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Abstract

An infinite dimensional algebra denoted Aq that is isomorphic to a central extension of U, (;r - the positive
part of Uy (s’l\z) - has been recently proposed by Paul Terwilliger. It provides an ‘alternating’ Poincaré-
Birkhoff-Witt (PBW) basis besides the known Damiani’s PBW basis built from positive root vectors. In this
paper, a presentation of Aq in terms of a Freidel-Maillet type algebra is obtained. Using this presentation:
(a) finite dimensional tensor product representations for A, are constructed; (b) explicit isomorphisms from
flq to certain Drinfeld type ‘alternating’ subalgebras of Uy (571\2) are obtained; (c) the image in Uy  of all
the generators of Aq in terms of Damiani’s root vectors is obtained. A new tensor product decomposmon
for Uy (slz) in terms of Drinfeld type ‘alternating’ subalgebras follows. The specialization ¢ — 1 of .Aq is
also introduced and studied in details. In this case, a presentation is given as a non-standard Yang-Baxter
algebra.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum affine algebras are known to admit at least three presentations. For U, (s/l;), the first
presentation originally introduced in [40,29] - referred as the Drinfeld-Jimbo presentation in the
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literature - is given in terms of generators {E;, F;, K l.il li =0, 1} and relations, see Appendix A.
The so-called Drinfeld second presentation was found later on [30], given in terms of generators
x5, he, KEL, €12k € 7, ¢ € Z)\{0}} and relations. The third one, obtained in [54], takes the
form of a Faddeev-Reshetikhin-Takhtajan (FRT) presentation [31,32]. In these definitions, note
that the so-called derivation generator is omitted (see [22, Remark 2, p. 393]). In the following,
we denote respectively U2/, UP™ and URS these presentations of U, (sl2). In addition, for
U, (s/lz) note that a fourth presentation called ‘equitable’, denoted U, q’ T has been introduced
in [38]. It is generated by {y=", k|i = 0, 1}. For the explicit isomorphism Ul — UP7, see [38,
Theorem 2.1].

The construction of a Poincaré-Birkhoff-Witt (PBW) basis for U, (51\2) [25,18] on one hand,
and the FRT presentation of Ding-Frenkel [28] on the other hand brought major contributions
to the subject, by establishing the explicit isomorphisms between U qD T, U qD "and U, (;es (see also
[41,27]). To motivate the goal of the present paper, as a preliminary let us briefly review the main
results of [25,18] and [28].

e To establish the isomorphism between
tion of a PBW basis. In [25], it is shown that the so-called positive part of U, (slz) denoted U,

- cf. Notation 1.2 - is generated by positive (real and imaginary) root vectors [25, Section 3 1].
The root vectors are obtained using Lusztig’s braid group action on U, qD 7 [49]. Based on the

UP” and UP", the main ingredient is the construc-

DJ,+

structure of the commutation relations among the root vectors, a PBW basis for UqD Tt s first
obtained [25, Section 4]. Then, introduce the subalgebras U, DJ,— UqD TO0ofU qD 7. Thanks to the
tensor product decomposition U qD J = Uy bl+ & Uy D0 g Uy D = [49] and some automorphism of
UqDJ, the PBW basis for UqDJ’Jr induces a PBW basis for U, (EB) [25, Section 5]. Then, the ex-
plicit isomorphism U, qD "> U qD 7 118] maps Drinfeld generators to root vectors. See [19, Lemma
1.5], [27].

e To establish the explicit isomorphism between U, RS and U, Dr the main ingredient in [28]
is the constructlon of a FRT presentation for U, (glz) which can be interpreted as a central
extension of U, (slz) [35]. In this approach, the deﬁmng relations are written in the form of a
Yang-Baxter algebra Namely, two quantum Lax operators L¥(z) which entries are generating
functions with coefficients in two different subalgebras of U qD " are introduced. They satisfy cer-
tain functional relations (the so-called ‘RTT’ relations) characterized by an R-matrix. The explicit
isomomorphism U, ;es - U qD " is obtained as a corollary of the FRT presentation of U, (§l\2).

In these works, Damiani’s root vectors (or equivalently the Drinfeld generators), associated
PBW bases and the Yang-Baxter algebra play a central role. Later on, these objects found several
applications. For instance, the universal R-matrix is built from elements in PBW bases of U, (slz)
subalgebras [26]. Also, irreducible finite dimensional representatlons of U, (slz) are class1ﬁed
using U Dr 121]. A natural question is the following: for U, (slz) is it poss1ble to construct a
d1fferent ‘triplet’ of mutually isomorphic algebras other than U f T (orU qI nou f’ and U, ;es ?

Recent works by Paul Terwilliger bring a new light on this subject, and give a starting point
for a precise answer. Indeed, in [61,62] Terwilliger investigated the description of PBW bases of
U, (sly) from the perspective of combinatorics, using a ¢g-shuffle algebra V introduced earlier by

DJ,+

Rosso [53]. Remarkably, using an injective algebra homomorphism U, — V aclosed form

for the images in V of Damiani’s root vectors of U, DI+ _ the basic building elements of Dami-
ani’s PBW basis - was obtained in terms of Catalan words [61, Theorem 1.7]. Then, in [62], he

introduced a set of elements {W_x, Wiy 1, Gi+1, Gk+1 |k € N} into the g-shuffle algebra named

2
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as ‘alternating” words. It was shown that the alternating words generate an algebra denoted U
[62, Section 5] for which a PBW basis was constructed [62, Theorem 10.1,10.2]. Considering
the preimage in U, DI of the alternating words of U, a new PBW in basis - called alternating

- for UqD s arises, besides Damiani’s one [25, Theorem 2]. A comparison between the images
in V of both PBW bases was done, see [62, Section 11]. More recently [63], a central extension
of the preimage of the algebra U arising from the exchange relations between alternating words,

denoted L{+ has been introduced. Its generators are in bijection with ‘alternating’ generators

recurswely built in U, D7+

Section 10].

In this paper, we investigate further these new ‘alternating’ algebras motivated by the con-
struction of a new triplet of presentations for U, (El\z). To this aim, following [63] we introduce
the algebra ftq with generators {W_x, W41, Gk+1, ék+1|k € N} - see Definition 2.1. Note
that to enable a non-trivial specialization ¢ — 1, the definitions of A, and Z/Iq+ slightly dif-

and form an ‘alternating’ PBW basis for the new algebra Z/{;r [63,

fer. However, for g # 1 ./_lq and L{(;r are essentially the same object. Also, the center Z of

Aq is introduced. Adapting the results of [63], the ‘alternating’ PBW bagis of flq is given,
see Theorem 2.12. Following [62], similarly we introduce the algebra A, with generators
{W_k, Wit1, Git1, Giy1lk € N}. One has:

A=A, 02, (1.1)

Let (Wy, W1) denote the subalgebra of Aq generated by Wy, W;. The simplest relations satisfied

by Wy, Wi are the g-Serre relations (2.44), (2.45), of U, DI+ gee (A.1). Actually, according to

[62], Aq = UqDJ’+ = [;)J . So, having in mind the isomorphic pair consisting of UDJ * (or

UqD J’f) and certain subalgebras of U, qD " [18,19], an ‘alternating’ isomorphic pair is provided by
(Wh, W1) and A . Furthermore, by analogy with [18], the explicit isomorphism A — (Wp, Wp)
follows from Lemma 2.9 using a map y : Aq — A Details are reviewed in Sectlon 2. For
completeness, the specialization ¢ — 1 of A, denoted A, is also introduced.

The main result of this paper is a presentation for .Aq which sits into the family of Freidel-
Maillet type algebras' [33] for generic ¢, see Theorem 3.1. For the specialization A, a FRT
type presentation is obtained. It sits into the family of non-standard Yang-Baxter algebras, see
Proposition 3.6. This is done in Section 3. This Freidel-Maillet type presentation of f_tq gives an
efficient framework for studying in more details this algebra and clarifying its relation with U, qD I
(orU q’ "Hou qu and U (;es. The following results are obtained:

(a) Tensor product realizations of flq in Uy (s1>)®N are explicitly constructed. They generate
certains quotients of A, characterized by a set of linear relations satisfied by the fundamental
generators. See Proposition 4.5. This is done in Section 4.

(b) Exphc1t 1somorph1sms between A and certain ‘alternating’ subalgebras of U, (glz) de-
noted Uy (glz)l> + and U, (glz)<' ,are obtalned See Propositions 5.18, 5.20. The main 1ngred1ent
in the analysis is the use of the Ding-Frenkel isomorphism [28]. As a corollary, similar results for

4 and the ‘alternating’ subalgebras of U, (slz) follow. Also, it is shown that Aq can be regarded
as a left (or right) comodule of alternatlng subalgebras of U, (glz) An example of coaction map
is given in Lemma 5.25. See Example 5.26.

1 See also [51,2,48].
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(c) The explicit isomorphism ¢ : (Wo, W1) — UqD It given by (2.46) is extended to the whole
set of generators of ./_lq: a set of functional equations that determine the explicit relation between
Damiani’s root vectors {Ens+a;» Ensli=0,1} € UqDJ’+ (or {Fus4a;, Frsli =0, 1} € Uf”’_) and
the generators of A, is derived, see Proposition 5.27.

The results (b) and (c) are given in Section 5. All together, if we denote A 5 M a5 the Freidel-

Maillet type presentation of Aq, we get the isomorphic ‘triplet’
DI+~ ~ 7FM
U, SA=AT

In the last section, we point out a straightforward application of [62,63] combined with the
results of Section 5. One has the ‘alternating’ tensor product decomposition of U, (sl>):

Uysh) = AZ @ UPT0® A7 (1.2)

where A;(q) = UqD J’+(_)) are certain alternating subalgebras of U qu. The corresponding ‘alter-
nating” PBW basis is given in Theorem 6.1.

Let us conclude this introduction with some additional comments. In the literature, it is known
that solutions of the Yang-Baxter equation find many applications in the theory of quantum in-
tegrable systems such as vertex models, spin chains,... They can be obtained by specializing
solutions of the universal Yang-Baxter equation, the so-called universal R-matrices. As already
mentioned, the construction of a universal R-matrix for U, (s/l;) (and similarly for higher rank
cases) essentially relies on the tensor product decomposition

Uysh) =U" @U@ up’™, (1.3)

and the use of root vectors [46,45,26,35,42,43]. Now, the ‘alternating’ tensor product decom-
position (1.2) rises the question of an ‘alternating’ universal K-matrix built from a product of
solutions to a universal Freidel-Maillet type equation. See [24,52,16,55,1] for related problems.
In view of the importance of the R-matrix in mathematical physics, it looks as an interesting
problem that might be considered elsewhere.

It should be mentioned that the analysis here presented is also motivated by the subject of
the g-Onsager algebra O, [59,4] and its applications to quantum integrable systems. See e.g.
[10,11,5,15,66,67,13]. The original presentation of O, is_given in terms of generators A, B sat-
isfying a pair of g-Dolan-Grady relations. The algebra 4, studied in this paper can be viewed
as a limiting case of the algebra A, introduced in [14,6]. For 4,, the original presentation [8]
takes the form of a reflection algebra introduced by Sklyanin [57], see [14]. Let us denote this
presentation by .Ag. Using Ag , it has been conjectured that 4, is a central extension of Q.
Initial supporting evidences were based on a comparison between the ‘zig-zag’ basis of Oy [39]
and the one conjectured for A, [6, Conjecture 1]. Other evidences are also given in [64]. More
recently, the conjecture is finally proved [65]. So, using a surjective homomorphism A, — Oy,
one gets a triplet of isomorphic algebras O, = A, = Ag . Independently, more recently the analog
of Lusztig’s automorphism and Damiani’s root vectors denoted Bstaq, Bus+a,, Bns for the g-
Onsager algebra have been obtained [12] (see also [60]). In terms of the root vectors, a PBW basis
has been constructed. In addition, a Drinfeld type presentation is now identified [50]. However, at
the moment the precise relation between the presentation of O, given in [12] or its Drinfeld type
presentation denoted 0‘?’ [50] and A, is yet to be clarified. To prove O, = A, = Ag provides an
‘alternating’ triplet of presentation for the g-Onsager algebra and O qu = A, the analysis here
presented sketches the strategy that may be considered elsewhere.

4
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Clearly, alternating subalgebras for higher rank affine Lie algebras and corresponding gener-
alizations of (1.2) may be considered as well following a similar approach.

Notation 1.1. Recall the natural numbers N = {0, 1, 2, - - -} and integers Z = {0, &1, £2,---}.
Let K denote an algebraically closed field of characteristic 0. K(g) denotes the field of rational
functions in an indeterminate g. The g-commutator [X Y ]q =gXY — g~ 'Y X is introduced. We

denote [x] = (¢* —q¢ ) /(¢ —q~ V).

Notation 1.2. UqD 7 is the Drinfeld-Jimbo presentation of U, (EE). UqD J’+, UqD J’O, UqD 1= are
the subalgebras of U;)J generated respectively by {Eo, E1}, {Ko, K1}, {Fo, F1}. We also

introduce the subalgebras UqDJ”L’O (resp. UqD]’_’O) generated by {Eo, E1, Ko, K1} (resp.
{Fo, F1, Ko, K1}).

2. The algebra Aq and its specialization ¢ — 1

In this section, the algebra flq and its specialization ¢ — 1 denoted A are introduced. The
algebra A, is nothing but a slight modification of the algebra Z/{;r introduced in [63, Section
3]. Compared with 2", the modification here considered aims to ensure that the specialization

g — 1of ./Iq is non-trivial. Also, the parameter p is introduced for normalization convenience.
So, part of the material in this section is mainly adapted from [63]. Besides, Lemma 2.3 and
Lemma 2.4 solve [62, Problem 13.1]. At the end of this section, we prepare the discussion for
Sections 3 and 5.

2.1. Defining relations

We refer the reader to [63, Definition 3.1] for the definition of Z/l(;r . We now introduce the
algebra f{q.

Definition 2.1. Let p € K(g). ./iq is the associative algebra over K (g) generated by {W_, Wi 1,
Gi+1, ék+1 |k € N} subject to the following relations:

(Gi+1 — Git1)

[Wo, Wi1]1 = [W_g, Wi] = — 2.1
q+q
[Wo, Gi+11g = [Grt1, Woly = pW—g—1, (22)
[Gr1, Wily = W1, Grp1ly = pWi+2, (23)
[W_, W_¢] =0, [Wi+1, Wet11 =0, (2.4)
[W_k, Wet1] + [Wit1, W_¢] =0, (2.5)
(W_i, Geg1] + [Grr1, W_¢] =0, (2.6)
[W_t, Ge 11+ [Gry1, W_] =0, Q2.7)
(Wik+1, Ger1] + [Grt1, Wer11 =0, (2.3)
[(Wit1, Ge1]+ [Grg1, Weg11=0, (2.9)
[Gi+1, Get1]1 =0, [Git1. Ger1]=0, (2.10)
[Gi+1, Gey1]+[Gry1, Gey11=0. 2.11)
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Remark 2.2. The defining relations of flq coincide with the defining relations (30)-(40) in [63]
of the algebra Z/{;‘ for the identification:

W_p=>Wop ', Wi > Wi, (2.12)
Git1 = 4 * =g DGs1, G ¢ G2 =476 (2.13)
prq ' q* =g Hg—q7"). (2.14)

Note that there exists an automorphism o and an antiautomorphism S (for Z/{(;r , see [63,
Lemma 3.9]) such that:

0 Wk Wi, Wigi > Weg, Gir B> Grgr o Gigt > Gt (2.15)

S:Wog>W_g, Wipr > Wigr . Giar B> Grgr o Grgt > Gt (2.16)

For completeness (see [63, Note 2.6]) and the discussion in the next section, a set of additional
relations can be derived from the defining relations (2.1)-(2.11), given in Lemmas 2.3, 2.4 below.

Lemma 2.3. In flq, the following relations hold:

[(W_, Gelg = [W_y, Gily, [Gr, Weg1ly =[Ge, Wiy, (2.17)
(G, Welg =[G, Woily, [Weit, Gilg = [Wit1, Gelg- (2.18)
Proof. Consider the first equation in (2.17). For convenience, substitute £ — ¢ + 1 and multiply
by p the equality. From the r.h.s. of the resulting equation, using (2.2) one has:
[ AW_¢—1 . Glg = ¢*Wo Ge41Gr —Ge1WoGk — GkWoGie+1
N— —
=[Wo,G+1lg =Gk Ge+1
+9 2 GiGer1Wo by (2.10)
——
=Gy+1Gk
= 7*WoGkGr41 - Gy 1 WGy
—— ———
=q[Wo,GilgGer1+CWoGet+1 = g1 Gyp1[Wo,Gilg+q2Gr41GkWo
— GeWoGe41 + g *Grp1GiWo
= [[Wo, Gklg, Ges1]g

which coincides with the L.h.s. The three other equations are shown similarly. O

Lemma 2.4. In flq, the following relations hold:

[Gk. Ges1] — [Ge, Ger1]1= (g + 97 (IW=e, Wit lg — (Wi, Wertlg) . (2.19)
[Gk, Ge11— [Ge, Ger11=5(q +q7) ((Wes1, Weily — W1, Weely), (2.20)
[Gis1, Getilg — [Get1, Gegilg = A(q +q7 1) (Wop, Wio] — [Wek, WegaD), (2:21)

[Gi+1, Getilg — [Gegt, Gegilg = 5(q + G~ (Wag1, Wit 1 — [Wasr1, Weo—11)
(2.22)
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Proof. Consider (2.19). One has:
[Gk. Ger1]=[Gr, Ges1 — Gea1]1= (g + ¢~ DGk, [Wo, Wes1]l by (2.1)

=(qg+qhH G Wo Wey1 — GrWe 1 Wo — WoWe41Gi

= q>WoGr—pgW_

+ Wegg WoGi
———
=q72GWo+pg~'W_g
=(g+q") (IWo, [Gk. Wet11glg — AIW—k. Wes1g) -
It follows:
[Gk. Ger1] — [Ge, Gag1]1 = p(q + g7 (W=t Wir11g — Wi, Weg11g)

+(q + ¢ HIWo, [Gk, Wer11g — [Ge, Wit 11414

=0 by (2.17)

which reduces to (2.19). One shows (2.20) similarly.
Consider (2.22). One has:

PIWer1, Wog—1]1 = [Wet1, [Wo, Gi+1]4]
-1

_ q -
= gWo[Wei1. Gip1]+ ¢ [Grp1. Weg 1 IWo + ———Gi1Grgl
(@+q7)
. G—q7"
— —————G4+1Gp41 + —————-CGi41Ge41
@+ g1 er1Gert + o o Gt G

where (2.2), (2.1) and (2.10) have been used successively. Using (2.8) it follows:
-1

(g+q7H
9
(g+q7hH

P (Wep1, W] — Wi 1, W1 ) = (Gk+1éz+1 - Gz+1ék+1) (2.23)

(ée+1Gk+1 - é‘k+lG£+l) .
From (2.11), note that:

Ge1Git1 — Gi41Get1 = Gir1Geg1 — Gor1 G
which implies:
@-qhH (Ge+1ék+1 - Gk+1éz+1> = [Gk+1, Get1lg — [Get1, Grgilg -

Using this last equality in the r.h.s. of (2.23), eq. (2.22) follows. The other relation (2.21) is
shown similarly. O

Remark 2.5. The relations (41)-(46) in [63] follow from Lemmas 2.3, 2.4, using the identifica-
tion (2.12)-(2.14).
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2.2. The center Z

For the algebra Z/[(;L , central elements denoted Z:H are known [63, eq. (52) and Lemma
5.2] (see also equivalent expressions [63, Corollary 8.4]). With minor modifications using the
correspondence (2.12)-(2.14), central elements in flq are obtained in a straightforward manner.
Thus, we omit the proof of the following lemma and refer the reader to [63, Section 13] for
details.

Lemma 2.6. For n € N, the element

n
Yn+1 = Gn+1qini1 + én+161"+1 - (q2 - qu) Zq7n+2k W_i Wn+1—k

k=0
1y n—1
@97 _prigks
+ 5 Zq Gi+1Gn—k (2.24)
k=0

is central in Ag.

Remark 2.7. Central elements for the algebra Z/lq"r [63, Lemma 5.2, Corollary 8.4] are obtained
using the identification (2.12)-(2.14):

Yor1 > q ' @*—qHZ),, . (2.25)

Note that the central elements are fixed under the action of (anti)automorphisms of /_lq. Ap-
plying o and S according to (2.15), (2.16), three other expressions for Y,,;1 follow (for Z/l;‘ , see
[63, Corollary 8.4]). In particular, for further convenience, define the combination:

1
qn-i-l +q—n—1 (
Using (2.5), one has S(A;+1) = A,+1. Thus, A,41 is invariant under the action of o, S.

Apt1= Yopi +oYuy)) - (2.26)

Example 2.8.
A1 =G1+Gi — (g —q ") (WoWi + W W), (2.27)
N = (qZ_q—2) -1 1
Az—Gz-i-Gz—m(q WoW3 +gWoWo +¢~ WiW_1 +gW_1W;)  (2.28)
(q—q") <G1G1+G1é1>
(@*+q7) o ’
= (q—q") ) 2 ) 2
A3=G3+G3— —5———— (¢ "WoW3 +¢g"W3Wo+ g "WiW_5 +¢g"W_oW))
(g"+q="—1
(¢g—q7"
- (WOW_{ +W_ W
(q2+q*2—l)( Wi 1W2)
_1 - ~
— GG GG
2(61 ?2) (21#5 21)' (2.29)
(gc+q=>—D o

By construction, the elements A,y are central in .,Zlq. Let Z denote the subalgebra of /_lq
generated by {A,y1},eN. By [63, Proposition 6.2], Z is the center of A,,.

8
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2.3. Generators and recursive relations
Following [63], combining the defining relations (2.1)-(2.3) together with (2.26) it follows:

Lemma 2.9. In ./_lq, the following recursive relations hold:

@* =972
Gt = 5t oy 2 Wk Wi W W) (230)
q q —~
G-q7H &
— —n+1+2k ~ =~
Y TS Ep—— D q (Gk+1Gn—k+Gk+1Gn—k)
2p(@" " +q7" ) =
(@+q™hH 1
+%[Wn+1, Wol + EAn+l ,
Gt = Gup1 + (g + 4~ H[Wo, Wari] (2.31)
1
W,y = ;[Wo, Gut1], - (2.32)
1
Wiyo = E[Gn+lv wi, . (2.33)

Iterating the recursive formulae (2.30), (2.31), (2.32), (2.33), given n fixed, the corresponding
generator is a polynomial in Wy, Wy and {Az4+1]1k =0, ..., n}.

Example 2.10. The first generators read:

1
G =qW1Wo — g 'WoW; + S (2.34)
1 _ 1A1(g—q™h
W_; = 5 ((q2 + g HWW 1 Wo — WAW, — Wlwé) + Eqi_qwo : (2.35)
1
Gy = _—(<q‘3 +q HWIW2 = (¢° + @)W PW3 (2.36)
pq%>+q72) 0 0

+ (g7 — g3 (WoW1>Wo + W WEW))
— (g7 +q7 +2q7 HWoW WoW; + (¢° + ¢° + 261)W1W0W1W0)

1A2(g—qg Y 1
ST A,

Llae—g ) !
o 4p(g*+q7% 2

3 1)(QIW1W0—6171W0W1)
Expressions of G, W5, Gy are obtained using the automorphism o.
Corollary 2.11. The algebra f(q is generated by Wy, Wy and Z.
2.4. PBW basis

Following [63, Lemma 3.10], the algebra ,Zlq has an N2-grading. Define deg : flq — N x N.
For the alternating generators one has:
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degW_i) = (k+1,k), deg(Wiy1) = (k,k+1),
deg(Giy1) =deg(Grs1) = (k+ Lk +1).

Note that the expressions in Lemma 2.9 are homogeneous with respect to the grading assignment.
The dimension d; ; of the vector space spanned by linearly independent vectors of the same
degree (i, j) is obtained from the formal power series in the indeterminates A, j:
DA, 1) =HMA, WZR, 1),
= Z d,‘,j)\’-/ﬂ for [A], |u] < 1

(i,/)eN
with
H()"“)zﬁ }z -1 2—1 [ 115 7’ Z(A’“)zﬁ%'
g:ll_)“u“ 1A ut 1T —Au Zzll—)\u

In [63, Section 10], a PBW basis for Z/l;‘ is obtained. The proof solely uses the defining
relations corresponding to (2.1)-(2.11). The following theorem is a straightforward adaptation of
[63, Theorem 10.2].

Theorem 2.12. (see [63]) A PBW basis for fiq is obtained by its alternating generators
(Woihken s {Gesideen > {GutidmeN s (Wasilnen
in any linear order < that satisfies

W_i < Gpy1 < ém-i—l <Wyq1,k,€,m,neN.
Note that combining o, S given by (2.15), (2.16), other PBW bases can be obtained.
2.5. The algebra Aq

By construction [63], the algebra U (j studied in [62] is a quotient of the algebra Z/{; . This quo-
tient is characterized by the fact that the images of all the central elements Z,’ of [63, Definition
5.1]in U; are vanishing, see [63, Lemma 2.8]. Recall (2.25), (2.26).

Definition 2.13. The algebra Aq is defined as the quotient of the algebra flq by the ideal gen-
erated from the relations {A;4; = 0|Vk € N}. The generators are {W_y, Wi+1, Gr+1, Gk+1 lk €
N}.

Following [63, Lemma 3.3], let us denote by y : .,Zlq — A, the corresponding surjective ho-
momorphism. It is such that:

i Wegrs W, Wigr > Wist s Gt > Grgr s Gigt = Gt (2.37)

So, they can be obtained as polynomials in Wy, W applying y to the expressions given in
Lemma 2.9, where y (Ag41) =0 for all k. B
In [62,63], the embedding of UqD I intoa g-shuflle algebra leads to A,, providing an ‘alter-

nating’ presentation for U(f s Adapting this result to our conventions, it follows:

10
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Proposition 2.14. (see ([62,63]) A, = US" T =uP’ ™.

In [62, Section 10], an alternating” PBW basis for UqD J+ is obtained. We refer to [62, Theo-
rem 10.1].

Theorem 2.15. (see [62]) A PBW basis for Aq is obtained by its alternating generators

{W—k}keN s {GE+1}€EN s {Wn+1}neN

in any linear order < that satisfies

W_k <Goy1 < Wypy1 .k, €,neN;
Wk—H <Gg+1 <W_,,,k,€,neN.

Using automorphisms of Aq, other PBW bases can be obtained.
2.6. The specialization ¢ — 1 and the algebra A

For the specialization ¢ — 1, according to the identification (2.13), (2.14), the defining re-
lations [63, Definition 3.1] of the algebra U;‘ drastically simplify to those of a commutative
algebra. Instead, the specialization ¢ — 1 of the defining relations of the algebra /_lq lead to an
associative algebra called A, as explained below. To define properly the specialization, we follow
the method described in e.g. [47, Section 10] (see also references therein).

Let A= ]K[q]q_l (= S7'K[q] where S =K[g]\(g — 1)). Let Un be the A-subalgebra of

Aq generated by {W_y, Wi1, Gi+1, ék+1 |k € N}. Note that contrary to U, (EE) [22, page 289],
according to the structure of the defining relations (2.1)-(2.11) for the specialization ¢ — 1 of
/iq there is no need to introduce other generators. One has the natural isomorphism of A-algebras
Un 3p K(g) — .Aq. Consider K as an A-module via evaluation at ¢ = 1. The algebra

Uy =UrBa K

is the specialization of f_lq at ¢ = 1. Similarly, one defines Za, and Z; = Z5 ®a K.

Definition 2.16. A is the associative algebra over K with unit and generators {w_z, Wy 1, gx 1
Or+1lk € N} satisfying the following relations:

[t Wit ] = 5 Gt~ Serer) (2.38)
(k1. woi] = [Wern Opg1] = 16W 1, (2.39)
[Wett, Q1] = [9k+1,Wz+1] = 16Weti42 , (2.40)
[Worow_e] =0, [Wirt,Wes1]=0,  [gir1:9e41] =0, [Ger1,0ea] =0. (24D

Remark 2.17. An overall parameter p. € K* may be introduced in the r.h.s. of (2.39), (2.40).

Proposition 2.18. There exists an algebra isomorphism Uy — A such that:

W= weg, Wi Werr,  Girl B> Qi
Giy1—=> Gky1, P16, g 1. (2.42)

11
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Proof. First, we show how to obtain the defining relations for A from those of /iq atg =1
and p = 16. From egs. (2.4), (2.10), one immediately obtains the four equations in (2.41). From
(2.26), one gets

Sk+1 = Gkgr1 + Ort1 > (2.43)

where {0 }reN are central with respect to the algebra generated by {w_g, Wiy1, 9x11, G111k €
N}. This implies the first equalities in (2.39), (2.40). The second equalities in (2.39), (2.40) are
obtained from elementary computation using the Jacobi identity together with (2.5)-(2.10) and
(2.1)-(2.4). For instance:

1

1
[w_l,wm]:1—6[[WO,91],Wk+1]=—1—6[ [91. wks1] . wo]
\—V—/

= [Gk+1,Wo]=16Wk12

[ [Wk+1,W0] ,91]=[W0,Wk+2]
e —’

16t
= _%(§k+1—9k+1)
1
= §(9k+2 = Ok42) -

By induction, it follows:

1 _
(Wt Wi 1] = [Wepgr, Wi = - = [wo, Weeq1 ] = §(9k+£+1 = Gke41) -
Similarly, by induction one easily finds:
[8xr1. We] = [Gao Wet1 ] =+ = [Guger1. Wo] = 16W_g—¢—1 ,
[Werts Gerr] = [We, Gran] =+ = [W1, Qo] = 16Wesat2 -
Thus, the defining relations (2.38)-(2.41) of :A_l are recovered from the specializationg — 1, p —

16 of the defining relations (2.1)-(2.11) of A,. The converse statement is easily checked. O

In the following, we call A the specialization ¢ — 1 of Aq.

2.7. Relation with UqD 1% and specialization

The following comments give some motivation for Sections 3 and 5. We first describe the
relation between /_lq and U, (s/l;) with respect to the Drinfeld-Jimbo presentation, adapting di-
rectly the results of [63]. On one hand, recall that the defining relations for UqD J’+, UqD 1~ are
respectively given by (A.1), (A.2). On the other hand, inserting (2.35) in (2.4) for k =0,£ =1

one finds that Wy, W satisfy the g-Serre relations:

[Wo, [Wo, [Wo, Wilgl,-11=0, (2.44)
[Wi, [W1, [Wi, Wolgl,-11=0. (2.45)

Let (Wp, W1) denote the subalgebra of flq generated by Wo, W;. According to [63, Proposition

6.4] combined with Remark 2.2, it follows that the map (Wg, W) — UqD St

Wo— E7, Wi = Ep (2.46)

12
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is an algebra isomorphism. Obviously, a similar statement holds for UqD /= Let Z* denote the
image of Z by the map (2.46), and similarly Z~ the image associated with the negative part. In
both cases, it is a polynomial algebra [63, Section 4]. Adapting [63, Proposition 6.5] and using
Remark 2.2, by Corollary 2.11 one concludes:

AyzuPlteztzull @z, (2.47)

For this reason, .A is called the central extension of U, DJ.+ (or Uy DJ,— ).

Let us also add the following comment. In view of the 1somorphlsm (2.46), /_lq can be
equipped with a comodule structure [22]. For instance, examples of left (or right) coaction maps
can be considered for the subalgebra (Wg, W1). Define the ‘left’ coaction such that

1 DJ+.0 o 1
Ay — Uq ® A, . (2.48)
Consider its restriction to (Wg, W) = UqD 7+ Asan example of coaction, we may consider:
Wo— Eg® 1+ Ko ®Wp, (2.49)
W —-EIQ1+K QWj. (2.50)
DJ,—.0

A ‘right’ coaction could be introduced similarly, as well as a coaction A, — Uy ®Ay. In

Section 5, a comodule algebra homomorphism § is obtained, see Lemma 5.25.

The relation between A and the Lie algebra s/lzsc can be considered through specialization.
Recall the isomorphism Ua ®a K(g) — ./_lq and similarly for (Wp, W1) and Z. One has the
injection (Wo, W1)a ®a Za — Ua by [47, Lemma 10.6]. By Lemma 2.9, the latter map is also
surjective. Using the fact that (W, W1)a and Zp are free A-modules, one calculates:

Uy =Up @ K = ((Wo, Wi)a ®a Za) @4 K
= ({(Wo, W1)a ®a K) Qk (Za @4 K) .
Let (wp, w;) denote the subalgebra of A. By Proposition 2.18 one has (wg, wi) = (Wg, W1)a Qa
K. The generators wg, w; satisfy the Serre relations (i.e. (2.44)-(2.45) for ¢ = 1). Recall the
Lie algebra s/l\zsc in the Serre-Chevalley presentation of sl> with defining relations reported in

Appendix A. Denote s/lESC’Jr (resp. s/l\zsc’f) the subalgebra generated by {eg, e1} (resp. { fo, f1}).

Combining the isomorphism (2.46) and the well-known result about the specialization g — 1 of
UDJ o+ given by U(slz ), it follows that the map (wg, w1) — U(s/lzsc’+) is an isomorphism.

Also Z is a polynomial ring in the {Ag+1}lieN- 21 = Z2a @a K = U(z) where z is the linear
span of {8;41}keN, see (2.43). Denote z* the images of z in @Sc’i. It follows:

A U(sl SC+®Z+) ;U<§ESC"®Z—) . 2.51)

The structure of the isomorphisms (2.47) and (2.51) suggests a close relationship between Aq
(resp. A) and certain subalgebras of the quantum universal enveloping algebra U, ( glz) (resp. its
specialization U (glg)) To clarify this relation in Section 5, a new presentation for .Aq (and A) is
given in the next section.

3. A Freidel-Maillet type presentation for Aq and its specialization ¢ — 1

In this section, it is shown that the algebra /_lq introduced in Definition 2.1 admits a pre-
sentation in the form of a K-matrix satisfying the defining relations of a quadratic algebra

13
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within the family introduced by Freidel and Maillet [33], see Theorem 3.1. In this framework,
by Theorem 3.1 and Proposition 3.3, several results obtained in [63] for L{;‘ are derived in a
straightforward manner. For the specialization ¢ — 1, a presentation of the Lie algebra A - see

Definition 2.16 - is obtained in terms of a non-standard classical Yang-Baxter algebra, see Propo-
sition 3.6.

3.1. A quadratic algebra of Freidel-Maillet type
Let R(u) be the intertwining operator (called quantum R-matrix) between the tensor product

of two fundamental representations Vi ® V; for V = C? associated with the algebra Uy (s/lz). The
element R(u) depends on the deformation parameter g and is defined by [17]

ug—ulg! 0 1 0 1 0
0 u—u- —q~ 0
R(u) = 0 o] Z—Z—l 0 , 3.1)
0 0 0 ug —ulqg™!

where u is an indeterminate, called ‘spectral parameter’ in the literature on integrable systems. It
is known that R (u) satisfies the quantum Yang-Baxter equation in the space V] ® V, ® V3. Using
the standard notation

R;j(u) € End(V; ® V)), (3.2)

the Yang-Baxter equation reads

Ri2(u/v)R13(u) R23(v) = Ro3(v) Ri3(u) Ri2(u/v). (3.3)

As usual, introduce the permutation operator P = R(1)/(q — g~ "). Here, note that Ry»(u) =
PRi2(u) P = Ro1(u). _

We now show that the algebra 4, is isomorphic to a quadratic algebra of Freidel-Maillet
type [33], which can be viewed as a limiting case of the standard quantum reflection equation
(also called the boundary quantum Yang-Baxter equation) introduced in the context of boundary
quantum inverse scattering theory [23,57]. In addition to (3.1), define:

RO — diag(l, q_l, q_l, 1). 3.4

Define the generating functions:

W)=Y W U™ Wo) =) Wi U (3.5)
keN keN

G =) GnU™" G =) GnU ", (3.6)
keN keN

where the shorthand notation U = qu?/(q + ¢ ') is used. Let k+ be non-zero scalars in K(g)
such that

p=kik_(g+q"*. 3.7

Theorem 3.1. The algebra /_lq has a presentation of Freidel-Maillet type. Let K (u) be a square
matrix such that

14
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ki(g+g™H
ugWy (u) k_ (q+q 1)g+( u)+ =g ) (3.8)

K = k(g+q~"
k+(q+q’1)g @ + (g— q*l) ugyv-(
with (3.5)-(3.6). The defining relations are given by:

Ru/v) (Kw)® I RO I @ Kw) = (I QK®) RY (Kw) @) Ru/v). (3.9)

Proof. Inserting (3.8) into (3.9), the system of (sixteen in total) independent equations for the
entries (K (u));; coming from the Freidel-Maillet type quadratic algebra (3.9) leads to a system of
commutation relations between the generating functions Wx (1), G+ (u). Using the identification
(3.7), after simplifications these commutation relations read:

[Wi), W ()] =0, (3.10)
Wi ), W_()] + [W-), Wi (v)] =0, (3.11)
—1
U = V)[Wa (), Wz ()] = p(fq;—qq_f) (G+ ()G (v) — G ()G () (3.12)
+ ﬁ (G2(w) — G (1) + G (v) — G2 (V) .
(U = V)[Gxw), G+ ()] = b(g* — g HUV (W)W (v) = W (W),  (3.13)
UG5 @), We@)], = V[Gz@), We®)], + HUWi) = VIWi(©)) =0, (3.14)
U[Wx ), g¢(v)]q - V[We ), ng(u)]q + p(UWxu) — VWx(v)) =0, (3.15)
[Ge (), We()] + [We@), Ge(w)] =0, VYe=x+, (3.16)
[G+(w), G+ (v)] =0, (3.17)
[G+ ). G- )]+ [0-w). G+ ()] =0. (3.18)

The commutation relations among the generators of /_lq are now extracted. Inserting (3.5), (3.6)
into (3.10)-(3.18), expanding and identifying terms of same order in U ¥V~ one finds equiva-
lently the set of defining relations (2.1)-(2.11) together with the set of relations (2.17), (2.18) and
(2.19)-(2.22) as we now show in details. Precisely, inserting (3.5) into (3.10), (3.11), one gets
(2.4), (2.5), respectively. Inserting (3.5), (3.6) into (3.12), one gets (2.1), (2.21), (2.22). Insert-
ing (3.5), (3.6) into (3.13), one gets (2.19), (2.20). Inserting (3.5), (3.6) into (3.14) and (3.15),
one gets (2.2), (2.3) as well as (2.17), (2.18). Inserting (3.5), (3.6) into (3.16)-(3.18), one gets
(2.5)-(2.11). As the relations (2.17), (2.18) and (2.19)-(2.22) follow from the defining relations
(2.1)-(2.11) by Lemmas 2.3, 2.4, it follows that the Freidel-Maillet type algebra (3.9) is isomor-
phicto A,. O

Remark 3.2. The relations (3.10)-(3.18) coincide with the relations [63, Lemmas 13.3,13.4] in
the algebra Z/{‘;r for the identification:

Ut Vs, (3.19)
Wiw) = WFe), Wi)— sWT(), (3.20)
G+ > g > g HOED -, G-wrq > —gHEGD -1, (3.21)
G g '@ - HGE -1, G- q ' ¢* g DG -1, (3.22)
pq @ =g DHg—q". (3.23)
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For completeness, let us mention that an alternative presentation of .,Zlq can be considered
instead, that involves power series in u in the opposite direction. Indeed, consider the system of
relations (3.10)-(3.18) with (3.5)-(3.6). Applying the transformation:

We(u) > W q7), Ge(w) > —Gr(u™ g™y,
ursu 't g gt

and similarly for # — v, one finds that

-1
716]71W_(M716]71) 71)g+(u 1)+k+(f1+(£ )

K'(u) = ) k_ (q+q (g—¢7hH
mg (ufl SRS k(q(qJ;ql) - q*]W+(u*1q*1)
(3.24)
satisfies the Freidel-Maillet type equation:
R(u/v) (K'(w) @ ) (R~ (I ® K'(v))
= (I QK (v)) (R)™ (K'(w)® Il R(u/v) . (3.25)

This second presentation of flq will be used in Section 5.
3.2. Central elements

For the Freidel-Maillet type algebra (3.9), central elements can be derived from the so-called
Sklyanin determinant by analogy with [57, Proposition 5]. Define P, = (1 — P)/2. As usual,
below ‘trj;’ stands for the trace over V| ® V5.

Proposition 3.3. Let K (1) be a solution of (3.9). The quantum determinant
P(u) = tria (P (K () ® 1) RO @ K (ugq))) . (3.26)
is such that [F(u), (K(v))ij] =0

Proof. Recall the notation (3.2). Introduce the vector space V. With respect to the tensor product
Vo ® Vi ® Va, we denote:

Kow)=KwQI®NI, KW=00KWelI, Ku=I1I®Ku).
(3.27)
Consider the product (a) = Ko(v)I"(1):
(@) = Ko)trio (P K1 () R“”Kz(uq))

= gKo)tria (PR RS K1 (u) R\ Ka(uq)) (using P =gPLRRY)

= Cltrlz(PnKO(U)R(O)R(O)KI(14) R(O)Kz(uq)) (using  [Ko(v), P51 =0)

= qtrio(PL Ko@) R\ K1 )RS R{) Kx(uq)) (using  [K1(u), RY)1=0)

= qtrio (PR, (/) K1 ()RS Ko(v) R (v/u) RS R'Y Ka(ug))  (using (3.9)) .

Then we use [Ko(v), R\Y1=0, [K2(uq), Roi(v/u)] =0 and
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Ro1(w/w)RS) RY = R\ RS Ro1 (v/u)

to show:

Ko)tria (P K1 (w) RS Ka(ugq))
= qtrio(P Ry, (/W) K1) RS) Ko(0)R\Y R Roi (v/u) K2 (ug))
= gtria (P Ry) (v/w) K1 ()RS RS Ko (W) RS Ko (1g) Ro (v/u))
Applying again (3.9) to the combination Ko(v)R02 K>(ug) and using Roz(v/uq)R(O) ng) =
Rg) R(()?) Ro2(v/ugq), it follows:
(@) = gtriz (P Ry (v/w) K1 ) RS) RS Roy' (v/uq) K2 (ugq) RS Ko(v) Roa (v/uq) Ro (v/u))
—qtrlz(P12R01 (v/w) K1 )Ry, (v/ug) R\ RS) K2 (ug) R Ko(v) Rz (v/ug) Rot (v/u))
= gtria (P, Ry, (v/u) Ry, (v/ug) K1 ) R K (ug) RS) RS) Ko(v) Roa (v/ugq) Rot (v/u))-
Then, using Pj;Ro2(x/q)Ro1 (x) = P (x2 — ¢®)(x* — g72)/x%, g PRV RS = P15, eq. (3.9)
and the cyclicity of the trace, the last expression simplifies to:
(@)= qtrlz(PuKl(u)RiJKz(uq)R@R(O Ko(v)Pp)
=tri2(P, K1 (M)Rlz K2 (uq))Ko(v)
=T'w)Ko(w). O

Now, define:

Cu) = ; (A(u) _ L)
C2(g—q7hH (q—q7H) "~

Using the entries of (3.8), by Proposition 3.3 it implies [A(u), W+ (v)] = [A(u), G+ (v)] = 0.
Using (3.5), (3.6), it follows:

Corollary 3.4.
A = (q — 47 g (Wa@W-(ug) + W- (W4 () )
1
(G- + G- )G () ) (328)
— G(w) = Gy (uq) — G-(0) — G- (ug)

provides a generating function for central elements in ,zlq.

Expanding A(u) in power series of U = qu®/(q +q~"), the coefficients produce the central
elements of A, given by (2.26). Namely, by straightforward calculations one gets:

[e.e]

Awy==> U g g" " +47" A1 .
n=0

Remark 3.5. In [63, Lemma 13.8], a generating function for central elements is given. By [63,

Corollary 8.4] and [63, Definition 13.1], alternatively three other generating functions may be
considered. For instance:
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ZV (1) =GgnGg~'t) —gtWHgnWw (¢~ '1) ,
o (ZY(1) =Gq)G(q™ ') — W (gyWT (g ') .

Using the identification (3.19)-(3.23), the image of the generating function A(x) in the algebra
Uy follows:

AW =g~ @ =a (2@ D +02 @) .
3.3. Specialization g — 1

Due to the presence of poles at ¢ = 1 in the off-diagonal entries of K () in (3.8), the relations
(3.9) are not suitable for the specialization ¢ — 1. However, it is possible to solve this problem
within the framework of the non-standard classical Yang-Baxter algebra [20,56,3,58] in order to
obtain an alternative presentation of A, besides Definition 2.16, viewed as a specialization g — 1
of the Freidel-Maillet type algebra (3.9). Introduce the r-matrix”

1 0 0 o

1 0 —1 2u/v O
@?/2-1 10 2u/v -1 0
0 O 0 1

r(u,v) = (3.29)

solution of the non-standard classical Yang-Baxter equation [3]:

[ F13(ur, u3) , r23(ua,u3) 1=[r21(uz, u1) , r13(uy,u3) |+ [r23(uz,u3), ria(ur, u2) 1,

(3.30)
where 721 (1, v) = Pria(u, v) P (=r12(u, v) for (3.29)). Define the generating functions:
o0 o
we) =) wo U ww) =) we U (3.31)
k=0 k=0
o0 o
g =Y guU™ . =) g U with U=u?/2. (332
k=0 k=0

Proposition 3.6. The algebra A admits a FRT presentation given by

1
Bu) = - (Z 9-) “W(”)> (3.33)

2\uwe @) § gy ()

that satisfies the non-standard classical Yang-Baxter algebra
[ Bi(w), Ba(v) I=[r21(v,u), Bi(u) ]+ [ B2(v), ria(u,v) ]. (3.34)

Proof. Insert (3.33) into (3.34) with (3.29). Define the formal variables U = u2/2 and V = v2/2.
One obtains equivalently:

2 Note that this r-matrix can be obtained from a limiting case of a r-matrix considered in [7].
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1
(U = W)[w), we()] = 5 (g2 = g2 + g2 () — g= (1),

(U =V)[ge), ws ()] Fel6(Uws(u) — Vwi(v)) =0, e==*l,
[g+ (), g ()] =0,

[we @), we@)] =0, [g+),g+()]=0.

These relations are equivalent to the specialization ¢ — 1 of (3.10)-(3.18) (p +— 16). Using
(3.31), the above equations are equivalent to (2.38)-(2.41). O

Remark 3.7. For the specialization ¢ — 1, the generating function (3.28) reduces to §(u) =
—2(g+ ) + g—(u)).

4. Quotients of .[tq and tensor product representations

In this section, a class of solutions - so-called ‘dressed’ solutions - of the Freidel-Maillet
type equation (3.9) are constructed and studied in details by adapting known techniques of the
so-called reflection equation [57], see Proposition 4.1. By Lemma 4.3, it is shown that the en-
tries of the dressed solutions can be written in terms of the ‘truncated’ generating functions
(4.28)-(4.29), whose generators act on N-fold tensor product representations of Uy (sl2) accord-
ing to (4.16)-(4.19). Realizations of .;lq in U, (sI2)®N are obtained, see Proposition 4.5.

4.1. Dressed solutions of the Freidel-Maillet type equation

The starting point of the following analysis is an adaptation of [57, Proposition 2], [33], to the
Freidel-Maillet type equation (3.9), thus we skip the proof of the proposition below. Let Ko(u) be
a solution of (3.9). Assume there exists a pair of quantum Lax operators satisfying the exchange
relations:

R(u/v) (L)@ II) (I ® L(v)) =l ® L(v)) (L(u)® ) R(u/v), 4.1
R(u/v) (Lo(w) @ II) (I ® Lo(v)) = (I ® Lo(v)) (Lo(u) @ i) R(u/v), “4.2)
RO (Low)® ) (I ® L(v)) = (I ® L(v)) (Lo(u) ® 1) R©. 4.3)

Using (4.1)-(4.3), it is easy to show that Lo(uv;) Ko(u)L(u/v1) for any vy € K* is also a solution
of (3.9) (similar to [57, Proposition 2]). More generally it follows?>

Proposition 4.1. Let Ko(u) be a solution of (3.9). Let N be a positive integer and {vi}t]‘\’:1 e K*.
Let L(u), Lo(n) be such that (4.1)-(4.3) hold. Then

K™ ) = (Lovn))im -+ (Lo@v)n Ko@) (L /vi))pq -+ (Lu/vx)ing (4.5)
satisfies (3.9).

3 Here the index [ J1 characterizes the ‘quantum space’ V{1 on which the entries of L(u), Lo(u) act. With respect to
the ordering V]2 ® V[1] used below for (4.16)-(4.19), one has:

2

(DT (Tpij = Y (DT g5 & (T - @4
k,t=1
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This proposition provides a tool for the explicit construction of so-called ‘dressed’ solutions
of (3.9). Below, we construct explicit examples of such solutions. To this end, we first intro-
duce some known basic material. Recall the algebra U, (s/>) consists of three generators denoted
S+, s3. They satisfy

q2S3 _ q—2s3
[s3, Sa]==£S+ and [S+,8-1= ———— (4.6)
q—dq
The central element of U, (sl2) is the so-called Casimir operator:
—1 253 —2s3 2s3 —1,—-2s3
Q=1 47"%aa " o _997Fa 477 g g 47

(g—q1)? (g—q~"?

Let V be the spin-j irreducible finite dimensional representation of U, (sl>) of dimension 2 + 1.
The eigenvalue w; of €2 is such that

)
o=l with wl =¥ g (4.8)
(@ —qh?
Define the so-called quantum Lax operators
1/2 53 0
ugqg '-q
L =
O(M) ( 0 uq 1/2q —53 ) and
12 s3 _ ,,—1_—1/2 —s3 -1
uq'°q®™ —u="q=/*q (@—q )S- )
L= - S Y I 49
“ < (g—q 1S, ug'Pq=3 —u=lg=124% 4.9)

Recall the R-matrices (3.1) and (3.4). One routinely checks that the relation (4.1) holds. The

relations (4.2)-(4.3) follow as a limiting case of (4.1). Note that the overall factor ug'/? in the
expression of Lo(u) is kept for further convenience only. Let k4, €1 € K. Define:
—1= k+
u_'€ =
Ko(u)z( o <'f_;1_‘>> . (4.10)
Gah "

It is checked that Ko (u) satisfies (3.9). As a basic example of dressed solution, consider the case
N =1 of (4.5). Define the four operators in Uy (s/3):

W(()l) _ k+v1q1/zS+q“3 +g+q2s3 , 4.11)
Wl(l) _ k_vlql/ZS_q—S3 + g_q—2S3 , 4.12)
() “1y,,2s
(wg'"’" = (@ +q97)Hg™™) _ - -
G\ = kyk_v} -2 — +(q* — g Dk_épvig ' 2S_g"
(g—q7")
+(q =g Ere @-13)
() 1y, 25
- (wg'" — (@ +q)Hg=) o, - _ _
G =k k_v2-0 = +(q* =g ke vig2S1g 7o
(g—q7")
+(q—q e “.19

Computing explicitly the entries of (4.5) for N = 1, one finds that the dressed solution can be
written as:
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KD =
1) 2 U _
qu(l) 714_]v2€+ o) by gu? B b
0 ! kgte™h T @-¢7h T @2-¢7D  k_(q+q™D
~(1) 2 U1 . . _
9, k,qu2 -~ k—viwy _ E4é_(g—¢q D) qu(l) —u— 126
k@+a=D T @—¢7D  @2-a7>  kig+gTD 1 1

(4.15)
4.2. General dressed solutions

The structure of the above solution (4.15) can be generalized to dressed solutions of ar-
bitrary size as we now show. According to the ordering of the ‘quantum’ vector spaces
VIV = ViNj ® - - ® V2 ® V1), let us first define recursively the four families of operators

{WSN), ng)lv g,ﬁﬁ}, Q,Eli)l lk=0,1,..., N}, where N is a positive integer:

-1
N g—q7") N—1 N-1
= g (nas192 @G ") + e W (4.16)
2 2 (n)
Uy (N—=1) UNWo (N)
N _pew + 292 __ ,
(@+qh LT (g +gH2 R
(N) _ (q B q_l) k 1/25 —s3 >(N—1) —2s3 W(N—l) 4.17
T (g g2 \Kva TS ® Gy +g 7 @Wi (4.17)
2 2. (n)
vy W=D L UG
(@+q " k (@+qH2 'k
G = @* —q Hkvng2s_g WY (4.18)
2 2 . (Jn)
UN 2 (N-1) (N-1) UnWo (N)
_(q_i_q,])q S3®gk +Il®gk+1 +—(q+q71)2 k B
2
> - - _ -1 v - ~(N—1
G =@ — g Dkiong S WY — (q +]cvz—1)61 g @19)
Ulsz(()jN)

+H oG+ G

(q+q=—hH?

Here for the special case k = 0 we identify”

s kik—(q+q~"?
W/EN)|k:O =0, W(_IZLI lk=0=0, g]EN)|k:0 = Q,EN)Ik:o = %

a™
(4.20)

together with the ‘initial’ conditions for k > 1 (the notation (4.27) is used)

4 Although the notation is ambiguous, one must keep in mind that WIEN)lk:O # Wilz)lk:(), W(—]Z)+1|k20 #

N
Wi ko for any N.
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1 4.21)
e ) )
k+1 q+q 1 q+q_1 o 1
k
0 _z0 _ 1 )
ngr] — gk+1 = <m) g] ) (422)
where
WP=e, wo=e and ¢"=0"=ée@q-q". 4.23)

A crucial ingredient in the construction of dressed solutions by induction from (4.5) is the
existence of a set of linear relations satisfied by the operators (4.16)-(4.19). We proceed by strict
analogy with [8, Appendix B], thus we skip most of the details of the proof. For further conve-
nience, introduce the notation:

N
eV =V (]‘[ v,f) e (4.24)
k=1

Lemma 4.2. The operators (4.16)-(4.19) satisfy the linear relations:

N N
I ] @29
k=0 k=0
(N) (N) (N) »(N)
ZC 91 =0, ch 1 = (4.26)
. N —k— —
with’ ¢ = (=)N V(g + ¢ Hrey—k(ar, 02, an),
R vy

= , oax=——"-— for k=2,..,N. 4.27)
(q+q7"  kik_(g+qg7h (g+q71H f

Proof. For N = 1, 2, the four relations (4.25)-(4.26) are explicitly checked. Then we proceed by
induction. 0O

The result below is obtained after some straightforward calculations similar to those per-
formed in [8,9], thus we just sketch the proof. Introduce the ‘truncated’ generating functions:

N (N) (N) N) N N
W () = Z F W wNM w) = Z KW (4.28)
k=0
5 For the elementary symmetric polynomials in the variables {x;|i =1, ..., n}, we use the notation:
e (X1, x2, .0y Xp) = Z Xj Xjy Xy -

I<ji<jp<-<jk=n
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N-—1
¢ w) = Z gl dMaw =3 Mg (4.29)
k=0 k=0

where

N
S =Y DN P+ g7 ey pler, o, o an)UP TR with
p=k
U=qu*/(g+q"). (4.30)

Lemma 4.3. Dressed solutions of the form (4.5) can be written as:

KM ) =
(N) —1z(N) (N) ki(g+g™h (V)
ugWy’ () +u="€; = (q+q,1)g (u) + @D Joo )
N k_ N _1=(N

4.31)
with (4.28)-(4.29) and (4.24).
Proof. For N = 1, one checks that (4.31) coincides with (4.15). Then, we proceed by induction.

Assume K ™) (u) is of the form (4.31) for N fixed. We compute ((Lo(uvy-+1))in+11K N () (L(u/
uN+1))[N+1))ij for i, j =1, 2. For instance, consider the entry (11) y41. Explicitly, it reads:

(1D y41 =ug ((q — g Hont19'?S4¢%

1 ™) ki(g+497") v ) ¢ @l
—_— =
®(k_(q+q )g w (@—q7" fo @ o
(V)

+ (ulqq® — UN+1) ® W(N)(u)) — u_lvlz\,HeJr

Inserting (4.28), (4.29) and using the definitions (4.16)-(4.19), (4.24) for N — N + 1, after some
simple operations and reorganizing all terms one gets:

N—1

(11)N+1=uq(z ((q+q hEY )(u)—aNkaH(u)) W+
k=0
+ (g +q—1)f(N)(u)W<N+1)> _{_u—1g5rN+1)_i_q2S3

N—-1
¢ (Z (w100 = @+a DM @)W - g +q_l)f(N)(u)W(N+l)+-(N)>
k=0

=I"(u)

Identifying (11)y 4 with (K@ D (u))1; leads to a set of constraints. They read:

@+a YN w — oy @ =@ for k=0, N -1, 4.32)
@+a O @ = ) 4.33)

23



P. Baseilhac Nuclear Physics B 967 (2021) 115400

and I'(u) = 0. The solution of the constraints (4.32)-(4.33) is given by (4.30). Using this
expression, one finds that I'(«) coincides with the Lh.s. of the first equation in (4.25). By
Lemma 4.2, it follows I'(u) =0, s0 (1) y4+1 = (KND ). By similar arguments, one shows
()n+1 = (KN @));; using (4.25), (4.260). D

4.3. Realizations of A, in Uy (slr)®VN
According to previous results, dressed solutions of the form (4.31) automatically generate the
finite set of operators (4.16)-(4.19). In this section, we show (4.16)-(4.19) extends to k € N and

provide realizations of :4q inU, (s12)®N . To this aim, we need a generalization of Lemma 4.2.

Lemma 4.4. For any p € N, the operators (4.16)-(4.19) satisfy the linear relations:

N
Y MW 45,08 =0, Z NOW L, +8p.0e™ =0, 4.34)
k=0
N N

M) _ WMEW)
ch Gir14p =0, % Gy =0- (4.35)
k=0 k=0

Proof. For p = 0 the four relations hold by Lemma 4.2. For N = 1 and any p > 1, the four
relations are checked using (4.21), (4.22). Then we proceed by inductionon N. O

Define A( ) as the algebra generated by {W(N) ,g%, g,ﬁ’fl , Q,EIB |k € N}. We are now in

position to give the main result of this section.

Proposition 4.5. The map .;lq — .;l,(]N) given by:
N N N
W—k = W(_k) ’ Wk-‘rl = W]E_i_i ’ Gk+1 = g]i_;,_)l ’ Gk+l = gk+1

with (4.16)-(4.19) for k € N and (3.7) is a surjective homomorphism.

Proof. Consider the image of (3.8) such that the generators in (3.5), (3.6) map to (4.16)-(4.19).
For instance, one has:

N-—1 00
Wi Y WU =3 Wiyt Yy Pyt (4.36)
keN k=0 k=N
Using (4.34):
o o0
(N) fy—k—1 (N)  —N—p—1
WS =y oWl uThr
k=N p=0
| o Nl o))
_ (NN =N—p—1 _ €+ 1 —N—1
== 2 2% Wal,UuT T - U
CN " p=0k=0 Y
1 N-—1
N _
N k=0
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N—1k—1 ~(N)

1 €
(N) (N) N—p—1+k + —N-1
o Wop U — Y
N k=1 p=0 N
=
_ (N)yrk—N
% U )W (u)
CN \k=0
| Nl N—1 é(N)
—k—1y4,(N) (N)yrp—N + —N-—1
™ Z v W Z cp U (N)U :
CN k=0 p=k+1 ‘N

Replacing the last expression into (4.36) and using (4.28), (4.29) and (4.30), one gets:

fo(N) W)Wy (1) — W(N)(u) yu2g e (N)
Similarly, using (4.34), (4.35) one finds:

FN W) > W @) +u2g7 ™ N @G w) > G ) .

It follows fO(N) w)K (u) = K™ (u). Thus, the operators (4.16)-(4.19) for k € N generate a quo-
tient of the algebra .;lq by the relations (4.34), (4.35). O

Remark 4.6. For the specialization ¢ — 1 in (4.16)-(4.19), realizations of A in U (sl,)®V are
obtained.

5. The algebra .Aiq, alternating subalgebras of U, (g/\lz) and root vectors

Recall that the quantum affine Kac- Moody algebra U, (slz) admits a Drinfeld second pre-
sentation denoted UD’ with generators {xk ,he, KEL Ci1/2|k eZ,te Z\{O}} [30,18,41]. For
g — 1, this presentatlon specializes to the universal enveloping algebra of slz with generators
{xk ,hi, clk € Z} - called the Cartan-Weyl presentation - see e.g. [ 18, top of page 566]. Accord-
ing to (2.47) (similarly (2.51)), a natural question concerns the mterpretatlon of A in terms of
subalgebras of U, Dr (and similarly for A in terms of subalgebras of shy). Although thls problem
may look comphcated at first sight for g # 1, it is solved using the framework of Freidel-Maillet
algebras combined with the results of Ding-Frenkel [28], as shown in this section. In this section,
we fix K=C.

We start with the simplified situation ¢ — 1, see Definition 5.3 and Proposition 5.4.

5.1. The algebra A and “alternating’ subalgebras of gl\z

The affine general Lie algebra g/\lz admits a presentation of Serre-Chevalley type and Cartan-
Weyl type, closely related with the presentations of the affine Lie algebra sl [44,37]. Consider
the presentation of Cartan-Weyl type for gl;. In the definition below, [., .] denotes the Lie bracket.

Definition 5.1. (Cartan-Weyl presentation él\gcw) The affine general Lie algebra (g:l\g over C is
generated by {x,ic, €1.k> €2k, Clk € Z} subject to the relations:

[€ik. €j.e] =kedi, jSkte,0 (5.1
[elvk’x(?t] = :I:x,i@ ’ (5.2)
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[e2s.xF] = Fxip - (5.3)
[x7 x; ] = €10t — €2.k4¢ + Skge0ke (54)
[xlic’ xlztil] =0 (5.5)

and c is central.

Note the automorphism 6 such that:

0: xkin—>x,§F , €lkt> €k, €kt>€lk, CHcC. (5.6)
Let
hi=¢€1k—€xk - 6.7

The subalgebra generated by {xki, hi, clk € Z}, denoted EECW, is isomorphic to the affine Lie
algebra sl>. The commutation relations are given by (5.4), (5.5) with (5.7) and

[k, he] = Skre02ke (5.8)
[, x7] = +2x35, (5.9)

Recall the Serre-Chevalley presentation EIESC in Appendix A.

Remark 5.2. An isomorphism EI\ZSC — s/l\ZCW is given by:

ko> —ho—c, ki hg, eu—)xg', eo>x; ., firx,,

fm—)xfl, cH— —c.

In view of (2.51), we now study the relation between A and (gjl\z Isomorphisms between
certain subalgebras of g/l\z and A can be identified through a direct comparison of the defining
relations (5.1)-(5.5) and (2.38)-(2.41). However, although not necessary for g = 1, to prepare the
analysis for ¢ # 1 in the next section it is instructive to exhibit these isomorphisms using the
FRT presentation of U (g/l\z), which follows from U (s/lz)’s one.”

Introduce the following classical (traceless) r-matrix for an indeterminate z # 1 associated
with s/5:

—$ez+1) 0 0 0
0 s+ =2 0
=— 5.10
r@ z—1 0 -2z %(z +1) 0 (5.10)
0 0 0 —3G&+D

Note that r12(z) = —r21(1/z) = —r12(2)"12. It satisfies the classical Yang-Baxter equation

[r13(z1/23) , r23(22/23) 1=1[r13(21/23) + r23(z2/23) , ri2(z1/z2) 1. (5.11)

For simplicity, we keep the same notation for the generators of U (EE) and sl;. Defining:

6 We expect this presentation appears in the literature, although we could not find a reference. Here it is taken from [7].
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+.1_(ho/2  2xy cf he  2x,
T (z)—( J h0/2> +;z (2)6: _}fk), (5.12)
— [ —ho/2 0 —kf —h-x —2x_,
T (z) = (—2ng h0/2> + ;z (—Qka h > , (5.13)
one checks that the relations’
[T%(2),c]=0, (5.14)
[T5(2), T, (w)] = [T (2) + T5" (w), riaz/w)1, (5.15)
[T, @), T, W] =I[T;" (@) + T, (w), ria(z/w)] — 2c 7}, (z/w)z/w , (5.16)

are equivalent to the relations (5.4), (5.5), (5.8), (5.9), where [., ] now denotes the usual commu-

tator [.,.],. The FRT presentation for U (gl») is obtained from (5.12), (5.13) as follows. Define
the 2 x 2 matrix

1
H* () =+ 5(51,04‘62,0)+ZZik(€1,:tk+€2,:|:k) .
k>1

The corresponding pair of Lax operators for U(gl,) is given by Ti () =T*@2) + H*(z), and
satisfy classical Yang-Baxter relations that follow from (5.14)-(5. 16)

We now relate A to certain subalgebras of g12 using the FRT presentation. By straightforward
computation, it is found that

B(u)—> B~ (u) = —Tg—Tz(Lﬂ) —t9 or Bw)r— Btw)= Tg%(u—z) — 10 (5.17)

with 19 = diag (€10, €2,0), satisfy the non-standard classical Yang-Baxter equation (3.34) for the
identification 7 (u, v) = —r(uz/vz) — 1o, where ro =diag(1/2,—1/2,—1/2,1/2). In particular,
let us consider the first map in (5.17). Applying a similarity transformation:

B (u)=—-Muw)B~w)'Muw)~" with M(u):((l) _0”>
one finds for instance that
_ _ 0 0 2k 261 —k 2ux:k
B (”)_<2u—1x0+ 0)+};u <2u_1 Yol (5.18)

satisfies (3.34) for the symmetric r-matrix (3.29). Similarly, from the second map in (5.17) one
gets a second solution of (3.34) with (3.29):

0 2ulxT _ 2e 2u iy
+ _ 0 § : 2k Lk k
BT = <0 0 > " <2ux,:r 2€r. ) ’ (5.19)

k>1

According to the structure of the matrices (5.18), (5.19) and the automorphism (5.6), different
subalgebras that combine half of the positive/negative root vectors, together with half of the
imaginary root vectors are now introduced.

7 We denote r'(z) = %r(z).

27



P. Baseilhac Nuclear Physics B 967 (2021) 115400

Definition 5.3.
—~p,+
8L = (. xf, €Lkt 2k lk €NY (5.20)
—~q,+
b =xF xF, el k-1, €2 k-1lkeN}. (5.21)

We call (gjl\;‘i and (gjl\gq’i the right and left alternating subalgebras of 5,72 The subalgebra gen-
erated by {€] 0, €2,0, ¢} is denoted glzo.

Inserting (5.18) (resp. (5.19)) into (3.34), the relations satisfied by the generators {xik, €1,+¢,
€2, +¢} are extracted. They are identical to the defining relations of the subalgebra ng* (resp.
§l\2>’_). Thus, FRT presentations for ?lf" and §Z\2<’+ are given respectively by (5.19), (5.18)
satisfying (3.34). Applying the automorphism (5.6) to (5.19), (5.18), one gets the FRT presenta-
tions of g72>’+ and ng", respectively.

In particular, combining above results with those of Section 3 it follows:

Proposition 5.4. There exists an algebra isomorphism A — U(g/l\2>’+) (resp. A — U(g/l\gq’_))

such that:
1-k — 1—-k 3—k
wor > 2 L w2 Ger1 = 27 e g,
~ 3—k
Ok+1> 27 €2 k1
1—k . — 1—-k 3—k
(resp. w_p—>2"""x_,, Wit1 > 2 xj'kfl s G P 27 ekt

G122 e
Proof. Identify 0(BE(w)) for (5.19), (5.18), to (3.33). O

Observe that the elements 8ki+1 = €] +(k+1) + €2,++1) are central. If we denote 7+ =

{8]:(t+1}k€N and introduce the alternating subalgebras ;ED’+ = {x,j,x,;_l, hi+1lk € N} (resp.

s/l\f’_ ={x_,, xfk_l ,h_r_1lk € N}), in addition to (2.51) one has the decompositions gT;”L =
EI\ZD’JF @zt and g/\lf’_ =shL" " @z . So, the images become:
Ot P 227 i + 87 . G 227 (e + 88 (5.22)
(esp. gy 1 > 22 K (hoim1 + 80, . B > 27K (—hoim1 + 85, ) (5.23)

In the next section, by analogy we use the Freidel-Maillet type presentation given in Section 3
to derive g-analogs of the isomorphisms of Proposition 5.4.

5.2. The algebra .;lq and ‘alternating’ subalgebras of U, (51\2)

The Drinfeld second presentation [36,35] and FRT presentation of U, (gl\z) [54,28] are first
reviewed, see Definition 5.5 and Theorem 5.7. Then, ‘alternating’ subalgebras of U, (gl) that
can be viewed as g-analogs of (5.20), (5.21) are identified, see Definition 5.12. Using the Ding-
Frenkel isomorphism [28], K-matrices K*(u) (or K’*(u)) that satisfy the Freidel-Maillet type
equation (3.9) (or (3.25)) are constructed using a dressing procedure, see Lemmas 5.15, 5.16 or
5.17. By a direct comparison of the K-matrix (3.8) (resp. (3.24)) to the K-matrix K~ (u) (resp.
K'*(u)), explicit isomorphisms from .,zlq to alternating subalgebras of U, (§l§) are derived, see
Propositions 5.18, 5.20. For the first generators, Examples 5.19, 5.21 are given.
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5.2.1. Drinfeld second presentation and FRT presentation of U, (g/l\z)

In this subsection, we review some necessary material. For the quantum affine Kac-Moody
algebra U, (El\z), there are two standard presentations: the Drinfeld-Jimbo presentation denoted
U;)J and the Drinfeld (second) presentation denoted Uqu, see e.g. [22, p. 392], [34,27]. For

U, (gl\g), an analog of Drinfeld second presentation is known [36,35].

Definition 5.5. The quantum affine algebra U, (glz) is isomorphic to the associative algebra over
C(g) with generators {xk v 10,20, Kk € Z, ¢ € Z\{0}}, central elements C*'/2 and the fol-
lowing relations:

c'?c712=1, Kk '=k'k=1, (5.24)
k], ct

[k, 5]e]—Tqﬁ5u5k+£0, K&k =EirK, (5.25)
+ [k] kl/2 1k|/2 :I:

[E1.k,x ]::thCjH gk (5.26)
+ [¥], FIkI/2 = k25

[E20, %7 | =F— = C o (5.27)

KiK' = gF2xE (5.28)

e T Jpgs £2 4+ £t
Xer1Xe =4 X X1 =4 X Xpq1 — X1 %k o (5:29)

[xf.x7] = (C* =02y — k= Z)/2¢k+£)
o q—q7!

where the Y and ¢y are defined by the following equalities of formal power series in the inde-
terminate z:

(5.30)

o o

Y@ =) ¥z =Kexp ((q —q‘bth"‘) : (5.31)
k=0 k=1
o0 o0

¢()=) ¢ iz=K'exp (—(q ) th) : (5.32)
k=0 k=1

where we denote:
he = K281« — g W28, . (5.33)

Note that there exists a g-analog of the automorphism (5.6) such that:

QZX]:C‘:I—)XZZ, Sl &k, Sk, KK, Cl—)C_l, q—q

-1
(5.34)
In addition, there exists an automorphism:
vixi KT, x> x,:K_1 , &k,
SxrEp KK, CV2sclV?) (5.35)

The associative subalgebra generated by {x,f, he, KEL, CEV2 |k e 7, € € Z\{0}} is isomorphic
to the quantum affine algebra U, (s/2), known in the literature as the Drinfeld second presentation
U qu. The corresponding defining relations are given by (5.24), (5.28)-(5.30) and
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Ck _ C*k
[hlm hz] = Ok+0,07 [Zk]q ﬁ ) (5.36)
1
[he, x7] = i%[zk]qcﬂ"'/?x,ae : (5.37)

Remark 5.6. Recall the defining relations of U qD 7" in Appendix A. An isomorphism U qD —
UP" is given by (see e.g. [22, p. 393]):

Ko~ CK™', KiK, Eimxl, Eo—xK', Firx, FrKd,.
(5.38)

Note that it is still an open problem to find the complete Hopf algebra isomorphism between
U f Jand U f’. Only partial information is known, see e.g. [21, Section 4.4].

Extending previous works [32,54], for the quantum affine Lie algebra of type A such as
U, (gl ) aFRT presentation has been obtained in [28]. For type B, C, D, see [42,43]. The explicit
1somorph1sm between the Drinfeld second presentation of U, (glz) and FRT presentation given
in [28] is now recalled. Define:

1 0 0 0
0 z—lﬁ1 z(q—q:i) 0
R@) = o (5.39)
0 g—q~ ) z—1 0
1 T
4—q q—q
0 0 0 1

which satisfies the Yang-Baxter equation (3.3). Note that Ri2(z) = ”’2 (z). The above R-matrix
is related to the symmetric R-matrix (3.1) through the similarity transformatlons

(Y- 247")" Ristw/v) = M@ M@n R W) M), My (5.40)
v u - 2 Lo '

—1/2 0
M) = <u 0 u1/2> .

Theorem 5.7. (see [54,28]) U, ((g;-l\g) admits a FRT presentation given by a unital associative
algebra with generators {x,f, kj'fz, k;e’ qic/2|k € 7, € N, j=1,2}. The generators qic/z
are central and mutually inverse. Define:

Li(z):( K (2) K (@) )
i(z)ki(z) K (z) + eﬂz)k*(z)f‘ﬁ(z)

= M) " M©); " Ra1 ® /vD) M(v)2M(u);  with

(5.41)

in terms of the generating functions in the indeterminate z:

00 00
6+(Z) =(q— q—l) qu(c/Z—l)X:ka ., e @=—(q- q—l) qu(c/Z-H)X]:Z—k
k=0 k=1
(5.42)
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oo o
F@=@-q ) ¢ " ™x F@=—@-qH) ¢ " xF,
k=1 k=0
(5.43)
o0 o
K@=y k2", K=Y Kk k. j=12. (5.44)
k=0 k=0
The defining relations are the following:
K okio = Kiokio=1. (5.45)

R(z/w) (LT(2) @ ) (I ® L*(w)) = (I ® L*(w)) (L¥(2) ® ) R(z/w),  (5.46)
R(g z/w) (LT () @ M) (I ® L™ (w)) = ® L™ (w)) (LT (z) ® ) R(g~ z/w) . (5.47)

For (5.46), the expansion direction of Ié/(g/w) can be chosen in z/w or w/z, but for (5.47) the
expansion direction is only in z/w. U, (gl2) is a Hopf algebra. The coproduct A is defined by:

A(LE(2)) = (LE (218 D)) (L (2T 28Dy 4 (5.48)
and its antipode is S(L*(z)) = L*(z)~ L.

Remark 5.8. The inverse quantum Lax operators (5.41) are [28, eq. (4.9)]:

ot (K@) T H @K ) et (2) —fi(z>(k§(z>)‘>
(L™(2)) —( —(k;:(z))flei(z) (k;:(z))fl . (5.49)

The explicit isomorphism between the FRT presentation of Theorem 5.7 and Drinfeld second
presentation of U,(glz) of Definition 5.5 is given in [36, Section 4]. Introduce the generating
functions [28]:

xt@) = xz k. (5.50)
keZ
In terms of (5.42), (5.43), one has:

@ =@—-q O (Fa@ -1 *"),
X (2)=(q—q )" (e+(q*c/z“z) - e*(qc/z“z))
and

cl2? /2

= qC
The generating functions {kl.i (2)}i=1,2 are related with the generators {&; x}i=1,2 as follows [36,
Section 4] (see also [35]):

o0

K (2) = kg exp <j:(q —q¢7h Zai,;nzﬂ) (5.51)
n=1

where the new generators
arm=g" (a"V2E0m — g7 Er ) +azm (5.52)
Imlg,
_ 2m+|m|/2 ﬂgl,m +q 2,m
tm=q ( (e e ) (5.53)
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are introduced. The generators kl. are such that [ 00 4j, m] = [kl 0 Kj, 0] 0 for any i, j and

Kok ™ =K, K0T =K (5.54)

The commutation relations of U, (572) presented in terms of the generators {a; ,|i = 1,2}
are given in [36, Section 4]. Although not reported here, for further analysis some of those are
displayed in Appendix B.

In the context of the FRT presentation of U ( §l§) [28], the explicit exchange relations between
the generating functions (5.42)-(5.44) are extracted from (5.46), (5.47) inserting (5.41). We refer
the reader to [28, p. 288-292] for details. In particular, for the following analysis, we will need
the asymptotics of some of the exchange relations displayed in [28]. Considering the limits k;’ ©0)

and k; (00) of (5.44), from [28, eqs. (4.24), (4.25), (4.40), (4.41)] one gets for instance:
Kioe™ (W) (ko) ™! = q*lei(un Kiof W) (ki)™ =g ™' (), (5.55)
(50 et (wikgy=¢F'eT(w) <ki0) kg, =q"' (W), (5.56)
and from [28, egs. (4.13), (4.14), (4.17)] one gets:
kioki (w) =k (WK, Kok (w) =k (w)kiy, i#j=1,2. (5.57)

To prepare the discussion in further sections, the description of the known embedding
U, (slp) = Uy (gly) is now recalled. First, central elements of U, (gl>) are constructed using
the FRT presentation. Following [35, Section 2.6], define the generating functions:

Yy @ =k (g7 'K (q2) . (5.58)

By [28, eq. (4.17)], note that the ordering of the factors in (5.58) is irrelevant. Using the
other exchange relations in [28], one finds [yi(z), ef(w)] = [yi(z)’ f€ (w)] — [yj:(z), ki(w)] _
[y%(2). kS(w)] =0 for € = + and any z, w.

Proposition 5.9. (see [35]) The coefficients of the generating function y*(z) are central elements
of U 7(8 lp).

Corollary 5.10. The elements
kfokgio and yn=q"a\m+q Mar, for melZ* (5.59)

are central in U, (571\2).
Proof. Insert (5.51) into (5.58). Identify the coefficients of the resulting power series yE(z). O

Note that [U (glz) y] =0 fory= kl 0k2 0+ ¥m can be independently checked using (5.52),
(5.53) and the commutation relations (B. 1) (B 4).

Remark 5.11. In terms of the generators h,, (5.33) and central elements y,, (5.59), the new
generators aj m,, az,, entering in (5.51) decompose as:

m

(hyy + Ym) am = 1 (=hy, +qizm7/m) . (5.60)

T EE R
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It is known that the elements (5.59) and C*!/2 generate8 the center of U, (g/l\z). The following
arguments are described in [35] (see also [42]). Denote C the subalgebra generated by (5.59).
One has the embedding U qD "®C— U, (gl\g). Furthermore, define U’ (I]Dr as the extension of
UqD’ by qil/z, KEY2 and define C’ as the extension of C by (kfokéfo)l/z. Then, one has the
inverse embedding U, (g/l\z) < U’é)r ® C'. It follows that U, (él\g) and U’qu ® C are “almost”
isomorphic. So, one has the tensor product decomposition:

U,sh) =UP & C. (5.61)

For more details, see e.g. [42, Proposition 2.3, Corollary 2.4]. The explicit isomorphism ¢p :
Uy(gh) — U f’ ® C is constructed along these lines. In view of these comments, U, qu can be

considered as the quotient of the Drinfeld type presentation of U, (él\z) by the relations
yE@) =1 =  kigk,=1 and y,=0 VmeZ*. (5.62)

Below, we will use the surjective homomorphism yp : U ( §l\2) - U qD " using the presentation of
Theorem 5.7. Recall (5.50) and (5.51). Using (5.60) and setting (5.62), for instance one has:

yo@@/H = CY2 . ypE@) - xE @) (5.63)
1 q2m

yp(aim) — Whm ) yp(az,m) = —Whm ) (5.64)

Yok o (kf ) ™) > K (5.65)

Thus, the FRT presentation of U, (s/l\z) is obtained as a corollary of [28, Main Theorem]. It is
given by the image of (5.46), (5.47) with (5.41) via yp.

5.2.2. Alternating subalgebras U, (@)>,i and U, (g'l\g)“’i and K-matrices
By analogy with the analysis of previous section, we need to identify g-deformed analogs of
the “classical” alternating subalgebras (5.20), (5.21). For instance, consider the elements:

CHAIxE, D Eiker. Eakr for keN. (5.66)
Using the defining relations of U, (gl\z), for k, £ € N one finds:
[Eik.Eje] =0,

k
[51,k, C*€/2K*1xﬂ — %qk/zc(kw)/zl(&]_;e ’

[£]
[52’](’ C—e/szlxﬂ _ _Tqqfk/ch(kH)/szlXk+_M ’

[£]
D2~ 1 4 k/2 k+E41)/2—
[51,k,C( )/ Xg_H] == ¢ 2t )/ Xpte+1 >

k]
C +1)/2,— [ q —k 2C k+e+1)/2,,—
[gzvk’ ( )/ X€+l] k q / ( / Xk+l+l :

8 1 thank N. Jing for communications on this point. Note that the analogs of yi (z) are known for higher rank affine
Lie algebras of type A,B,C,D [35,42,43].
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Furthermore, the relations (5.29) are left invariant by the action of C —(k++-D/2K=2 for (4++) or
the action of C**+¢+1D/2 for (——). Also, using (5.28), (5.30) one finds:

—k/2p—1 0+1)/2 —
[C /’K X/T’C(Jr)/ Xz+1]=
1 _ k20— _
=—5K Wirer1 + (@2 = 1) (C k2K IXZF) (C(£+1)/2X€+1) .
q9—49q
According to (5.31), K™ 11//k only depends on hy so it is a comblnatlon of &1k, 2.k Thus, we

conclude that the elements (5.66) form a subalgebra of U, (glz) Other subsets of elements are
similarly considered, which form different subalgebras. It follows

Definition 5.12.

Ug(812)"* = {CT2KIe, €D | gt Eaanik € N
Uy(gh)™* = {CFH/ 5, c* DT, | K E1—k-1.&2 k- 1lk N}

We call U, (glz)'> + and U, (glz)<1 * the right and left alternatmg subalgebras of U, (glz) The
subalgebra generated by {Kil C*1/2} is denoted U, (glg)O

In each alternating Egbal gebra introduced above, the center is characterized as follows. Con-
sider for instance U, (gl)™*. Its center is the subalgebra of C generated by some of the coeffi-
cients of the generating function y*(z) as defined in (5.58).

Remark 5.13. The center C* (resp. C) of U, (g/l\z)b*jE (resp. U, ((gjl\z)q’i) is generated by y,
(resp. y—m) with m € N*.

For U, (s/lz), it is known that given a certain ordering the elements {x,f, he, Kt ol 2|k €
Z, £ € Z\{0}} generate a PBW basis, see [18, Proposition 6.1] with [19, Lemma 1.5]. According
to (5.33), with a minor modification in the Cartan sector associated with the decomposition of hy
into &y x, £k, a PBW basis for U, (g,fl\z) is obtained. If one considers the subalgebra U, (§\12)>s+,
let us choose the ordering:

C1/2x1_<Cx2_<-~~<51,1<51,2<-~-<5271<82,2< < CTV2KkIxt < k™ XO,
whereas for the subalgebra U, (571\2)4'_ we choose the ordering:

X, < Cl/zx:] << <bip<<bH1<bHa<o < C_le2K< C_l/zxflK.
It follows:
Proposition 5.14. The vector space U, (glz)D T resp. U, (glz)< ~)has a llnear basis consisting

of the products x1x -+ - x, (n € N) wzth xi €Uy (glg)l> + (resp. x; € Uy (glg)<1 ~) such that x| <
X2 = =Xy

Using the automorphism (5.34), PBW bases for U, (él\z)b’_ and U, ((5;1\2)4"*‘ are similarly
obtained.

We now turn to the construction of K-matrices satisfying the Freidel-Maillet type equations
(3.9) or (3.25), whose entries are formal power series in the elements of alternating subalgebras.
Assume there exists a matrix K° with scalar entries and two quantum Lax operators L(z), L°
such that the following relations hold (§21 () = Pﬁlz(z)P):
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Ria(z/w) KY RO K9 = KY RO KV Ry (z/w) , (5.67)
Ri2(z/w)L1(z)Lo(w) = La(w) L1 (2)Ri2(z/w) , (5.68)
Ra1 (z/w) (LY (L2 = (L2 (L)1 Rar (z/w) (5.69)
(L) RO Ly(w) = Ly(w)RO (LY, , (5.70)
Li@ RO (L, =(L"%RVL () . (5.71)

Adapting [57, Proposition 2], using the above relations one finds that:
K(z)~ L(2)K°L® (5.72)
satisfies the following Freidel-Maillet type equation (for a non-symmetric R-matrix)

Ria(z/w) (K(z) ® 1) R? (1 @ K(w)) = (I ® K(w)) RO (K(2) ® I) Ry (z/w) .
(5.73)

An example built from the FRT presentation for U, (@) of Theorem 5.7 is obtained as fol-
lows. For the choices

L@ L () and L%w L™0=diag((5,) " (k)7 . (5.74)

eq. (5.68) holds and using the exchange relations (5.55)-(5.57) it is checked that egs. (5.69)-(5.71)
hold. Also, for the choice

0 kilg+q™hH
K= (4=47h (5.75)
k_(g+q~h) 0 .
(g—qH

it is checked that eq. (5.67) holds. It follows
K@~ K (=L (2K°L™" (5.76)

satisfies (5.73). Note that eq. (5.73) is left invariant under the transformation (z, w) — (Az, Aw)
for any 1 € C*.

A solution of (3.9) associated with the symmetric R-matrix (3.1) is readily obtained using the
similarity transformation (5.40).

Lemma 5.15. The dressed K -matrix
K (u)=

1 k= - - - = k - - - =
u 1<7;Q€1 Lig (qud)f (quP) (K ) 1) FTH Dk (qu) (K ) !

—1 -1
et (5 (@u?) + &= (@) (@) () (g )~ u (%e— (quk, <qu2)(k;0)—1>

satisfies the Freidel-Maillet type equation (3.9).

Proof. The K-matrix K~ (z) defined by (5.76) satisfies (5.73). Applying the transformation
(5.40) to (5.73) and defining

K~ () = Mu)K ™ (qu*) M) ,

the claim follows. O
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Another solution of (3.9) is obtained as follows. Assume there exist two quantum Lax opera-
tors L(z), LY such that the relations (5.70), (5.71) and

Ra1(z/w)L1(2) La(w) = La(w)L1(2) Ray (z/w) ,

Ria(z/w)(L)1(L%2 = (L2 (L)1 Ria(z/w)
are satisfied. It is straightforward to check that

L@ @)™ and L LT =diag(k] . k{ ) (5.77)
obey the above set of relations. Then

K@ K @=Lkt H™ (5.78)

satisfies (5.73). Using this result combined with the similarity transformation (5.40), it follows:

Lemma 5.16. The dressed K -matrix

K (Lt) -
— k ¢! + A+ — k 47! + 4+ _
ul (77((1 q] )k2‘0k2 (l/quz) le (l/quz)) klgra ) ql )k2,0k2 (l/quz) 1

—1 -1
D b (6 (1/qud) ™+ 1 (1 gy (1/qud)~ et (1/qu?)) u(—ik—“’*il >k1+0m/qu2>k2+<1/,,u2rl)
q—q ’ q9—q ’

satisfies the Freidel-Maillet type equation (3.9).

For completeness, a K-matrix satisfying (3.25) is now constructed along the same lines. To
this aim, we consider the set of relations (5.67)-(5.71) with the substitution:

RO 5 (RO (5.79)
For the choices

L@ LY () and L%+ L' =diag((d )" (™. (5.80)
one finds that

K@) K'T(2) =LKL’ (5.81)
satisfies (for the non-symmetric R-matrix)

Ria(z/w) (K(2) @ ) (RP)™! (I ® K (w))

= W ®Kw) (RN (K@ ®I) Rat(z/w) . (5.82)

Using (5.40), it follows:

Lemma 5.17. The dressed K -matrix
K' ") =

1k -1 _ k -1 _
o (SR ity i) Lt D ) k) )

k- -1 _ k -1 _
S0 (g (qu) + e (K @t (gud)) 6 ) ! u(%eﬂqu%klﬂquz)(kf_o) ‘)

satisfies the Freidel-Maillet type equation (3.25).
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The entries of the K-matrices are formal power series in the elements of the alternating sub-
algebras. Consider for instance the entry (K~ (#))11. One has:

k-(qg+q™" _ _ -

527_611"1 (qu*)  (qu*) (k3 () ™! by (5.56)
N———
=q (k3 o)~ (qu?)

(K~ ) =u"q

_ k_(g+q~hH _ _ _
=ulg P ki (qu®)(ky )™ = (qu?) by (5.51).
—_———
=K~lexp(—(g—g~") Y52 a1,n(qu?)~")

Inserting (5.43), one gets:

(K~ ()11 =ugq (—k(cﬁ + 1exp (—(q —q7" Zal,nmuz)—")

n=1
oo
% quck/Zlel—(&-(thZ)kl> )
k=0
According to Definition 5.12 and (5.52), (5.53), we conclude (K~ (u))11 € Uy (g,:l\z)“”r QC[[x2]].
Studying similarly the other entries and repeating the same analysis for K+ (u) and K’ (u), one
finds:
(K~ @)ij € Uy @ ClIw?N, (KT w)ij € Ug(gl)™~ @ CIW’l,  (5.83)
and (K" )i € Ug(gl)™~ @ ClIw’1] .

5.2.3. Isomorphisms relating .;lq and the alternating subalgebras U, (@)>,i and U, (él\z)q’jE

Recall the Freidel-Maillet type presentation for A, of Theorem 3.1. A direct comparison
between the K-matrix (3.8) and the K- matrlces K*(u) previously derived provides explicit maps

from Aq to the alternating subalgebras of U, (glz) Recall the generating functions (3.5), (3.6) of
the algebra A,,.

Proposition 5.18. There exists an isomorphism from ;lq to Uy (@)»& such that:

Wiy (u) = —k_(q” + 1) exp (—(q -q7h Zal,n(qﬁ)”)

n=1

o0
x Y " CTFPK T (quh TR (5.84)
k=0

W-() = —ki(q ™2 + 1)(Zq"+‘c<’<+”/2 1(quh)™ ‘)

k=0
X exp (—(q —q7 Zal,n(quz)‘"> : (5.85)
n=1
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( xp( (g —q_l)zal,n(quz)_"> - 1) : (5.86)

n=1
o
G-y (exp ( G-q7h Zaz,n(qu2>") — 1) (5.87)
n=1
+p(q —q 1) Z qk+£+2C(k—£+1)/2X]:+lK—l
k,£=0
o
X exp (—(q -q7 Zal,nwuz)—") X} (quhy~ =t
n=1

Proof. As previously discussed, using (5.42), (5.43) and (5.51), the entries of K~ (u) are
power series in qu?. Identifying (3.8) with K ~(u), one gets the above homomorphism .A —
U, (glg)'> ** through identifying the generating functions. It remains to show that it is an isomor-
phlsm Firstly, by analogy with U, (slz) [22, page 289], U (glz) with defining relations (5.1)-(5.5)
is known as the specialization ¢ — 1 of U, (gl2). So, the subalgebra Uy (glg)l> T specializes to
U (glz)> - with (5.20). Secondly, by Proposmon 54A=U (glz)l> o+ Thlrdly, by Proposition 2.18
A is the specialization of .Aq atg — 1, p — 16. All together, we conclude that the map above is
an isomorphism. O

Identifying the leading terms of the power series, one finds for instance:

Example 5.19. The image in U, (§1§)>’+ of the first generators of leq is such that:

Wo = —k_ qK x0 , W1|—>—k+C1/2x;

plg—qh 42CV K

a1, é]l—>— ay |
g7! (g+q7h

G~ — I
q+q-

As a second example, recall the Freidel-Maillet type presentation (3.25) for ;lq with (3.24). In
this case, the K-matrix (3.24) is compared with the K-matrix K’* () of Lemma 5.17. It follows

Proposition 5.20. There exists an isomorphism from .;lq to Uy (@)“’_ such that:

(o)
Wi g™ k(g +97h ) a7 C T (qud) !
k=0

X exp ((q —-q7" Zal,_n(quz)") :

n=1

W_u™ g7 > k_(qg+q ")exp ((q —q7h Zal,mu%")

n=1
00
> (Zq—k+lc—(k+l)/2x+kIK(qMZ)k+1> i
k=0
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(Xp((q q 1)Zal _n(quz)) ) :
g_(u_lq_l)r—> 'Oq (exp((q q )Zaz—n(qu)) )

g —q Z q —k—€ (k= Z_l)/zxik
k,e=0

o
X exp ((q —q ) ai <qu2)”) Xt Kqu?) et

n=1

i

g+(u_lq_l)'—>

Q

Example 5.21. The image in U, ((g:l\z)q’_ of the first generators of ;lq is such that:

Wo = kix; , W, r—>k_qC_1/2ij]K
0 = o o(g—q~ ) —1/2y—+
G — ai,—1, G = ——ay - 1+7 X, XK.
q+q7! q+q! (g+qhH 07l

So, the alternating subalgebra U, (g/l\z)D * (resp. Uy (§l\2)<' »~) admits a Freidel-Maillet type
presentation given by the K-matrix K (u) (resp. K ’+(u)) satisfying eq. (3.9) (resp. eq. (3.25)).
Using the automorphism (5.34), a presentation for U, (glz)> ~ (resp. Uy (glz)< 1) can be obtained
as well.

Finally, let us introduce the alternating subalgebras of U qD ",

Definition 5.22.
UPrm* = (CFK g, CFETDIE | ik e N},
P — (O, CHEDAT, K gk e N).

We call UqD ">% and U,;) "% the right and left alternating subalgebras of U qu. The subalgebra
generated by {K*!, C*1/2} is denoted Uqu’Q.

As a corollary of (5.61) and Remark 5.13, one has the tensor product decompositions:
Uq(g"l\z)b,:l: ~ Uqu,b,:I: QC”, Uq (gl\z)a,:t ~ U;)r,«,:l: ®CT.
Recall (5.59).

Remark 5. 23 The alternating subalgebra U (resp U ) is the quotient of U, (glz)l> +
(resp. Uy (g12)<‘ +) by the ideal generated from the relat10ns {Ym+1 = 0] Vm € N} (resp.
{V—m 1—0| VmGN})

We conclude this section with some comments. Using the isomorphism of Propositions 5.18,
the image of the generating function A(u) € Z ® (C[[uz]] defined by (3.28) gives a gener-
ating function in C> ® C[[«?]] that looks more complicated than (5.58). In the context of
FRT/Sklyanin/Freidel-Maillet type presentations, this is not surprising as A(x) and y*(qu?) are
built from different quantum determinants (see e.g. [57] for details). However, as a consistency
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check one can compare the leading orders of both power series. For instance, let us compute
the image in U, (gl)™™ of A given by (2.27) using the expressions of Example 5.19. After
simplifications using (5.28), (5.30), it reduces to:

2 _
A= —71)2(401,1 +q 1512,1) )

(q+q
which produces y; (see (5.59) form = 1).

5.3. The comodule algebra homomorphism § : .;lq - Uy (g/B)‘>’+’O ® .Zlq

At the end of Section 2, a coaction map (W, W) — UqD I+0 g (Wp, W1) has been given.

In this subsection, we study further the comodule algebra structure of_./_élq using the FRT pre-
sentation of Theorem 5.7. A coaction formula for all the generators of A, is derived as follows.
Recall the coproduct formulae for the quantum Lax operators (5.48). Take the K-matrix (5.76)
and define the new K-matrix:

AL~ @)KA' (L™ = (L™ =g ")y | (L7 g8 KoL~ | (™)

=(R~(2¢'2®V))
(5.88)

By construction, it satisfies (5.73) for the non-symmetric R-matrix (5.39). Using the invariance
of (5.73) under shifts in the ratio z/w, it follows that

8(K™(2) = (L™ @) (K~ @)1 (L™

solves (5.73). More generally, starting from any K-matrix satisfying (5.73) and following stan-
dard arguments [57] different types of coactions can be constructed from the FRT presentation.
Using (5.40), for a symmetric R-matrix for instance it yields to:

Proposition 5.24. The Freidel-Maillet type presentation (3.9) of .Zlq associated with R-matrix
(3.1) and K-matrix (3.8) admits a comodule algebra structure. The left coaction is given by:

S @) = (ML~ (@AM ™) (K~ @ae (5.89)

A right coaction map is similarly obtained by analogy with (5.78). Now, recall the gener-
ating functions (3.5), (3.6). Also, define U, (gl)> 10 as the alternating subalgebra U, (gh)>*
extended by K, K-L,

Lemma 5.25. There exists a left comodule algebra homomorphism § : ;44 — U, (gl;)”ﬂ“o ® .;lq
such that:

SOV ) > (qu*) ™ gk (qu) (K )~ (qu?)

k-(qg+q™"

Py

® (m II> + kl_(quz)(kz_,o)_l QWi (u),
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1
k-(qg+q7h =g~
+ (I @) )™ + a7 e (@K @)K )T () @ W-w),

k -1
BOV-(0) = ™o (quP)k (qu) (ki)™ @ ( G+ My)

8T+ = K (@)K ) ® G )+ —L— (K @) k) —1) @ 1

9—49
+k_(q+q "k (qu*) (K )7 (quP) @W_(u)
5G-) = (I (qud) ()™ + g€ (qudkT (qu>) G0 ™' (qu?)) © G-

+

; _"q_l (5 @ud) (™" + g6~ (kT (qud) G )~ Fgud) = 1) @ 1

+kpqu*(q +q~ e (qu)k (qu) ()T @ Wi ) .

Proof. Compute (5.89) using (5.41), (5.40) and (3.8). Compare the entries of the resulting matrix
to (K (u)) with (3.8). O

Expanding the power series on both sides of the above equations using (3.5), (3.6),
(5.42)-(5.44) with (5.51), (5.54), one gets the image by § of the generators of 4,. This gen-
eralizes example (2.48).

Example 5.26.
8(Wo) = —k_gK™'x§ @ T +K™' @ Wy,
(W) =—k4C'2x @ T +K® W, .

If we define similarly U, (g2)® 0, note that a right coaction map Ay — A, 0U, (gh)=~°
can be derived along the same lines.

5.4. Relation between the generators of Aq and root vectors of U, (El\z)

Let o, o1 denote the simple roots of s/lz and § = o + o1 be the minimal positive imaginary
root. Let R = {né + oo, né + a1, mé|n € Z,m € Z\{0}} be the root system of s/l\z and Rt =
{né +ap,nd + a1, méln € N, m € N\{0}} denote the positive root system. Recall UqDJer denote
the subalgebra generated by

Ey =Ey, Eyw=Ep.

Using Lusztig’s braid group action with generators Ty, 71 such that T; : U, (s/l\Q) — Uy (s/l\Q),
root vectors Eg € UqD I for every B € R7T are defined [25,18]. Namely, for real root vectors
né + ag, né + a; with n € N one chooses

Epstay = (ToP)" (Eo) and Epsta; = (To®) " (E1) .
Here @ : U, (s/lz) — Uy (s/l;) denotes the automorphism defined by:
®(Xp) =Xy, ®(X1) = Xp for X=E, F K*.

For the imaginary root vectors, following [18,19] they are defined through the functional equation
(note that [ Eys, Eps] =0 for any n, m):
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exp ((q -q7 ZEkaz") =1+(—q ")) Pt with

k=1 k=0
= )
Yr = Ers—aEoy —q “Eo Exs—a -
DJ,—

For the negative root system denoted R, similarly one defines the root vectors Fg € U,

for every B € R™ [25]. The root vectors of UqD I+ and U[;) = are related as follows (see [25,
Theorem 2]):

Fg=Q(Eg) VBeR", (5.90)
where 2 is an antiautomorphism of Uy, (s/l\z) such that

QEN=F, QF)=E, QK)=K"' fori=1,2,

QC)=C"land Qg)=q".

The explicit relation between Drinfeld generators and root vectors has been given in [18,
Section 4] (see also [19, Lemma 1.5]). For U, (sl), according to above definitions one has the
correspondence:

X,ir = Eys+q » X1 = _C_k_lKEkS-i-ao , het1 = C_(k+1)/2E(k+1)8 ,
5.91)
X_p = Frsta » Xt = — FropagK1CHHL hok1 =CHD2F4 s (5.92)
for k € N. From (5.37), one gets the following relations in terms of the root vectors [25, Section
3]
[Es., Exs+ar | = (g + 4 Y Ew41)s4ar 5 [Exs+ap: Es] = @ +q D E@s1)s4+ap - (5.93)

By induction, root vectors can be written as polynomials in Eq, E¢. For instance:

Es=EoE| —q *E\Ey,

! ] ]
Essen= =7 (ESEV = (g ™) E0EiEo g 1Y)

I . _
Ester = ——— (EoE} = (1 + ™) E\ EoE) +qEEo) .
q+q

We now relate the root vectors to the generators of alternating subalgebras. For convenience,
compute the image of UqD el (see Definition 5.22) by the automorphism v (5.35) using (5.33).

This alternating subalgebra is denoted (UqD ey, Using (5.91), in terms of root vectors the
generators of (UqD r’>’+)” read:

CRK IS R =T s, (5.94)

C(k+1)/2xk—+1 A C(k+1)/2xk—+lK—1 _ —6]72C7(k+1)/2Ek5+a0 7 (5.95)

hi1 F> hir1 =C~ 2B s (5.96)

As an application of Proposition 5.18, a set of functional relations relating the generators of

Aq to the root vectors of UqD as (or similarly for Uf J’_) is easily derived. Recall the surjec-

tive homomorphism y : .;lq — Aq = UqD It see (2.37). Consider the image of the generating

functions (3.5), (3.6) via y.
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Proposition 5.27. The isomorphism ¢ : A — U * is such that:

J/(W+(u))r—>—kq(q+q‘l)e><p( G—q I)Z @ o na(quz)‘")

oo
x Z q" Ets oy (qu) ™",
k=0

yOV-(u) = kg (g +q7H (Z g Eka+ao(qu2>—k—1>
e 1 o
X exp (‘(q_q I)ZmEnS((Z“z) ) )
y(Ga) > == (exp —(q—q~ Z Ens(qu*)” ) —1) :
1
yG-w)m o (exp ((q q I)Z @ ms(quz) ) 1)

o0
+5Gq—qa"" ) 6" Erstay
k, =0

o0

x eXP( (4—q l)gw;) na(quz)_”> Egsya (qu*) 71
Proof. Reczlll the surjective homomorphism yp which acts as (5.63)-(5.65). Consider its restric-
tion to U, (glx)>, applied to the r.h.s. of (5.84)-(5.87). The resulting expressions are now in
U,]Dr’b’+ ® C[[u?]]. Then, studying the relations satisfied by {C ~%/2K~1x;", C(k“)/zx,;rl, hig1)
one finds that they are equivalent to the defining relations of the quotient of UqD ret by C=1.
Apply v and use the identification given in the r.h.s. of (5.94)-(5.96) for C=1. O

Expanding the above power series, for instance set k; — g2, k_ — —q~! (which gives p =
—q(q +¢~"?) in these expressions. It follows:

Wor— Eq, Wi Egy, Gi—gqEs,

(note that G| — —¢°Es + (¢> — ¢ ") EoE)) , (5.97)
1

W_r—>—(— — ¢ YESE| + (¢* + DE ) 598
1 (C]+q7])2 (g—q HEsE1+(q ) S+ag ( )

1 —1 2
> (=g YEoEs + (¢* + DE ) 5.99
(q+q_1)2( (@ — g YEoEs + (¢* + DEssa, (5.99)

By construction, (Uqu’D’Jr)”/c:l ~ UqDJ’Jr. Using (5.90), an isomorphism A, — Uqu’“’_/c=1
= Uf 7~ is obtained from the above expressions.
The inverse of the map ¢ is now considered. We want to solve the positive root vectors

Enstay, Ens+ay> Ens in terms of the generators W_g, Wii1, Gr41. Although we do not have
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the explicit inverse map between generating functions, the images of the root vectors in Aq can
be obtained recursively from Proposition 5.27. For instance,

Ei— Wy, Eog— Wy, Es— q_lG1WO s (5.100)
(61—6]71) -2 )

Estay > ———-q GiWo+(1+q HW_y, (5.101)
(g+q7)
(@—q7 " _ _

Espa > 12 472W,Gy + (1447 DW, . (5.102)
(g+q=")

Of course, these expressions could be given in a different ordering (see Theorem 2.15) using
2.3) for k =0.

Finally, let us point that several relations mixing both sets of generators can be readily ob-
tained using (3.9) combined with Proposition 5.27. Namely, define the image of the K-matrix
(3.8) by ¢ as:

K'(u) =u(Ku)) . (5.103)
Consider the pair of K-matrices {K (1), K'(v)}. They satisfy:

R(u/v) (K@) @ ) R® (I ® K'(v)) = (I @ K'(v)) RO (K(w) @ Il) R(u/v)
(5.104)

with (3.1). If we define the generating functions Wi (v)"Y =10 y(WL(v)), GL(v)"Y =10
¥ (G4 (v)), from (3.10)-(3.18) one extracts the set of functional relations associated with (5.104).

Remark 5.28. II} [62, Section 11], the relation between Damiani’s PBW basis and the alternating
PBW basis for A, has been studied in details within the framework of the g-shuffle algebra. In
particular, various relations mixing both sets of generators have been obtained.

6. The alternating presentation of U, (s/l\z) from U, qD J

Define the alternating subalgebra AZ =~ (U(IDr’D’+)”/c:1 (resp. Ajl‘ = Uqu’q’_/c:Q as the
image of Aq by ¢ (resp. € o t) (see Proposition 5.27) for k; — g2, k_ — —g~'. For conve-
nience, let us denote Ehe generators of AZ (resp. A;) by {(WZ,, W,‘:H, G;H, éiﬂ |k € N} (resp.
(W2 Wit Gy Gy 1k € N). According to (5.97):

WSZEl, WIDZE(), W(TZFl, WFZF(). 6.1)
Recall Proposition 2.14 and UqD 9.0 = {Ko, K1}. By construction, one gets the tensor product
decomposition:

Ugsh) = A5 @ UPT O @ A7 . 6.2)

Moreover, by Theorem 2.15 an ‘alternating’” PBW basis for U, (s/l\z) readily follows from the
results of [62,63].

Theorem 6.1. A PBW basis for U, (s/l\z) is obtained by its alternating right and left generators
{Wik}keN > {GIZ_H YeeN s {W;+1}neN > {er}reN » {G;_H JseN » {sz-l}teN
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and Ky, K1 in any linear order < that satisfies
W2, <Gy <Wi  <Ko<Ki<W3,<Gj  <W3, k,¢,n,r,s,teN.

The transition matrix from the alternating PBW basis of Theorem 6.1 to Damiani’s PBW basis
for Uy (sl2) [25, Theorem 2] is determined by Proposition 5.27 and using the antiautomorphism
2 (5.90).
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Appendix A. Drinfeld-Jimbo presentation of U, (s/l\z)
A.l. Drinfeld-Jimbo presentation U qD J
Define the extended Cartan matrix {a;;} (a;; =2, a;j = —2 for i # j). The quantum affine

algebra Uy, (s/l;) over C(g) is generated by {E;, F}, Kfl}, j € {0, 1} which satisfy the defining
relations

KiK;=K;Ki, KK '=K'Ki=1, KEK '=q%E;,

—1 —aii K; - Ki_l
KiFjKi =q ”Fj, [Einj]Zaijﬁ
together with the g-Serre relations (i # j)
[Ei. [Ei. [Ei, Ej]q]q_l] =0, (A.1)
(7. [Fi [Fi Fi], ]~ ]=0. (A2)

The product C = KoK is the central element of the algebra. The Hopf algebra structure is
ensured by the existence of a comultiplication A, antipode S and a counit £ with

AE)=1QE +E ®K;, (A.3)
AF)=F®1+K '®F,
AK;))=K;®K;,
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S(EN=-EK ', S(F)=-KF. SEK)=K—' SO=I

and
E(EN=EF)=0, EK)=1, E)=1.

More generally, one defines the N-coproduct AN : U, (EE) — U, (EE) ®---QUy (EE) as
AM =(Gd x - xid x A)yo AND (A.4)

for N >3 with A® = A, AV = jd. Note that the opposite coproduct A’ can be similarly
defined with A’ =0 o A where the permutation map o (x ® y) =y ® x for all x, y € U, (sl2) is
used.

A.2. Serre-Chevalley presentation s/lzsc

In the definition below, [., .] denotes the Lie bracket. The affine algebra s/l\z over C is generated
by {e;, fj, k;}, j € {0, 1} which satisfy the defining relations

[ki-kj]=0. [ki.ej]=aije;j . [k fi]=—aijfi. [ei fi]=8i ki
together with the Serre relations (i # j)
[ei, [ei, [ei, ej]]] =0, (A.5)
Lfi. [fi. i £1]]] = 0. (A.6)
The sum ¢ = kg + kj is the central element of the algebra.
For U(s/l\zsc), as usual [x, y] = xy — yx.

Appendix B. Some defining relations of Gao-Jing presentation of U, (,g:l\z)

We refer the reader to [36, Theorem 4.16]. From Definition 5.5 and (5.52), (5.53), the follow-
ing commutation relations are derived:

[@im,ain]=0,i=12, (B.1)
[a2,m.a1n] = —%—][mC]q_mrSmﬂ,o , (B.2)
[alym, xni] = iPZ—]q:Flmlc/zxr:E+n , (B3)
[(12,ma xni] = :Fqum¥|m|C/2x3li+n . (B.4)
m
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