∓
1,0k∓

2,0 and γm = qma1,m + q−ma2,m for m ∈ Z∗ (5.59)

are central in Uq(ĝl2).

Proof. Insert (5.51) into (5.58). Identify the coefficients of the resulting power series y±(z). �
Note that 

[
Uq(ĝl2), y

] = 0 for y = k±
1,0k±

2,0, γm can be independently checked using (5.52), 
(5.53) and the commutation relations (B.1)-(B.4).

Remark 5.11. In terms of the generators hm (5.33) and central elements γm (5.59), the new 
generators a1,m, a2,m entering in (5.51) decompose as:

a1,m = qm

2m
(hm + γm) , a2,m = qm

−2m
(−hm + q−2mγm) . (5.60)
1 + q 1 + q
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It is known that the elements (5.59) and C±1/2 generate8 the center of Uq(ĝl2). The following 
arguments are described in [35] (see also [42]). Denote C the subalgebra generated by (5.59). 
One has the embedding UDr

q ⊗ C ↪→ Uq(ĝl2). Furthermore, define U ′Dr
q as the extension of 

UDr
q by q±1/2, K±1/2, and define C′ as the extension of C by (k±

1,0k±
2,0)

1/2. Then, one has the 

inverse embedding Uq(ĝl2) ↪→ U ′Dr
q ⊗ C′. It follows that Uq(ĝl2) and U ′Dr

q ⊗ C are “almost” 
isomorphic. So, one has the tensor product decomposition:

Uq(ĝl2) ∼= UDr
q ⊗ C . (5.61)

For more details, see e.g. [42, Proposition 2.3, Corollary 2.4]. The explicit isomorphism ϕD :
Uq(ĝl2) → UDr

q ⊗ C is constructed along these lines. In view of these comments, UDr
q can be 

considered as the quotient of the Drinfeld type presentation of Uq(ĝl2) by the relations

y±(z) = 1 ⇐⇒ k±
1,0k

±
2,0 = 1 and γm = 0 ∀m ∈ Z∗ . (5.62)

Below, we will use the surjective homomorphism γD : Uq(ĝl2) → UDr
q using the presentation of 

Theorem 5.7. Recall (5.50) and (5.51). Using (5.60) and setting (5.62), for instance one has:

γD(qc/2) �→ C1/2 , γD(x±(z)) �→ x±(z) , (5.63)

γD(a1,m) �→ 1

qm + q−m
hm , γD(a2,m) �→ − q2m

qm + q−m
hm , (5.64)

γD(k∓
2,0(k

∓
1,0)

−1) �→ K±1 . (5.65)

Thus, the FRT presentation of Uq(ŝl2) is obtained as a corollary of [28, Main Theorem]. It is 
given by the image of (5.46), (5.47) with (5.41) via γD .

5.2.2. Alternating subalgebras Uq(ĝl2)
	,± and Uq(ĝl2)


,± and K-matrices
By analogy with the analysis of previous section, we need to identify q-deformed analogs of 

the “classical” alternating subalgebras (5.20), (5.21). For instance, consider the elements:

C−k/2K−1x+
k , C(k+1)/2x−

k+1 , E1,k+1 , E2,k+1 for k ∈ N . (5.66)

Using the defining relations of Uq(ĝl2), for k, � ∈ N one finds:[
Ei,k,Ej,�

] = 0 ,[
E1,k,C

−�/2K−1x+
�

] =
[
k
]
q

k
qk/2C−(k+�)/2K−1x+

k+� ,

[
E2,k,C

−�/2K−1x+
�

] = −
[
k
]
q

k
q−k/2C−(k+�)/2K−1x+

k+� ,

[
E1,k,C

(�+1)/2x−
�+1

] = −
[
k
]
q

k
qk/2C(k+�+1)/2x−

k+�+1 ,

[
E2,k,C

(�+1)/2x−
�+1

] =
[
k
]
q

k
q−k/2C(k+�+1)/2x−

k+�+1 .

8 I thank N. Jing for communications on this point. Note that the analogs of y±(z) are known for higher rank affine 
Lie algebras of type A,B,C,D [35,42,43].
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Furthermore, the relations (5.29) are left invariant by the action of C−(k+�+1)/2K−2 for (++) or 
the action of C(k+�+1)/2 for (−−). Also, using (5.28), (5.30) one finds:[

C−k/2K−1x+
k ,C(�+1)/2x−

�+1

] =
= 1

q − q−1 K−1ψk+�+1 + (q2 − 1)
(
C−k/2K−1x+

k

)(
C(�+1)/2x−

�+1

)
.

According to (5.31), K−1ψk only depends on hk so it is a combination of E1,k, E2,k . Thus, we 
conclude that the elements (5.66) form a subalgebra of Uq(ĝl2). Other subsets of elements are 
similarly considered, which form different subalgebras. It follows:

Definition 5.12.

Uq(ĝl2)
	,± = {C∓k/2K−1x±

k ,C±(k+1)/2x∓
k+1,E1,k+1,E2,k+1|k ∈N} ,

Uq(ĝl2)

,± = {C∓k/2x±

−k,C
±(k+1)/2x∓

−k−1K,E1,−k−1,E2,−k−1|k ∈N} .

We call Uq(ĝl2)
	,± and Uq(ĝl2)


,± the right and left alternating subalgebras of Uq(ĝl2). The 
subalgebra generated by {K±1, C±1/2} is denoted Uq(ĝl2)

�.

In each alternating subalgebra introduced above, the center is characterized as follows. Con-
sider for instance Uq(ĝl2)

	,±. Its center is the subalgebra of C generated by some of the coeffi-
cients of the generating function y+(z) as defined in (5.58).

Remark 5.13. The center C	 (resp. C
) of Uq(ĝl2)
	,± (resp. Uq(ĝl2)


,±) is generated by γm

(resp. γ−m) with m ∈N∗.

For Uq(ŝl2), it is known that given a certain ordering the elements {x±
k , h�, K±1, C±1/2|k ∈

Z, � ∈ Z\{0}} generate a PBW basis, see [18, Proposition 6.1] with [19, Lemma 1.5]. According 
to (5.33), with a minor modification in the Cartan sector associated with the decomposition of hk

into E1,k, E2,k , a PBW basis for Uq(ĝl2) is obtained. If one considers the subalgebra Uq(ĝl2)
	,+, 

let us choose the ordering:

C1/2x−
1 < Cx−

2 < · · · < E1,1 < E1,2 < · · · < E2,1 < E2,2 < · · · < C−1/2K−1x+
1 < K−1x+

0 ,

whereas for the subalgebra Uq(ĝl2)

,− we choose the ordering:

x−
0 < C1/2x−

−1 < · · · < E1,1 < E1,2 < · · · < E2,1 < E2,2 < · · · < C−1x+
−2K < C−1/2x+

−1K .

It follows:

Proposition 5.14. The vector space Uq(ĝl2)
	,+ (resp. Uq(ĝl2)


,−) has a linear basis consisting 
of the products x1x2 · · ·xn (n ∈ N) with xi ∈ Uq(ĝl2)

	,+ (resp. xi ∈ Uq(ĝl2)

,−) such that x1 ≤

x2 ≤ · · · ≤ xn.

Using the automorphism (5.34), PBW bases for Uq(ĝl2)
	,− and Uq(ĝl2)


,+ are similarly 
obtained.

We now turn to the construction of K-matrices satisfying the Freidel-Maillet type equations 
(3.9) or (3.25), whose entries are formal power series in the elements of alternating subalgebras. 
Assume there exists a matrix K̃0 with scalar entries and two quantum Lax operators L(z), L0

such that the following relations hold (R̃21(z) = P R̃12(z)P ):
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R̃12(z/w) K̃0
1 R(0) K̃0

2 = K̃0
2 R(0) K̃0

1 R̃21(z/w) , (5.67)

R̃12(z/w)L1(z)L2(w) = L2(w)L1(z)R̃12(z/w) , (5.68)

R̃21(z/w)(L0)1(L
0)2 = (L0)2(L

0)1R̃21(z/w) , (5.69)

(L0)1R
(0)L2(w) = L2(w)R(0)(L0)1 , (5.70)

L1(z)R
(0)(L0)2 = (L0)2R

(0)L1(z) . (5.71)

Adapting [57, Proposition 2], using the above relations one finds that:

K̃(z) �→ L(z)K̃0L0 (5.72)

satisfies the following Freidel-Maillet type equation (for a non-symmetric R-matrix)

R̃12(z/w) (K̃(z) ⊗ II ) R(0) (II ⊗ K̃(w)) = (II ⊗ K̃(w)) R(0) (K̃(z) ⊗ II ) R̃21(z/w) .

(5.73)

An example built from the FRT presentation for Uq(ĝl2) of Theorem 5.7 is obtained as fol-
lows. For the choices

L(z) �→ L−(z) and L0 �→ L−,0 = diag((k−
2,0)

−1, (k−
1,0)

−1) , (5.74)

eq. (5.68) holds and using the exchange relations (5.55)-(5.57) it is checked that eqs. (5.69)-(5.71)
hold. Also, for the choice

K̃0 =
⎛⎝ 0 k+(q+q−1)

(q−q−1)
k−(q+q−1)

(q−q−1)
0

⎞⎠ (5.75)

it is checked that eq. (5.67) holds. It follows

K̃(z) �→ K̃−(z) = L−(z)K̃0L−,0 (5.76)

satisfies (5.73). Note that eq. (5.73) is left invariant under the transformation (z, w) �→ (λz, λw)

for any λ ∈C∗.
A solution of (3.9) associated with the symmetric R-matrix (3.1) is readily obtained using the 

similarity transformation (5.40).

Lemma 5.15. The dressed K-matrix

K−(u) =⎛⎜⎝ u−1
(

k−(q+q−1)

q−q−1 k−
1 (qu2)f−(qu2)(k−

2,0)−1
)

k+(q+q−1)

q−q−1 k−
1 (qu2)(k−

1,0)−1

k−(q+q−1)

q−q−1

(
k−

2 (qu2) + e−(qu2)k−
1 (qu2)f−(qu2)

)
(k−

2,0)−1 u

(
k+(q+q−1)

q−q−1 e−(qu2)k−
1 (qu2)(k−

1,0)−1
)
⎞⎟⎠

satisfies the Freidel-Maillet type equation (3.9).

Proof. The K-matrix K̃−(z) defined by (5.76) satisfies (5.73). Applying the transformation 
(5.40) to (5.73) and defining

K−(u) = M(u)K̃−(qu2)M(u) ,

the claim follows. �
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Another solution of (3.9) is obtained as follows. Assume there exist two quantum Lax opera-
tors L(z), L0 such that the relations (5.70), (5.71) and

R̃21(z/w)L1(z)L2(w) = L2(w)L1(z)R̃21(z/w) ,

R̃12(z/w)(L0)1(L
0)2 = (L0)2(L

0)1R̃12(z/w)

are satisfied. It is straightforward to check that

L(z) �→ (L+(z−1))−1 and L0 �→ L+,0 = diag(k+
2,0, k+

1,0) (5.77)

obey the above set of relations. Then

K̃(z) �→ K̃+(z) = L+,0K̃0(L+(z−1)−1) (5.78)

satisfies (5.73). Using this result combined with the similarity transformation (5.40), it follows:

Lemma 5.16. The dressed K-matrix

K+(u) =⎛⎝ u−1
(

− k+(q+q−1)

q−q−1 k+
2,0k+

2 (1/qu2)−1e+(1/qu2)

)
k+(q+q−1)

q−q−1 k+
2,0k+

2 (1/qu2)−1

k−(q+q−1)

q−q−1 k+
1,0

(
k+

1 (1/qu2)−1 + f+(1/qu2)k+
2 (1/qu2)−1e+(1/qu2)

)
u

(
− k−(q+q−1)

q−q−1 k+
1,0f+(1/qu2)k+

2 (1/qu2)−1
)
⎞⎠

satisfies the Freidel-Maillet type equation (3.9).

For completeness, a K-matrix satisfying (3.25) is now constructed along the same lines. To 
this aim, we consider the set of relations (5.67)-(5.71) with the substitution:

R(0) → (R(0))−1 . (5.79)

For the choices

L(z) �→ L+(z) and L0 �→ L′+,0 = diag((k+
2,0)

−1, (k+
1,0)

−1) , (5.80)

one finds that

K̃(z) �→ K̃ ′+(z) = L+(z)K̃0L′+,0 (5.81)

satisfies (for the non-symmetric R-matrix)

R̃12(z/w) (K̃(z) ⊗ II ) (R(0))−1 (II ⊗ K̃(w))

= (II ⊗ K̃(w)) (R(0))−1 (K̃(z) ⊗ II ) R̃21(z/w) . (5.82)

Using (5.40), it follows:

Lemma 5.17. The dressed K-matrix

K ′+(u) =⎛⎜⎝ u−1
(

k−(q+q−1)

q−q−1 k+
1 (qu2)f+(qu2)(k+

2,0)−1
)

k+(q+q−1)

q−q−1 k+
1 (qu2)(k+

1,0)−1

k−(q+q−1)

q−q−1

(
k+

2 (qu2) + e+(qu2)k+
1 (qu2)f+(qu2)

)
(k+

2,0)−1 u

(
k+(q+q−1)

q−q−1 e+(qu2)k+
1 (qu2)(k+

1,0)−1
)
⎞⎟⎠

satisfies the Freidel-Maillet type equation (3.25).
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The entries of the K-matrices are formal power series in the elements of the alternating sub-
algebras. Consider for instance the entry (K−(u))11. One has:

(K−(u))11 = u−1q

⎛⎜⎜⎜⎝k−(q + q−1)

q2 − 1
k−

1 (qu2) f−(qu2)(k−
2,0)

−1︸ ︷︷ ︸
=q(k−

2,0)
−1f−(qu2)

⎞⎟⎟⎟⎠ by (5.56)

= u−1q

⎛⎜⎜⎝k−(q + q−1)

q − q−1 k−
1 (qu2)(k−

2,0)
−1︸ ︷︷ ︸

=K−1 exp
(−(q−q−1)

∑∞
n=1 a1,n(qu2)−n

) f−(qu2)

⎞⎟⎟⎠ by (5.51) .

Inserting (5.43), one gets:

(K−(u))11 = uq

(
−k−(q2 + 1) exp

(
−(q − q−1)

∞∑
n=1

a1,n(qu2)−n

)

×
∞∑

k=0

qkC−k/2K−1x+
k (qu2)−k−1

)
.

According to Definition 5.12 and (5.52), (5.53), we conclude (K−(u))11 ∈ Uq(ĝl2)
	,+⊗C[[u2]]. 

Studying similarly the other entries and repeating the same analysis for K+(u) and K ′+(u), one 
finds:

(K−(u))ij ∈ Uq(ĝl2)
	,+ ⊗C[[u2]] , (K+(u))ij ∈ Uq(ĝl2)


,− ⊗C[[u2]] , (5.83)

and (K ′+(u))ij ∈ Uq(ĝl2)

,− ⊗C[[u2]] .

5.2.3. Isomorphisms relating Āq and the alternating subalgebras Uq(ĝl2)
	,± and Uq(ĝl2)


,±
Recall the Freidel-Maillet type presentation for Āq of Theorem 3.1. A direct comparison 

between the K-matrix (3.8) and the K-matrices K±(u) previously derived provides explicit maps 
from Āq to the alternating subalgebras of Uq(ĝl2). Recall the generating functions (3.5), (3.6) of 
the algebra Āq .

Proposition 5.18. There exists an isomorphism from Āq to Uq(ĝl2)
	,+ such that:

W+(u) �→ −k−(q2 + 1) exp

(
−(q − q−1)

∞∑
n=1

a1,n(qu2)−n

)

×
∞∑

k=0

qkC−k/2K−1x+
k (qu2)−k−1 , (5.84)

W−(u) �→ −k+(q−2 + 1)

( ∞∑
k=0

qk+1C(k+1)/2x−
k+1(qu2)−k−1

)

× exp

(
−(q − q−1)

∞∑
a1,n(qu2)−n

)
, (5.85)
n=1
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G+(u) �→ ρ̄

q − q−1

(
exp

(
−(q − q−1)

∞∑
n=1

a1,n(qu2)−n

)
− 1

)
, (5.86)

G−(u) �→ ρ̄

q − q−1

(
exp

(
−(q − q−1)

∞∑
n=1

a2,n(qu2)−n

)
− 1

)
(5.87)

+ ρ̄(q − q−1)

∞∑
k,�=0

qk+�+2C(k−�+1)/2x−
k+1K−1

× exp

(
−(q − q−1)

∞∑
n=1

a1,n(qu2)−n

)
x+
� (qu2)−k−�−1 .

Proof. As previously discussed, using (5.42), (5.43) and (5.51), the entries of K−(u) are 
power series in qu2. Identifying (3.8) with K−(u), one gets the above homomorphism Āq →
Uq(ĝl2)

	,+ through identifying the generating functions. It remains to show that it is an isomor-
phism. Firstly, by analogy with Uq(ŝl2) [22, page 289], U(ĝl2) with defining relations (5.1)-(5.5)
is known as the specialization q → 1 of Uq(ĝl2). So, the subalgebra Uq(ĝl2)

	,+ specializes to 
U(ĝl2)

	,+ with (5.20). Secondly, by Proposition 5.4 A ∼= U(ĝl2)
	,+. Thirdly, by Proposition 2.18

A is the specialization of Āq at q → 1, ρ̄ → 16. All together, we conclude that the map above is 
an isomorphism. �

Identifying the leading terms of the power series, one finds for instance:

Example 5.19. The image in Uq(ĝl2)
	,+ of the first generators of Āq is such that:

W0 �→ −k−qK−1x+
0 , W1 �→ −k+C1/2x−

1 ,

G1 �→ − ρ̄

q + q−1 a1,1 , G̃1 �→ − ρ̄

q + q−1 a2,1 + ρ̄(q − q−1)

(q + q−1)
q2C1/2x−

1 K−1x+
0 .

As a second example, recall the Freidel-Maillet type presentation (3.25) for Āq with (3.24). In 
this case, the K-matrix (3.24) is compared with the K-matrix K ′+(u) of Lemma 5.17. It follows

Proposition 5.20. There exists an isomorphism from Āq to Uq(ĝl2)

,− such that:

W+(u−1q−1) �→ k+(q + q−1)

∞∑
k=0

q−kCk/2x−
−k(qu2)k+1

× exp

(
(q − q−1)

∞∑
n=1

a1,−n(qu2)n

)
,

W−(u−1q−1) �→ k−(q + q−1) exp

(
(q − q−1)

∞∑
n=1

a1,−n(qu2)n

)

×
( ∞∑

q−k+1C−(k+1)/2x+
−k−1K(qu2)k+1

)
,

k=0

38



P. Baseilhac Nuclear Physics B 967 (2021) 115400
G+(u−1q−1) �→ ρ̄

q − q−1

(
exp

(
(q − q−1)

∞∑
n=1

a1,−n(qu2)n

)
− 1

)
,

G−(u−1q−1) �→ ρ̄

q − q−1

(
exp

(
(q − q−1)

∞∑
n=1

a2,−n(qu2)n

)
− 1

)

+ ρ̄(q − q−1)

∞∑
k,�=0

q−k−�C(k−�−1)/2x−
−k

× exp

(
(q − q−1)

∞∑
n=1

a1,−n(qu2)n

)
x+
−�−1K(qu2)k+�+1 .

Example 5.21. The image in Uq(ĝl2)

,− of the first generators of Āq is such that:

W0 �→ k+x−
0 , W1 �→ k−qC−1/2x+

−1K ,

G1 �→ ρ̄

q + q−1 a1,−1 , G̃1 �→ ρ̄

q + q−1 a2,−1 + ρ̄(q − q−1)

(q + q−1)
C−1/2x−

0 x+
−1K .

So, the alternating subalgebra Uq(ĝl2)
	,+ (resp. Uq(ĝl2)


,−) admits a Freidel-Maillet type 
presentation given by the K-matrix K−(u) (resp. K ′+(u)) satisfying eq. (3.9) (resp. eq. (3.25)). 
Using the automorphism (5.34), a presentation for Uq(ĝl2)

	,− (resp. Uq(ĝl2)

,+) can be obtained 

as well.
Finally, let us introduce the alternating subalgebras of UDr

q .

Definition 5.22.

UDr,	,±
q = {C∓k/2K−1x±

k ,C±(k+1)/2x∓
k+1,hk|k ∈N} ,

UDr,
,±
q = {C∓k/2x±

−k,C
±(k+1)/2x∓

−k−1K,hk|k ∈N} .

We call UDr,	,±
q and UDr,
,±

q the right and left alternating subalgebras of UDr
q . The subalgebra 

generated by {K±1, C±1/2} is denoted UDr,�
q .

As a corollary of (5.61) and Remark 5.13, one has the tensor product decompositions:

Uq(ĝl2)
	,± ∼= UDr,	,±

q ⊗ C	 , Uq(ĝl2)

,± ∼= UDr,
,±

q ⊗ C
 .

Recall (5.59).

Remark 5.23. The alternating subalgebra UDr,	,±
q (resp. UDr,
,±

q ) is the quotient of Uq(ĝl2)
	,±

(resp. Uq(ĝl2)

,±) by the ideal generated from the relations {γm+1 = 0| ∀m ∈ N} (resp. 

{γ−m−1 = 0| ∀m ∈N}).

We conclude this section with some comments. Using the isomorphism of Propositions 5.18, 
the image of the generating function 	(u) ∈ Z ⊗ C

[[
u2

]]
defined by (3.28) gives a gener-

ating function in C	 ⊗ C
[[

u2
]]

that looks more complicated than (5.58). In the context of 
FRT/Sklyanin/Freidel-Maillet type presentations, this is not surprising as 	(u) and y±(qu2) are 
built from different quantum determinants (see e.g. [57] for details). However, as a consistency 
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check one can compare the leading orders of both power series. For instance, let us compute 
the image in Uq(ĝl2)

	,+ of 	1 given by (2.27) using the expressions of Example 5.19. After 
simplifications using (5.28), (5.30), it reduces to:

	1 = − 2

(q + q−1)2 (qa1,1 + q−1a2,1) ,

which produces γ1 (see (5.59) for m = 1).

5.3. The comodule algebra homomorphism δ : Āq → Uq(ĝl2)
	,+,0 ⊗ Āq

At the end of Section 2, a coaction map 〈W0, W1〉 → U
DJ,+,0
q ⊗ 〈W0, W1〉 has been given. 

In this subsection, we study further the comodule algebra structure of Āq using the FRT pre-
sentation of Theorem 5.7. A coaction formula for all the generators of Āq is derived as follows. 
Recall the coproduct formulae for the quantum Lax operators (5.48). Take the K-matrix (5.76)
and define the new K-matrix:

	(L−(z))K̃0	′(L−,0) = (L−(zq−(1⊗ c
2 )))[1]

⎛⎜⎜⎝(L−(zq( c
2 ⊗1)))[2]K̃0(L−,0)[2]︸ ︷︷ ︸

=(K̃−(zq
( c

2 ⊗1)
))[2]

⎞⎟⎟⎠ (L−,0))[1] .

(5.88)

By construction, it satisfies (5.73) for the non-symmetric R-matrix (5.39). Using the invariance 
of (5.73) under shifts in the ratio z/w, it follows that

δ(K̃−(z)) = (L−(z))[1](K̃−(z))[2](L−,0)[1]

solves (5.73). More generally, starting from any K-matrix satisfying (5.73) and following stan-
dard arguments [57] different types of coactions can be constructed from the FRT presentation. 
Using (5.40), for a symmetric R-matrix for instance it yields to:

Proposition 5.24. The Freidel-Maillet type presentation (3.9) of Āq associated with R-matrix 
(3.1) and K-matrix (3.8) admits a comodule algebra structure. The left coaction is given by:

δ(K−(u)) =
(
M(u)L−(qu2)M(u)−1

)
[1] (K

−(u))[2](L−,0)[1] . (5.89)

A right coaction map is similarly obtained by analogy with (5.78). Now, recall the gener-
ating functions (3.5), (3.6). Also, define Uq(ĝl2)

	,+,0 as the alternating subalgebra Uq(ĝl2)
	,+

extended by K, K−1.

Lemma 5.25. There exists a left comodule algebra homomorphism δ : Āq → Uq(ĝl2)
	,+,0 ⊗ Āq

such that:

δ(W+(u)) �→ (qu2)−1qk−
1 (qu2)(k−

2,0)
−1f−(qu2)

⊗
(

1
−1 G−(u) + k−(q + q−1)

−1 II

)
+ k−

1 (qu2)(k−
2,0)

−1 ⊗W+(u) ,

k+(q + q ) (q − q )
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δ(W−(u)) �→ q−1e−(qu2)k−
1 (qu2)(k−

1,0)
−1 ⊗

(
1

k−(q + q−1)
G+(u) + k+(q + q−1)

(q − q−1)
II

)
+

(
k−

2 (qu2)(k−
1,0)

−1 + q−1e−(qu2)k−
1 (qu2)(k−

1,0)
−1f−(qu2)

)
⊗W−(u) ,

δ(G+(u)) �→ k−
1 (qu2)(k−

1,0)
−1 ⊗ G+(u) + ρ̄

q − q−1

(
k−

1 (qu2)(k−
1,0)

−1 − 1
)

⊗ II

+ k−(q + q−1)k−
1 (qu2)(k−

1,0)
−1f−(qu2) ⊗W−(u) ,

δ(G−(u)) �→
(

k−
2 (qu2)(k−

2,0)
−1 + qe−(qu2)k−

1 (qu2)(k−
2,0)

−1f−(qu2)
)

⊗ G−(u)

+ ρ̄

q − q−1

(
k−

2 (qu2)(k−
2,0)

−1 + qe−(qu2)k−
1 (qu2)(k−

2,0)
−1f−(qu2) − 1

)
⊗ II

+ k+qu2(q + q−1)e−(qu2)k−
1 (qu2)(k−

2,0)
−1 ⊗W+(u) .

Proof. Compute (5.89) using (5.41), (5.40) and (3.8). Compare the entries of the resulting matrix 
to δ(K(u)) with (3.8). �

Expanding the power series on both sides of the above equations using (3.5), (3.6), 
(5.42)-(5.44) with (5.51), (5.54), one gets the image by δ of the generators of Āq . This gen-
eralizes example (2.48).

Example 5.26.

δ(W0) = −k−qK−1x+
0 ⊗ II + K−1 ⊗ W0 ,

δ(W1) = −k+C1/2x−
1 ⊗ II + K ⊗ W1 .

If we define similarly Uq(ĝl2)

,−,0, note that a right coaction map Āq → Āq ⊗ Uq(ĝl2)


,−,0

can be derived along the same lines.

5.4. Relation between the generators of Āq and root vectors of Uq(ŝl2)

Let α0, α1 denote the simple roots of ŝl2 and δ = α0 + α1 be the minimal positive imaginary 
root. Let R = {nδ + α0, nδ + α1, mδ|n ∈ Z, m ∈ Z\{0}} be the root system of ŝl2 and R+ =
{nδ +α0, nδ +α1, mδ|n ∈ N, m ∈ N\{0}} denote the positive root system. Recall UDJ,+

q denote 
the subalgebra generated by

Eα1 ≡ E1 , Eα0 ≡ E0 .

Using Lusztig’s braid group action with generators T0, T1 such that Ti : Uq(ŝl2) → Uq(ŝl2), 
root vectors Eβ ∈ U

DJ,+
q for every β ∈ R+ are defined [25,18]. Namely, for real root vectors 

nδ + α0, nδ + α1 with n ∈N one chooses

Enδ+α0 = (T0�)n(E0) and Enδ+α1 = (T0�)−n(E1) .

Here � : Uq(ŝl2) → Uq(ŝl2) denotes the automorphism defined by:

�(X0) = X1 , �(X1) = X0 for X = E,F,K±1 .

For the imaginary root vectors, following [18,19] they are defined through the functional equation 
(note that 

[
Enδ, Emδ

] = 0 for any n, m):
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exp

(
(q − q−1)

∞∑
k=1

Ekδz
k

)
= 1 + (q − q−1)

∞∑
k=0

ψ̃kz
k with

ψ̃k = Ekδ−α1Eα1 − q−2Eα1Ekδ−α1 .

For the negative root system denoted R−, similarly one defines the root vectors Fβ ∈ U
DJ,−
q

for every β ∈ R− [25]. The root vectors of UDJ,+
q and UDJ,−

q are related as follows (see [25, 
Theorem 2]):

Fβ = �(Eβ) ∀β ∈R+ , (5.90)

where � is an antiautomorphism of Uq(ŝl2) such that

�(Ei) = Fi , �(Fi) = Ei , �(Ki) = K−1
i for i = 1,2 ,

�(C) = C−1 and �(q) = q−1 .

The explicit relation between Drinfeld generators and root vectors has been given in [18, 
Section 4] (see also [19, Lemma 1.5]). For Uq(ŝl2), according to above definitions one has the 
correspondence:

x+
k = Ekδ+α1 , x−

k+1 = −C−k−1KEkδ+α0 , hk+1 = C−(k+1)/2E(k+1)δ ,

(5.91)

x−
−k = Fkδ+α1 , x+

−k−1 = −Fkδ+α0K−1Ck+1 , h−k−1 = C(k+1)/2F(k+1)δ (5.92)

for k ∈ N . From (5.37), one gets the following relations in terms of the root vectors [25, Section 
3]: [

Eδ,Ekδ+α1

] = (q + q−1)E(k+1)δ+α1 ,
[
Ekδ+α0,Eδ

] = (q + q−1)E(k+1)δ+α0 . (5.93)

By induction, root vectors can be written as polynomials in E1, E0. For instance:

Eδ = E0E1 − q−2E1E0 ,

Eδ+α0 = 1

q + q−1

(
E2

0E1 − (1 + q−2)E0E1E0 + q−2E1E
2
0

)
,

Eδ+α1 = 1

q + q−1

(
E0E

2
1 − (1 + q−2)E1E0E1 + q−2E2

1E0

)
.

We now relate the root vectors to the generators of alternating subalgebras. For convenience, 
compute the image of UDr,	,+

q (see Definition 5.22) by the automorphism ν (5.35) using (5.33). 
This alternating subalgebra is denoted (UDr,	,+

q )ν . Using (5.91), in terms of root vectors the 
generators of (UDr,	,+

q )ν read:

C−k/2K−1x+
k

ν�→ C−k/2x+
k = C−k/2Ekδ+α1 , (5.94)

C(k+1)/2x−
k+1

ν�→ C(k+1)/2x−
k+1K−1 = −q−2C−(k+1)/2Ekδ+α0 , (5.95)

hk+1
ν�→ hk+1 = C−(k+1)/2E(k+1)δ . (5.96)

As an application of Proposition 5.18, a set of functional relations relating the generators of 
Āq to the root vectors of UDJ,+

q (or similarly for UDJ,−
q ) is easily derived. Recall the surjec-

tive homomorphism γ : Āq → Āq
∼= U

DJ,+
q , see (2.37). Consider the image of the generating 

functions (3.5), (3.6) via γ .
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Proposition 5.27. The isomorphism ι : Āq → U
DJ,+
q is such that:

γ (W+(u)) �→ −k−q(q + q−1) exp

(
−(q − q−1)

∞∑
n=1

1

(qn + q−n)
Enδ(qu2)−n

)

×
∞∑

k=0

qkEkδ+α1(qu2)−k−1 ,

γ (W−(u)) �→ k+q−1(q + q−1)

( ∞∑
k=0

qk−1Ekδ+α0(qu2)−k−1

)

× exp

(
−(q − q−1)

∞∑
n=1

1

(qn + q−n)
Enδ(qu2)−n

)
,

γ (G+(u)) �→ ρ̄

(q − q−1)

(
exp

(
−(q − q−1)

∞∑
n=1

1

(qn + q−n)
Enδ(qu2)−n

)
− 1

)
,

γ (G−(u)) �→ ρ̄

(q − q−1)

(
exp

(
(q − q−1)

∞∑
n=1

q2n

(qn + q−n)
Enδ(qu2)−n

)
− 1

)

+ ρ̄(q − q−1)

∞∑
k,�=0

qk+�Ekδ+α0

× exp

(
−(q − q−1)

∞∑
n=1

1

(qn + q−n)
Enδ(qu2)−n

)
E�δ+α1(qu2)−k−�−1 .

Proof. Recall the surjective homomorphism γD which acts as (5.63)-(5.65). Consider its restric-
tion to Uq(ĝl2)

	,+, applied to the r.h.s. of (5.84)-(5.87). The resulting expressions are now in 
U

Dr,	,+
q ⊗C[[u2]]. Then, studying the relations satisfied by {C−k/2K−1x+

k , C(k+1)/2x−
k+1, hk+1}

one finds that they are equivalent to the defining relations of the quotient of UDr,	,+
q by C = 1. 

Apply ν and use the identification given in the r.h.s. of (5.94)-(5.96) for C = 1. �
Expanding the above power series, for instance set k+ → q2, k− → −q−1 (which gives ρ̄ =

−q(q + q−1)2) in these expressions. It follows:

W0 �→ E1 , W1 �→ E0 , G1 �→ qEδ ,

(note that G̃1 �→ −q3Eδ + (q3 − q−1)E0E1) , (5.97)

W−1 �→ 1

(q + q−1)2

(
−(q − q−1)EδE1 + (q2 + 1)Eδ+α1

)
, (5.98)

W2 �→ 1

(q + q−1)2

(
−(q − q−1)E0Eδ + (q2 + 1)Eδ+α0

)
. (5.99)

By construction, (UDr,	,+
q )ν/C=1 ∼= U

DJ,+
q . Using (5.90), an isomorphism Āq → U

Dr,
,−
q /C=1

∼= U
DJ,−
q is obtained from the above expressions.

The inverse of the map ι is now considered. We want to solve the positive root vectors 
Enδ+α , Enδ+α , Enδ in terms of the generators W−k, Wk+1, Gk+1. Although we do not have 
1 0
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the explicit inverse map between generating functions, the images of the root vectors in Āq can 
be obtained recursively from Proposition 5.27. For instance,

E1 �→ W0 , E0 �→ W1 , Eδ �→ q−1G1W0 , (5.100)

Eδ+α1 �→ (q − q−1)

(q + q−1)
q−2G1W0 + (1 + q−2)W−1 , (5.101)

Eδ+α0 �→ (q − q−1)

(q + q−1)
q−2W1G1 + (1 + q−2)W2 . (5.102)

Of course, these expressions could be given in a different ordering (see Theorem 2.15) using 
(2.3) for k = 0.

Finally, let us point that several relations mixing both sets of generators can be readily ob-
tained using (3.9) combined with Proposition 5.27. Namely, define the image of the K-matrix 
(3.8) by ι as:

Kι(u) = ι(K(u)) . (5.103)

Consider the pair of K-matrices {K(u), Kι(v)}. They satisfy:

R(u/v) (K(u) ⊗ II ) R(0) (II ⊗ Kι(v)) = (II ⊗ Kι(v)) R(0) (K(u) ⊗ II ) R(u/v)

(5.104)

with (3.1). If we define the generating functions W±(v)ι,γ = ι ◦ γ (W±(v)), G±(v)ι,γ = ι ◦
γ (G±(v)), from (3.10)-(3.18) one extracts the set of functional relations associated with (5.104).

Remark 5.28. In [62, Section 11], the relation between Damiani’s PBW basis and the alternating 
PBW basis for Āq has been studied in details within the framework of the q-shuffle algebra. In 
particular, various relations mixing both sets of generators have been obtained.

6. The alternating presentation of Uq(̂sl2) from UDJ
q

Define the alternating subalgebra Ā	
q

∼= (U
Dr,	,+
q )ν/C=1 (resp. Ā


q
∼= U

Dr,
,−
q /C=1) as the 

image of Āq by ι (resp. � ◦ ι) (see Proposition 5.27) for k+ → q2, k− → −q−1. For conve-
nience, let us denote the generators of Ā	

q (resp. Ā

q ) by {W 	−k, W

	
k+1, G

	
k+1, G̃

	
k+1|k ∈ N} (resp. 

{W 
−k, W


k+1, G



k+1, G̃



k+1|k ∈N}). According to (5.97):

W 	
0 = E1 , W 	

1 = E0 , W 

0 = F1 , W 


1 = F0 . (6.1)

Recall Proposition 2.14 and UDJ,0
q = {K0, K1}. By construction, one gets the tensor product 

decomposition:

Uq(ŝl2) ∼= Ā	
q ⊗ UDJ,0

q ⊗ Ā

q . (6.2)

Moreover, by Theorem 2.15 an ‘alternating’ PBW basis for Uq(ŝl2) readily follows from the 
results of [62,63].

Theorem 6.1. A PBW basis for Uq(ŝl2) is obtained by its alternating right and left generators

{W 	 }k∈N , {G	 }�∈N , {W 	 }n∈N , {W 
−r}r∈N , {G
 }s∈N , {W 
 }t∈N
−k �+1 n+1 s+1 t+1
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and K0, K1 in any linear order < that satisfies

W 	−k < G	
�+1 < W 	

n+1 < K0 < K1 < W 

r+1 < G


s+1 < W 
−t , k, �, n, r, s, t ∈ N .

The transition matrix from the alternating PBW basis of Theorem 6.1 to Damiani’s PBW basis 
for Uq(ŝl2) [25, Theorem 2] is determined by Proposition 5.27 and using the antiautomorphism 
� (5.90).
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Appendix A. Drinfeld-Jimbo presentation of Uq(̂sl2)

A.1. Drinfeld-Jimbo presentation UDJ
q

Define the extended Cartan matrix {aij } (aii = 2, aij = −2 for i �= j ). The quantum affine 
algebra Uq(ŝl2) over C(q) is generated by {Ej , Fj , K

±1
j }, j ∈ {0, 1} which satisfy the defining 

relations

KiKj = KjKi , KiK
−1
i = K−1

i Ki = 1 , KiEjK
−1
i = qaij Ej ,

KiFjK
−1
i = q−aij Fj , [Ei,Fj ] = δij

Ki − K−1
i

q − q−1

together with the q-Serre relations (i �= j )[
Ei,

[
Ei,

[
Ei,Ej

]
q

]
q−1

] = 0 , (A.1)[
Fi,

[
Fi,

[
Fi,Fj

]
q

]
q−1

] = 0 . (A.2)

The product C = K0K1 is the central element of the algebra. The Hopf algebra structure is 
ensured by the existence of a comultiplication 	, antipode S and a counit E with

	(Ei) = 1 ⊗ Ei + Ei ⊗ Ki , (A.3)

	(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi ,

	(Ki) = Ki ⊗ Ki ,
45
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S(Ei) = −EiK
−1
i , S(Fi) = −KiFi , S(Ki) = K−1

i S(1) = 1

and

E(Ei) = E(Fi) = 0 , E(Ki) = 1 , E(1) = 1 .

More generally, one defines the N -coproduct 	(N) : Uq(ŝl2) −→ Uq(ŝl2) ⊗ · · · ⊗ Uq(ŝl2) as

	(N) ≡ (id × · · · × id × 	) ◦ 	(N−1) (A.4)

for N ≥ 3 with 	(2) ≡ 	, 	(1) ≡ id . Note that the opposite coproduct 	′ can be similarly 
defined with 	′ ≡ σ ◦ 	 where the permutation map σ(x ⊗ y) = y ⊗ x for all x, y ∈ Uq(ŝl2) is 
used.

A.2. Serre-Chevalley presentation ŝl2
SC

In the definition below, [., .] denotes the Lie bracket. The affine algebra ŝl2 over C is generated 
by {ej , fj , kj }, j ∈ {0, 1} which satisfy the defining relations[

ki, kj

] = 0 ,
[
ki, ej

] = aij ej ,
[
ki, fj

] = −aijfj ,
[
ei, fj

] = δi,j ki

together with the Serre relations (i �= j )[
ei,

[
ei,

[
ei, ej

]]] = 0 , (A.5)[
fi,

[
fi,

[
fi, fj

]]] = 0 . (A.6)

The sum c = k0 + k1 is the central element of the algebra.

For U(ŝl2
SC

), as usual [x, y] → xy − yx.

Appendix B. Some defining relations of Gao-Jing presentation of Uq(̂gl2)

We refer the reader to [36, Theorem 4.16]. From Definition 5.5 and (5.52), (5.53), the follow-
ing commutation relations are derived:[

ai,m, ai,n

] = 0 , i = 1,2 , (B.1)[
a2,m, a1,n

] = −
[
m

]
m

[mc]q−mδm+n,0 , (B.2)

[
a1,m, x±

n

] = ±
[
m

]
m

q∓|m|c/2x±
m+n , (B.3)

[
a2,m, x±

n

] = ∓
[
m

]
m

q2m∓|m|c/2x±
m+n . (B.4)
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