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ABSTRACT

The remarkable rise of quantum simulation as a viable strategy for studying many-body
phenomena has introduced an entirely new dimension to research in quantum mechanics.
These platforms offer unprecedented versatility and control over the interactions between
their fundamental degrees of freedom. Thus, they present an opportunity for the first time
to experimentally investigate arbitrary Hamiltonian systems, even those that might not occur
naturally. The vast majority of these platforms employ a qubit architecture, that is, their
fundamental degree of freedom is a single qubit that can mathematically be described by a
spin algebra. Therefore, the most natural Hamiltonians to study using these architectures
are spin Hamiltonians.

Spin is the intrinsic angular momentum associated with quantum particles that dictates
their magnetic moments and quantum statistics. However, Hamiltonians involving other
kinds of degrees of freedom may also be mathematically described by a spin algebra; the
Hamiltonians used in quantum simulators being a prominent example. Spin Hamiltonians
have been known to demonstrate an incredible variety of phases of matter, ranging all the
way from the well-known magnetic phases such as ferromagnets and paramagnets to the
recently discovered exotic quantum phases such as quantum spin liquids. They have been
the subject of extensive theroretical and experimental studies for many decades and have
revealed fundamental insights into the emergence of quantum phases and phase transitions.

Moreover, spin systems have also proved to be ideal settings for investigating the man-
ifestations of chaos in quantum systems such as through the dynamical generation of en-
tanglement. Given the significance of these two themes, emergence and chaos, for physics
in the 21st century, the availability of quantum simulation architectures presents an almost
miraculous opportunity for carrying out deeper explorations into the emergence of phases of
matter and quantum chaos using spin systems as our guideline. This is precisely the goal of

this dissertation. This dissertation is based on three projects:

(i) Finite-size scaling on a digital quantum simulator using quantum restricted Boltzmann

machine,



(ii) Simulations of frustrated Ising Hamiltonians using quantum approximate optimization,

(iii) A classical analogue of entanglement for a kicked top.
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1. INTRODUCTION

One of the most surprising properties of quantum particles that separate them from their
classical counterparts is their intrinsic angular momentum, known as spin. Spin imparts a
magnetic moment to these particles and governs their statistical properties — it determines
whether the particles are bosons or fermions. Spin of electrons is the basis for Pauli’s ex-
clusion principle which explains the stability of matter. In atomic and molecular physics,
it accounts for the higher resolution details of the energy spectra such as fine and hyperfine
structure. In condensed matter physics, the spin of electrons and nuclei is essential in ex-
plaining the magnetism of materials, superconductivity, superfluidity and many other exotic
phases of matter. In quantum field theory, the language of the Standard model, the spin of
a particle determines the nature of the quantum field that must be invoked to describe it.
Introduced by Wolfgang Pauli in 1924, it is an indispensable ingredient in accounting for
physical phenomena on all scales ranging from the astronomical all the way down to particle
physics.

Emergence and chaos are two themes that have been on the forefront of physics research
for the last few decades. Emergence is concerned with the study of novel phenomena that
arise as we move up on the scale of complexity to larger and larger collections of atoms and
molecules. Remarkably, each new level of complexity demands the formulation of entirely
new properties and laws for a description of the associated phenomena [1, 2]. The standard
example of this is found in the description of phases of matter and phase transitions in
condensed matter. Chaos, on the other hand, is concerned with the dynamical behavior of
physical systems; in classical physics, among other features, it is characterized by the ex-
tremely sensitive dependence of trajectories on initial conditions. The quantum ramifications
of chaos, however, are not yet as well understood, and this is a subject currently undergoing
rapid growth. Although still in nascent stages of their development, both emergence and
chaos are radically new modes of viewing physical phenomena, inviting us to revisit the long-
standing problem of classical-quantum correspondence that pervades all of modern physics

[3]-
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Meanwhile, the study of quantum many-body phenomena is also being revolutionized
through the remarkable recent advances in quantum simulation technologies. A quantum
simulation is carried out by mapping a given system to a versatile quantum architecture
that is much easier to control and manipulate in a laboratory setting. Classical simulations
of similar systems run into difficulties due to the exponential scaling of Hilbert spaces.
Quantum simulations bypass these limitations by using an architecture that is fundamentally
quantum. These architectures allow us to track the emergence of phases of matter and chaotic
dynamics in quantum systems with a degree of control that would have been unimaginable
a couple of decades ago. The most natural candidates to map onto these simulators are spin
Hamiltonians since the scaling of spin Hilbert spaces is identical to these platforms. Our goal
in this dissertation is to explore the interplay of quantum simulation techniques and spin
Hamiltonians for a careful study of emergence and chaos in spin systems. In this chapter,
we have outlined in detail our motivation for pursuing this research. We first introduce spin,
emergence and chaos in Secs. 1.1, 1.2 and 1.3 respectively. We then synthesize the three
themes in Sec. 1.4 to motivate the research direction pursued in this dissertation. Finally,

we briefly outline the contents of the subsequent chapters in Sec. 1.5.

1.1 What is Spin?

In classical physics, the state of a particle is completely specified by its position and
momentum (r, p); where each of the components of r and p are taken to be real numbers. In
quantum physics, on the other hand, the state (r, p) is replaced by a wavefunction ¢ (r). The
wavefunction defines probability distributions for both position r and momentum p given
by [0(r)|* and |p(p)|? respectively, where o(p) = 1/(27h)3 [ (r)e =P/"d3r; h being the
reduced Planck’s constant. So, in contrast to the infinitely precise classical state (r,p), the
quantum state ¥ (r) can be visualized as a density extended across a region of phase space.

However, in addition to smearing out the infinitely precise (r,p) into a density ¢ (r),
quantum physics introduces a completely new degree of freedom to the particle unknown to
classical physics, known as spin x. So, the total quantum state of the particle is ¥ (r, x) (see

Fig. 1.1.) As a physical quantity, spin behaves like angular momentum. The operators S =
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(Sz, Sy, S:) that represent spin satisfy the angular momentum operator algebra: [S;,S;] =
iheijr Sk where 4, j = 1,2, 3 and €, is the Levi-Civita symbol. The eigenvalue of S? is s(s41)
where s is called the spin of the particle; it can take values from s = 0, %, 1, %, 2, --. For
a fundamental particle, it is a property intrinsic to the particle and is always fixed. For
example, electrons have spin 1/2, photons have spin 1 etc.

While it is hard to visualize a clear pictorial representation of quantum spin, it engenders

some very consequential properties to the particles that possess it. Here, we list three of the

most important implications of quantum spin (also see Fig. 1.2.)

Classicol Quantum
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Figure 1.1. What is spin? The classical state of a particle is represented
by a point in phase space (r,p). The quantum state i (r,x) in addition to
defining probability distributions |¢(r)|” and |¢(p)|* over r and p respecitvely,
introduces a new degree of freedom y; known as the spin of the particle.
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1. Magnetic moment
In classical electrodynamics, a charge moving in a loop possessing an angular momen-
tum L exhibits a magnetic moment g = yL where 7 is known as the gyromagnetic
ratio. Quantum particles, in addition to their magnetic moment from orbital motion,
also carry an intrinsic magnetic moment due to their spin. For example, the magnetic

moment pg imparted to electrons due to their spin is
BB
ps = —gs—-S (1.1)

where gg ~ 2 is the g-factor, ug = eh/(2m.) is the Bohr magneton and S is the electron
spin. This magnetic moment is fundamental to explaining the magnetic properties of

atoms, molecules and materials.

2. Quantum statistics
In classical physics, identical particles are distinguishable in the sense that one can
track the state (r;,p;) of any individual particle by following its trajectory. How-
ever, this is no longer possible in quantum physics, since particle states are spread
out in phase space (see Fig. 1.1.) The state of a many-particle system in quan-
tum mechanics is given by a single wavefunction ¢ (ry, x1,r2, X2, * - i, X4, * * +). In-
distinguishability implies that the wavefunction has to be invariant under particle
exchanges. Suppose that we have the exchange operator Pjs for a two-particle sys-
tem defined as: Piath(ry, x1,T9, X2) = ¥(T2, X2,T1,X1). Since P4 = I, the eigenval-
ues of Py are +£1. This gives us two classes of states that are invariant with re-
spect to the exchange operation Pio: (i) Piath(r1, X1,T2, X2) = ¥(r1, X1,T2, X2) and
(ii) Piatb(r1, x1,T2, X2) = —(r1, x1,T2, X2). Identical particles which admit states of
the first kind are called bosons, whereas those that admit the second kind are called
fermions. Collections of bosons and collections of fermions exhibit dramatically dis-
tinct physical properties. Bosons experience an “effective attractive influence” towards
each other and tend to accumulate together. This principle is invoked to explain super-

fluidity and superconductivity among many other phenomena. Fermions, on the other
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hand, exert an “effective repulsive influence” on each other merely by virtue of being
fermions. This is the basis for Pauli’s exclusion principle which ensures the stability of
matter. One of the most remarkable results in quantum physics is the spin-statistics

theorem. It states that particles with integer spin s = 0,1, 2, - - are bosons, whereas

N

particles with half-integer spin s = %, ,- - - are fermions. So, there is an intricate

connection between the spin of a particle and its bosonic or fermionic nature.

3. Quantum fields
In quantum field theory, the language of the standard model, particles are described
as excitations of the all-pervasive quantum fields. Particle interactions and scattering
processes are understood in terms of the interplay of the underlying fields. In this
framework, there is a deep link between the spin of a particle and the nature of the
field that represents it. The spin of a particle prescribes the kinds of interactions
that it can partake in with other particles. Electrons are spin-1/2 particles and are
represented by Dirac spinors v,(r, t); photons are spin-1 particles and are represented
by vector fields A*(r,t); the higgs boson is a spin-0 particle represented by scalar field
¢(r,t) and so on.

1.2 What is Emergence?

Collections of a large number of individual entities give rise to new structures, charac-
terized by their own unique properties and laws. This phenomenon is known as emergence
(1,2, 4]. When a large number of molecules are assembled into a gas, new properties emerge
such as pressure, temperature, volume etc. that are meaningful only in the context of the
entire collection and are ill-defined for individual molecules; likewise, new laws emerge that
characterize the emergent structure such as the ideal gas law PV = NkgT'. Similarly, collec-
tions of a large number of people produce new structures such as cities, nations, economies
etc. that become real entities in their own right with unique properties and laws governing

their behavior. The following three traits are characteristic of these emergent structures:

17



(a) Magnetic moment (b) Exchange forces

Fermior\s

(c) Quantum fields

ST
IR

Figure 1.2. Implications of spin. (a) Spin imparts an intrinsic magnetic
moment to the particle. (b) Spin determines whether a particle is a boson or
a fermion. (c) Spin determines the nature of the quantum field that describes
the particle.

8

1. Decoupling
The behavior of the emergent structure is independent of what each unit is doing
individually but depends only on the average behavior of all the units that make up
the structure. Some units could be added or removed here or there without affecting the
whole. Similarly, a few outliers could be allowed without changing the overall behavior
of the collection. In this sense, the whole becomes decoupled from the individual units
and can be treated as an entity in its own right. For example, gold will retain its
economic value even if a few people think that its worth should not be greater than

any other shiny piece of metal.

2. Robustness
The emergent structure is robust against variations in external conditions, as long

as the variations are not too drastic. A liquid remains a liquid as its temperature is

18



gradually increased. Purdue University will retain its status as a high impact university

amid funding cuts.

3. Transitions
As external conditions continue to vary, changes continue to accumulate in the emer-
gent structure until the transition point is reached when the whole all of a sudden
transforms into a completely new structure. For example, tensions between the public
and the ruling elite in France continued to rise in the decades and centuries preceding
the Revolution until they finally reached the “boiling point” in 1789, resulting in the

establishment of a new societal order.

Emergence justifies the need for a variety of sciences and disciplines for a genuine quest
towards reality. Although the fundamental entities of chemistry obey the laws of physics,
chemistry is not merely applied physics. Instead, assemblies of molecules and compounds
and their reactions with each other require the formulation of an entirely new set of laws and
principles for their description, which form the subject matter of chemistry. Similarly, at an
even greater level of complexity, the laws of biology describe the processes associated with
life. But biology is not merely applied chemistry. A study of the laws of biology requires
research that is as fundamental as any other [1].

Within physics, prototypic examples of emergence are the structures that emerge in
matter, known as phases of matter. Typical examples are the solid, liquid, and gas phases
of a material. A phase diagram maps the phases of a given substance as a function of
the external conditions. As external conditions are varied, the material can undergo a phase
transition as it goes from one phase to another. Fig. 1.3(a) shows the phase diagram of water
in terms of pressure and temperature. At a fixed pressure, as the temperature increases along
the green dashed curve, water first undergoes a phase transition from ice to liquid water and
then undergoes another transition from liquid water to vapor (see Fig. 1.3(b).) In addition
to the theory of phase transitions, the principles of emergence are also at the core of other
major problems in physics such as the classical-quantum correspondence and the emergence

of spacetime [4].
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Figure 1.3. Phases of water. (a) Phase diagram of water as a function of
pressure P and temperature T. (b) The arrangement and bonding of water
molecules across the three phases. The building blocks in all the three phases
are HyO molecules, but the emerging structures are very different.

1.3 What is Chaos?

Henri Poincaré, around the end of the 19th century, had observed that the perturbation
series for the gravitational three-body problem for a certain set of initial conditions failed to
converge. At the time, this difficulty was seen as a mere mathematical artifact, and it was
believed that some kind of renormalization procedure would solve this issue. However, it
came as a huge surprise when developments in the 1950s and 60s, culminating in the KAM
(Kolmogorov, Arnold, Moser) theory, revealed that these difficulties were due, in fact, to a
fundamentally new type of behavior in dynamical systems satisfying Newton’s laws, later
dubbed chaos. It was discovered that in most systems starting from the celebrated three-
body problem, it was not possible to predict the dynamical behavior over sufficiently long

periods of time [5, 6].
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One of the chief quests in the history of classical mechanics has been to look for dynamical
systems that are explicitly solvable, that is, for which explicit formulas for the flow of the
system can be found. A mathematically precise notion of “solvability” of a Hamiltonian
system was developed for this purpose, known as integrability. A Hamiltonian system with
n degrees of freedom is considered integrable if it has n independent constants of motion
{f1, fa, f3,+ - -, fu}. Setting n independent functions of phase space coordinates equal to
constants defines an n-dimensional manifold in a 2n-dimensional phase space. For integrable
systems, the n-dimensional manifold produced by fixing the values of f; for k = 1,...,n is
an n-dimensional torus T". The phase space trajectories of integrable systems are restricted
to these tori; they wind up around these tori but cannot escape them. Thus these tori are
called invariant tori. The invariant tori fit together in concentric layers and foliate the phase
space [7].

Fig. 1.4(a) depicts the invariant tori for a n = 2 degree-of-freedom integrable system in a
3-dimensional slice of its 4-dimensional phase space. The 3-dimensional slice can be obtained
by fixing the energy of the system. A helpful device for visualizing higher-dimensional
phase space flows is the Poincaré map. To construct the Poincaré map, a surface is chosen
transverse to the flow, known as the Poincaré section. The points where the trajectory
crosses the Poincaré section are recorded (see Fig. 1.4(b).) The 2-dimensional invariant tori
in Fig. 1.4(a) become circles on the Poincaré section as shown in Fig. 1.4(c).

For integrable systems, one can perform a canonical transformation to the so-called
action-angle variables (0,1) = (04, ...,0,, I, ..., I,,) for which the Hamiltonian depends only

on the action variables H = h(I). In these coordinates, the canonical equations become

dly, dy,

—E 0 =E = 1.2
where wy, = 0h/JI} are called the frequencies and k = 1,...,n. The action variables I =
(I, ..., I,,) are fixed during the flow, so each I = IY labels an invariant torus. The angle
variables 6 = (04, ..., 0,) represent the cyclic directions on the torus. Angle variables evolve

uniformly (since the frequencies w = (wy, ..., w, ) are fixed on a torus) as the trajectories wrap

around the torus.
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(b)

Figure 1.4. Integrable Hamiltonian systems. The phase space of inte-
grable Hamiltonian systems is foliated by invariant tori. A phase space trajec-
tory always stays on the invariant torus that it started on and wraps around
it with time. (a) An illustration of 2-dimensional invariant tori for a n = 2
degree-of-freedom integrable system. The tori are shown in a 3-dimensional
slice of the 4-dimensional phase space. (b) Poincaré map is a convenient device
for visualizing higher dimensional flows. A Poincaré section is chosen trans-
verse to the flow. Points are recorded wherever the trajectory passes through
the section. (c¢) Poincaré section for the tori in (a).

Consider an integrable system with n = 2 degrees of freedom described by the action-
angle coordinates (01,65, I, I). The invariant tori for this system are 2-dimensional, illus-
trated in Fig. 1.4(a). Clearly, for a uniform flow on T?, there are only two possibilities: (i) if
wi /we is a rational number, the flow eventually returns to its starting point and is periodic;
(ii) if wy/wo is an irrational number, the flow never returns but continues to fill up the torus
more and more densely. The invariant tori for which w;/ws is a rational number are called
resonant tori, whereas, the ones for which wy /ws is irrational are known as nonresonant tori.

The resonant tori are distributed among the nonresonant tori exactly as rational numbers
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are distributed among irrational numbers!. These definitions can be generalized for the n-
dimensional case: the n-dimensional invariant torus T" is resonant if 3k € Z" (k # 0) such
that k- w = 0 where Z is the set of integers and w = (wy,...,wy). If the only solution to

k-w=0is k= (ki,...,k,) = (0,...,0) then the torus is nonresonant [7].

(a) (b)
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Figure 1.5. KAM theory. (a) Integrable Hamiltonian systems are isolated
islands in the space of all Hamiltonians. An arbitrary Hamiltonian can be
considered as a perturbation away from the integrable limit. (b) As the per-
turbation € is turned on, the resonant tori of the unperturbed integrable Hamil-
tonian begin to break whereas a large number of the non-resonant ones survive.
When ¢ is sufficiently large, chaos takes over the entire phase space leaving
only a few stability islands.

Integrable Hamiltonians are akin to isolated islands in the sea of all Hamiltonians. Gen-
eral Hamiltonian systems can be considered as perturbations away from these islands (see
Fig. 1.5(a).) Mathematically, a perturbed Hamiltonian system is written as H(6,1,e) =
h(I)+ ef(0,1,e), where h(I) is the unperturbed integrable Hamiltonian and ef(6,1,¢) is
the perturbation. € controls the strength of the perturbation. The main message of KAM
theory is that, as you perturb a system away from the integrable limit, the resonant tori
(and some ‘close to resonant’ too) of the integrable Hamiltonian start to break up chaoti-
cally whereas a large subset of nonresonant tori survive and are distorted only slightly (see
Fig. 1.5(b).) Several dynamical features begin to develop in the vicinity of these breaking

tori that are seen as the hallmarks of chaos: (i) sensitive dependence on initial conditions

14This requires that wy/wy changes (continuously) as one moves between the invariant tori; such systems
are called nondegenrate. See [7] for more details.
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i.e. trajectories starting close by can end up quite far apart in time; (ii) dense set of periodic
orbits i.e. arbitrarily close to every point (in the region where chaos is developing), you
can find a periodic orbit; (iii) topological mizing i.e. any open set (in the associated region)
eventually overlaps with any other open set (in the associated region,) as a result of the flow.
Perhaps, the most surprising conclusion of KAM theory is that these features are the rule
and not the exception; they are found in the vast majority of Hamiltonian systems [7].

The presence of chaos in classical systems raises issues for the classical-quantum corre-
spondence, since it is generally accepted that quantum systems cannot exhibit chaos. The
standard argument for the absence of chaos in quantum mechnaics works by evolving two
quantum states [11(0)) and |1)2(0)) using the unitary time evolution operator U(t) and track-
ing their inner product (¢ (t)|12(t)). The unitarity of time evolution ensures that the inner
product is preserved in time i.e. (y(t)[v2()) = (W (0)| U@)TU(t) [102(0)) = (1b1(0)[p2(0)).
Thus, quantum states do not separate in time and this is taken to imply that there can be
no chaos in quantum physics. While the argument sounds plausible, one is left to wonder
how such a classically ubiquitous phenomenon can have no quantum counterpart given that
the dynamics in both cases are generated by the same Hamiltonian? Another question that
is left unaddressed is how can chaos emerge on the scale of our everyday classical reality if

the dynamics on the microscopic scale are completely non-chaotic [3, 8]7

1.4 Spin Physics: from Emergence to Chaos

The significance of emergence and chaos in modern physics naturally motivates a search
for fresh avenues of exploration in these themes and a study of their implications for the
classical-quantum correspondence. One of the most remarkable developments in recent
decades is the emergence of quantum simulation as a viable platform to investigate quantum
phenomena. In this approach, a given Hamiltonian system is mapped to a versatile quantum
architecture that is easier to maneuver and control in a lab than the parent system. The
desired interactions are engineered on the quantum architecture, and a variety of physical
operations are performed, depending on the objective. While only a far-fetched possibility

some decades ago, remarkable technological advances in isolating quantum systems from
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their environments and in achieving control over their mutual interactions have enabled the
current proliferation of activity in quantum simulation experiments.

Currently, a wide variety of architectures are being employed to carry out quantum
simulation experiments: superconducting quantum circuits, trapped ions, Rydberg atom
arrays, photonic systems, and many others. There is still a long road ahead though, as the
architectures are at present very noisy and do not lend themselves to the desired degree of
control. Despite these limitations, however, they have been used to create quantum states
that have otherwise not been observed directly in nature (see, for example [9, 10].) Some of
these architectures are also being used to pursue the grand ambition of building a universal
quantum computer — a device that can perform all possible quantum operations on a given
Hilbert space or in other words, a device that can simulate any arbitrary Hamiltonian on a

given Hilbert space [11, 12].

(b)

Figure 1.6. Spin physics in the age of quantum simulation. (a) Spin
Hamiltonians are perhaps the simplest many-body Hamiltonians providing
ideal scenarios to study emergence of phases of matter and the quantum dy-
namical manifestations of chaos. (b) Depiction of a 6-qubit quantum architec-
ture in a state with qubits 1 and 5 and qubits 3 and 4 entangled respectively.
The development of quantum simulators has introduced new possibilities for
the study of spin Hamiltonians offering an unprecedented degree of control.

The fundamental building block of most quantum simulators and quantum computers
is a two-level quantum system called a qubit. While not a spin system physically (though
spins can potentially be used as qubits,) it is mathematically described by the same algebra

as spin systems. Therefore, spin systems provide the most natural Hamiltonians to map
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onto a qubit architecture. Moreover, the customizability of the architecture ensures that
arbitrary spin Hamiltonians can be studied on these devices, some of which might not even
be observable directly in nature. These developments have opened up the possibility of
investigating, with an unprecendeted degree of control, the emergence of phases of matter
and quantum dynamical manifestations of chaos in spin Hamiltonians (see Fig. 1.6.)

The investigations presented in this dissertation involve three distinct categories of Hamil-

tonians:

1. Light-matter interaction models
These models were originally created to describe the interaction of electromagnetic
fields and atoms. In these models, atoms are typically treated as two-level systems,
thus each atom can be directly mapped to a spin-1/2 algebra. The electromagnetic field
modes are described in terms of bosonic creation and annihilation operators. Therefore,
the range of validity of these models can be extended to any situation where a two-level
quantum system interacts with some bosonic environment. Such scenarios could also
include, for example, the interaction of electronic spins in a material with the phonon

modes i.e. vibrations of the lattice.

A quite well-known example of a Hamiltonian from this category is the Dicke model.
This Hamiltonian describes the interaction of N two-level systems with a common

bosonic mode,

O A B 0
Hpice = woa'a+ = » 0 ——=(a+a") ) a,’. (1.3)
3 Lo Rty

Here h = 1, wy is the frequency of the bosonic mode, 2 is the energy spacing of the
two-level systems, and A is the coupling strength between the two. When N — oo, this
model famously shows a phase transition to a superradiant phase as A goes beyond a
critical value .. The superradiant phase is characterized by a greatly enhanced boson
number as a result of the coherent interactions between the two-level systems through

the bosonic mode.
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A special limit of this model dealing with just a single two-level system interacting

with a bosonic mode is known as the quantum Rabi model,
T Q T
Hpgapi = woa'a + 502~ AMa+ a")oy. (1.4)

Surprisingly, despite operating at a finite system size, this model still exhibits a tran-
sition to a superradiant phase [13]. This Hamiltonian will be the focus of our study in

Chapter 2.

. Spins on a lattice

Consider a collection of atoms distributed on a lattice. Suppose only one outermost
electron from each atom contributes in its interactions with neighboring atoms. More-
over, in the low-energy limit, we can further restrict our attention only to the lowest
energy orbital of each atom. Now, let us take a close look at the interaction be-
tween two neighboring atoms. Suppose the orbitals on the sites of these two atoms
are represented by 1,(r) and 1(r) respectively. We have already seen in Sec. 1.1
that multi-electron wavefunctions must be antisymmetric under electron exchanges
due to the fermionic nature of electrons. With that in mind, consider two possibili-
ties for the collective wavefunction of the two-electron system: (i) ¥, (r1, X1, T2, X2) =
L (Whar1)p(r2) + Uu(r)¥a(ra)) xS where x5, = (1), [1)y — ), [1),) s the spin-
singlet state; (ii) vg,(r1, X1, T2, X2) = %(iﬂa(rl)wb(h) — hy(r1)1ha(r2)) X12 where x7,
is one of the spin-triplet states: [1);[1),, %(‘Th s + 1401 1M)9), ) 4)e. In the
first case, the spatial part of the wavefunction is symmetric under electron exchange,
whereas, in the latter case it is anti-symmetric. However, the total wavefunction is
anti-symmetric in both cases. For the spatially symmetric case, we ignore the pos-
sible wavefunctions ¥, (r1)1,(r2) and ¥(r1)ws(ra) due to the prohibitive Coulombic
energy cost inflicted when both electrons are put on the same site. We further as-
sume that 1,(r1)Yy(re) and ¥,(r;),(ra) are very nearly the eigenstates of the to-
tal Hamiltonian Hy,. It is straightforward to show that (5| H [¢2) = E + X and

WHLIH|WL) = E — X where E = (o, ¥p| Hia |[Va, 0s) = (W, ta| Hia s, 1) and
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A = (Yo, Vo| Hia |Vp, V) = (U, a| Hia |1, 1) is assumed to be real. Thus, the ef-
fective low-energy physics of this system can be described by a Hamiltonian with an
energy gap of 2\ between the singlet and the triplet states. This effective Hamiltonian
is Hepp = —2X Sy - Sy, where S5 are the spin operators for the two electrons. In this
way, the complicated interactions of electrons in a material can be reduced to effective
spin interactions in the low-energy limit. Interactions of this kind are called exzchange
interactions. They tend to either align or anti-align neighboring spins depending on
whether they are ferromagnetic (A > 0) or anti-ferromagnetic (A < 0). Spins interact-
ing in this way on a wide range of lattice geometries produce an enormous variety of
magnetic phases that are only beginning to be discovered [4]. Some of these phases
are so exotic that they might not even seem to possess any magnetic order at first
glance, however a closer look reveals a “hidden” structure supported by long-range
entanglement that is extremely robust against environmental influences [9, 14, 15].
Spins interacting via exchange interactions will be the subject of our investigations in

Chapter 3.

. All-to-all interacting systems
The last category of Hamiltonians pertains to systems in which all spins interact with

all other spins. An example is the kicked top model [16] with the following Hamiltonian,

p Koo <
Hyr(t) = =J,+ —J2 > 6(t—n7), (1.5)
T 2] C =
where we again take i = 1. In this model, J = >V | S;, so the individual spins enter the
Hamiltonian only through the global variable J. The Hamiltonian can be re-written

in terms of the spin operators S; in the following way,
P N K N +o0
H(t) = ;ZSZ-y—l—Q—j S8 A SuSn | Y. 6t —nT). (1.6)
i=1

i=1 i#j n=-00

Under this Hamiltonian, each spin precesses freely around the y-axis by an angle p

for the duration 7, when it suddenly experiences a kick, which can be interpreted as
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a sudden precession of each spin around the z-axis by an angle proportional to the
z-component of the scaled total angular momentum J,/j of the system. The classical
dynamics of this model exhibit a transition to chaos as the kick strength x is raised.
Thus the quantum version of this model presents a tremendous opportunity to study
the quantum manifestations of chaos. For example, it has already been observed
that the dynamical generation of entanglement between the spins acts as a quantum
signature of chaos for this system [17, 18]. This system will be the subject of our study
in Chapter 4.

(a) Light-matter interaction (b) Spins on a lattice

S
,V/"i‘\\
TN

;_A__A-vl’""

Figure 1.7. Types of Hamiltonians explored in this dissertation. (a)
Two-level systems interacting with a bosonic mode e.g. atoms in a cavity, spin-
phonon interactions etc. (b) Exchange interactions between spins distributed
on a lattice. (¢) Every spin interacts with every other spin.
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1.5 Dissertation Overview

In this dissertation, our goal is to explore the potential of quantum simulation and
quantum computing in revealing a deeper understanding of emergence and chaos in quantum

spin systems (see Fig. 1.6.) The organization of the dissertation is as follows:

o In Chapter 2, we present a protocol to compute the critical parameters of a phase tran-
sition on a quantum computer. For this purpose, we implement the quantum restricted
Boltzmann machine (QRBM) algorithm, which uses an artificial neural network ar-
chitecture to learn the ground state of a quantum Hamiltonian. As an example, we
demonstrate the use of this algorithm to locate the critical point for the superradiant

phase transition in the quantum Rabi model.

o In Chapter 3, we investigate the viability of preparing ground states of spin Hamilto-
nians on multiple lattice geometries using another quantum algorithm, the quantum
approzimate optimization algorithm (QAOA). The results demonstrate the promise of
this approach as a feasible route to understand the diversity of magnetic phases in spin

systems once quantum computational advantage becomes available.

o In Chapter 4, we explore the interplay of quantum entanglement and classical chaos
in the kicked top model. While a clear relationship between the two has been demon-
strated in quantum simulation experiments, we develop a classical analogue of entan-

glement to understand the inner details of this relationship.

o In Chapter 5, we discuss some philosophical implications of the developments in emer-
gence and chaos for the classical-quantum correspondence. Attempt is made to demon-
strate the significance of these developments for modern physics and the new oppor-

tunities for research that they open up.
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2. PROJECT I: PHASE TRANSITION IN THE QUANTUM
RABI MODEL

The contents of this chapter are adapted from the following article:

B. Khalid, S. H. Sureshbabu, A. Banerjee and S. Kais, “Finite-size scaling on a digital

quantum simulator using quantum restricted Boltzmann machine”, Front. Phys. 10:915863

(2022.)

Abstract: The critical point and the critical exponents for a phase transition can be de-
termined using the Finite-Size Scaling (FSS) analysis. This method assumes that the phase
transition occurs only in the infinite size limit. However, there has been a lot of interest
recently in quantum phase transitions occuring in finite size systems such as a single two-level
system interacting with a single bosonic mode e.q. in the Quantum Rabi Model (QRM). Since,
these phase transitions occur at a finite system size, the traditional FSS method is rendered
inapplicable for these cases. For cases like this, we propose an alternative FSS method in
which the truncation of the system is done in the Hilbert space instead of the physical space.
This approach has previously been used to calculate the critical parameters for stability and
symmetry breaking of electronic structure configurations of atomic and molecular systems.
We calculate the critical point for the quantum phase transition of the QRM using this ap-
proach. We also provide a protocol to implement this method on a digital quantum simulator
using the Quantum Restricted Boltzmann Machine algorithm. QOur work opens up a new

direction in the study of quantum phase transitions on quantum devices.
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2.1 Introduction

A phase transition occurs whenever the thermodynamic functions of a system become
non-analytic e.g. as a liquid changes into a gas, the density of the system changes discon-
tinuously. If the phase transition occurs at a finite temperature 7' # 0, the transition is
called a classical phase transition (CPT) as it is dominated by thermal fluctuations. On the
other hand, if the transition occurs by tuning some parameter in the system’s Hamiltonian
as T — 0, it is called a quantum phase transition (QPT) since it is dominated by quantum
fluctuations. A CPT appears only when the system is infinite i.e. N — oo [1]. On the other
hand, a QPT doesn’t necessarily require N — oo. Recently there has been a lot of interest
in QPTs occurring in finite size light-matter interaction systems [2-7].

It has been shown that a QPT occurs in the Quantum Rabi Model (QRM) which describes
the interaction of a two-level system with one bosonic field mode [2] (see Eq. (2.1) for the
Hamiltonian). Namely, when the energy separation of the two levels in the system {2 becomes
infinitely large compared to the frequency of the bosonic mode wy, the ground state of the
Hamiltonian undergoes a phase transition from a normal phase to a superradiant phase
as the light-matter coupling exceeds the critical value. Moreover, the ground state of the
Jaynes-Cummings model (JCM) which can be obtained from the QRM by performing the
rotating-wave approximation has also been shown to exhibit the normal-superradiant phase
transition [3]. Later on, a more general anisotropic QRM in which the rotating and counter-
rotating terms can have different coupling strengths was also considered [4]. The QRM and
JCM are limiting cases of this model. It was shown that the ground state for this more
general case also undergoes the normal-superradiant phase transition. The phase transition
in QRM has also been demonstrated experimentally using a '"*Yb™ ion in a Paul trap [7].
This experimental demonstration of a phase transition in a single two-level system has incited
a lot of interest since this opens up an avenue for studying critical phenomena in controlled,
small quantum systems.

In CPTs and some QPTs (which require N — 00), a finite-size scaling (F'SS) analysis can
be done to extract the critical point and the critical exponents of the transition [1, 8]. While

this procedure is inapplicable to the QPTs discussed above since these phase transitions occur
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at a finite system size, the phase transitions in these paradigmatic light-matter interaction
models occur only in the limit 2/wy — oo and FSS analysis can be done in Q/w, [2—4]
instead. In this chapter, however, we propose a different approach to study such phase
transitions. We apply the F'SS in Hilbert space method [9-14] to the QPT in Quantum Rabi
Model. In this approach, the truncation of the system is done not in the physical space
but in the Hilbert space. The set of basis states spanning the infinite dimensional Hilbert
space is truncated to a finite set and the scaling ansatz is employed in terms of the size of
this set. This approach has previosuly been developed and applied to a single particle in
Yukawa potential [10, 12] and the problem of finding electronic structure critical parameters
for atomic and molecular systems [9, 11, 13-15].

In recent years, digital and analog quantum simulators have emerged as a promising
platform for the simulation of quantum phenomena. Quantum simulators have already been
used to study phase transitions using the method of partition function zeros [16] and the
Kibble-Zurek mechanism [17, 18]. In this chapter, we present a protocol to implement the
finite-size scaling method on a digital quantum simulator. We use the Quantum Restricted
Boltzmann Machine (QRBM) algorithm to find the critical point of the Quantum Rabi
model.

This chapter is organized as follows. In Sec. 2.2, we explain the theory of Quantum Rabi
Model, Finite-Size Scaling and the Quantum Restricted Boltzmann Machine. In Sec. 2.3, we
present our results obtained using the exact diagonalization method and QRBM. Finally in
Sec. 2.4, we discuss our results and future prospects of studying quantum phase transitions

on quantum devices.

2.2 Theory

2.2.1 Quantum Rabi Model

The QRM describes a two-level system interacting with a bosonic field mode. The Hamil-
tonian is [2],

Q
Hpopi = 502 + woala — Aoy (a + al) (2.1)
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where we’ve chosen i = 1. € is the energy separation between the two levels in the system,
wy is the frequency of the bosonic mode and A is the system-environment coupling strength.
The parity operator II = eim(@at N commutes with H Rabi- S0, Hpapi has a Zy symmetry.
This model has a critical point at g = 2)\/v/woQ = g. = 1 in the limit Q/wy — oo [2]. For
g < 1, the system is in the normal phase and the ground state is |¢9(9)) = S[rap(9)][0) [1)
where S[z]| = exp[@(aT2 — aQ)} and 7,,(g) = —3 In(1 — ¢?). The rescaled ground state energy
and photon number are eg(g) = @ (Hgapi) = —wo/2 and ng(g) = & <aTa> = 0 respectively.
For g > 1, the system is in a superradiant phase and the ground state is two-fold degenerate,

[69,(9)) = DlaglS[ry(9)]0) [1¥) here ry,(g) = =% In(1 — g~*) and Da] = exp|a(a’ —a)].

|1*) is the negative eigenvalue eigenstate of 202 + 2’\2?5 o, where o = 4g§2w0 (9* —1). The
rescaled ground state energy and photon number are eg(g) = 2 (Hpapi) = —wo(g® +g72)/4

and ng(g) = <2 <aTa> = (g% — g72) /4 respectively.

As shown in Fig. 2.1(a) and (b), d’eq/dg* is discontinuous at g = g. = 1, indicating a
continuous phase transition and ng = @ <aTa> is an order parameter for this phase tran-
sition. In the normal phase, ng is zero whereas in the superradiant phase, Z, symmetry is

spontaneously broken and ng becomes non-zero.

(a) oo - (b) 100
B -05 0.75
Wo _ Ng
1.0 dZQG/ng 0.50
Wo
-15 0.25
-2.0 0.00 {: . . , ,
0.0 0.5 0.0 0.5 1.0 1.5 2.0

g

Figure 2.1. Phase Transition in Quantum Rabi Model. (a) The rescaled
ground state energy eq/wy = (Hrai) /2 and (d*eq/dg?) /wo as functions of g.
The discontinuity in (d*eg/dg*)/wy at ¢ = g. = 1 indicates a countinuous
phase transition. (b) The order parameter ng = @ <aTa> as a function of
g. ng becomes non-zero when the Z, symmetry is spontaneously broken at

g>g.=1
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We can also write effective low-energy Hamiltonians in both the normal and the super-

radiant phases. For g < 1, Hgu can be reduced to the following effective Hamiltonian

2, 2 )
H,, = wa'a — wlg (a+a')? - 5 (2.2)

The system’s degrees of freedom have been removed by projecting to |]) (}|, since this is a
low energy description. Similarly, for g > 1 the effective Hamiltonian can be written as [2],

Q
Hy = wala = 1o+ al) = (6 +972) (2.3)

where this time around the Hamiltonian has been projected along [{*) ({*|. In Sec. 2.3, we’ll

use H,, and Hy, to find the critical point of the model.

2.2.2 Finite-Size Scaling

The FSS method is widely used to determine the critical points and the critical exponents
in phase transitions [1]. To demonstrate the method, consider that we have an infinite 2d
system that undergoes a classical phase transition at a critical temperature T = T, [8].

Suppose () is a quantity that becomes singular at T' = T, with some power law behavior
Qoo(T) ~|T —T.| . (2.4)

We can also think of this system as an infinite collection of infinite stripes, where the stripes
are infinitely extended along one direction and stacked along the perpendicular direction.
Now suppose there are only an N number of stripes. If N is finite, () should be regular
at T = T, since finite systems cannot have non-analyticities at T £ 0. The singularity at
T = T, should appear only when N — oo. The finite size scaling hypothesis assumes the

existence of a scaling function F such that

QN(T) = Quo(T) Fo(N/&(T)), (2.5)
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where ) is the observable () for a system with N stripes and (), corresponds to the system
in the thermodynamic limit. £, is the correlation length for the infinite system. Eq. (2.5) is
valid when N is large. The correlation length also diverges as a power law near the critical
point,

oo T) ~ [T =Te| " (2.6)

Substituting Eq. (2.4) and (2.6) in Eq. (2.5),
Qn(T) ~|T —T.| “Fo(N|T - T.]"). (2.7)

Since Qn (7)) should be regular at T' = T, the scaling function should cancel the divergence
due to |T — T.|™. Therefore, the scaling function should be of the form Fy(z) ~ 2%/¥ as
x — 0. We should then have,

Qn(T,) ~ N/". (2.8)

If we define a function Ag(T; N, N') such that

Ag(T;N,N') = log(cigg(@?%;’ @), (2.9)

then the value of this function at T" = T,, Ag(T.; N,N') ~ w/v is independent of N and
N’. Therefore, for three different values N, N’ and N”, the curves Ag(7; N, N') and
Ag(T; N',N") will intersect at the critical point 7' = T,. This is how we can locate the
critical point using the finite size scaling hypothesis.

We can also find the critical exponents w and v. Noting from Eq. (2.4) that

aQOO<T) —(w+1)
F L T =T, (2.10)

Therefore, we should have Apg/or(Te; N, N') ~ (w+1)/v. Define a new function I',,(7'; N, N)
such that

Ap(T: N. N’
I(T;N,N') = o(T: N, ')

= . 2.11
AaQ/3T<T;N,N/>—AQ(T;N,N/) ( )
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The value of this function at the critical point I',,(7.; N, N') ~ w is independent of N and

N’ and gives us the critical exponent w. Then v can be determined using

w
v Ag(To NN’ (2.12)

As we’ve already stated in the Introduction, this method cannot be used for the kinds of
phase transitions we are interested in which occur at a finite system size. However, for such
cases we can consider an extension of the approach discussed above [9-15]. In this extended
approach, instead of truncating the system in the physical space, the system is truncated in
the Hilbert space [15]. The FSS ansatz looks exactly the same except that N now represents
the size of the set of basis states which spans the truncated Hilbert space [15]. Moreover, the
temperature 7" will be replaced by the parameter g which is being tuned across the critical
point. This approach has been shown by Kais and co-workers to work in the case of a particle
in Yukawa potential [10, 12] and the calculation of electronic structure critical parameters

for atomic and molecular systems [9, 11, 13-15].

2.2.3 Quantum Restricted Boltzmann Machine

Solving quantum many-body problem accurately has been a taxing numerical problem
since the size of the wavefunction scales exponentially. The idea of taking advantage of the
aspects of Machine Learning (ML) related to dimensionality reduction and feature extrac-
tion to capture the most relevant information came from the work by Carleo and Troyer
[19], which introduced the idea of representing the many-body wavefunction in terms of an
Artificial Neural Network (ANN) to solve for the ground states and time evolution for spin
models. A Restricted Boltzmann Machine (RBM) was chosen as the architecture of this
ANN. An RBM consists of a visible layer and a hidden layer with each neuron in the visible
layer connected to all neurons in the hidden layer but the neurons within a layer are not

connected to each other. The quantum state is 1) expanded in the basis |z):

) = _¥(z)|z) (2.13)
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The Neural Network Quantum State (NQS) describes the wavefunction ¢ (x) to be written
as 1(x;0), where 6 represents the parameters of the RBM. ¢(x;#) is now written in terms

of the probability distribution that is obtained from the RBM as follows:

D(a:0) oc Y o et 1, b et 219
{n}

where, o7 is the Pauli z operator at i*" site, o7 and h; take values {+1,—1}, 0 = {a;, b;, w;;}
are the trainable bias and weight parameters of the RBM. Using stochastic optimization,
the energy F(f) is minimized.

This work was extended to obtain the ground states of the Bose-Hubbard model [20] and
for the application of quantum state tomography [21].

With the rapid developments in the domains of ML and Quantum Computing (QC), the
appetite for integrating ideas in both of these areas has been growing considerably. The last
decade has seen a surge in the application of classical ML for quantum matter, wherein these
methods have been adopted to benchmark, estimate and study the properties of quantum
matter [22-25], with recently showing provable classification efficiency in classifying quantum
states of matter [26]. The protocols and algorithms related to ML implementable on a
quantum system so called Quantum machine Learning [27] is expected to have the potential
of changing the course of fundamental scientific research [28] along with industrial pursuit.

In lieu of today’s Noisy Intermediate Scale Quantum (NISQ) devices, the ideas which
utilize both classical and quantum resources, such that the part of the problem which has
an exponential scaling is implemented on the quantum platform while the rest are dealt
with classically, are being carefully investigated for various applications. Such algorithms
are known as classical-quantum hybrid algorithms. In the work by Xia and Kais [29], a

modified RBM with three layers was introduced, the third layer to account for the sign of
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the wavefunction, to solve for the ground state energies of molecules. Now, the parametrized

wavefunction v (z; ) is written as a function of P(z) along with a sign function s(z):

E .aiaf—&- E bjh]—l-g ..”Ll)ija'izh]'
g e 2 J ij
P(x) = {h}

= 7 7 2.15
S T A ST S (215)

s(x) = tanh l(c + Z diai)] (2.16)

The wavefunction ansatz in terms of the RBM can be expressed as [29]:

[¥) =>_\/P(z)s(x)|z) (2.17)

—

Visible Layer Hidden Layer Sign Layer

Figure 2.2. Restricted Boltzmann Machine architecture. The first
layer is the visible layer with bias parameters denoted by a;. The second layer
is the hidden layer with bias parameters denoted by b;. The third layer is
the sign layer with bias parameters denoted by c¢. The weights associated
with the connections between the visible neurons and the hidden neurons are
designated by w;;. The weights associated with the connections between the
visible neurons and the neuron of the sign layer are designated by d;.
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A quantum circuit comprising of a single-qubit (R,) and multi-qubit y-rotation gates
(C1 — C2 — R,) are employed, to sample the Gibbs distribution. The utilization of R,
gates cater to the bias parameter of visible and hidden layers part of the distribution, while
C1—-C2— R, gates tend to the weights part of the distribution. In the work by Sureshbabu
et al. [30], the implementation of such a circuit on IBM-Q devices were shown, wherein a
new ancillary qubit is introduced to store the value corresponding to every C'1 — C2 — R,
gate (Fig. 2.3). The term n denotes the number of visible qubits and m denotes the number
of hidden units. In this formalism, the number of ancillary qubits required are n x m.
Starting all the qubits from a |0), the R, and C'1 — C2 — R, rotations are performed, and a
measurement is performed on all the qubits. If all the ancillary qubits are in |1), then the
sampling is deemed successful and the states corresponding to the first m 4 n qubits provide
the distribution P(x). The joint probability distribution defined over the parameters of the
circuit 0 = {a,b,w} and a set of y = {¢*, h} is given by:

ezi aiof 4y bihi+) S, wijofh;

Z{y} ezi aiafl+2j bjhj+zij wijo—flhj

P(y,0) = (2.18)

The probability of successful sampling can be improved by rewriting the distribution P(y, 0)
as Q(y, 6) and setting k = max(1, 1) (29, 31);

6%(21 aigf+2j bjhj+2ij wijo;hj)

o / / 2.19
Q(y,0) YIS VT SIS DR (2.19)

Firstly, the QRBM is implemented classically, i.e, the quantum circuit is simulated on a
classical computer. This execution caters to the ideal results that can be obtained through
the QRBM algorithm. Then, the quantum circuit is implemented on the Digital Quantum
Simulator, the gasm simulation backend. This simulator is part of the high-performance
simulators from IBM-Q. The circuit is realized using IBM’s Quantum Information Software
Toolkit titled Qiskit [32]. Though no noise model was utilized, as a result of finite sam-
pling, statistical fluctuations in the values of probabilities in observing the circuit in the

measurement basis, are present in the obtained results.
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Figure 2.3. The quantum circuit to sample the Gibbs distribution.
n is the number of qubits belonging to the visible layer and m is the number
of qubits belonging to the hidden layer. There are m x n ancillary qubits.

Having obtained the distribution Q(y, @), the probabilities are raised to the power of k,
to get P(y,0). Following this, the sign function is computed classically, thereby calculating
|1)). Then, the expectation value for the Hamiltonian H [(¥| H |¥)] is computed to get the
energy, which is minimized using gradient descent to obtain the ground state eigenenergy of
H.

The resource requirements demanded by this algorithm are quadratic. The number of
qubits required are (m + n) to encode the visible and hidden nodes, and (m x n) to account
for the ancillary qubits. Hence, the number of qubits scales as O(mn). The number of R,
gates required are (m + n) and the number of C'1 — C2 — R, gates required are (m x n). In
addition, each C'1—C2— R, gate requires 6n X-gates to account for all the states spanned by
the control qubits. Therefore, the number of gates required also scales as O(mn). Obtaining
the ground states or minimum eigenvalues of a given matrix using exact diagonalization has
a complexity of ~ j3, with j being the dimension of the column space for the given matrix

[33].
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2.3 Results

2.3.1 Exact Diagonalization

In this section, we demonstrate the calculation of the critical point of the Quantum Rabi
model using the Finite-Size Scaling method. As discussed before, the phase transition in
QRM occurs only in the limit ©/wy — co. This limit is not straightforward to implement in
Hpgapi given in Eq. (2.1). Instead, we have considered the effective low-energy Hamiltonians
H,, and Hj, given in Eq. (2.2) and (2.3) respectively. In H,, and Hy,, § is involved only in
a constant term which can be removed from the Hamiltonians and the limit {2/wy — oo can
then be easily imposed.

In H,, and H,,, the degrees of freedom of the two-level system have been traced out
and the only degrees of freedom we have are those of the bosonic mode. Let’s first consider
the normal phase Hamiltonian H,,. The Hilbert space for this Hamiltonian is spanned by
the familiar harmonic oscillator number states {|0),]1),[2),...}. We can truncate the full
Hilbert space to an N-dimensional Hilbert space spanned by {|0),|1),...,|N — 1)} to apply
the finite-size scaling analysis. In this restricted Hilbert space, the matrix form of HT(LJIY ) can
be found by using a|m) = /m|m —1) and a' |m) = v/m + 1|m +1). Once we have the
matrix form, we can then use the exact diagonalization method to find the ground state of
HT(L]; ) with energy E’SZZIY ),

Consider the scaling law for the ground state energy in the vicinity of the critical point
9= Ge;

E(g) ~ |9 — ge|™ (2.20)

Here F is the ground state energy. We slightly modify the formula in Eq. (2.9) to take into
account the difference in the signs of the exponents in Eq. (2.4) and (2.20). The new formula
with Q = F is,

log(EN(9)/EX(9))

A N N/ e
w0, (9; N, N') log(N'/N) ’

(2.21)

We plot the curves Ag, (g; N,N 4 2) for N = 8,10,...,30 in Fig. 2.4(a). We then plot
the intersection points gfg) of the curves Ay, (¢; N —4,N —2) and Ag,,(9; N —2,N) as

a function of N as shown in Fig. 2.4(b). To find the limit of g,(g) as N — oo, we used the
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Bulirsch-Stoer algorithm (see supplementary information S-I). The limit was calculated to
be g — 0.999996. So g{"” = 0.999996.

In a similar way, we then consider H,. The curves Ay, (g; N, N + 2) are plotted in
Fig. 2.4(c) for N = 8,10,...,30 and the intersection points ggg) are plotted in Fig. 2.4(d)
as a function of N. In this case, the extrapolation to N — oo gives the critical value

gt*?) = 0.999987. Both the calculated values of g™ and g{*?) are very close to the exact

value g. = 1.

(b)
1.02
(N) e
g ‘—."'.
np 1.00 +-------=--- ﬁi ______________________
g!") = 0.999996
0.98

0.000 0.025 0.050 0.075 0.100

1/N
(d) 1.02
0 g =0.999987
gsp 100 ............... ! ______________________
5 “.‘..__.___.-N“
e
0.99
~O¢%990 0.995 1.000 1.005 % ¥o00 0.025 0.050 0.075 0.100
g 1/N

Figure 2.4. Finite-Size Scaling for Quantum Rabi model. We used N =
8,10,...,32. (a) Graphs of Ay, (g;8,10), Ag,,(9;10,12),..., Ay, (g;30,32)
as a function of g. (b) Intersection points g&) where Ay, (¢3; N —

np
4N —2) = Ay, (g0))sN — 2,N), as a function of 1/N. As N —
oo, g — 0.999996.  So, g{"P = 0.999996. (c) Graphs of

Ap,,(9:8,10), Ag,,(9;10,12),..., Ay, (g;30,32) as a function of g. (d) In-
tersection points gt where Ay, (g0 N —4, N —2) = Ay, (987 N — 2, N),

as a function of 1/N. As N — oo, ¢{™ — 0.999987. So, g{*P) = 0.999987.

sp
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2.3.2 Quantum Restricted Boltzmann Machine

(a) oo

=g = 0.996 == g*?) = 0.996

0.995 1.000 1.005 %990 0.995 1.000 1.005

g g

-0,4
0.990

Figure 2.5. QRBM Implementation of FSS for QRM. The
light blue line represents results obtained from exact diagonalization
and dashed black line represents QRBM results.  (a) Classical im-
plementation of QRBM corresponding to normal phase, graphs of
Am,,(9:8,10), Ag,, (9:10,12),..., Ay, (9;14,16) as a function of g. (b)
QRBM implemented on gasm simulator corresponding to normal phase,
graphs of Ay, (¢;8,10), Ag,,(9;10,12),..., Ap, (g;14,16) as a function
of g. The g™ in both the cases is calculated to be 1.008. (c) Classi-
cal implementation of QRBM corresponding to superradiant phase, graphs
of Ag,, (9;8,10), Ag,,(9;10,12),..., Ag, (9;14,16) as a function of g. (b)
QRBM implemented on gasm simulator corresponding to superradiant phase,
graphs of Ay, (9;8,10), Ag,,(g;10,12),..., Ay, (g;14,16) as a function of g.
The g{*?) in both the cases is calculated to be 0.996. The inset plots display the
mean percentage error between the exact diagonalization results and QRBM
results.

Now we illustrate the implementation of the FSS method using the QRBM algorithm.
The results are shown in Fig. 2.5. Fig. 2.5(a) and Fig. 2.5(c) show the results for H,, and
Hy, using the classical implementation of the algorithm respectively. Whereas, Fig. 2.5(b)
and Fig. 2.5(d) correspond to the results for H,,, and H, when the algorithm is implemented
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using the qasm simulator from IBM-Q respectively. The QRBM algorithm is run for N =
8,10,12, 14, 16.

For the case of N=8, the number of qubits associated with the visible nodes equal 3,
the number of qubits associated with the hidden nodes equal 3, and 9 ancillary qubits were
used. The quantum circuit consists of 6 R, gates associated with the bias parameters, 9
C1— C2 — R, gates associated with the weights. Since, each C'1 — C2 — R,, gate requires 6
X-gates, a total of 54 X-gates were used. For the case of N=10,..,16, the number of qubits
associated with the visible nodes equal 4, the number of qubits associated with the hidden
nodes equal 4, and 16 ancillary qubits were used. The quantum circuit consists of 8 R, gates
associated with the bias parameters, 16 C'1 — C2 — R, gates associated with the weights.
Since, each C1 — C2 — R, gate requires 6 X-gates, a total of 96 X-gates were used.

Starting from random initialization, all parameters are updated via gradient descent.
A learning rate of 0.01 was chosen and the algorithm is run for around 30,000 iterations.
In order to assist with the convergence to the minimum eigenenergies, warm starting is
employed. The method of warm starting is essentially initializing the parameters of the
current point with the parameters of a previously converged point of calculation, which
helps in avoiding the convergence to a local minima.

The black curves plotted in the insets in Fig. 2.5 represent the deviation of the QRBM
results (black dashed curves) from the exact diagonalization results (blue solid curves). They
were calculated using the average of the quantity ‘A(ED) (g) — AREBM)(g) /A(ED) (g)’ x 100
over all the four curves. An enlarged version of the error plots can be found in supplementary
information S-II. For each case the overall error close to g = 1.000 is not more than ~ 5%
which implies convergence to the right result. Moreover, for the case of H,,, we notice that
the error is very small for the classical implementation i.e. ~< 1% throughout the range of
the graph. An astoundingly low error for this particular case shows that the QRBM method
is particularly effective in finding the correct ground state for the case of Hy,. Overall this
result also underscores the fact that QRBM can be more effective for certain forms of the
Hamiltonian over others, such as in this case it was quite effective for H,, even with a

relatively small number of qubits used in the hidden layer.

47



The critical point using H,, was found to be g™ = 1.008 for both the classical and
gasm implementations. Similarly, the critical point for the case of H,, was found to be
g\*?) = 0.996 for both the classical and gasm implementations. Here we notice that although,
the convergence for the data obtained from both the classical and gasm implementations
turns out to be the same for both H,, and H,, such a perfect match appears to be somewhat
coincidental. In see supplementary information S-1, we have explained the Bulirsch-Stoer
algorithm which sets the criteria used to deduce these convergence results. The convergence

plots have been added to the Supporting Information section.

2.4 Discussion and Outlook

In this chapter we have used the Finite-Size Scaling in Hilbert Space approach to calculate
the critical point of the Quantum Rabi Model. We used the low-energy effective Hamiltonians
for both the normal and superradiant phases respectively to show that the critical point is
ge. =~ 1. The original FSS approach in which the truncation is done in the physical space
has been widely used to calculate critical points and critical exponents since its inception.
However that approach was not applicable to Quantum Phase Transitions which occur at a
finite system size. With the rise in interest in QPTs occurring in these finite size systems,
our approach provides a natural extension of the original FSS method to study such phase
transitions. To our knowledge, this is the first time this approach has been used to study a
QPT in a light-matter interaction system.

We have also provided a recipe for the implementation of this method on a universal
quantum computer using the Quantum Restricted Boltzmann Machine algorithm. It was
shown that results obtained from the classical gate simulation match those obtained from
the IBM-Q’s gasm simulator. Such an implementation scales quadratically while the exact
diagonalization scales cubically in the best case and exponentially in the worst case. Looking
forward, we are interested in applying this approach to other QPTs such as the QPT in
anisotropic QRM. We would also like to use our method to calculate the critical exponents

in addition to the critical points in these phase transitions. It would also be interesting
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to see if this approach can be used to predict any new phase transition for some other
non-integrable model.

Another very promising research direction is to implement the FSS method for phase tran-
sitions in classically intractable many-body models such as exotic electronic and magnetic
systems. These include general quantum materials, for example where Coulomb potential
leads to a gapped spectrum in energy, including in direct band-gap semiconductors in the
thermodynamic limit. Conventionally speaking, it might be necessary to resort to the orig-
inal finite-size scaling in the physical space approach for these systems since they exhibit
criticality only in the limit N — oo. However, the ground state of an appropriately trun-
cated Hamiltonian could be deduced using the QRBM algorithm as shown in the chapter
towards efficient implementation on a digital quantum simulator. A simile can also be drawn
between a many-body bulk gap separating a continuum of excited states from the ground
state manifold to the gapped Rabi model discussed in this chapter. Such an approach can be
useful in emergent topological systems, such as in Weyl semimetals, 1-D Kitaev spin chains,
quantum spin liquids, and others, on which there is a tremendous explosion of interest [34—
39]. Topological phase transitions are devoid of any conventional order parameter and a
quantum solution deriving from the approach outlines in this chapter can help us bypass
resource and scaling limitations of DMRG and exact diagonalization approaches to calculate

the critical point and the critical exponents.
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Supplementary Information

S-I Bulirsch-Stoer Algorithm

For hy = 1/N where N = 0,1,2, ..., the Bulirsch-Stoer algorithm can be used to find
the limit of a function T'(hy) as N — oo [40, 41]. For demonstration, consider that we only

have T'(hy) for N =0,1,2,3, then the following rows are computed successively,

n =0 173" 73" 737 75"
n=1 7" T 7

n =2 73" 73"

n =3 7

using the following rules

™ g (2.22)
TN = T(hy) (2.23)
w —1
h T(N+1) _ T(N)
T — g+ | (pNFD) () N e mol | -1 2.24
>1 1 ( 1 1) hN+m Tm]\i_l,l_l) B Tél]\i_t,z_l) ( )

where w is a free parameter determined by minimizing () = ‘Trsf“) — T9|. The final answer

is T3(0).

S-IT Error Plots

Fig. 2.6 displays the enlarged error plots included in the insets of Fig. 2.5. Fig. 2.7 shows
the convergence plots for the data in Fig. 2.5.
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3. PROJECT II: GROUND STATES OF FRUSTRATED ISING
HAMILTONIANS

The contents of this chapter are adapted from the following article:

P. C. Lotshaw, H. Xu, B. Khalid, G, Buchs, T. S. Humble and A. Banerjee, “Simulations of
frustrated Ising Hamiltonians using quantum approximate optimization”, Phil. Trans. R.

Soc. A.38120210414 (2023.)

Abstract: Novel magnetic materials are important for future technological advances. The-
oretical and numerical calculations of ground state properties are essential in understanding
these materials, however, computational complezity limits conventional methods for studying
these states. Here we investigate an alternative approach to preparing materials ground states
using the quantum approximate optimization algorithm (QAOA) on near-term quantum com-
puters. We study classical Ising spin models on unit cells of square, Shastry-Sutherland, and
triangular lattices, with varying field amplitudes and couplings in the material Hamiltonian.
We find relationships between the theoretical QAOA success probability and the structure of
the ground state, indicating that only a modest number of measurements (< 100) are needed
to find the ground state of our nine-spin Hamiltonians, even for parameters leading to frus-
trated magnetism. We further demonstrate the approach in calculations on a trapped-ion
quantum computer and succeed in recovering each ground state of the Shastry-Sutherland
unit cell with probabilities close to ideal theoretical values. The results demonstrate the vi-
ability of QAOA for materials ground state preparation in the frustrated Ising limit, giving
important first steps towards larger sizes and more compler Hamiltonians where quantum
computational advantage may prove essential in developing a systematic understanding of

novel materials.
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3.1 Introduction

Quantum magnetism has been a major focus in condensed matter research, driven by the
potential for new disruptive applications ranging from quantum computing to quantum sens-
ing [1]. Quantum material properties are intrinsically related to the structure of the ground
states. However, exact ground states are notoriously challenging to calculate classically, re-
quiring the field to resort to using semi-classical limits [2-5] or fully quantum approaches with
restricted applicability [6-12]. New, fully quantum computational tools are required to un-
derstand current problems including frustrated two-dimensional quantum magnets currently
explored by bulk neutron scattering and thin film susceptibility [13, 14]. Digital and analog
quantum simulators have emerged as a new tool for the simulation of quantum many-body
phenomena towards efficient modeling of exotic quantum phases of matter beyond classical
tractability [15, 16]. They are naturally suited for magnetic Hamiltonians since spins can
be directly mapped to qubits. Non-trivial phases in magnetic systems, such as frustrated
phases [17] , spin glasses [18], and topologically ordered phases [19, 20] have been realized
on multiple qubit platforms using a variety of techniques.

In this paper, we investigate an alternative approach to preparing materials ground states
using the quantum approximate optimization algorithm (QAOA) [21] on near-term quantum
computers. We apply QAOA to lattices of interest in materials science, considering the clas-
sical Ising limit (equivalently, S = oo) where standard QAOA is directly applicable. This
serves as a stepping stone towards truly quantum problems such as the XY and Heisenberg
models in the fully frustrated limit, which will require further algorithmic research and mod-
ifications to the approach presented here. Our results validate that QAOA achieves sufficient
accuracy for the simpler classical limit and provides insights into algorithmic behavior for
material lattice problems.

We consider lattice instances with varying degrees of frustration. The smallest building
block of a frustrated magnetic Hamiltonian is an anti-ferromagnetic triangular motif of three
spins where all the bonds cannot be satisfied simultaneously. In these materials, exchange

interactions compete such that it is impossible to satisfy them all simultaneously, see Fig. 3.1.
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If all spin configurations are equally favorable, frustration can lead to non-ordered states such

as spin liquids [5], spin glasses [22], or plaquette states [8], each with distinct signatures.

(?

Figure 3.1. Example of frustration on an anti-ferromagnetic triangular motif.
Two spins in opposite orientations (black and green) minimize the energy along
one bond, however, there is no configuration for the final spin that minimizes
energy along both remaining bonds.

We solve three different types of Hamiltonians for unit cells pictured in Fig. 3.2. The
first is a square unit cell Hamiltonian, which exhibits only simple ferromagnetic and anti-
ferromagnetic phases in the infinite size (thermodynamic) limit. The second is the celebrated
Shastry-Sutherland lattice. Interestingly, this problem already lends itself to materials appli-
cations and experimental data analysis. Among other examples, it is conjectured to describe
the class of rare-earth tetraborides (ErB,, TmB4 and NdB,) and allows a direct compar-
ison with several existing results both theoretical [23-27] and experimental [28-33]. The
third case is the more complex Ising triangular lattice which represents a maximally frus-
trated problem with an infinite number of possible ground states in the infinite size limit
[34, 35]. We compute theoretical probabilities to prepare the ground state for each of these
9-spin Hamiltonians under varying choices of the external field and coupling parameters and
compare these theoretical results against computations on a trapped ion quantum computer.

We choose N = 9 spins as this is the logical minimum number of spins required to
construct a unit cell of the Shastry Sutherland lattice and also it is a feasible size for the
Quantinuum quantum computer (with 12 qubits available at the time this work was com-
pleted). We focus on p = 1 layers of the QAOA algorithm; for larger N instances more
layers p of QAOA will be needed to maintain a significant success probability [36-38]. Im-
plementations on quantum computers will also have to overcome predicted limitations due

to noise [39-42] including an exponential scaling in the number of measurements with circuit
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size, depth, and other factors [43]. Noise in modern quantum computers has negative con-
sequences for all quantum algorithms, not only QAOA. Ongoing testing and development
of these devices is necessary to assess realistic performance scaling in the presence of noise
and to determine whether QAOA, or other quantum algorithms, will ultimately succeed in
providing a useful computational advantage over conventional approaches.

(a) (b) © h
o — — o — o¢

(d)
o L b b b 1'00
1.00 - -
| f C 1 0.80
B i 0.60
M 5,3, M
i 0.40
A 0.20
0.00 -
U I I B U I 000
00 10 20 30 40 50 60 01 2 3 4 5 60 1 2 3 456
Wi, h/J, h/J;

Figure 3.2. Unit cells of (a) square, (b) Shastry-Sutherland, and (c) triangular
geometries. Colors indicate two spin values s; = +1 in examples of ground
states with h/Jy, Jo/J1, < 1. (d-f) phase diagrams for each of the unit cells (a-
¢) respectively, with labels ”A” ”B” ... denoting regions with distinct ground
states for each lattice. Magnetization M = 0 at h = 0 is due to degeneracy in
the ground states, where spin-flip-related pairs of states are present in absence
of the field (h = 0).

3.2 Ising Hamiltonian and Model Unit Cell Lattices

A single unpaired spin on the outermost orbital of a magnetic ion constitutes a s = 1/2
state which is implemented straightforwardly on a qubit. In a magnetic material, several

such spins in a lattice interact via pairwise superexchange interactions J,. The nature and
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strength of these interactions, J,, depend on several factors. These include the distance
between the magnetic ions (typically J, scales as the inverse cube of the distance between
the ions), the shape of the orbitals, the symmetry of the lattice, and the local crystal fields.
Magnetic frustration can arise in the lattice, for example, if spins arranged on a triangular
motif in the lattice experience equal Ising anti-ferromagnetic interactions. Such a magnetic
frustration can arise via a combination of straight edge bonds J; which are either horizontal

or vertical, and the diagonal bonds J;. This is given by the Hamiltonian

H(s)=J1 Y, sisj+Ja D sisj+ h%si, (3.1)

(,J)ENN (i,j)ENNN i=1
where the first sum is over the nearest neighbors (NN), the second sum is over the diagonal
next-nearest neighbors (NNN), and s = (sq, ..., sy) lists the spin orientations s; € {1,—1}
of the N spins. We study anti-ferromagnetic couplings with positive Ji, Jo. The term
h represents a longitudinal magnetic field (parallel to the spin axis), which for the real
material represents either a mean crystal field or an external magnetic field. The unit cell
motif of the Hamiltonian is shown in Fig. 3.2. Materials described by this model are being
actively researched in condensed matter physics. The Ising Shastry-Sutherland model is a
special case of a model, inspired by the geometry of real materials, where some but not all of
the diagonal bonds are present (Fig. 3.2(b)). The triangular lattice is shown in Fig. 3.2(c).
In all cases we consider open boundary conditions. Analytical ground state properties of
Ising models on Shastry-Sutherland and triangular lattices have been derived analytically
[44, 45].

Multiple methods have been proposed to solve for ground states of Ising Hamiltonians
and related optimization problems, notably Integer Programming method [46], Simulated
Annealing [47] and its variants, Large Neighborhood Search [48] and Quantum or Quantum-
inspired physical annealing devices. Among them, the Integer Programming method solves
exactly but suffers from exponential scaling of computational time. Simulated Annealing
and Large Neighborhood Search are both herustics methods that promise faster runtime but
there is no guarantee of the solution qualities. Quantum annealers, digital annealers and

coherent Ising machines are hardwares dedicated to solving Ising models [49, 50]. Depending
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on the connectivity of these various (qu)bits, every backend could be good at a different task
- parallel tempering machines could be good in finding the classical phases [26], while others
could reveal intricate dynamical behaviour in a transverse field Ising universality [51]. For
frustrated lattice problems, QAOA allows us to sample different ground states with certain
probabilities due to quantum randomness, whereas classical and deterministic algorithms
may generate a ground state efficiently, but fail to explore the states which might arise
because of a coherent superposition between all the spins. Additionally, future extensions

beyond the Ising limit also becomes an exciting possibility.

3.2.1 Ground state magnetization phase diagrams

We consider the nine-spin unit cells with geometries in Fig. 3.2(a-c) which represent the
number of spins required to simply construct an unit cell of the Shastry-Sutherland lattice.
In materials represented by Bravais lattices, these unit cells repeat periodically to realize
the very large lattices in a real material. We computed ground states for each unit cell
by evaluating (3.1) for each possible spin configuration to identify the lowest energy states,
for varying choices of h and J,, with J; = 1 taken as the unit of energy. We plot the

magnetization
1 N
M - - IR 32
N ; s (3.2)

of these ground states in the phase diagrams of Fig. 3.2(d-f). We further separate each
diagram into regions A,B,... with distinct sets of ground states but sometimes equivalent
magnetizations. For example, "A” and "B” in Fig. 3.2(e) have different ground states but
identical magnetizations. The individual ground states are shown in the Supplemental In-
formation (Figs. S4-S6) [52].

Starting with the non-frustrated square lattice with J; - only interactions with simple
ferromagnetic or antiferromagnetic ground states, the degree of frustration is tuned progres-
sively by a) addition of J; bonds and b) bringing Jo — J;. The triangular lattice with uniform
coupling parameters represents the maximally frustrated limit with highly degenerate solu-

tions. The Shastry-Sutherland model represents a scenario with the minimum number of J,

61



bonds required to realize a fully frustrated lattice. The solution of these states represent a
problem of polynomial time complexity in two-dimensions and without a magnetic field.
The ground state for a given h shows a number of magnetization plateaus, where each
plateau has a different proportion of spins pointing up. Unsurprisingly, at large h, the ground
state for each lattice is ferromagnetic, in regions C, G, and E in Fig. 3.2(d-f) respectively.
The situation becomes more interesting at small A in regions ”A”, the ground state is anti-
ferromagnetic with magnetization M = 1/9, as five spins are aligned with the field while
four are anti-aligned. For fields 8/3 < h < 4 and small J,, there is a ground state with
M = 7/9 in which a single spin in the center of the unit cell is anti-aligned with the field.
Besides frustration, these states are also determined by the finite size of the unit cells,
where the central spin is distinguished as the only spin with four interactions in the square
lattice. As Jo and h are varied, frustration leads to a variety of different ground states for
the Shastry-Sutherland and triangular lattices, with varying magnetizations in Fig. 3.2(e-f),
with ground states in Supplemental Information [52]. These are true ground states of the
9-spin Hamiltonians, with boundary spins playing a big role. In the infinite size limit we
expect the ground states to be progressively less dependent on the boundary, and more on

the symmetry of the Hamiltonian, which we discuss in the next section.

3.2.2 Finite size effects

The finite sizes of our lattice unit cells, as well as the unusual M = 7/9 ground state noted
in the previous section, raise questions of how the ground states for our unit cells match with
ground states that would be obtained in the large size limit, and the minimum number of
spins that are needed to achieve quantitative behavior consistent with large sizes. To ad-
dress these questions, we computed the magnetization of triangular and Shastry-Sutherland
lattices of N = n x n spins to analyze the size-dependent behavior. Due to the exponen-
tial complexity of the problem, we used neal [53], a software implementation of simulated
annealing to approximate the ground state configurations with h, J, € [0,6] and J; = 1.
Each combination of h and J; was run 50 times and the solution with minimum Ising energy

was picked. Examples with 3 < n < 30 are shown in Fig. 3.3. We assessed convergence of
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the global phase diagrams to the large size limit by computing the root mean square error
(RMSE) between the target lattice’s and 30x30 lattice’s magnetization across points in the
phase diagram. We fitted the RMSE to both a power-law as well as an exponential form
(see Supplemental Information, Fig. S1 [52]), and we find that the power-law scaling with n
exponent v and prefactor a fits the RMSE better. The equation takes the form:

2
g M3O><30,g)

N

Myxn
RMSE(MnXm M30><30) - \/Zy( - ~an”. (33>

where N = 900 is the number of points g we evaluated in each phase diagram (30 evaluations
for h € [0, 6] and 30 evaluations for Jy € [0, 6] with a step size of 0.2 in each variable). The
computed RMSEs and fitted power-law curves are shown in Fig. 3.4. Empirically, the RMSE
diminishes following a power law scaling with the exponent v = —1.27(4) for the triangular,
and v = —1.34(4) for the Shastry-Sutherland lattice. We note that the size of the boundary
scales as O(n) while the size of the bulk scales as O(n?). If the RMSE had arisen strictly from
the boundary effects, it would diminish following the proportion of boundary/bulk ~ O(1/n).
However, v < —1 signifies a faster drop off of RMSE as compared to 1/n, which could be
because of enhanced correlations between the various spins subject to the Hamiltonian.

A more rigorous analysis of finite-size scaling [54, 55| around each critical point could yield
a careful analysis of the required lattice size for target fidelity for every phase transition, our
result based on an overall RMSE demonstrates that a 15x15 spin grid is already obtaining
results close to the much larger 3030 grid. Based on this trend, we expect that finite size
effects in M will diminish quickly with the size of the lattice, indicating that lattices of only
a few hundred spins may diminish the errors sufficiently to achieve a realistic "bulk”, and
therefore meaningful results for comparison with experiments which probe bulk properties,
such as diffraction and heat-capacity. This suggests that quantum processors with hundreds
of qubits, achievable within the noisy intermediate-scale quantum era [56], may be capable

of meaningful applications for materials science applications.
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Figure 3.3. Ground state magnetization of n x n triangular spin arrays with
a number of spins per dimension (a) n = 3, (b) n =7, (¢) n = 12, and (d)
n = 30, computed as described in Sec. 3.2.2.
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Figure 3.4. Root mean square errors (3.3) of total magnetization between
n x n lattices relative to a 30 x 30 lattice, plotted on a log-log scale. Solid
lines show fits to the power-law scaling relation (3.3); the slopes indicate the
best-fit exponents v = —1.34(4) and v = —1.27(4) , with fit R? = 0.994 and
0.990 for the triangular and Shastry-Sutherland lattices, respectively. Best-
fit intercepts are ylog,y(a) = 0.19 and vylog,y(a) = 0.10 for the triangular
and Shastry-Sutherland lattices respectively. The fit and the errors in the
exponent are based on standard Levenberg-Marquardt routines and assume
Poisson statistics at each point.
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3.3 Quantum Approximate Optimization Algorithm

Quantum computers offer a route to overcoming issues associated with identifying ground
states through conventional methods. One approach to address these problems uses the quan-
tum approximate optimization algorithm, which was originally designed to find approximate
solutions to difficult combinatorial optimization problems [21] that are often expressed in
terms of Ising Hamiltonians [57]. Empirical performance of QAOA has been characterized
for a variety of combinatorial problems [36, 58-61] and this has also led to generalizations
[62-67] that have been applied to preparing chemical ground states [68] as well as ground
state preparation for one-dimensional [38, 69] and two-dimensional [70] quantum spin models
in theory and experiment [71].

To formulate our Ising problems in a structure that is suitable for QAOA, we first express

the Ising Hamiltonian (3.1) in terms of a quantum Hamiltonian operator

N
H=J0 Y, 6 ZZj+J Y, ZiZj+h), Z. (3.4)

(4,j)ENN (i,j)ENNN i=1
Here the N spins s; € {+1,—1} in (3.1) are encoded into the eigenvalues of the Pauli Z
operators, with Z;|z;) = s;|z;), where z; € {0,1} and s; = 1 — 2z;. The set of all spin values
is then encoded into a computational basis state |z) = QY |z). Each |z) is an energy

eigenstate of H with the energy eigenvalue of the corresponding classical spin problem,
Hlz) = H(z)|z), (3.5)

where H(z) comes from (3.1) taking s; = 1 — 2z; for each component |z;) in the total basis
state |z). This gives an encoding of the Ising spin problem (3.1) that is useful for QAOA,

where we will sample eigenstates |z) to try to identify the ground state of the Ising problem.
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To find solutions, QAOA uses a quantum state prepared with p layers of unitary evolution,
where each layer alternates between Hamiltonian evolution under the Ising Hamiltonian H

and under a “mixing” Hamiltonian B = Y, X;

0y, B)) = (H“‘H> 1%0) (3.6)

where the initial state |[¢) = 27V/2%, |z) is the ground state of —B represented in the
computational basis. The parameters v = (71,...,7,) and 8 = (fi,...,8,) are typically
chosen to minimize the expectation value of the energy (H), though other objectives have
also been studied [68, 72, 73]. The minimization is typically accomplished using a quantum-
classical hybrid feedback loop, shown schematically in Fig. 3.5. For a given set of parameters
~ and S, a set of states |¢,(, 8)) is prepared and measured by a quantum computer. The
measurement results are sent to a conventional (classical) computer to compute the classical
objective function. If the objective function is not converged relative to previous evaluations,
then the conventional computer uses an optimization routine to select new parameters v/, 3’.
The process is repeated until convergence to a minimal objective with optimized parameters
~*, B*. The final result is taken as the measurement result |z*) that gives the lowest energy
H(z*). In the best case, 2* = Zgrouna is a ground state, while more generally z* may be a
low-energy state that is an approximate solution to the problem.

An analytic proof has demonstrated that QAOA can prepare an exact ground state
|Zground) Of Ising Hamiltonians as p — oo [21, 57]. Apart from the formal proof of conver-
gence at large p, there has been significant interest in applying QAOA at small p, where
approximations exceeding conventional lower bounds have been observed in simulations [36,
74] and predicted for large problems in certain contexts [75]. Realizing such advantages
on devices with hundreds of qubits or more is an important topic of ongoing research as
quantum computing technologies continue to develop.

For the materials problems we consider, we are interested in preparing the ground states
of the Ising Hamiltonian. We compute exact ground states for our unit cells in Fig. 3.2
by evaluating all eigenvalues of the Hamiltonian using Eqgs. (3.1) and (3.4) to identify the

lowest energy state. For some phases the number of ground states is Ngouna > 1 due to
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degeneracies, while for other phases there is a single ground state Ngouna = 1, as pictured
in Supplemental Information [52]. To assess QAOA performance, we compute the average
ground state probability

— 1

Pground = N
ground Zground

P(Zground) (3.7)

where the sum contains a single term in the case of a non-degenerate ground state or multiple
terms in the degenerate case. Analytically, the probabilities are given by the Born rule
P(z) = |(z|{p(, B))|?, while for experiments on a quantum computer they are given by
the frequencies of measurement results, P(z) = N(z)/Ni, where N(z) is the number of
times |z) was measured and Ny is the total number of measurements. If QAOA identifies
a ground state then |2*) = |Zgouna) and Fgmund > 0, while if QAOA only finds sub-optimal

solutions then Pgouna = 0.

If not converged,

Quantum computer pick new y', B'
[+ — = = H .
Conventional
I+) — — — — ] computer
e~ imH e—iP1B o e—twH e~ BpB : —_)
: - Compute (H)
I+ — . - - u ) .
If converged,
I+) — — — — T identify best
~S— e .
—— solution z*
p layers

Figure 3.5. Quantum-classical optimization loop for QAOA. For a given
set of parameters v, 3, a quantum computer generates and measures states
|y (, B)). The measurements are sent to a conventional computer to compute
(H) and check its convergence. If (H) is not converged, then an optimization
routine selects new 4" and B’ for the quantum computer. If (H) is converged,
then the algorithm terminates and the final solution is the measured result z*
that minimizes the energy.
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Ground state preparation is a goal specific to the materials problem context we are in-
terested in here. This is, importantly, a departure from the standard goal of QAOA in the
context of approximate combinatorial optimization, where the goal is to find approximate
solutions that are not necessarily the ground states. While QAOA is not expected to effi-
ciently find exact ground states for generic NP-hard optimization problems, it may still prove
useful for finding ground states of specific structured problems such as materials problems

on a lattice similar to those we explore here [38, 69-71].

3.3.1 Numerical simulations of ideal QAOA

We use numerical calculations to assess the theoretical performance of QAOA for ground
state preparation. These demonstrate the ideal performance of QAOA in exact pure state
calculations that use matrix multiplication to evaluate (3.6). This gives an ideal baseline for
later comparison against results from a noisy quantum computer, where errors lead to mixed
states with degraded performance. We use p = 1 QAOA layers throughout this section and
our results.

To identify QAOA states for our Ising problems we must determine optimized QAOA
parameters 77 and 7. We choose regions to evaluate parameters in determining ;" and /3
as follows. QAOA is periodic when 3; — (1 £ 7 [58], hence we consider —7/2 < 51 < 7/2,
which gives all unique [; up to symmetries. The periodicity of the 7, parameter is more
complicated, as it depends on the Hamiltonian in exp(—iy; H) in (3.6). Here we focus on 7,
intervals near the origin and dependent on the magnitude of the Hamiltonian terms, which
has been highly successful in previous work [76]. The basic idea is that the QAOA unitary
exp(—iy1 H) changes at varying speeds with respect to v, depending on the Hamiltonian
coefficients Jy, h, and J,. When the Hamiltonian coefficients increase, then v, should decrease
to obtain a similar unitary. The rate at which the unitary changes with respect to ~; is related

to the average magnitude of the Hamiltonian coefficients

_ Nh+ JiExx + JoEnnn
N + Exn + Exnn

(3.8)
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where Eny is the number of nearest-neighbor interactions and Exny is the number of next-
nearest-neighbor interactions. Previous work on generic Ising Hamiltonians with h = 0
has shown that high quality solutions are obtained at small v; with an empirical scaling
of optimized parameters similar to 7 ~ 1/.. The scaling 1/¢ compensates for the varying
rates of evolution that are present for varying choices of the Hamiltonian, and also limits
the interval of y; values that are explored, simplifying the optimization [76]. Based on these
ideas we choose 7 in the interval —0.55 x 7/t <~ < 0.55 X /1.

We show an example of how the energy expectation value and average ground state
probability depend on the choice of parameters in Fig. 3.6 for an example with the Shastry-
Sutherland unit cell with Hamiltonian coefficients J; = 1,J, = 3.7, and h = 1.4 (similar
patterns are observed in sample calculations using other choices of Hamiltonian coefficients
and also for the triangular unit cell). There are two regions in Fig. 3.6(a) with optimized
(H) in yellow. The ground state probabilities in Fig. 3.6(b) are also relatively large near the
7y and B} that optimize (H).

We have found in searches over much larger v, intervals that the local optima for pground
and (H) do not always approximately align as in Fig. 3.6, which can lead to poor Pgound
at optimized (H) in these larger intervals. However, this does not appear to be a prevalent
issue for the smaller (-dependent v, intervals in cases we have looked at. The results are
somewhat sensitive to the specific choice of 77 interval, however, our choice of —0.55 x 7/¢ <
7 < 0.55 x 7/ gives satisfactory results across the varying lattices.

To identify optimized parameters, we perform a grid search over v, and (3, for each
Hamiltonian considered. We evaluate the QAOA states in (3.6) on 201 evenly spaced intervals
with —7/2 < ; < 7/2 and over 300 evenly spaced intervals with —0.55 x 7/t < 7 <
0.55 x 7/¢ for a total of 201 x 300 = 60,300 grid evaluations for each Hamiltonian. This
approach gives optimal parameters in our intervals up to coarse graining in the grid search.
We select parameters v and ff that optimize (H).

The optimized parameters v; and 37 do not necessarily give the optimal ground state
probabilities that are possible from QAOA. The reason is that the average energy opti-
mization accounts for energies and probabilities of all states, which together may yield low

energies at parameter choices that are not optimal for the ground states alone [36]. To assess
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performance, we further compare our parameter choices against parameters 7" and g}’ that
directly optimize ?ground. The direct optimization of ?ground is used here for benchmark-
ing purposes and is not a realistic approach for large problems where the ground states are
unknown. For our small problems, the comparison gives an idea of how the ground state
probabilities from a standard optimization of (H) compare against the best ground state

probabilities that could be obtained by QAOA in our setup.
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Figure 3.6. Numerical simulations of the (a) average energy (H) and (b)
average ground state probability Pgouma with varying choices of QAOA pa-
rameters y; and [y, for the Shastry-Sutherland unit cell with J; =1, J, = 3.7,
and h = 1.4 (Sec. 3.3.1). Each plot has the same range of §; and 7;; the color
scales are reversed in (a) and (b) so that small (H) and large Pgouna are each
represented by bright colors.

3.3.2 Quantum computations of QAOA

We next investigate the performance of QAOA using the Quantinuum H1-2 quantum
computer. H1-2 contains trapped-ion qubits and uses lasers to implement gates on these
qubits. Typical error rates are reported as 3.5 x 10~ for two-qubit gates and 1 x 10~*
for single-qubit rotation gates [77]. In addition to the device H1-2, we also us the H1-1E
device "emulator” to simulate noisy device behavior. This gives results that approximately
correspond to expected device behavior while avoiding the financial expense and wait times
that are associated with running the device. The emulator models a variety of device-
specific noise processes for the Hl-class computers, including depolarizing noise, leakage

errors, crosstalk, dephasing in transport, and qubit idling errors [78].
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We test QAOA on the H1-2 using the QCOR software stack [79]. The QCOR stack
translates the series of unitary operators expressing QAOA into quantum circuits for H1-2;
see Supplemental Information [52], Appendix B, for details. The QCOR program used for
submitting jobs to the device as well as our calculations are available online, cf. "Data
Accessibility”.

Furthermore, modern quantum computers are known to be affected by state preparation
and measurement (SPAM) errors as well as gate infidelities from a variety of physical sources.
We assessed SPAM errors expected in our quantum computations using the device emulator,
with details in Supplemental Information Appendix C [52]. The probability to observe no
error in circuits we tested was approximately 96%, with errors distributed approximately
uniformly across qubits. We account for these errors using an independent bit-flip model
and associated SPAM matrix P, which transforms an ideal set of measurement results to
the expected noisy set of results. The inverse matrix P~! can then be applied to our noisy
measurements from the quantum computer to approximately correct for SPAM errors. A
technical issue arises in that the mitigated measurement probabilities can sometimes be
negative, due to the approximate nature of the mitigation scheme. This leads to a second
mitigation scheme that additionally sets all negative probabilities to zero and renormalizes so
the total probability is one. We use each of these approaches to attempt to correct the small
SPAM errors we expect from the quantum computer, as described in detail in Supplemental

Information [52].

3.4 Results

In this section we consider the results from QAOA applied to the materials lattices of
Fig. 3.2. We take J; = 1 as the unit of energy and analyze the success of QAOA in preparing
ground states at variable h and Js, first in numerical simulations (Sec. 3.3.1) and then in

quantum computations on a trapped-ion quantum computer (Sec. 3.3.2).
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3.4.1 Ground state measurement probabilities

We first consider theoretical probabilities to measure the ground state with QAOA and
how these vary for different parameter choices in the Hamiltonian. We begin with the simple
square lattice in Fig. 3.2(a,d), which does not exhibit frustration as there are no triangles in
the interaction graph. The probability to measure the ground state for varying A is shown in
Fig. 3.7. Fig. 3.7(a) shows the probabilities obtained from optimizing the standard objective
(H) while Fig. 3.7(b) shows the best-case results based on optimizing ﬁground, as described
in Sec. 3.3.1. The probabilities in each case are similar, demonstrating that optimizing (H)
is nearly as successful in increasing the ground state probability as a direct optimization.

The average ground state probability shows distinct behaviors for each of the three ground
states at varying h, visually separated by dotted lines. In the anti-ferromagnetic ground state
at small h, the probability Pgmund approximately oscillates between h = 0 and h = 2, with
small probabilities observed near integer values of h and larger probabilities near h = 1/2
and h = 3/2. The M = 7/9 ground state with 8/3 < h < 4 has a near-constant probability of
~ 0.06. At h = 4 the ground state becomes ferromagnetic and Pgouna increases significantly,
with monotonic increases at larger h.

We rationalize the varying success probabilities in the figure as attributable to structures
of the ground states at varying h and the interplay with the structure of the QAOA state
in (3.6). We show in Supplemental Information [52] Appendix D that QAOA can exactly
prepare the ferromagnetic ground state when h > J; for arbitrary lattice sizes, based on
the fact that exp(—ivH) =~ exp(—i’yh >N ZZ-> in this limit. This is consistent with the
behavior in the figure, where Fgmund increases monotonically with h for the ferromagnetic
ground state at h > 4. We further show in Supplemental Information [52] Appendix E
how the anti-ferromagnetic ground state probability is maximized at h = 0.5, and we devise
large v, parameters that can further improve these results (We did not include larger 7,
parameters in our numerical searches as this can lead to poor ?gmund at parameters that
optimize (H) for the frustrated lattices, as remarked in Sec. 3.3.1). However, the mechanism
for anti-ferromagnetic ground state preparation here depends on the specific choice of the

3 x 3 lattice, and it is not clear how QAOA will behave for other lattice sizes. For the

72



M=7/9 phase the QAOA state is more complicated, as it is a superposition of many basis
states that depends on the optimized parameters, and we do not have an analytic account for
this behavior. The optimized parameters that create each QAOA state in the square-lattice

phase diagram are shown in Supplemental Information Appendix F [52].
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Figure 3.7. The square unit cell ground state probabilities when (a) opti-
mizing (H) and (b) optimizing Pgoua as described in Sec. 3.3.1. The Pgound
ranges are identical in each figure. Phases A, B, C refer the anti-ferromagnetic,
M=7/9, and ferromagnetic phases of Fig. 3.2 respectively, with vertical dotted
lines showing the phase boundaries.

Ground state probabilities ?gmund for the Shastry-Sutherland and triangular lattices are
pictured in Figs. 3.8 and 3.9, respectively. Ground state probabilities from optimizing
(H) are presented in panels (a) while panels (b) show the best case probabilities from a
direct optimization of Fgmund as described in Sec. 3.3.1. These probabilities show patterned
behavior, with distinct probabilities ?ground observed throughout most of each individual
region A,B,..., with significant differences in Pgouna between different regions. At small Jy,
there are oscillations in the probability for preparing the anti-ferromagnetic ground states
at small h, and large success probabilities for the ferromagnetic ground state at large h,
as foreshadowed by results from the square lattice. On the other hand, as the J, coupling
increases, the triangular and Shastry-Sutherland lattices experience increased frustration,

with competing interactions within the triangular motifs in Fig. 3.2. The average ground

state probability decreases significantly as J, increases and frustration becomes dominant.
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This is especially evident when J; 2 h, for example in the top left of each of Figs. 3.8(b) and
3.9(b). The Pgoua are mostly uniform across h and J, within each region, qualitatively
similar to the nearly-uniform probability for the M = 7/9 state at varying h for the square
lattice in Fig. 3.7. Ground state probabilities are typically 2 0.01, indicating that only < 100
measurements are expected to identify a ground state. We now turn to computations on a
trapped-ion quantum computer, to benchmark and assess performance of QAOA on a real

quantum computing device.
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Figure 3.8. Shastry-Sutherland unit cell ground state probabilities when (a)
optimizing (H) and (b) optimizing Pgouna as described in Sec. 3.3.1. The
ranges for J,/J; and Fground are identical in each figure.

3.4.2 QAOA quantum computations

Here we assess QAOA performance in preparing ground states on a trapped-ion quantum
computer. Ultimately, our aim is to validate the idea that a current quantum computing
technology is capable of preparing each ground state of a frustrated Ising Hamiltonian using
QAOA. An important first step is to assess whether optimized parameters from our theoret-
ical calculations are also optimized for the device, or whether further optimization is needed

to determine device-specific optimized parameters.
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Figure 3.9. Triangular unit cell ground state probabilities when (a) optimizing
(H) and (b) optimizing Pgouma as described in Sec. 3.3.1. The ranges for Jo/.J;
and Fgmund are identical in each figure.

Quantum computational performance with varying parameters

QAOA depends on the choice of parameters, as discussed in connection with Fig. 3.6.
To test whether our theoretical parameters also yield good performance in the device, we
consider QAOA circuits evaluating a point in region E of the Shastry-Sutherland phase
diagram Fig. 3.2(e), with Hamiltonian coefficients and QAOA parameters shown in Table
3.1. The parameters correspond to a local minimum in (H), similar to the minima observed
in Fig. 3.6. We use the H1-1E device emulator to evaluate circuits at the optimized v,
and (7 and circuits where either 7, or [; has been displaced from its optimal value, as
shown in Fig. 3.10. Black crosses in the figure indicate how (H) increases in pure state
simulations as either of these parameters are varied individually. FError bars denote the

analytic standard error of the mean (S.E.M.) for Ng,os = 1000 measurement shots, with

S.EM.= \/ ((H?) — (H)?)/Nghots calculated numerically from the pure states. If the quantum

computations did not have any noise, then from the central limit theorem we would expect

about two-thirds of the (H) from the quantum computer to be within these error bars.
The theoretical (H) can be compared against the device emulator, with data point labels

in the figure beginning with “H1-1E”. There are three sets of data points for the emulator; the
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first is direct output labeled “H1-1E”, the second includes SPAM error mitigation (Sec. 3.3.2)
in “H1-1E, E.M.”, the third includes a variation of the SPAM mitigation that additionally
forces the mitigated probabilities to be P > 0 in “H1-1E, E.M., P>0". These emulated (H)
are larger than the theoretical values and we attribute this to noise in the device emulator,
which introduces errors that cause the energy to deviate from its ideal minimum value.
Despite these errors, the shape of the landscape is similar to our theoretical calculations,
with best performance observed near the theoretical parameters that minimize (H), and

energies that tend to increase away from these parameters.

Table 3.1. The parameters used for quantum computations with the Shastry-
Sutherland lattice. Here Jy/J; and h/J; are the Hamiltonian coefficients
used in the calculations, v and § are the QAOA parameters, and Ngpos is the
number of measurement shots taken on the quantum computer.

region | degeneracy | M | Jo/Ji | h/Jy | Bi/7 | 7/7 | Nshots
1 1/9 | 0.240 | 1.440 | 0.750 | -0.507 | 400
1/9 | 3.840 | 0.480 | 0.112 | -0.048 | 1000
3/9 | 3.840 | 1.680 | 0.121 | -0.043 | 1000
3/9 | 1.680 | 1.920 | 0.131 | -0.056 | 400
5/9 | 2.000 | 2.480 | 0.143 | -0.050 | 1000
7/9 | 1.680 | 3.600 | 0.182 | -0.046 | 400
1.0 | 0.240 | 5.520 | 0.244 | -0.041 400

QEHEZOQW
N NS

We further validate that the H1-2 trapped-ion device itself is consistent with the emulator
in the data points that begin with “H1-2”. These actually yield better energies than the
emulator, and are within one standard error of the mean from our theoretical results. The
results from the device and emulator indicate that the energy landscape as a function of the
QAOA parameters ; and 3 is consistent between our theoretical calculations, the quantum
device, and emulator. We therefore proceed with our theoretically optimized parameters to

evaluate success in ground state preparation using the quantum computer.

Quantum calculations of ground states

We now perform calculations on the Honeywell H1-2 quantum computer to analyze suc-

cess probability in ground state preparation. We consider points in each region of the Shastry-
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Sutherland lattice, using parameters listed in Table 3.1 that correspond to local minima in
(H), similar to the minima used to evaluate theoretical performance in Sec. 3.4.1). We
post-process the measurement results using the SPAM mitigation model with probabilities
P(z) > 0 (see Sec. 3.3.2), to give a minor correction to the observed results that is designed

to counteract this known source of error.
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Figure 3.10. Angle sensitivity analysis for h = 2.48 and J, = 2.0, with sepa-
rate variations in (a) 31 and (b) 1 about the ideal values from Table 3.1. Black
crosses show results from pure state calculations, with error bars denoting the
standard error of the mean at 1000 shots (see text). Data points showing re-
sults from the Honeywell emulator are denoted with "E” in H1-1E and results
from the trapped-ion quantum computer are labeled H1-2. Data points labeled
'H1-1E’ and 'H1-2’ are raw data, labels "E.M.” (error-mitigation) are with ba-
sic mitigation, and "E.M. P>0" are readout error mitigation that forces each
probability P(z) to be > 0, as described in Sec. 3.3.2.

Figure 3.11 shows the ground state probabilities from quantum computations in compar-
ison with ideal expectations from pure states. The ground states are separated by regions
A B,... with markers a,b,... corresponding to the individual ground states pictured in elec-
tronic supplementary material Fig. S16. The quantum computations succeed in observing
each individual ground state in each region of the Shastry-Sutherland lattice, as seen by the

positive probabilities in each state "a”, "b”,...
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Figure 3.11. Probabilities to observe each ground state from pure state sim-
ulations compared with observed frequencies estimated by quantum compu-
tations with the H1-2 device for each different phase (A-G) of the Shastry-
Sutherland unit cell. Alphabetical labels “a”, “b”, etc., identify the different
ground states in electronic supplementary material Fig. S16.

For a closer comparison of probabilities, we plot error bars denoting the theoretical
standard error of the mean S.E.M.:\/P(z)(l — P(2))/Nshots- The S.E.M. defines a range

in which we expect about two-thirds of estimated P (z) = N(2)/Nswots are expected to

be found, where N(z) is the number of measurement results of a given ground state and
Ngnots 18 the total number of measurements in Table 3.1. The probabilities from the quantum
computation are largely consistent with the pure state results, with the majority of results
within one S.E.M. from the ideal P(z), as expected in finite sampling to estimate the ground

9929
1

state probability. There are only two large deviations for states "k” and ”i”, which may be
related to noise in the device. The quantum computations succeed in preparing ground

states with probabilities comparable to pure-state expectations.

3.5 Conclusion

We analyzed QAOA as an approach for preparing materials ground states on three types
of Ising Hamiltonians with longitudinal magnetic fields, focusing on nine-spin unit cells as
a starting size that is amenable to simulations and calculations on a trapped-ion quantum

computer.
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We applied QAOA to the nine-spin Ising unit cell problems to assess its success in ground
state preparation. We found that the theoretical success probability depends significantly
on the structure of the ground state, while it is mostly insensitive to the precise Hamilto-
nian parameters, which can vary within regions consistent with a fixed ground state. Each
Hamiltonian yields a ferromagnetic ground state in the presence of large magnetic fields,
and QAOA achieved large success probabilities for these relatively simple states. The prob-
abilities for other types of ground states were more variable, and tended to decrease as
next-nearest-neighbor couplings became stronger with associated frustration in the lattice.
For all of these nine-spin states, we typically find success probabilities indicating that <
100 measurements are expected to be necessary from an ideal quantum computer for these
problem instances.

To assess QAOA performance under realistic conditions we implemented the algorithm
on a trapped-ion quantum computer. These quantum computations succeeded in observing
each of the 17 ground states of the Shastry-Sutherland unit cell. The quantum computations
yielded ground state probabilities that were consistent with theoretical expectations based
on pure states, indicating that noise was not a significant issue at the sizes and depths
tested. This suggests that calculations with current technology can likely be extended to
greater QAOA depth parameters p, and to larger sizes as greater numbers of qubits become
available. At greater depths and sizes we expect higher performance and more realistic
results in comparison with the large size limit, respectively.

While the ground states and associated phase diagrams for our nine-spin unit cells were
found to have significant finite size effects relative to the large-size limit, the errors from
finite size effects on the classically-calculated magnetization phase diagrams on n x n lattices
up to n = 30 was found to be suppressed rapidly with n, with small errors at n = 15
indicating that only hundreds of spins may be necessary to reproduce large scale behavior.
This provides a baseline of hundreds of qubits for quantum computational experiments that
seek to explain materials science problems, which may be accessible to near-term quantum
computers in coming years.

Assessing scaling of the ground state probability with size N will be an essential aspect

of extending this approach to larger sizes N. This includes numerical simulations to quantify
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how the ground state probabilities depend on the number of spins N and number of QAOA
layers p; previous works have shown p o« N maintains a large ground state probability (= 0.7)
for simple models in different contexts [37, 38], but future work is needed to test scaling in
the current model. Benchmarking on quantum computers is also essential to understand
how real noise processes effect scalability.

Thus from our results we envision QAOA can be successfully applied to somewhat larger
lattice problems as quantum computing technologies develop and larger number of qubits
become available. These could be used for optimization of Ising lattice problems as we have
here, with increasing sizes that potentially describe real bulk properties of materials in the
N — oo limit. Additionally, the QAOA algorithm is general, with the application of a
magnetic field, and hence could be explored for lattice problems which are NP-Hard [80].
But a more promising future direction leveraging the full benefit of this approach is to extend
and modify QAOA to prepare ground states of quantum Hamiltonians such as the XY and
Heisenberg models, which can lead to a variety of quantum phenomena not captured in the
Ising model, such as quantum spin glasses [81], spin nematicity [82], Berzinski-Kosterlitz-
Thouless states [83, 84] and long-range entangled states such as Dirac string excitations
[85], the likes of which exist in 2D frustrated quantum spin liquids and spin ice. Many of
these topics are fiercely researched and are of considerable interest and importance for future
quantum technologies and devices. Conventional numerical methods for understanding these
states are hindered by the exponential size of the Hilbert space, making it difficult to generate
a theoretical understanding of experimental observations. QAOA or related generalizations
[38, 62, 68-71] offer a potential route to overcome conventional computing bottlenecks. Some
successes along these lines have been observed in certain contexts, however, advances in
methodology and quantum computing technologies are needed to extend these methods to
complicated and larger-scale problems where quantum computational approaches may have a

significant impact in understanding and developing materials for technological applications.
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4. PROJECT I1I: A CLASSICAL ANALOGUE OF
ENTANGLEMENT

The contents of this chapter are adapted from the following article:

B. Khalid and S. Kais, “A classical analogue of entanglement for a kicked top”, arXiv pre-

print: 2411.08857v2 (2025.)

Abstract: It is widely believed that quantum mechanics cannot exhibit chaos, since unitar-
ity of time evolution ensures that distances between quantum states are preserved. However,
Ballentine has suggested that a parallel argument can be constructed in classical mechanics
that would seem to deny the ezistence of classical chaos too [1]. The argument works by de-
scribing classical states as probability distributions in phase space and showing that the inner
product between distributions on phase space is preserved under Liouvillian dynamics. This
leads Ballentine to conclude that the more faithful classical analogy of a quantum state is not
a single phase space trajectory but is instead a phase space distribution, and chaos in such
states must be identified by some statistical signatures instead of exponential separation of
nearby states. The search for these signatures is the primary goal in quantum chaos research
[2—4]. However, this perspective also naturally motivates the search for classical analogues
of these signatures, to reveal the inner machinery of chaos in quantum systems. One widely
recognized signature of chaos in quantum systems is the dynamical generation of entangle-
ment. Chaos in the classical system is correlated with a greater entanglement production
in the corresponding quantum system [5-25]. One of the most well-studied examples of this
is the kicked top model [26]. In this chapter, we construct a classical analogue of bipartite
entanglement in terms of the mutual information between phase space distributions of sub-
systems and find completely analogous signatures of chaos as those found in entanglement

for the kicked top Hamiltonian.
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4.1 Introduction

Quantum chaos is the study of the quantum mechanical properties characteristic of sys-
tems that exhibit chaos classically [2-4]. Traditionally, the primary focus in the field has
been on the determination of universal features in the spectral statistics and the eigenstates
of chaotic Hamiltonians. However, in recent years, developments in quantum information
science and phenomenal advances in quantum simulation technologies have enabled novel
theoretical and experimental avenues for exploring the dynamical manifestations of chaos in
quantum systems. Information-theoretic measures such as entanglement entropy, quantum
Fisher information, OTOCs (out-of-time-order correlators), etc. have been suggested as new
probes for tracking quantum chaos. Consequently, a fresh understanding of quantum chaos
has emerged that has revealed its fundamental significance in quantum dynamical processes,
crucial to understanding decoherence, many-body systems and black hole physics, such as
entanglement generation [5-25|, information scrambling [27-31] and quantum thermalization
[32-36].

The issue of quantum entanglement has been the subject of much debate since Einstein,
Podolsky and Rosen pointed out the “bizarre” consequences it can lead to [37]. Schrodinger
declared it as “the characteristic trait of quantum mechanics, the one that enforces its en-
tire departure from classical lines of thought [38].” In its essence, entanglement expresses
the nonlocal and nonseparable nature of quantum states in a form that is completely alien
to classical physics [39]. In quantum information science, it has been identified as a cen-
tral resource in quantum communication protocols, quantum cryptography and quantum
information processing and storage [40, 41].

Remarkably, the dynamical generation of entanglement (within the system or with an
environment) is intimately tied to the chaoticity properties of the underlying classical phase
space. It has been observed that wave packets centered on regions of phase space that are
classically chaotic yield a greater entanglement entropy production than classically regular
regions. For chaotic initial conditions, the entanglement entropy grows linearly at a rate given
by the sum of the positive Lyuapunov exponents, the classical Kolmogorov-Sinai entropy

rate; whereas for the regular case, the entropy grows only logarithmically with time [5-25].
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A system for which the chaos-entanglement relationship has been extensively studied is
the kicked top model [10, 16, 21-26]. In this system, the evolution of the angular momentum
J (“the top”) is governed by two kinds of process: (i) precession of J around a fixed axis
at a constant rate and (ii) a periodic sequence of kicks that bring about an instantaneous
change in J. The Hamiltonian for this system commutes with J?, so the quantum evolution
is confined within a subspace characterized by an eigenvalue j(j + 1) of J%. Moreover, the
model is chaotic in the classical limit j — oo. This model was introduced by Haake et al.
to analyze how chaos arises as a system becomes more and more classical [26].

A particularly interesting realization of this model is in terms of a collection of spins-1/2,
where J denotes the collective angular momentum of the spins. This approach has been used
to study bipartite entanglement in the model as a function of time and initial state [21-25].
In a common scenario, the system is initialized in a spin-coherent state i.e. a minimum
uncertainty angular momentum state, and the growth of entanglement entropy of a single
spin-1/2 is tracked. The growth of entropy has been found to carry strong signatures of
chaos in the underlying classical dynamics: (i) for an initial state centered in a classically
chaotic region of phase space, the entanglement entropy grows linearly at a rate given by
the Lyuapunov exponent before reaching the saturation point, whereas, for the classically
regular case, the entropy grows only logarithmically; (ii) for initial conditions centered in
classically chaotic regions of phase space, the equilibrium entropy (also known as average
entropy) is larger compared to those centered in classically regular regions [21-25].

With recent advances in a variety of quantum simulation platforms, there has also been
a lot of interest in experimental investigations of this correlation. A quantum simulation of
the kicked top was achieved by Chaudhury et al. using the F' = 3 hyperfine ground state
of 133Cs [23]. In their experiment, the total angular momentum in the Hamiltonian was
taken to be the sum of the electron and nuclear spins of a single 3Cs atom. Consequently,
the theoretically predicted correspondence between entanglement, as quantified by the linear
entropy of the electron spin, and classical chaos was corroborated. Later, similar conclusions
were obtained by Neill et al. in their quantum simulation experiment of the same Hamiltonian

using a three-qubit ring of planar transmons [24]. Commenting on their findings, they added,
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“it is interesting to note that chaos and entanglement are each exclusive to their respective
classical and quantum domains, and any connection is surprising.”

The connection is surprising because a purely quantum property (entanglement) is being
related with a purely classical one (chaos), each one understood to have no counterpart
on the other side. The standard argument for the absence of chaos in quantum mechanics
proceeds like this. Suppose |11(0)) and |¢)5(0)) represent two initially close quantum states
ie. (11(0)][12(0)) = 1 — € (e being a small number.) Under unitary evolution of [i1(0))
and [12(0)), we should have (1;(t)[12(t)) = 1 — € for all times t. So, the states do not
separate in time and this is taken to imply that there can be no chaos in quantum mechanics
[1]. However, Ballentine has argued that a parallel argument can be constructed in classical
mechanics too if classical states are taken to be represented by probability distributions in
phase space. For two phase space distributions pi(q, p,t) and ps(q,p,t), the construction
{p1D|p2t)} = [ [ p1(q,p,t)p2(q,p,t) dgdp is a well-defined inner product on phase space
and is invariant under the Liouvillian dynamics of p; and ps. But no one can deny the
existence of chaos in classical mechanics. Ballentine then concludes that the confusion about
quantum chaos is merely a reflection of the confusion about the notion of “state” in classical
and quantum mechanics. The more adequate classical analogue of a quantum state is not a
single trajectory but a phase space distribution, and chaos in such states must be identified
by some statistical signatures [1].

One such signature is the growth of entanglement in quantum systems as discussed
above. This naturally raises the question of what would be a good classical analogue of
entanglement in the statistical interpretation of classical physics. Constructing such an
analogue is desirable for two related reasons: (i) a comparison between conceptually similar
identifiers of chaos across the classical-quantum divide can enable a fresh understanding of
the classical-quantum correspondence, especially in light of the issues raised by chaos; (ii)
since quantum chaos is still far from understood, an analysis of a classical analogue of a
quantum signature of chaos can reveal the inner machinery of quantum chaos, that would
otherwise be hidden from view.

To construct this analogue, it would be convenient to consider the meaning of entangle-

ment in the Wigner function formalism of quantum mechanics as it provides a visualization
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of quantum states in phase space. In this formulation, the state of a quantum system is
represented by a real-valued function in phase space W(q,p), called the Wigner function.
This function in many ways acts like the classical phase space density p(q, p). However, an
important difference is that W (g, p) is not really a distribution as it can take negative values
unlike p(q, p) [42, 43].

In the Wigner function formalism, two systems are entangled iff their collective Wigner
function is nonseparable i.e. if W (qy, g, p1,p2) is the Wigner function of the total system
and Wi(q1,p1) = [ [ W(a1, g2, p1,p2) dgadpa and Wa(qa, p2) = [ [ W (a1, g2, p1, p2) dqudp, are
the Wigner functions of systems 1 and 2 respectively, then W (qy, ¢z, p1,02) # Wi(q1,p1) X
W5(q2,p2). This motivates the construction of a classical analogue in terms of the sep-
arability of phase space density p. The classical state is separable iff p(q1, g2, p1,p2) =
p1(q1, p1) X p2(g2, p2) and is nonseparable otherwise, where p1(q1, p1) = [ p(q1, @2, p1, p2) dgadp:
and po(q2,p2) = [ p(q1,q2, 01, p2) dgrdp;. To quantify the degree of nonseparability, we will
use mutual information which for two random variables X; and X, is defined as [, =
I I (X1, Xo) log{p(Xl,XQ)/(pl(Xl)pz(Xg))}Xmng. Ly > 0 and Ly = 0 iff p(X1, Xa) =
p1(X1)p2(X2). For other measures of classical nonseparability, see references [7, 13, 18, 19].

In this chapter, we have analyzed the growth of mutual information in the classical
kicked top. We bipartition the total angular momentum J into two parts J; and J; and
compute the mutual information between the variables on the two sides of the partition.
We find striking resemblances between the growth of mutual information and the bipartite
entanglement. Mutual information, like entanglement, carries clear signatures of chaos in
the underlying dynamics. Under chaotic dynamics, it grows linearly at a rate proportional
to the Lyuapunov exponent. Whereas, for regular dynamics, the growth starts to slow down
well before equilibrium is attained. Similarly, initial states centered in chaotic regions of
phase space end up with a higher mutual information at equilibrium compared to regular
regions, in complete analogy with bipartite entanglement.

The organization of the chapter is as follows. In Sec. 4.2, we introduce the kicked top
Hamiltonian and describe its classical dynamics. In Sec. 4.3, we recall the correspondence

between entanglement and classical dynamics. Then, in Sec. 4.4, we present our calculations
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for classical mutual information. Finally, in Sec. 4.5, we provide a summary of the results

and an outlook for the future.

4.2 Classical Dynamics

Consider the angular momentum operator hJ = h(J,, Jy, J,) satisfying the commutation

relations [J;, J;] = ig;jpJi;. The Hamiltonian for the kicked top is then expressed in terms of

J as [26],

h Rk, X
H@:f@+£ﬁ§jm—m) (4.1)

n=—o0
The first term describes the precession of the rotor around the y-axis at a rate p/7. The
second term represents a periodic sequence of kicks separated by a period 7. Intuitively, this
term can be thought of as a sudden precession around the z-axis by an angle proportional
to J,/j, where j is the total angular momentum quantum number. Once we initialize our
system in the subspace characterized by the eigenvalue j(j + 1) of the operator J*, we stay
within the same subspace for all times since [J* H(t)] = 0. & is a dimensionless constant
which controls the strength of the kick. For this chapter, we are going to choose p = 7/2 i.e.
the top precesses around the y-axis by an angle m/2 between successive kicks.

Working in the Heisenberg picture, we are interested in tracking the evolution of J in time.
The evolution of the operator J; in n time steps can be represented as JZ-(") = (UhH" J; Un,
where U is the unitary evolution corresponding to the interval 7 between successive kicks
[26],

U = e~ is/20)2 o=i(m/2) Ty (4.2)

The evolution of J can be represented in terms of the following non-linear operator recursion

relations which determine how J = J@ is updated to J' = J (+1) after each time step [26],

1 K 1
JL= (L +idy)e T ) fhe,

9

1 ; —iE(Jp—1
%:Zuﬁm@eﬁJﬂ+ho (4.3)
J = —J,.
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Figure 4.1. Classical phase portraits for the kicked top. The trajec-
tories of rescaled angular momenta X = J/j in the classical limit j — oo,
represented in terms of the polar and the azimuthal angles on a unit sphere.
As k is tuned from low to high, an order-to-chaos transition occurs in the
phase space. Red markers represent the trajectories corresponding to the ini-
tial condition 6y = 37 /4, ¢y = 37/4 (black marker.)

Defining the rescaled angular momentum as X = J/j and taking the classical limit 7 — oo,
we can track the evolution of the now real-valued X = (X,Y, Z) on the surface of a unit

sphere using the following recursion relations obtained from (4.3),

X' =Re{(Z +iY) e "X}
V' =Im{(Z +iY) e "X} (4.4)

7'=-X.
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In Fig. 4.1, we have plotted some examples of the phase portraits in spherical coordinates
(i,e. X =sinfcos¢p, Y = sinfsing and Z = cos#) that are produced by the recursion
relations (4.4) for different values of the kick strength x. As we increase the kick strength &,
chaos emerges in the phase space and islands of regularity begin to shrink. Eventually, for a

large enough value of x, chaos completely takes over.

4.3 Quantum Entanglement

1.0

0.8
Sun

0.6

0.4

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5

5.

Figure 4.2. von Neumann entropy and linear entropy for spin-1/2 systems.

Consider a collection of N spins-1/2 with the corresponding spin operators S; = (Siz, Sy, Siz)

such that the dynamics of the total angular momentum J = SV 'S; is governed by the

Hamiltonian (4.1). In terms of the spin operators S;, the Hamiltonian can be re-written as

HH =", +’“”"<§S? +y8, S-) > ot —nr) (45)
2T Yo2j = o | |

i=1 i#] n=—00

Before each kick, each spin independently precesses around the y-axis by an angle 7/2.
Noting that (372, S2 + Y545 Si2S;.) = J. (31 Si.), the kick can be understood as causing
a sudden precession of each spin around the z-axis by an angle proportional to J,/j, a

collective variable of the system.
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Figure 4.3. Linear entropy. Linear entropy of a single spin S = 1 — Tr;(p?)
as a function of time steps T and initial orientation (g, ¢o). (a) and (b) show
the time dynamics of S with the initial orientation (6y = 37/4, ¢9 = 37/4) for
k = 0.5 and k = 2.5 respectively. (c) and (d) display the equilibrium value S,
of linear entropy as a function of the initial orientation (6y, ¢o) for £ = 0.5 and
k = 2.5 respectively. The system size is taken to be N = 40. S, is estimated
by averaging S over an appropriate time interval after reaching saturation. For
(c), the average is performed for 60 < 7" < 100 whereas for (d), the average is
computed over 20 < T' < 40. There is a striking resemblance of the plots (c)
and (d) with the corresponding classical phase portraits shown in Figs. 4.1(a)
and (c).

In this section, we recall the dynamics of bipartite entanglement generated by this Hamil-

tonian. We initialize the system in the spin-coherent state,

N

W(t = 0)) = ® ‘907 ¢0>1 = eXp{ieo(Jx sin ¢g — Jy COS (bO)} ‘L]) : (46)

=1

This is the minimum uncertainty angular momentum state pointing along a certain direction
(6o, ¢o) for a given total angular momentum quantum number j. For N spins-1/2 pointing

in the same direction, we have j = N/2. |0y, ¢o) is the spin-1/2 state pointing along (6y, ¢o)
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on the Bloch sphere i.e. [0y, ¢o) = cos(6p/2)|T) + e **sin(hy/2) [{). The initial state is
completely separable, however, entanglement is generated as a result of the unitary evolution
(4.2).

To track the dynamics of bipartite entanglement, we use linear entropy of a single spin-1/2
defined as S = 1 — Try(p?), where p; is the reduced density matrix for a single spin. S =0
for a pure state, and is maximized at S = 0.5 for a completely mixed state. This measure
is used only for convenience; qualitatively, the results are expected to be independent of the
choice for pure states [21]. Even quantitatively, there is a nearly linear relationship between
von Neumann entropy and linear entropy for spin-1/2 states as shown in Fig. 4.2.

In Figs. 4.3(a) and (b), we have plotted the time dynamics of entropy for the regular
(k = 0.5) and chaotic (k = 2.5) scenarios, respectively. For both cases, the initial state is
centered at (0y = 37 /4, ¢ = 37/4). The dynamics has been plotted for three different system
sizes N = 40, 100, 200. For both scenarios, entropy grows consistently before saturating
after some time 7,,. For the regular case, T, increases with the size of the system N as
O(v/N). On the other hand, the increase is only logarithmic O(In N) for the chaotic case
[25]. Moreover, the rate of entropy growth in the regular case starts to slow down well before
reaching saturation, signifying a logarithmic growth of entropy. However, for the chaotic
case, the growth is linear at a rate given by the Lyuapunov exponent [25]. For larger times,
the entropy undergoes sequences of collapses and revivals, which recede into the indefinite
future as the system size approaches the thermodynamic limit.

In Figs. 4.3(c) and (d), equilibrium values of entropy S, have been plotted as a function
of the initial orientations (6o, ¢o) for N = 40. S, is estimated by averaging the entropy over
a chosen time interval after saturation. Remarkably, the plots of entanglement reflect the
structure of the classical phase space in Figs. 4.1(a) and (c¢). For k = 2.5 specifically, we find
that the regions of chaos in classical phase space correspond to regions of higher entropy on

the quantum side and the regions of regularity correspond to a lower entropy [24].
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Figure 4.4. Linear entropy in the thermodynamic limit. We have
estimated the equilibrium value of linear entropy in the thermodynamic limit
Sgg as a function of the initial orientation (6, ¢o). For each (6, do), S =
((AX)?) /2 is computed classically by evolving 200 trajectories sampled from
a region of angular spread sin §gA0A¢ = 1/j for j = 100 centered at (6o, ¢).
For both plots, S* is averaged between 400 < T < 500.

Finally, to obtain an estimate of entropy in the thermodynamic limit, we note that linear

entropy for a state symmetric with respect to all the spins can be expressed as [22],

S =1=Tra(pd) = 51— (L) + () + (1), (4.7)

DN | —
<
no

As j — oo, this becomes § = ((AX)?) /2 where (AX)?) = ((3%) = (3)*)/2. We can
then compute ((AX)?) in the classical limit to estimate S in the thermodynamic limit. The
results for this calculation are shown in Fig. 4.4. For each (0, ¢y), we evolved 200 trajectories
initialized in a region of angular spread sin 0gA0A¢p = 1/j centered at (6, o) to calculate
((AX)?). These plots contain some extra minima regions (i.e. red regions) located around
the fixed points of the classical phase space [Figs. 4.1(a) and (c)] that were not captured in
Figs. 4.3(c) and (d).

4.4 Classical Mutual Information

In the Introduction, we have motivated a classical notion of nonseparability quantified

by mutual information. In this section, we use that measure to track nonseparability in the
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classical kicked top. Suppose we bipartition the system by dividing J into J; and J5 so that
J =J1+J,. The Hamiltonian (4.1) can then be re-expressed in terms of J; and J, as

hm he , 9 =
H(t) = 5 (Jiy + Joy) + 27(‘]12 + J3, +2J1.2.) > 6(t —n7). (4.8)
J3 and J3 are conserved quantities since [J7,, H(t)] = 0. The unitary evolution operator

over one cycle is U = U,2U;2U, where U,z = e~ iR/2) I8, o= im/2D) T3, [}, = e~ iK/i) 12022 gnd
U, = e~ /2Ty e=Um/2) 2y We can compute J| = UTJ, U to produce the following recursion
relations for the update of angular momentum of subsystem 1 (see supplementary information

S1,)

1 .
T = 5 (s + i) e § et hats) Ly
1 .
Ji, = f(le +iJyy) e 15 et aats) 1y (4.9)
L
J{x = _Jlx'

For J,, we only need to interchange the indices 1 and 2 in the above equations. Finally,

defining X, 5 = J; 2/ and taking the classical limit j — oo we get

X{ =Re{(Z; + iYy) e rX1tX2)}
Y] = Im{(Z, + iY;) e”"1tX2 (4.10)

7l = —X;.

We take subsystem 1 to be the analogue of a spin-1/2, while subsystem 2 represents the rest
of the system. This motivates our choice ||J;|| = 1/2 and ||J2|| = 5 — ||J1]|]. We initialize
the system in a completely separable distribution i.e. the distribution for the total system
is simply a product of the marginal distributions for subsystems 1 and 2. Both marginal
distributions are taken to be uniformly distributed around (6, ¢y). For subsystem 2, the
angular spread of the initial distribution is taken to be sin pA0A¢ = 1/j, in analogy with
the quantum state (4.6). On the other hand, for subsystem 1, the initial angular spread is
fixed at sin §gAOA@ = 1/4. We sample initial conditions from this initial distribution for the
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total system, evolve them into trajectories and estimate the mutual information I;5 between

the variables X; = Ji,/j and Xy = J5,/j based on k-nearest neighbor statistics [44].

(a) (b)
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Figure 4.5. Mutual information growth and system size. Mutual in-
formation I15 between the variables X; = Ji,/j and Xy = Jo,/j with initial
orientation (fy = 37/4, ¢ = 3w /4) for k = 0.5 [(a) and (c)] and k = 2.5 [(b)
and (d)], respectively. The system starts in a completely separable distribution
with angular spread sin gA0A¢ = 1/4 for subsystem 1 and sin §pA0AP = 1/j
for subsystem 2. A sample of 500 points is drawn from this distribution and
the corresponding trajectories are evolved to compute the statistics. (a) and
(b) show the growth of I15 with time, whereas, (c) and (d) display the ad-
vancement in saturation time 7T¢, with system size j.

In Fig. 4.5, we have shown the dynamics of I, for different system sizes j (recall j = N/2.)
Fig. 4.5(a) shows the growth of I, for regular classical dynamics. The rate of growth decays
with time, a signature of logarithmic growth. Moreover, as the system size j increases, the
growth slows further as the system is expected to take longer to reach equilibrium. Plot (c)
shows that the saturation time T, increases as O(+/7) with j. All these trends are completely

analogous to the growth of quantum entropy for classically regular phase space.
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Figure 4.6. Mutual information growth and Lyuapunov exponents.
A comparison of the growth rate of I15 with the corresponding Lyuapunov
exponents for four different cases: (a) k = 2.5, (6p = 37/4,¢9 = 37/4),
Ao = 0.145; (b) K = 2.5, (6p = 1.0,¢9 = 7/10), A\, = 0.143; (¢) K = 6.0,
(o = 31/4,¢9 = 3mw/4), A\e = 0.978; (d) K = 8.0, (6y = 37/4, ¢y = 37/4),
Aq¢ = 1.254. For all these scenarios, 7 = 100, and 200 samples are drawn from
the initial distribution.

In Fig. 4.5(b), we have plotted the dynamics of I3 for chaotic classical dynamics. Clearly,
115 grows almost linearly once the initial transient subsides, during which it does not grow
at all, for larger j. Moreover, plot (d) shows that the saturation time 7., for I, just like
quantum entropy, increases with j much more slowly as O(In j) compared to the regular case.
The uniform growth rate for quantum entropy under chaotic classical dynamics is known to
be proportional to the positive Lyuapunov exponent! of the corresponding classical dynamics
[25]. In Fig. 4.6, we present evidence that this holds for mutual information ;5 too. We
have compared the growth rate of I15 with the corresponding Lyuapunov exponents for four

different cases. To estimate the Lyuapunov exponents, we used the standard algorithm of

1More generally, the growth rate is proportional to the sum of the positive Lyuapunov exponents, but for
the kicked top, there is just one such exponent.
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Benettin et al [25, 45-47] (see supplementary information S-II.) In all these cases, we find
that the growth rate is ~ 0.5 x A, where )\ is the positive Lyuapunov exponent corresponding

to the point (6y, ¢p).

Figure 4.7. Equilibrium mutual information. Equilibrium value of mu-
tual information I75 is estimated as a function of (g, ¢o) for: (a) Kk = 0.5
and (b) k = 2.5. For each (6y, ¢y), 200 trajectories are sampled to compute
the statistics and j = 100 is used. To obtain Ij4, I;5 is averaged between
400 < T < 500 for both cases. The plots are remarkably similar to equilib-
rium entropy Seq in Figs. 4.3 and 4.4.

Finally, in Fig. 4.7, we have plotted the equilibrium value of I;5 as a function of the
initial orientation (6, ¢p) for regular (k = 0.5) and chaotic (k = 2.5) cases, respectively.
The equilibrium value I74 is estimated by averaging I, in the time range 400 < T < 500 for
both cases. The plots obtained look remarkably similar to the plots of equilibrium entropy
Seq in Figs. 4.3 and 4.4. Like quantum entropy, classical mutual information as a function
of the initial orientation is also able to reflect the structure of the classical phase space.
So, the results in Figs. 4.5, 4.6 and 4.7 show that the signatures of chaos associated with

entanglement have clear analogues in the statistical interpretation of classical mechanics.

4.5 Summary and Outlook

In this chapter, we have demonstrated that the signatures of chaos displayed by biparitite
entanglement can also be observed through a classical statistical measure. Our measure is

based on the mutual information between the marginal phase space densities of individual
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subsystems. We have evolved this quantity dynamically using the kicked top Hamiltonian.
Our results can be summarized as follows: (i) mutual information I;5 grows logarithmically
for regular classical dynamics, whereas, the growth is linear and the rate of growth is propor-
tional to the Lyuapunov exponent for chaotic dynamics; (ii) the saturation time 7., grows
with system size j = N/2 as O(y/j) for regular dynamics and O(In j) for chaotic dynam-
ics; (iii) the equilibrium mutual information I3, estimated by averaging I, is larger for
initial conditions that produce chaotic trajectories than those that lead to regular motion
for a mixed regular-chaotic phase space. All of these are well-known signatures of chaos in
bipartite quantum entanglement [21-25].

Although this study has been conducted using a specific measure of classical nonsep-
arability, we believe that the results should be independent of the choice of measure (for
other measures, see references [7, 13, 18, 19]). Moreover, while the focus herein has been
on bipartite entanglement, quantum entanglement is certainly not restricted to bipartite
measures only. Multipartite entanglement measures such as quantum Fisher information are
also known to exhibit signatures of chaos [25]. Therefore, an important direction for the fu-
ture would be to extend this classical analogy to multipartite measures. Another important
question that we leave for future exploration is whether this analogy carries over to more
nontrivial states beyond the simple spin-coherent states considered in this work.

Finally, these results might also have implications for the foundations of classical and
quantum mechanics. In recent years, Gisin et al. have advanced an alternative interpretation
of classical mechanics as an attempt to bridge the conceptual gap between classical and
quantum physics [48-54]. Their basic claim is that the orthodox understanding of classical
mechanics takes for granted an assumption that they have called the principle of infinite
precision; that physical quantities can be specified to an infinite number of digits. Once this
assumption is relaxed, they have argued, many features exclusively attributed to quantum
physics such as the fundamental role of measurement and the nonseparability of states appear
analogously in classical physics too [54].

We have argued in this chapter that classical nonseparability certainly reveals new con-
nections between classical and quantum realms. Gisin et al. go a step further and allow

the possibility for classical nonseparability to be a physically real phenomenon. However,
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the question will remain unresolved until experimental investigations are carried out. One
possible route could be to monitor the motion of charged particles in classical and quantum
wells [565]. Charges moving between parallel planar potential barriers under a magnetic field
tilted with respect to the barriers exhibit chaotic dynamics. The emergence of chaos in this
system is described by the kicked top map in certain regimes. In the classical version of the
system, chaos is accompanied with a large energy transfer between the longitudinal and the
cyclotron motion of the charges; however, this energy exchange is suppressed in the quantum
limit [55]. Further analysis will be needed to investigate the possible experimental signatures

of classical nonseparability in this system.
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Supplementary Information

S-I Update of Angular Momentum

To compute J} = UtJ U, we first note that Ul,J,U.2 is as follows [26]

1 ‘K
U;r2 JlacUz2 = 5(‘]11 + Lle) eL?(JIZ—’—%) + h.c.
1 K 1
Ul Jy,Usz = o iz + i) i) e, (4.11)
2

[];le[]z2 = le'
On the other hand, UITQJ 1U12 simply rotates J; in the following way

UszJuUw = Ji, cos (5%) — Jy, sin ({%)

U{rQleU12 = Jy, sin (/{]22) + Jy, cos (K/JQZ) (4.12)
J j

U£L2J12U12 = le.

Combining (4.11) and (4.12), we get

1 "
UhULoUsUtz = 5 (i + i) €527 e,
1 ks
UL UL J1,U.2Upy = 57 (e + i1y) e's (Nt (4.13)
2

UlLULJ1.U2Uy = Jis.

Finally, performing the rotation around the y-axis gives us the following answer for J| =

UtIhU = UJULULILU.ULU,,

1 "

T, = §(J1z + iJ1y) ¢ 45 (JatTaats) + h.c.
1 "

Jio = 52 (s 1) T e, (4.14)
L

J{a: - _Jlx-
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S-II Calculation of Lyuapunov Exponents

In this section, we apply the procedure of Benettin et al. [25, 45-47] to estimate the
Lyuapunov exponents for the kicked top map (4.4). Suppose our initial point is X, =
(sin By cos ¢, sin by sin ¢y, cos By). First, we pick two independent tangent vectors (W(()l), W(()Q))
at the point X on the unit sphere. These vectors can be chosen at random. For our calcu-

lations, we choose

cos 6y cos ¢y sin ¢
W(()l) = |cosfysingy | ; W(()2) = | —cos g - (4.15)
—sin 80 0

X; is updated through X, = (Fx[Xi], Fy[X;], Fz[X;]) where Fx, Fy and Fj are given in

eqs. (4.4). The tangent vectors are updated using the map W§1+)1 = A[X|] WY where

Ox, Fx[X;] Oy, Fx[X;] 0z Fx[X]

A[X] = |0x, Fy[Xi] Oy Fy[Xi] 0z Fy[Xi]| - (4.16)
Ox,F7[Xi] 0Ov.Fz[Xi] 07 F7[X]

3 K3

The procedure to obtain the Lyuapunov exponent is as follows [25]:

1. Evolve the tangent vectors (Wgzl)s, Wgzl)s) for s time steps to (WZ(-;), Wg))

2. Apply the Gram-Schmidt procedure:

o = WY, VO =W/ay; (4.17)

18

1
B = W2 - (vO. W vO| vE = W (v wOyvO) (4.18)

3. Reinitialize Wg) =V and WZ(? =V®,
Then, for large n, an estimate of the postive Lyuapunov exponent \ is obtained through
A — 1 zn: In ;. (4.19)
ns —

112



This expression converges to A in the limit n — oo. Fig. 4.8 shows the convergence of

Lyuapunov exponents for the four scenarios of Fig. 4.6.
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Figure 4.8. Convergence of Lyuapunov exponents. Convergence of
Lyuapunov exponents for the four scenarios of Fig. 4.6.: (a) k = 2.5,
(0g = 31/4,p9 = 31/4), s =5; (b) k = 2.5, (0y = 1.0,¢9 = 7/10), s = 5; (c)
Kk =6.0, (0p = 37/4, 00 = 31/4), s = 10; (d) k = 8.0, (0y = 37/4, ¢y = 37/4),
s = 10.

113



5. OUTLOOK

The entire edifice of modern physics can be understood as resting upon five pillars: classi-
cal mechanics, quantum mechanics, relativity, statistical mechanics, and condensed matter
physics. Other modern fields of study such as quantum information and computing, quantum
field theory, quantum gravity etc. arise from the interactions between these foundational sub-
jects. Now, the health of any structure depends not only on the individual strength of each
of the foundations supporting it but also on their mutual affinity. If the overall organization
lacks coherence, the stability of the entire structure is compromised.

For the case of physics, the foundational subjects individually are backed up by rigorous
historical developments. Moreover, they generally show a good deal of compatibility with
each other. However, there are instances where coherence is missing; and the consequent
risk for the overall health of physics makes these instances all the more worthy of our atten-
tion. One such incompatibility is found in the well-established discord between classical and
quantum mechanics. The problem of interpretation in quantum mechanics is a direct man-
ifestation of this divide. Arguably, this is also reflected in the problem of quantum gravity
— the problem of reconciling quantum mechanics and relativity, which is another example
of such incompatibility — since relativity inherits some very prominent features of classical
mechanics.

Roughly speaking, physical processes occurring on the scale of our everyday reality are
understood using classical mechanics. On the other hand, quantum mechanics is concerned
with phenomena on the scale of electrons, atoms and molecules. Quantum mechanics has
had extraordinary success in this domain. However, what is quite perplexing about quantum
theory is that despite its extraordinary empirical success, a coherent conceptual understand-
ing of the theory has eluded us so far [1], as aptly summarized by Richard Feynman, “I think
I can safely say that nobody understands quantum mechanics [2].” This is the problem of
interpretation in quantum mechanics. This problem essentially reflects a lack of coherence
between the “quantumness” of the microscopic realm and the “classicality” of our everyday

reality as they are currently formulated.
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Table 5.1. A comparison of the mathematical formalisms of classical and
quantum mechanics.

Classical Quantum
Mathematical Functional analysis/Linear
Calculus algebra (for states) 4+ Calculus
Framework :
(for dynamics)

The state of a system is a
vector in a Hilbert space that is
associated to that system. The

The state for an N-particle Hilbert space H for an
system is specified by providing | N-particle system is simply the
State the real-valued positions and tensor product of the Hilbert
momenta for all the N particles spaces H; associated to each
i.e. the state is a point in the particle i.e.
6 N-dimensional phase space. N
i=1
The time evolution for any
state v is given by the
The time evolution of the state Schrodinger’s equation,
{z;,p;} is given by the L
Hamilton’s equations, ma = Hy,
G = {q;, HY = OH where H is the Hamiltonian
Dynamics ' v dp;’ (operator) of the system.
= {ps, H) — _3H Alternatively, in the Heisenberg
P =i, - 0g’ picture, the time evolution for

where H is the Hamiltonian of
the system.

an observable O is given by,

dO
h— = HI.
L dt [07 ]
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Table 5.2. A brief sketch of the prominent distinguishing features across the

classical-quantum divide.

Classical

Derivative

Deterministic

States are separable

Local

Waves and particles are distinct
categories

No role for observer
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Fundamental

Probabilistic

States are nonseparable

Nonlocal?

Wave-particle duality

Observer is central to physics



One of the main concerns of the question of interpretation is the process of measurement.
A quantum object under ordinary circumstances can be in a superposition of states, but
as soon as it comes into contact with a measurement device (belonging to the classical
realm) the superposition is lost and the state “collapses” onto a single value for the variable
being measured. What is there in a measurement that makes quantum objects lose their
“quantumness?” What counts as a measurement and what does not? These are some of the
central questions in the foundations of quantum mechanics. Other questions are related to
the nature of the wavefunction and non-locality. For example, is the wavefunction a complete
description of the system or is it merely a convenient statistical approximation reflecting our
lack of information? Does quantum theory imply non-locality etc. [1]?

Quantum interpretations have been hotly debated for the last century. The icons of 20th
century physics such as Neils Bohr, Albert Einstein, Werner Heisenberg, John S. Bell and
others have each developed their unique accounts to wrestle with quantum “bizarreness.”
Nevertheless, the physics community has never appeared to come any closer to a consensus.
A common feature, though, of the vast majority of approaches to quantum interpretation
is that they were developed in the early years of quantum mechanics. Thus, they do not
take into account developments that have come to light only in recent decades, such as
those related to emergence and chaos. In previous chapters, we have already presented
some technical investigations into these themes. Now, in this last chapter, our goal will
be to outline the possible implications of emergence and chaos for the more comprehensive

problem of the classical-quantum correspondence.

5.1 A comparison of “Classicality” and “Quantumness”

In order to compare the prominent features of classical and quantum mechanics, it will
be helpful to recall the mathematical formalisms of the two theories. Table 5.1 presents a
short summary of the two formalisms. Perhaps, the most notable difference between the two
is found in their respective definitions of the state of a system. While classical states are

simply collections of real-valued variables, the structure of quantum states seems to be a bit
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more intricate (see also Fig. 1.1.) It is this elaborate structure of the state that underlies
the many “bizarre” features of quantum mechanics.
Keeping Table 5.1 in view, the main distinguishing features of the two theories can be

identified as follows:

1. Derivative vs. Fundamental
Quantum mechanics is employed to understand phenomena occurring on the atomic
and sub-atomic scales. Classical mechanics, on the other hand, describes physical
processes taking place in the everyday world around us. According to the reductionist
approach prevalent in physics, the physics of a macroscopic object should be completely
explicable in terms of the physics of its microscopic constituents. Such a paradigm
necessarily implies that quantum mechanics is the more fundamental theory of the
two. In this view, classical mechanics becomes merely a limiting case of quantum

mechanics.

2. Deterministic vs. Probabilistic
Classical mechanics is widely held to be fully deterministic. Given the present state
of a system, all its past and future states can be precisely determined using Hamil-
ton’s equations (see Table 5.1.) While a quantum state also evolves deterministically
under ordinary circumstances, the process of measurement disrupts this determinism.
Quantum mechanics, at best, can only tell us the probabilities of possible outcomes in

a measurement.

3. Separability of states
The state of a classical system is completely specified by defining the states of all its
constituents. There is essentially no difference between the state of the whole and the
states of the parts. On the other hand, the state of a quantum system is, in general,
nonseparabale in terms of the states of its constituents due to the property of quantum

entanglement.

4. Locality

Classical mechanics adheres to the principle of locality. According to this principle,
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all physical interactions result from local pushes and pulls. That is, objects cannot
influence each other from afar, they have to be brought into contact directly or by
exchange of information between them through a third body that comes into contact
with both of them. However, the issue of locality has been quite controversial in quan-
tum mechanics. Nevertheless, the “wholeness” of composite quantum systems seems to
suggest that quantum mechanics supports nonlocality since a measurement performed
on one subsystem can immediately “collapse” the state of another subsystem an ar-
bitrary distance away that was entangled to the first subsystem!. Einstein famously

called this spooky action at a distance [1, 3].

5. Waves vs. Particles
In classical mechanics, waves and particles are taken to be distinct categories. A
classical particle doesn’t exhibit wave-like behavior and vice versa. On the other hand,
in quantum mechanics, a single object can demonstrate both particle-like and wave-
like characteristics. Matter can act like waves and waves can act like matter. This is

known as the wave-particle duality.

6. Role of observer
In classical mechanics, the observer has no active role to play in the physics of the
system. In quantum mechanics, the interaction of the system with the observer is
a crucial component in its physical description. It is precisely this interaction that
brings about the “collapse” of the quantum state. However, the set of attributes that

constitutes an observer is not clear [1].

This comparison has been summarized in Table 5.2.

5.2 The Quantum Interpretation Problem

As stated earlier, the central concern of the quantum interpretation problem is to make
sense of the “quantumness” of the microscopic realm in light of the “classicality” of our ev-

eryday experience. Or in other words, to come to terms simultaneously with the two columns

1 Note that quantum entanglement entails both nonseparability and nonlocality.
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of Table 5.2 in a coherent worldview. The questions involved in these interpretational issues

can be broadly classified into three categories:

1. The first category of questions pertains to the issue of completeness of the quantum

description of a system. Some examples of these questions are [1]:
— Is the quantum state a complete description of a physical system or is it merely
an effective statistical representation?
— Is it possible to complement the quantum state with some hidden variables for a

more comprehensive account of the system?

2. The quantum state of a system evolves linearly according to Schrodinger’s equation
under normal circumstances (see Table 5.1). However, when the system comes into
contact with a measurement device, the state of the system suddenly “collapses” to
one of the eigenstates of the measured observable in a nonlinear fashion. The fric-
tion between these two different kinds of dynamics is referred to as the measurement

problem. Some issues involved in this problem are [1]:
— Why does the linearly evolving quantum state suddenly “collapse” upon measure-
ment?

— Which physical processes can be considered as measurements and what properties

must a measurement device possess?
— Is the “collapse” of the quantum state a real physical process?
— What is the role of the observer in “collapse” of the quantum state?

3. The last set of questions is concerned with quantum entanglement i.e. the nonseparable

and nonlocal nature of the quantum state. Examples are [1, 3]:

— Does the nonseparability of quantum states imply true nonseparability in the phys-

ical world?

— Does quantum mechanics imply nonlocality?
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— What consequences does quantum nonlocality have for spacetime structure and

causality?

Numerous viewpoints have been put forward in the history of quantum mechanics to
address these issues; the most prominent ones being: Copenhagen interpretation, Everett’s
many-worlds interpretation, Bohmian mechanics and dynamical collapse theories. Neverthe-
less, all of them undertake the same fundamental strategy. They accept without criticism
the classical worldview and try to explain the existence of “quantumness” in light of that;
that is they all attempt to justify the second column in Table 5.2 given the first. So, all the
activity occurs on the quantum side of the correspondence, and no possibility for a revision
of the classical side is considered. While this makes sense in the historical context of these
developments since most of these approaches were formulated in the early years of quantum
mechanics; however, this attitude towards the classical is no longer tenable today due to the
incredible 20th century developments in classical mechanics which have completely revised

our understanding of the subject [4, 5].

5.3 Implications of Emergence and Chaos

The revolutions of quantum mechanics and relativity overshadowed all the other 20th
century developments in physics. However, while these nascent fields were attracting all
the attention, classical mechanics was silently undergoing a revolution of its own [6]. Henri
Poincaré had already observed the divergence of the perturbation series for the three-body
problem around the end of the 19th century. But it was realized only after the 1950s that
these difficulties were due to a fundamentally new type of dynamical behavior in systems
satisfying Newton’s laws. It was discovered that the vast majority of classical systems exhib-
ited what was called instability of motion; two phase space trajectories starting arbitrarily
close would diverge greatly in time [4, 5]. This dynamical behavior of classical systems has
been termed as chaos (see also Sec. 1.3).

The discovery of unpredictability at the heart of classical mechanics, which throughout
history has been the cornerstone of scientific determinism, is truly revolutionary. The still

prevalent deterministic view of classical mechanics implicitly assumes that the initial condi-
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tions for a given system can, in principle, be specified to an infinite precision. However, this
assumption has been challenged on both ontological (the nature of reality) and epistemolog-
ical (the nature of knowledge) grounds [7-15]. Once this assumption is relaxed, it has been
argued, the features that have been held to be exclusively quantum (see second column in
Table 5.2) start to become visible in classical mechanics too [15].

Max Born is noted to have said as early as 1955 that, “statements like ‘a quantity x has
a completely definite value’ (expressed by a real number and represented by a point in the
mathematical continuum) seem to me to have no physical meaning [8]”. In fact, this seems
to be one of the key messages of Heisenberg’s uncertainty principle as well; it rules out the
possibility of identifying the state of a system with an infinitely precise phase space point.
In recent years, Gisin et. al. have presented an information-theoretic approach to this issue.
They have argued that real numbers cannot be physically real since they contain an infinite
number of bits but a finite volume of space can only hold a finite amount of information
[9-15]. However, regardless of whether real numbers are real or not, practically there is no
measurement in the world that can determine any physical quantity to infinite precision [7].
Thus, even classical mechanics can, at best, make only probabilistic predictions for the long
time behavior of physical systems. Moreover, once a probabilistic interpretation of classical
mechanics is admitted, it too has to deal with its own version of the measurement problem
[10] i.e. to explain how potential outcomes become actual; thus, potentially allowing the
observer a more active participation in the physics of the system.

In the absence of infinite precision, classical states are more faithfully represented by
phase space distributions instead of points in phase space. Naturally, classical mechanics in
terms of phase space distributions is expected to show greater affinity with quantum mechan-
ics since both phase space distributions and quantum states admit statistical interpretations.
Firstly, such a formulation of classical mechanics is more likely to display wavelike charac-
teristics than the traditional version since phase space distributions stretch across a region
of phase space like quantum states. Moreover, phase space distributions by virtue of being
probability distributions are nonseparable, by definition i.e. the distribution for a system
cannot, in general, be written as a product of the distributions for the corresponding sub-

systems. This enables the possibility for genuine nonseparability in classical mechanics [15].
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We have already discussed some of its implications in Chapter 4. Furthermore, if these cor-
relations are real, the natural question to ask next is whether these correlations survive as
the parts of the system are separated in space akin to quantum entanglement [15]. Not only
does this give an opportunity to investigate potential nonlocal physics in classical mechan-
ics but an answer to this question can also help in clarifying the conundrums surrounding
nonlocality in quantum mechanics.

Finally, we turn to the implications of emergence. We have already discussed that a
reductionist approach to physics necessitates the understanding of classical mechanics as
a limiting case of quantum mechanics. Emergence is an alternative paradigm that allows
for the appearance of genuinely new laws and properties as we move up on the scale of
complexity (see Sec. 1.2.) We have already seen examples of this in the study of phases of
matter and phase transitions in the preceding chapters. The advantage of this viewpoint
for the classical-quantum correspondence is that it doesn’t merely reduce one side of the
duality into the other; instead it allows us to appreciate classical mechanics as a fundamental
description of nature in its own right [16, 17]. Just like chemistry is not mere applied physics,
and biology not applied chemistry [16], so classical mechanics is not mere applied quantum
mechanics.

Emergence and chaos are still in their infancy despite all the details that have so far been
discovered about them. A comprehensive understanding of both the principles of emergence
and the manifestations of chaos beyond simple classical systems is still missing. However, the
preceding discussion makes clear that whatever little we know about them already demon-
strates great promise in addressing the divisions that permeate physics. These new paradigms
outline a roadmap to carry these problems beyond old discussions that despite their extraor-
dinary value have ended up deepening these divisions and led to an overall disinterest in
these issues as expressed in the popular maxim “shut up and calculate!” In the words of
Prof. Ballentine [18]: “The ongoing debates about the interpretation of quantum mechanics
have often taken place in forums such as the measurement problem and Schrodinger’s cat
paradox. I urge that we move beyond those old forums, and consider instead the more gen-
eral problem of how classical properties emerge from quantum mechanics. Quantum chaos

appears as a special case of this general problem, being the study of the emergence of classical

123



chaos from QM.” We hope that the optimism surrounding emergence and chaos is realized

and further developments along these lines spark new revolutions in physics.
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