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ABSTRACT

The remarkable rise of quantum simulation as a viable strategy for studying many-body

phenomena has introduced an entirely new dimension to research in quantum mechanics.

These platforms offer unprecedented versatility and control over the interactions between

their fundamental degrees of freedom. Thus, they present an opportunity for the first time

to experimentally investigate arbitrary Hamiltonian systems, even those that might not occur

naturally. The vast majority of these platforms employ a qubit architecture, that is, their

fundamental degree of freedom is a single qubit that can mathematically be described by a

spin algebra. Therefore, the most natural Hamiltonians to study using these architectures

are spin Hamiltonians.

Spin is the intrinsic angular momentum associated with quantum particles that dictates

their magnetic moments and quantum statistics. However, Hamiltonians involving other

kinds of degrees of freedom may also be mathematically described by a spin algebra; the

Hamiltonians used in quantum simulators being a prominent example. Spin Hamiltonians

have been known to demonstrate an incredible variety of phases of matter, ranging all the

way from the well-known magnetic phases such as ferromagnets and paramagnets to the

recently discovered exotic quantum phases such as quantum spin liquids. They have been

the subject of extensive theroretical and experimental studies for many decades and have

revealed fundamental insights into the emergence of quantum phases and phase transitions.

Moreover, spin systems have also proved to be ideal settings for investigating the man-

ifestations of chaos in quantum systems such as through the dynamical generation of en-

tanglement. Given the significance of these two themes, emergence and chaos, for physics

in the 21st century, the availability of quantum simulation architectures presents an almost

miraculous opportunity for carrying out deeper explorations into the emergence of phases of

matter and quantum chaos using spin systems as our guideline. This is precisely the goal of

this dissertation. This dissertation is based on three projects:

(i) Finite-size scaling on a digital quantum simulator using quantum restricted Boltzmann

machine,

9



(ii) Simulations of frustrated Ising Hamiltonians using quantum approximate optimization,

(iii) A classical analogue of entanglement for a kicked top.
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1. INTRODUCTION

One of the most surprising properties of quantum particles that separate them from their

classical counterparts is their intrinsic angular momentum, known as spin. Spin imparts a

magnetic moment to these particles and governs their statistical properties – it determines

whether the particles are bosons or fermions. Spin of electrons is the basis for Pauli’s ex-

clusion principle which explains the stability of matter. In atomic and molecular physics,

it accounts for the higher resolution details of the energy spectra such as fine and hyperfine

structure. In condensed matter physics, the spin of electrons and nuclei is essential in ex-

plaining the magnetism of materials, superconductivity, superfluidity and many other exotic

phases of matter. In quantum field theory, the language of the Standard model, the spin of

a particle determines the nature of the quantum field that must be invoked to describe it.

Introduced by Wolfgang Pauli in 1924, it is an indispensable ingredient in accounting for

physical phenomena on all scales ranging from the astronomical all the way down to particle

physics.

Emergence and chaos are two themes that have been on the forefront of physics research

for the last few decades. Emergence is concerned with the study of novel phenomena that

arise as we move up on the scale of complexity to larger and larger collections of atoms and

molecules. Remarkably, each new level of complexity demands the formulation of entirely

new properties and laws for a description of the associated phenomena [  1 ,  2 ]. The standard

example of this is found in the description of phases of matter and phase transitions in

condensed matter. Chaos, on the other hand, is concerned with the dynamical behavior of

physical systems; in classical physics, among other features, it is characterized by the ex-

tremely sensitive dependence of trajectories on initial conditions. The quantum ramifications

of chaos, however, are not yet as well understood, and this is a subject currently undergoing

rapid growth. Although still in nascent stages of their development, both emergence and

chaos are radically new modes of viewing physical phenomena, inviting us to revisit the long-

standing problem of classical-quantum correspondence that pervades all of modern physics

[ 3 ].
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Meanwhile, the study of quantum many-body phenomena is also being revolutionized

through the remarkable recent advances in quantum simulation technologies. A quantum

simulation is carried out by mapping a given system to a versatile quantum architecture

that is much easier to control and manipulate in a laboratory setting. Classical simulations

of similar systems run into difficulties due to the exponential scaling of Hilbert spaces.

Quantum simulations bypass these limitations by using an architecture that is fundamentally

quantum. These architectures allow us to track the emergence of phases of matter and chaotic

dynamics in quantum systems with a degree of control that would have been unimaginable

a couple of decades ago. The most natural candidates to map onto these simulators are spin

Hamiltonians since the scaling of spin Hilbert spaces is identical to these platforms. Our goal

in this dissertation is to explore the interplay of quantum simulation techniques and spin

Hamiltonians for a careful study of emergence and chaos in spin systems. In this chapter,

we have outlined in detail our motivation for pursuing this research. We first introduce spin,

emergence and chaos in Secs.  1.1 ,  1.2 and  1.3 respectively. We then synthesize the three

themes in Sec.  1.4 to motivate the research direction pursued in this dissertation. Finally,

we briefly outline the contents of the subsequent chapters in Sec.  1.5 .

1.1 What is Spin?

In classical physics, the state of a particle is completely specified by its position and

momentum (r,p); where each of the components of r and p are taken to be real numbers. In

quantum physics, on the other hand, the state (r,p) is replaced by a wavefunction ψ(r). The

wavefunction defines probability distributions for both position r and momentum p given

by |ψ(r)|2 and |ϕ(p)|2 respectively, where ϕ(p) = 1/(2π~) 3
2
∫
ψ(r)e−ι̇r·p/~d3r; ~ being the

reduced Planck’s constant. So, in contrast to the infinitely precise classical state (r,p), the

quantum state ψ(r) can be visualized as a density extended across a region of phase space.

However, in addition to smearing out the infinitely precise (r,p) into a density ψ(r),

quantum physics introduces a completely new degree of freedom to the particle unknown to

classical physics, known as spin χ. So, the total quantum state of the particle is ψ(r, χ) (see

Fig.  1.1 .) As a physical quantity, spin behaves like angular momentum. The operators S =
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(Sx, Sy, Sz) that represent spin satisfy the angular momentum operator algebra: [Si, Sj] =

ι̇~εijkSk where i, j = 1, 2, 3 and εijk is the Levi-Civita symbol. The eigenvalue of S2 is s(s+1)

where s is called the spin of the particle; it can take values from s = 0, 1
2 , 1,

3
2 , 2, · · ·. For

a fundamental particle, it is a property intrinsic to the particle and is always fixed. For

example, electrons have spin 1/2, photons have spin 1 etc.

While it is hard to visualize a clear pictorial representation of quantum spin, it engenders

some very consequential properties to the particles that possess it. Here, we list three of the

most important implications of quantum spin (also see Fig.  1.2 .)

Figure 1.1. What is spin? The classical state of a particle is represented
by a point in phase space (r,p). The quantum state ψ(r, χ) in addition to
defining probability distributions |ψ(r)|2 and |ϕ(p)|2 over r and p respecitvely,
introduces a new degree of freedom χ; known as the spin of the particle.
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1. Magnetic moment

In classical electrodynamics, a charge moving in a loop possessing an angular momen-

tum L exhibits a magnetic moment µ = γL where γ is known as the gyromagnetic

ratio. Quantum particles, in addition to their magnetic moment from orbital motion,

also carry an intrinsic magnetic moment due to their spin. For example, the magnetic

moment µS imparted to electrons due to their spin is

µS = −gS
µB

~
S (1.1)

where gS ≈ 2 is the g-factor, µB = e~/(2me) is the Bohr magneton and S is the electron

spin. This magnetic moment is fundamental to explaining the magnetic properties of

atoms, molecules and materials.

2. Quantum statistics

In classical physics, identical particles are distinguishable in the sense that one can

track the state (ri,pi) of any individual particle by following its trajectory. How-

ever, this is no longer possible in quantum physics, since particle states are spread

out in phase space (see Fig.  1.1 .) The state of a many-particle system in quan-

tum mechanics is given by a single wavefunction ψ(r1, χ1, r2, χ2, · · ·, ri, χi, · · ·). In-

distinguishability implies that the wavefunction has to be invariant under particle

exchanges. Suppose that we have the exchange operator P12 for a two-particle sys-

tem defined as: P12ψ(r1, χ1, r2, χ2) = ψ(r2, χ2, r1, χ1). Since P 2
12 = I, the eigenval-

ues of P12 are ±1. This gives us two classes of states that are invariant with re-

spect to the exchange operation P12: (i) P12ψ(r1, χ1, r2, χ2) = ψ(r1, χ1, r2, χ2) and

(ii) P12ψ(r1, χ1, r2, χ2) = −ψ(r1, χ1, r2, χ2). Identical particles which admit states of

the first kind are called bosons, whereas those that admit the second kind are called

fermions. Collections of bosons and collections of fermions exhibit dramatically dis-

tinct physical properties. Bosons experience an “effective attractive influence” towards

each other and tend to accumulate together. This principle is invoked to explain super-

fluidity and superconductivity among many other phenomena. Fermions, on the other
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hand, exert an “effective repulsive influence” on each other merely by virtue of being

fermions. This is the basis for Pauli’s exclusion principle which ensures the stability of

matter. One of the most remarkable results in quantum physics is the spin-statistics

theorem. It states that particles with integer spin s = 0, 1, 2, · · · are bosons, whereas

particles with half-integer spin s = 1
2 ,

3
2 , · · · are fermions. So, there is an intricate

connection between the spin of a particle and its bosonic or fermionic nature.

3. Quantum fields

In quantum field theory, the language of the standard model, particles are described

as excitations of the all-pervasive quantum fields. Particle interactions and scattering

processes are understood in terms of the interplay of the underlying fields. In this

framework, there is a deep link between the spin of a particle and the nature of the

field that represents it. The spin of a particle prescribes the kinds of interactions

that it can partake in with other particles. Electrons are spin-1/2 particles and are

represented by Dirac spinors ψa(r, t); photons are spin-1 particles and are represented

by vector fields Aµ(r, t); the higgs boson is a spin-0 particle represented by scalar field

φ(r, t) and so on.

1.2 What is Emergence?

Collections of a large number of individual entities give rise to new structures, charac-

terized by their own unique properties and laws. This phenomenon is known as emergence

[ 1 ,  2 ,  4 ]. When a large number of molecules are assembled into a gas, new properties emerge

such as pressure, temperature, volume etc. that are meaningful only in the context of the

entire collection and are ill-defined for individual molecules; likewise, new laws emerge that

characterize the emergent structure such as the ideal gas law PV = NkBT . Similarly, collec-

tions of a large number of people produce new structures such as cities, nations, economies

etc. that become real entities in their own right with unique properties and laws governing

their behavior. The following three traits are characteristic of these emergent structures:
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(a) Magnetic moment (b) Exchange forces

(c) Quantum fields

Figure 1.2. Implications of spin. (a) Spin imparts an intrinsic magnetic
moment to the particle. (b) Spin determines whether a particle is a boson or
a fermion. (c) Spin determines the nature of the quantum field that describes
the particle.

1. Decoupling

The behavior of the emergent structure is independent of what each unit is doing

individually but depends only on the average behavior of all the units that make up

the structure. Some units could be added or removed here or there without affecting the

whole. Similarly, a few outliers could be allowed without changing the overall behavior

of the collection. In this sense, the whole becomes decoupled from the individual units

and can be treated as an entity in its own right. For example, gold will retain its

economic value even if a few people think that its worth should not be greater than

any other shiny piece of metal.

2. Robustness

The emergent structure is robust against variations in external conditions, as long

as the variations are not too drastic. A liquid remains a liquid as its temperature is
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gradually increased. Purdue University will retain its status as a high impact university

amid funding cuts.

3. Transitions

As external conditions continue to vary, changes continue to accumulate in the emer-

gent structure until the transition point is reached when the whole all of a sudden

transforms into a completely new structure. For example, tensions between the public

and the ruling elite in France continued to rise in the decades and centuries preceding

the Revolution until they finally reached the “boiling point” in 1789, resulting in the

establishment of a new societal order.

Emergence justifies the need for a variety of sciences and disciplines for a genuine quest

towards reality. Although the fundamental entities of chemistry obey the laws of physics,

chemistry is not merely applied physics. Instead, assemblies of molecules and compounds

and their reactions with each other require the formulation of an entirely new set of laws and

principles for their description, which form the subject matter of chemistry. Similarly, at an

even greater level of complexity, the laws of biology describe the processes associated with

life. But biology is not merely applied chemistry. A study of the laws of biology requires

research that is as fundamental as any other [ 1 ].

Within physics, prototypic examples of emergence are the structures that emerge in

matter, known as phases of matter. Typical examples are the solid, liquid, and gas phases

of a material. A phase diagram maps the phases of a given substance as a function of

the external conditions. As external conditions are varied, the material can undergo a phase

transition as it goes from one phase to another. Fig.  1.3 (a) shows the phase diagram of water

in terms of pressure and temperature. At a fixed pressure, as the temperature increases along

the green dashed curve, water first undergoes a phase transition from ice to liquid water and

then undergoes another transition from liquid water to vapor (see Fig.  1.3 (b).) In addition

to the theory of phase transitions, the principles of emergence are also at the core of other

major problems in physics such as the classical-quantum correspondence and the emergence

of spacetime [ 4 ].
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(a)

(b)

Figure 1.3. Phases of water. (a) Phase diagram of water as a function of
pressure P and temperature T . (b) The arrangement and bonding of water
molecules across the three phases. The building blocks in all the three phases
are H2O molecules, but the emerging structures are very different.

1.3 What is Chaos?

Henri Poincaré, around the end of the 19th century, had observed that the perturbation

series for the gravitational three-body problem for a certain set of initial conditions failed to

converge. At the time, this difficulty was seen as a mere mathematical artifact, and it was

believed that some kind of renormalization procedure would solve this issue. However, it

came as a huge surprise when developments in the 1950s and 60s, culminating in the KAM

(Kolmogorov, Arnold, Moser) theory, revealed that these difficulties were due, in fact, to a

fundamentally new type of behavior in dynamical systems satisfying Newton’s laws, later

dubbed chaos. It was discovered that in most systems starting from the celebrated three-

body problem, it was not possible to predict the dynamical behavior over sufficiently long

periods of time [ 5 ,  6 ].
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One of the chief quests in the history of classical mechanics has been to look for dynamical

systems that are explicitly solvable, that is, for which explicit formulas for the flow of the

system can be found. A mathematically precise notion of “solvability” of a Hamiltonian

system was developed for this purpose, known as integrability. A Hamiltonian system with

n degrees of freedom is considered integrable if it has n independent constants of motion

{f1, f2, f3, · · ·, fn}. Setting n independent functions of phase space coordinates equal to

constants defines an n-dimensional manifold in a 2n-dimensional phase space. For integrable

systems, the n-dimensional manifold produced by fixing the values of fk for k = 1, ..., n is

an n-dimensional torus Tn. The phase space trajectories of integrable systems are restricted

to these tori; they wind up around these tori but cannot escape them. Thus these tori are

called invariant tori. The invariant tori fit together in concentric layers and foliate the phase

space [ 7 ].

Fig.  1.4 (a) depicts the invariant tori for a n = 2 degree-of-freedom integrable system in a

3-dimensional slice of its 4-dimensional phase space. The 3-dimensional slice can be obtained

by fixing the energy of the system. A helpful device for visualizing higher-dimensional

phase space flows is the Poincaré map. To construct the Poincaré map, a surface is chosen

transverse to the flow, known as the Poincaré section. The points where the trajectory

crosses the Poincaré section are recorded (see Fig.  1.4 (b).) The 2-dimensional invariant tori

in Fig.  1.4 (a) become circles on the Poincaré section as shown in Fig.  1.4 (c).

For integrable systems, one can perform a canonical transformation to the so-called

action-angle variables (θ, I) = (θ1, ..., θn, I1, ..., In) for which the Hamiltonian depends only

on the action variables H = h(I). In these coordinates, the canonical equations become

dIk

dt
= 0, dθk

dt
= ωk (1.2)

where ωk = ∂h/∂Ik are called the frequencies and k = 1, ..., n. The action variables I =

(I1, ..., In) are fixed during the flow, so each I = I0 labels an invariant torus. The angle

variables θ = (θ1, ..., θn) represent the cyclic directions on the torus. Angle variables evolve

uniformly (since the frequencies ω = (ω1, ..., ωn) are fixed on a torus) as the trajectories wrap

around the torus.
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(a)

(b) (c)

Figure 1.4. Integrable Hamiltonian systems. The phase space of inte-
grable Hamiltonian systems is foliated by invariant tori. A phase space trajec-
tory always stays on the invariant torus that it started on and wraps around
it with time. (a) An illustration of 2-dimensional invariant tori for a n = 2
degree-of-freedom integrable system. The tori are shown in a 3-dimensional
slice of the 4-dimensional phase space. (b) Poincaré map is a convenient device
for visualizing higher dimensional flows. A Poincaré section is chosen trans-
verse to the flow. Points are recorded wherever the trajectory passes through
the section. (c) Poincaré section for the tori in (a).

Consider an integrable system with n = 2 degrees of freedom described by the action-

angle coordinates (θ1, θ2, I1, I2). The invariant tori for this system are 2-dimensional, illus-

trated in Fig.  1.4 (a). Clearly, for a uniform flow on T2, there are only two possibilities: (i) if

ω1/ω2 is a rational number, the flow eventually returns to its starting point and is periodic;

(ii) if ω1/ω2 is an irrational number, the flow never returns but continues to fill up the torus

more and more densely. The invariant tori for which ω1/ω2 is a rational number are called

resonant tori, whereas, the ones for which ω1/ω2 is irrational are known as nonresonant tori.

The resonant tori are distributed among the nonresonant tori exactly as rational numbers
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are distributed among irrational numbers  

1
 . These definitions can be generalized for the n-

dimensional case: the n-dimensional invariant torus Tn is resonant if ∃ k ∈ Zn (k 6= 0) such

that k · ω = 0 where Z is the set of integers and ω = (ω1, ..., ωn). If the only solution to

k · ω = 0 is k = (k1, ..., kn) = (0, ..., 0) then the torus is nonresonant [ 7 ].

(b)(a)

Figure 1.5. KAM theory. (a) Integrable Hamiltonian systems are isolated
islands in the space of all Hamiltonians. An arbitrary Hamiltonian can be
considered as a perturbation away from the integrable limit. (b) As the per-
turbation ε is turned on, the resonant tori of the unperturbed integrable Hamil-
tonian begin to break whereas a large number of the non-resonant ones survive.
When ε is sufficiently large, chaos takes over the entire phase space leaving
only a few stability islands.

Integrable Hamiltonians are akin to isolated islands in the sea of all Hamiltonians. Gen-

eral Hamiltonian systems can be considered as perturbations away from these islands (see

Fig.  1.5 (a).) Mathematically, a perturbed Hamiltonian system is written as H(θ, I, ε) =

h(I) + εf(θ, I, ε), where h(I) is the unperturbed integrable Hamiltonian and εf(θ, I, ε) is

the perturbation. ε controls the strength of the perturbation. The main message of KAM

theory is that, as you perturb a system away from the integrable limit, the resonant tori

(and some ‘close to resonant’ too) of the integrable Hamiltonian start to break up chaoti-

cally whereas a large subset of nonresonant tori survive and are distorted only slightly (see

Fig.  1.5 (b).) Several dynamical features begin to develop in the vicinity of these breaking

tori that are seen as the hallmarks of chaos: (i) sensitive dependence on initial conditions
1

 ↑ This requires that ω1/ω2 changes (continuously) as one moves between the invariant tori; such systems
are called nondegenrate. See [ 7 ] for more details.
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i.e. trajectories starting close by can end up quite far apart in time; (ii) dense set of periodic

orbits i.e. arbitrarily close to every point (in the region where chaos is developing), you

can find a periodic orbit; (iii) topological mixing i.e. any open set (in the associated region)

eventually overlaps with any other open set (in the associated region,) as a result of the flow.

Perhaps, the most surprising conclusion of KAM theory is that these features are the rule

and not the exception; they are found in the vast majority of Hamiltonian systems [ 7 ].

The presence of chaos in classical systems raises issues for the classical-quantum corre-

spondence, since it is generally accepted that quantum systems cannot exhibit chaos. The

standard argument for the absence of chaos in quantum mechnaics works by evolving two

quantum states |ψ1(0)〉 and |ψ2(0)〉 using the unitary time evolution operator U(t) and track-

ing their inner product 〈ψ1(t)|ψ2(t)〉. The unitarity of time evolution ensures that the inner

product is preserved in time i.e. 〈ψ1(t)|ψ2(t)〉 = 〈ψ1(0)|U(t)†U(t) |ψ2(0)〉 = 〈ψ1(0)|ψ2(0)〉.

Thus, quantum states do not separate in time and this is taken to imply that there can be

no chaos in quantum physics. While the argument sounds plausible, one is left to wonder

how such a classically ubiquitous phenomenon can have no quantum counterpart given that

the dynamics in both cases are generated by the same Hamiltonian? Another question that

is left unaddressed is how can chaos emerge on the scale of our everyday classical reality if

the dynamics on the microscopic scale are completely non-chaotic [ 3 ,  8 ]?

1.4 Spin Physics: from Emergence to Chaos

The significance of emergence and chaos in modern physics naturally motivates a search

for fresh avenues of exploration in these themes and a study of their implications for the

classical-quantum correspondence. One of the most remarkable developments in recent

decades is the emergence of quantum simulation as a viable platform to investigate quantum

phenomena. In this approach, a given Hamiltonian system is mapped to a versatile quantum

architecture that is easier to maneuver and control in a lab than the parent system. The

desired interactions are engineered on the quantum architecture, and a variety of physical

operations are performed, depending on the objective. While only a far-fetched possibility

some decades ago, remarkable technological advances in isolating quantum systems from
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their environments and in achieving control over their mutual interactions have enabled the

current proliferation of activity in quantum simulation experiments.

Currently, a wide variety of architectures are being employed to carry out quantum

simulation experiments: superconducting quantum circuits, trapped ions, Rydberg atom

arrays, photonic systems, and many others. There is still a long road ahead though, as the

architectures are at present very noisy and do not lend themselves to the desired degree of

control. Despite these limitations, however, they have been used to create quantum states

that have otherwise not been observed directly in nature (see, for example [  9 ,  10 ].) Some of

these architectures are also being used to pursue the grand ambition of building a universal

quantum computer – a device that can perform all possible quantum operations on a given

Hilbert space or in other words, a device that can simulate any arbitrary Hamiltonian on a

given Hilbert space [ 11 ,  12 ].

(a) (b)

Figure 1.6. Spin physics in the age of quantum simulation. (a) Spin
Hamiltonians are perhaps the simplest many-body Hamiltonians providing
ideal scenarios to study emergence of phases of matter and the quantum dy-
namical manifestations of chaos. (b) Depiction of a 6-qubit quantum architec-
ture in a state with qubits 1 and 5 and qubits 3 and 4 entangled respectively.
The development of quantum simulators has introduced new possibilities for
the study of spin Hamiltonians offering an unprecedented degree of control.

The fundamental building block of most quantum simulators and quantum computers

is a two-level quantum system called a qubit. While not a spin system physically (though

spins can potentially be used as qubits,) it is mathematically described by the same algebra

as spin systems. Therefore, spin systems provide the most natural Hamiltonians to map
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onto a qubit architecture. Moreover, the customizability of the architecture ensures that

arbitrary spin Hamiltonians can be studied on these devices, some of which might not even

be observable directly in nature. These developments have opened up the possibility of

investigating, with an unprecendeted degree of control, the emergence of phases of matter

and quantum dynamical manifestations of chaos in spin Hamiltonians (see Fig.  1.6 .)

The investigations presented in this dissertation involve three distinct categories of Hamil-

tonians:

1. Light-matter interaction models

These models were originally created to describe the interaction of electromagnetic

fields and atoms. In these models, atoms are typically treated as two-level systems,

thus each atom can be directly mapped to a spin-1/2 algebra. The electromagnetic field

modes are described in terms of bosonic creation and annihilation operators. Therefore,

the range of validity of these models can be extended to any situation where a two-level

quantum system interacts with some bosonic environment. Such scenarios could also

include, for example, the interaction of electronic spins in a material with the phonon

modes i.e. vibrations of the lattice.

A quite well-known example of a Hamiltonian from this category is the Dicke model.

This Hamiltonian describes the interaction of N two-level systems with a common

bosonic mode,

HDicke = ω0a
†a+ Ω

2

N∑
i=1

σ(i)
z − λ√

N
(a+ a†)

N∑
i=1

σ(i)
x . (1.3)

Here ~ = 1, ω0 is the frequency of the bosonic mode, Ω is the energy spacing of the

two-level systems, and λ is the coupling strength between the two. When N → ∞, this

model famously shows a phase transition to a superradiant phase as λ goes beyond a

critical value λc. The superradiant phase is characterized by a greatly enhanced boson

number as a result of the coherent interactions between the two-level systems through

the bosonic mode.
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A special limit of this model dealing with just a single two-level system interacting

with a bosonic mode is known as the quantum Rabi model,

HRabi = ω0a
†a+ Ω

2 σz − λ(a+ a†)σx. (1.4)

Surprisingly, despite operating at a finite system size, this model still exhibits a tran-

sition to a superradiant phase [  13 ]. This Hamiltonian will be the focus of our study in

Chapter 2.

2. Spins on a lattice

Consider a collection of atoms distributed on a lattice. Suppose only one outermost

electron from each atom contributes in its interactions with neighboring atoms. More-

over, in the low-energy limit, we can further restrict our attention only to the lowest

energy orbital of each atom. Now, let us take a close look at the interaction be-

tween two neighboring atoms. Suppose the orbitals on the sites of these two atoms

are represented by ψa(r) and ψb(r) respectively. We have already seen in Sec.  1.1 

that multi-electron wavefunctions must be antisymmetric under electron exchanges

due to the fermionic nature of electrons. With that in mind, consider two possibili-

ties for the collective wavefunction of the two-electron system: (i) ψS
ab(r1, χ1, r2, χ2) =

1√
2(ψa(r1)ψb(r2) + ψb(r1)ψa(r2)) χS

12 where χS
12 = 1√

2(|↑〉1 |↓〉2 − |↓〉1 |↑〉2) is the spin-

singlet state; (ii) ψT
ab(r1, χ1, r2, χ2) = 1√

2(ψa(r1)ψb(r2) − ψb(r1)ψa(r2)) χT
12 where χT

12

is one of the spin-triplet states: |↑〉1 |↑〉2,
1√
2(|↑〉1 |↓〉2 + |↓〉1 |↑〉2), |↓〉1 |↓〉2. In the

first case, the spatial part of the wavefunction is symmetric under electron exchange,

whereas, in the latter case it is anti-symmetric. However, the total wavefunction is

anti-symmetric in both cases. For the spatially symmetric case, we ignore the pos-

sible wavefunctions ψa(r1)ψa(r2) and ψb(r1)ψb(r2) due to the prohibitive Coulombic

energy cost inflicted when both electrons are put on the same site. We further as-

sume that ψa(r1)ψb(r2) and ψb(r1)ψa(r2) are very nearly the eigenstates of the to-

tal Hamiltonian H12. It is straightforward to show that 〈ψS
ab|H |ψS

ab〉 = E + λ and

〈ψT
ab|H |ψT

ab〉 = E − λ where E = 〈ψa, ψb|H12 |ψa, ψb〉 = 〈ψb, ψa|H12 |ψb, ψa〉 and
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λ = 〈ψa, ψb|H12 |ψb, ψa〉 = 〈ψb, ψa|H12 |ψa, ψb〉 is assumed to be real. Thus, the ef-

fective low-energy physics of this system can be described by a Hamiltonian with an

energy gap of 2λ between the singlet and the triplet states. This effective Hamiltonian

is Heff = −2λ S1 · S2, where S1,2 are the spin operators for the two electrons. In this

way, the complicated interactions of electrons in a material can be reduced to effective

spin interactions in the low-energy limit. Interactions of this kind are called exchange

interactions. They tend to either align or anti-align neighboring spins depending on

whether they are ferromagnetic (λ > 0) or anti-ferromagnetic (λ < 0). Spins interact-

ing in this way on a wide range of lattice geometries produce an enormous variety of

magnetic phases that are only beginning to be discovered [  4 ]. Some of these phases

are so exotic that they might not even seem to possess any magnetic order at first

glance, however a closer look reveals a “hidden” structure supported by long-range

entanglement that is extremely robust against environmental influences [ 9 ,  14 ,  15 ].

Spins interacting via exchange interactions will be the subject of our investigations in

Chapter 3.

3. All-to-all interacting systems

The last category of Hamiltonians pertains to systems in which all spins interact with

all other spins. An example is the kicked top model [ 16 ] with the following Hamiltonian,

HKT(t) = p

τ
Jy + κ

2j J
2
z

+∞∑
n=−∞

δ(t− nτ), (1.5)

where we again take ~ = 1. In this model, J = ∑N
i=1 Si, so the individual spins enter the

Hamiltonian only through the global variable J. The Hamiltonian can be re-written

in terms of the spin operators Si in the following way,

H(t) = p

τ

N∑
i=1

Siy + κ

2j

 N∑
i=1

S2
iz +

∑
i 6=j

SizSjz

 +∞∑
n=−∞

δ(t− nτ). (1.6)

Under this Hamiltonian, each spin precesses freely around the y-axis by an angle p

for the duration τ , when it suddenly experiences a kick, which can be interpreted as
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a sudden precession of each spin around the z-axis by an angle proportional to the

z-component of the scaled total angular momentum Jz/j of the system. The classical

dynamics of this model exhibit a transition to chaos as the kick strength κ is raised.

Thus the quantum version of this model presents a tremendous opportunity to study

the quantum manifestations of chaos. For example, it has already been observed

that the dynamical generation of entanglement between the spins acts as a quantum

signature of chaos for this system [ 17 ,  18 ]. This system will be the subject of our study

in Chapter 4.

(a) Light-matter interaction (b) Spins on a lattice

(c) All-to-all interactions

Figure 1.7. Types of Hamiltonians explored in this dissertation. (a)
Two-level systems interacting with a bosonic mode e.g. atoms in a cavity, spin-
phonon interactions etc. (b) Exchange interactions between spins distributed
on a lattice. (c) Every spin interacts with every other spin.
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1.5 Dissertation Overview

In this dissertation, our goal is to explore the potential of quantum simulation and

quantum computing in revealing a deeper understanding of emergence and chaos in quantum

spin systems (see Fig.  1.6 .) The organization of the dissertation is as follows:

◦ In Chapter 2, we present a protocol to compute the critical parameters of a phase tran-

sition on a quantum computer. For this purpose, we implement the quantum restricted

Boltzmann machine (QRBM) algorithm, which uses an artificial neural network ar-

chitecture to learn the ground state of a quantum Hamiltonian. As an example, we

demonstrate the use of this algorithm to locate the critical point for the superradiant

phase transition in the quantum Rabi model.

◦ In Chapter 3, we investigate the viability of preparing ground states of spin Hamilto-

nians on multiple lattice geometries using another quantum algorithm, the quantum

approximate optimization algorithm (QAOA). The results demonstrate the promise of

this approach as a feasible route to understand the diversity of magnetic phases in spin

systems once quantum computational advantage becomes available.

◦ In Chapter 4, we explore the interplay of quantum entanglement and classical chaos

in the kicked top model. While a clear relationship between the two has been demon-

strated in quantum simulation experiments, we develop a classical analogue of entan-

glement to understand the inner details of this relationship.

◦ In Chapter 5, we discuss some philosophical implications of the developments in emer-

gence and chaos for the classical-quantum correspondence. Attempt is made to demon-

strate the significance of these developments for modern physics and the new oppor-

tunities for research that they open up.
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2. PROJECT I: PHASE TRANSITION IN THE QUANTUM

RABI MODEL

The contents of this chapter are adapted from the following article:

B. Khalid, S. H. Sureshbabu, A. Banerjee and S. Kais, “Finite-size scaling on a digital

quantum simulator using quantum restricted Boltzmann machine”,  Front. Phys. 10:915863

(2022.) 

Abstract: The critical point and the critical exponents for a phase transition can be de-

termined using the Finite-Size Scaling (FSS) analysis. This method assumes that the phase

transition occurs only in the infinite size limit. However, there has been a lot of interest

recently in quantum phase transitions occuring in finite size systems such as a single two-level

system interacting with a single bosonic mode e.g. in the Quantum Rabi Model (QRM). Since,

these phase transitions occur at a finite system size, the traditional FSS method is rendered

inapplicable for these cases. For cases like this, we propose an alternative FSS method in

which the truncation of the system is done in the Hilbert space instead of the physical space.

This approach has previously been used to calculate the critical parameters for stability and

symmetry breaking of electronic structure configurations of atomic and molecular systems.

We calculate the critical point for the quantum phase transition of the QRM using this ap-

proach. We also provide a protocol to implement this method on a digital quantum simulator

using the Quantum Restricted Boltzmann Machine algorithm. Our work opens up a new

direction in the study of quantum phase transitions on quantum devices.
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2.1 Introduction

A phase transition occurs whenever the thermodynamic functions of a system become

non-analytic e.g. as a liquid changes into a gas, the density of the system changes discon-

tinuously. If the phase transition occurs at a finite temperature T 6= 0, the transition is

called a classical phase transition (CPT) as it is dominated by thermal fluctuations. On the

other hand, if the transition occurs by tuning some parameter in the system’s Hamiltonian

as T → 0, it is called a quantum phase transition (QPT) since it is dominated by quantum

fluctuations. A CPT appears only when the system is infinite i.e. N → ∞ [ 1 ]. On the other

hand, a QPT doesn’t necessarily require N → ∞. Recently there has been a lot of interest

in QPTs occurring in finite size light-matter interaction systems [ 2 – 7 ].

It has been shown that a QPT occurs in the Quantum Rabi Model (QRM) which describes

the interaction of a two-level system with one bosonic field mode [  2 ] (see Eq. (  2.1 ) for the

Hamiltonian). Namely, when the energy separation of the two levels in the system Ω becomes

infinitely large compared to the frequency of the bosonic mode ω0, the ground state of the

Hamiltonian undergoes a phase transition from a normal phase to a superradiant phase

as the light-matter coupling exceeds the critical value. Moreover, the ground state of the

Jaynes-Cummings model (JCM) which can be obtained from the QRM by performing the

rotating-wave approximation has also been shown to exhibit the normal-superradiant phase

transition [ 3 ]. Later on, a more general anisotropic QRM in which the rotating and counter-

rotating terms can have different coupling strengths was also considered [  4 ]. The QRM and

JCM are limiting cases of this model. It was shown that the ground state for this more

general case also undergoes the normal-superradiant phase transition. The phase transition

in QRM has also been demonstrated experimentally using a 171Yb+ ion in a Paul trap [ 7 ].

This experimental demonstration of a phase transition in a single two-level system has incited

a lot of interest since this opens up an avenue for studying critical phenomena in controlled,

small quantum systems.

In CPTs and some QPTs (which require N → ∞), a finite-size scaling (FSS) analysis can

be done to extract the critical point and the critical exponents of the transition [  1 ,  8 ]. While

this procedure is inapplicable to the QPTs discussed above since these phase transitions occur
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at a finite system size, the phase transitions in these paradigmatic light-matter interaction

models occur only in the limit Ω/ω0 → ∞ and FSS analysis can be done in Ω/ω0 [ 2 – 4 ]

instead. In this chapter, however, we propose a different approach to study such phase

transitions. We apply the FSS in Hilbert space method [ 9 – 14 ] to the QPT in Quantum Rabi

Model. In this approach, the truncation of the system is done not in the physical space

but in the Hilbert space. The set of basis states spanning the infinite dimensional Hilbert

space is truncated to a finite set and the scaling ansatz is employed in terms of the size of

this set. This approach has previosuly been developed and applied to a single particle in

Yukawa potential [  10 ,  12 ] and the problem of finding electronic structure critical parameters

for atomic and molecular systems [ 9 ,  11 ,  13 – 15 ].

In recent years, digital and analog quantum simulators have emerged as a promising

platform for the simulation of quantum phenomena. Quantum simulators have already been

used to study phase transitions using the method of partition function zeros [ 16 ] and the

Kibble-Zurek mechanism [  17 ,  18 ]. In this chapter, we present a protocol to implement the

finite-size scaling method on a digital quantum simulator. We use the Quantum Restricted

Boltzmann Machine (QRBM) algorithm to find the critical point of the Quantum Rabi

model.

This chapter is organized as follows. In Sec.  2.2 , we explain the theory of Quantum Rabi

Model, Finite-Size Scaling and the Quantum Restricted Boltzmann Machine. In Sec.  2.3 , we

present our results obtained using the exact diagonalization method and QRBM. Finally in

Sec.  2.4 , we discuss our results and future prospects of studying quantum phase transitions

on quantum devices.

2.2 Theory

2.2.1 Quantum Rabi Model

The QRM describes a two-level system interacting with a bosonic field mode. The Hamil-

tonian is [ 2 ],

HRabi = Ω
2 σz + ω0a

†a− λσx(a+ a†) (2.1)
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where we’ve chosen ~ = 1. Ω is the energy separation between the two levels in the system,

ω0 is the frequency of the bosonic mode and λ is the system-environment coupling strength.

The parity operator Π = eiπ(a†a+|↑〉〈↑|) commutes with HRabi. So, HRabi has a Z2 symmetry.

This model has a critical point at g = 2λ/
√
ω0Ω = gc = 1 in the limit Ω/ω0 → ∞ [ 2 ]. For

g < 1, the system is in the normal phase and the ground state is |φ0
np(g)〉 = S[rnp(g)] |0〉 |↓〉

where S[x] = exp
[

x
2 (a†2 − a2)

]
and rnp(g) = −1

4 ln(1 − g2). The rescaled ground state energy

and photon number are eG(g) = ω0
Ω 〈HRabi〉 = −ω0/2 and nG(g) = ω0

Ω

〈
a†a

〉
= 0 respectively.

For g > 1, the system is in a superradiant phase and the ground state is two-fold degenerate,

|φ0
sp(g)〉 = D[±αg]S[rsp(g)] |0〉 |↓±〉 here rsp(g) = −1

4 ln(1 − g−4) and D[α] = exp
[
α(a† − a)

]
.

|↓±〉 is the negative eigenvalue eigenstate of 1
2g2σz ± 2λαg

g2Ω σx where αg =
√

Ω
4g2ω0

(g4 − 1). The

rescaled ground state energy and photon number are eG(g) = ω0
Ω 〈HRabi〉 = −ω0(g2 + g−2)/4

and nG(g) = ω0
Ω

〈
a†a

〉
= (g2 − g−2)/4 respectively.

As shown in Fig.  2.1 (a) and (b), d2eG/dg
2 is discontinuous at g = gc = 1, indicating a

continuous phase transition and nG = ω0
Ω

〈
a†a

〉
is an order parameter for this phase tran-

sition. In the normal phase, nG is zero whereas in the superradiant phase, Z2 symmetry is

spontaneously broken and nG becomes non-zero.

Figure 2.1. Phase Transition in Quantum Rabi Model. (a) The rescaled
ground state energy eG/ω0 = 〈HRabi〉 /Ω and (d2eG/dg

2)/ω0 as functions of g.
The discontinuity in (d2eG/dg

2)/ω0 at g = gc = 1 indicates a countinuous
phase transition. (b) The order parameter nG = ω0

Ω

〈
a†a

〉
as a function of

g. nG becomes non-zero when the Z2 symmetry is spontaneously broken at
g > gc = 1.
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We can also write effective low-energy Hamiltonians in both the normal and the super-

radiant phases. For g < 1, HRabi can be reduced to the following effective Hamiltonian

[ 2 ],

Hnp = ω0a
†a− ω0g

2

4 (a+ a†)2 − Ω
2 . (2.2)

The system’s degrees of freedom have been removed by projecting to |↓〉 〈↓|, since this is a

low energy description. Similarly, for g > 1 the effective Hamiltonian can be written as [ 2 ],

Hsp = ω0a
†a− ω0

4g4 (a+ a†)2 − Ω
2 (g2 + g−2), (2.3)

where this time around the Hamiltonian has been projected along |↓±〉 〈↓±|. In Sec.  2.3 , we’ll

use Hnp and Hsp to find the critical point of the model.

2.2.2 Finite-Size Scaling

The FSS method is widely used to determine the critical points and the critical exponents

in phase transitions [  1 ]. To demonstrate the method, consider that we have an infinite 2d

system that undergoes a classical phase transition at a critical temperature T = Tc [ 8 ].

Suppose Q is a quantity that becomes singular at T = Tc with some power law behavior

Q∞(T ) ∼ |T − Tc|−ω. (2.4)

We can also think of this system as an infinite collection of infinite stripes, where the stripes

are infinitely extended along one direction and stacked along the perpendicular direction.

Now suppose there are only an N number of stripes. If N is finite, Q should be regular

at T = Tc since finite systems cannot have non-analyticities at T 6= 0. The singularity at

T = Tc should appear only when N → ∞. The finite size scaling hypothesis assumes the

existence of a scaling function FQ such that

QN(T ) ' Q∞(T )FQ(N/ξ∞(T )), (2.5)
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where QN is the observable Q for a system with N stripes and Q∞ corresponds to the system

in the thermodynamic limit. ξ∞ is the correlation length for the infinite system. Eq. (  2.5 ) is

valid when N is large. The correlation length also diverges as a power law near the critical

point,

ξ∞(T ) ∼ |T − Tc|−ν . (2.6)

Substituting Eq. ( 2.4 ) and ( 2.6 ) in Eq. ( 2.5 ),

QN(T ) ' |T − Tc|−ωFQ(N |T − Tc|ν). (2.7)

Since QN(T ) should be regular at T = Tc, the scaling function should cancel the divergence

due to |T − Tc|−ω. Therefore, the scaling function should be of the form FQ(x) ∼ xω/ν as

x → 0. We should then have,

QN(Tc) ∼ Nω/ν . (2.8)

If we define a function ∆Q(T ;N,N ′) such that

∆Q(T ;N,N ′) = log(QN(T )/QN ′(T ))
log(N/N ′) , (2.9)

then the value of this function at T = Tc, ∆Q(Tc;N,N ′) ' ω/ν is independent of N and

N ′. Therefore, for three different values N , N ′ and N ′′, the curves ∆Q(T ;N,N ′) and

∆Q(T ;N ′, N ′′) will intersect at the critical point T = Tc. This is how we can locate the

critical point using the finite size scaling hypothesis.

We can also find the critical exponents ω and ν. Noting from Eq. (  2.4 ) that

∂Q∞(T )
∂T

∼ |T − Tc|−(ω+1). (2.10)

Therefore, we should have ∆∂Q/∂T (Tc;N,N ′) ' (ω+1)/ν. Define a new function Γω(T ;N,N ′)

such that

Γω(T ;N,N ′) = ∆Q(T ;N,N ′)
∆∂Q/∂T (T ;N,N ′) − ∆Q(T ;N,N ′) . (2.11)
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The value of this function at the critical point Γω(Tc;N,N ′) ' ω is independent of N and

N ′ and gives us the critical exponent ω. Then ν can be determined using

ν ' ω

∆Q(Tc;N,N ′) . (2.12)

As we’ve already stated in the Introduction, this method cannot be used for the kinds of

phase transitions we are interested in which occur at a finite system size. However, for such

cases we can consider an extension of the approach discussed above [  9 – 15 ]. In this extended

approach, instead of truncating the system in the physical space, the system is truncated in

the Hilbert space [ 15 ]. The FSS ansatz looks exactly the same except that N now represents

the size of the set of basis states which spans the truncated Hilbert space [  15 ]. Moreover, the

temperature T will be replaced by the parameter g which is being tuned across the critical

point. This approach has been shown by Kais and co-workers to work in the case of a particle

in Yukawa potential [ 10 ,  12 ] and the calculation of electronic structure critical parameters

for atomic and molecular systems [ 9 ,  11 ,  13 – 15 ].

2.2.3 Quantum Restricted Boltzmann Machine

Solving quantum many-body problem accurately has been a taxing numerical problem

since the size of the wavefunction scales exponentially. The idea of taking advantage of the

aspects of Machine Learning (ML) related to dimensionality reduction and feature extrac-

tion to capture the most relevant information came from the work by Carleo and Troyer

[ 19 ], which introduced the idea of representing the many-body wavefunction in terms of an

Artificial Neural Network (ANN) to solve for the ground states and time evolution for spin

models. A Restricted Boltzmann Machine (RBM) was chosen as the architecture of this

ANN. An RBM consists of a visible layer and a hidden layer with each neuron in the visible

layer connected to all neurons in the hidden layer but the neurons within a layer are not

connected to each other. The quantum state is ψ expanded in the basis |x〉:

|ψ〉 =
∑

ψ(x) |x〉 (2.13)
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The Neural Network Quantum State (NQS) describes the wavefunction ψ(x) to be written

as ψ(x; θ), where θ represents the parameters of the RBM. ψ(x; θ) is now written in terms

of the probability distribution that is obtained from the RBM as follows:

ψ(x; θ) ∝
∑
{h}

e
1
2
∑

i
aiσ

z
i +
∑

j
bjhj+

∑
ij

wijσz
i hj (2.14)

where, σz
i is the Pauli z operator at ith site, σz

i and hj take values {+1,−1}, θ = {ai, bj, wij}

are the trainable bias and weight parameters of the RBM. Using stochastic optimization,

the energy E(θ) is minimized.

This work was extended to obtain the ground states of the Bose-Hubbard model [  20 ] and

for the application of quantum state tomography [ 21 ].

With the rapid developments in the domains of ML and Quantum Computing (QC), the

appetite for integrating ideas in both of these areas has been growing considerably. The last

decade has seen a surge in the application of classical ML for quantum matter, wherein these

methods have been adopted to benchmark, estimate and study the properties of quantum

matter [ 22 – 25 ], with recently showing provable classification efficiency in classifying quantum

states of matter [  26 ]. The protocols and algorithms related to ML implementable on a

quantum system so called Quantum machine Learning [  27 ] is expected to have the potential

of changing the course of fundamental scientific research [ 28 ] along with industrial pursuit.

In lieu of today’s Noisy Intermediate Scale Quantum (NISQ) devices, the ideas which

utilize both classical and quantum resources, such that the part of the problem which has

an exponential scaling is implemented on the quantum platform while the rest are dealt

with classically, are being carefully investigated for various applications. Such algorithms

are known as classical-quantum hybrid algorithms. In the work by Xia and Kais [  29 ], a

modified RBM with three layers was introduced, the third layer to account for the sign of
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the wavefunction, to solve for the ground state energies of molecules. Now, the parametrized

wavefunction ψ(x; θ) is written as a function of P (x) along with a sign function s(x):

P (x) =
∑

{h} e
∑

i
aiσ

z
i +
∑

j
bjhj+

∑
ij

wijσz
i hj∑

x′
∑

{h} e
∑

i
aiσz′

i +
∑

j
bjhj+

∑
ij

wijσz′
i hj

(2.15)

s(x) = tanh
[
(c+

∑
i

diσi)
]

(2.16)

The wavefunction ansatz in terms of the RBM can be expressed as [ 29 ]:

|ψ〉 =
∑

x

√
P (x)s(x) |x〉 (2.17)

Figure 2.2. Restricted Boltzmann Machine architecture. The first
layer is the visible layer with bias parameters denoted by ai. The second layer
is the hidden layer with bias parameters denoted by bj. The third layer is
the sign layer with bias parameters denoted by c. The weights associated
with the connections between the visible neurons and the hidden neurons are
designated by wij. The weights associated with the connections between the
visible neurons and the neuron of the sign layer are designated by di.
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A quantum circuit comprising of a single-qubit (Ry) and multi-qubit y-rotation gates

(C1 − C2 − Ry) are employed, to sample the Gibbs distribution. The utilization of Ry

gates cater to the bias parameter of visible and hidden layers part of the distribution, while

C1 −C2 −Ry gates tend to the weights part of the distribution. In the work by Sureshbabu

et al. [  30 ], the implementation of such a circuit on IBM-Q devices were shown, wherein a

new ancillary qubit is introduced to store the value corresponding to every C1 − C2 − Ry

gate (Fig.  2.3 ). The term n denotes the number of visible qubits and m denotes the number

of hidden units. In this formalism, the number of ancillary qubits required are n × m.

Starting all the qubits from a |0〉, the Ry and C1 −C2 −Ry rotations are performed, and a

measurement is performed on all the qubits. If all the ancillary qubits are in |1〉, then the

sampling is deemed successful and the states corresponding to the first m+n qubits provide

the distribution P (x). The joint probability distribution defined over the parameters of the

circuit θ = {a, b, w} and a set of y = {σz, h} is given by:

P (y, θ) = e
∑

i
aiσ

z
i +
∑

j
bjhj+

∑
ij

wijσz
i hj∑

{y} e
∑

i
aiσz′

i +
∑

j
bjhj+

∑
ij

wijσz′
i hj

(2.18)

The probability of successful sampling can be improved by rewriting the distribution P (y, θ)

as Q(y, θ) and setting k = max(1, |wij |
2 ) [ 29 ,  31 ]:

Q(y, θ) = e
1
k

(
∑

i
aiσ

z
i +
∑

j
bjhj+

∑
ij

wijσz
i hj)∑

{y} e
1
k

(
∑

i
aiσz′

i +
∑

j
bjhj+

∑
ij

wijσz′
i hj)

(2.19)

Firstly, the QRBM is implemented classically, i.e, the quantum circuit is simulated on a

classical computer. This execution caters to the ideal results that can be obtained through

the QRBM algorithm. Then, the quantum circuit is implemented on the Digital Quantum

Simulator, the qasm simulation backend. This simulator is part of the high-performance

simulators from IBM-Q. The circuit is realized using IBM’s Quantum Information Software

Toolkit titled Qiskit [  32 ]. Though no noise model was utilized, as a result of finite sam-

pling, statistical fluctuations in the values of probabilities in observing the circuit in the

measurement basis, are present in the obtained results.

42



Figure 2.3. The quantum circuit to sample the Gibbs distribution.
n is the number of qubits belonging to the visible layer and m is the number
of qubits belonging to the hidden layer. There are m× n ancillary qubits.

Having obtained the distribution Q(y, θ), the probabilities are raised to the power of k,

to get P (y, θ). Following this, the sign function is computed classically, thereby calculating

|ψ〉. Then, the expectation value for the Hamiltonian H [〈Ψ|H |Ψ〉] is computed to get the

energy, which is minimized using gradient descent to obtain the ground state eigenenergy of

H.

The resource requirements demanded by this algorithm are quadratic. The number of

qubits required are (m+ n) to encode the visible and hidden nodes, and (m× n) to account

for the ancillary qubits. Hence, the number of qubits scales as O(mn). The number of Ry

gates required are (m+ n) and the number of C1 −C2 −Ry gates required are (m× n). In

addition, each C1−C2−Ry gate requires 6n X-gates to account for all the states spanned by

the control qubits. Therefore, the number of gates required also scales as O(mn). Obtaining

the ground states or minimum eigenvalues of a given matrix using exact diagonalization has

a complexity of ≈ j3, with j being the dimension of the column space for the given matrix

[ 33 ].
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2.3 Results

2.3.1 Exact Diagonalization

In this section, we demonstrate the calculation of the critical point of the Quantum Rabi

model using the Finite-Size Scaling method. As discussed before, the phase transition in

QRM occurs only in the limit Ω/ω0 → ∞. This limit is not straightforward to implement in

HRabi given in Eq. ( 2.1 ). Instead, we have considered the effective low-energy Hamiltonians

Hnp and Hsp given in Eq. ( 2.2 ) and (  2.3 ) respectively. In Hnp and Hsp, Ω is involved only in

a constant term which can be removed from the Hamiltonians and the limit Ω/ω0 → ∞ can

then be easily imposed.

In Hnp and Hsp, the degrees of freedom of the two-level system have been traced out

and the only degrees of freedom we have are those of the bosonic mode. Let’s first consider

the normal phase Hamiltonian Hnp. The Hilbert space for this Hamiltonian is spanned by

the familiar harmonic oscillator number states {|0〉 , |1〉 , |2〉 , . . .}. We can truncate the full

Hilbert space to an N-dimensional Hilbert space spanned by {|0〉 , |1〉 , . . . , |N − 1〉} to apply

the finite-size scaling analysis. In this restricted Hilbert space, the matrix form of H(N)
np can

be found by using a |m〉 =
√
m |m− 1〉 and a† |m〉 =

√
m+ 1 |m+ 1〉. Once we have the

matrix form, we can then use the exact diagonalization method to find the ground state of

H(N)
np with energy E(N)

np .

Consider the scaling law for the ground state energy in the vicinity of the critical point

g = gc,

E(g) ∼ |g − gc|α. (2.20)

Here E is the ground state energy. We slightly modify the formula in Eq. ( 2.9 ) to take into

account the difference in the signs of the exponents in Eq. ( 2.4 ) and (  2.20 ). The new formula

with Q = E is,

∆Hnp(g;N,N ′) =
log
(
E(N)

np (g)/E(N ′)
np (g)

)
log(N ′/N) , (2.21)

We plot the curves ∆Hnp(g;N,N + 2) for N = 8, 10, . . . , 30 in Fig.  2.4 (a). We then plot

the intersection points g(N)
np of the curves ∆Hnp(g;N − 4, N − 2) and ∆Hnp(g;N − 2, N) as

a function of N as shown in Fig.  2.4 (b). To find the limit of g(N)
np as N → ∞, we used the
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Bulirsch-Stoer algorithm (see supplementary information  S-I ). The limit was calculated to

be g(N)
np → 0.999996. So g(np)

c = 0.999996.

In a similar way, we then consider Hsp. The curves ∆Hsp(g;N,N + 2) are plotted in

Fig.  2.4 (c) for N = 8, 10, . . . , 30 and the intersection points g(N)
sp are plotted in Fig.  2.4 (d)

as a function of N . In this case, the extrapolation to N → ∞ gives the critical value

g(sp)
c = 0.999987. Both the calculated values of g(np)

c and g(sp)
c are very close to the exact

value gc = 1.

Figure 2.4. Finite-Size Scaling for Quantum Rabi model. We used N =
8, 10, . . . , 32. (a) Graphs of ∆Hnp(g; 8, 10), ∆Hnp(g; 10, 12), . . . , ∆Hnp(g; 30, 32)
as a function of g. (b) Intersection points g(N)

np where ∆Hnp(g(N)
np ;N −

4, N − 2) = ∆Hnp(g(N)
np ;N − 2, N), as a function of 1/N . As N →

∞, g(N)
np → 0.999996. So, g(np)

c = 0.999996. (c) Graphs of
∆Hsp(g; 8, 10), ∆Hsp(g; 10, 12), . . . , ∆Hsp(g; 30, 32) as a function of g. (d) In-
tersection points g(N)

sp where ∆Hsp(g(N)
sp ;N − 4, N − 2) = ∆Hsp(g(N)

sp ;N − 2, N),
as a function of 1/N . As N → ∞, g(N)

sp → 0.999987. So, g(sp)
c = 0.999987.
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2.3.2 Quantum Restricted Boltzmann Machine

Figure 2.5. QRBM Implementation of FSS for QRM. The
light blue line represents results obtained from exact diagonalization
and dashed black line represents QRBM results. (a) Classical im-
plementation of QRBM corresponding to normal phase, graphs of
∆Hnp(g; 8, 10), ∆Hnp(g; 10, 12), . . . , ∆Hnp(g; 14, 16) as a function of g. (b)
QRBM implemented on qasm simulator corresponding to normal phase,
graphs of ∆Hnp(g; 8, 10), ∆Hnp(g; 10, 12), . . . , ∆Hnp(g; 14, 16) as a function
of g. The g(np)

c in both the cases is calculated to be 1.008. (c) Classi-
cal implementation of QRBM corresponding to superradiant phase, graphs
of ∆Hsp(g; 8, 10), ∆Hsp(g; 10, 12), . . . , ∆Hsp(g; 14, 16) as a function of g. (b)
QRBM implemented on qasm simulator corresponding to superradiant phase,
graphs of ∆Hsp(g; 8, 10), ∆Hsp(g; 10, 12), . . . , ∆Hsp(g; 14, 16) as a function of g.
The g(sp)

c in both the cases is calculated to be 0.996. The inset plots display the
mean percentage error between the exact diagonalization results and QRBM
results.

Now we illustrate the implementation of the FSS method using the QRBM algorithm.

The results are shown in Fig.  2.5 . Fig.  2.5 (a) and Fig.  2.5 (c) show the results for Hnp and

Hsp using the classical implementation of the algorithm respectively. Whereas, Fig.  2.5 (b)

and Fig.  2.5 (d) correspond to the results for Hnp and Hsp when the algorithm is implemented
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using the qasm simulator from IBM-Q respectively. The QRBM algorithm is run for N =

8, 10, 12, 14, 16.

For the case of N=8, the number of qubits associated with the visible nodes equal 3,

the number of qubits associated with the hidden nodes equal 3, and 9 ancillary qubits were

used. The quantum circuit consists of 6 Ry gates associated with the bias parameters, 9

C1 − C2 −Ry gates associated with the weights. Since, each C1 − C2 −Ry gate requires 6

X-gates, a total of 54 X-gates were used. For the case of N=10,..,16, the number of qubits

associated with the visible nodes equal 4, the number of qubits associated with the hidden

nodes equal 4, and 16 ancillary qubits were used. The quantum circuit consists of 8 Ry gates

associated with the bias parameters, 16 C1 − C2 − Ry gates associated with the weights.

Since, each C1 − C2 −Ry gate requires 6 X-gates, a total of 96 X-gates were used.

Starting from random initialization, all parameters are updated via gradient descent.

A learning rate of 0.01 was chosen and the algorithm is run for around 30,000 iterations.

In order to assist with the convergence to the minimum eigenenergies, warm starting is

employed. The method of warm starting is essentially initializing the parameters of the

current point with the parameters of a previously converged point of calculation, which

helps in avoiding the convergence to a local minima.

The black curves plotted in the insets in Fig.  2.5 represent the deviation of the QRBM

results (black dashed curves) from the exact diagonalization results (blue solid curves). They

were calculated using the average of the quantity
∣∣∣∆(ED)(g) − ∆(QRBM)(g)/∆(ED)(g)

∣∣∣× 100

over all the four curves. An enlarged version of the error plots can be found in supplementary

information  S-II . For each case the overall error close to g = 1.000 is not more than ∼ 5%

which implies convergence to the right result. Moreover, for the case of Hsp, we notice that

the error is very small for the classical implementation i.e. ∼< 1% throughout the range of

the graph. An astoundingly low error for this particular case shows that the QRBM method

is particularly effective in finding the correct ground state for the case of Hsp. Overall this

result also underscores the fact that QRBM can be more effective for certain forms of the

Hamiltonian over others, such as in this case it was quite effective for Hsp even with a

relatively small number of qubits used in the hidden layer.
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The critical point using Hnp was found to be g(np)
c = 1.008 for both the classical and

qasm implementations. Similarly, the critical point for the case of Hsp was found to be

g(sp)
c = 0.996 for both the classical and qasm implementations. Here we notice that although,

the convergence for the data obtained from both the classical and qasm implementations

turns out to be the same for both Hnp and Hsp, such a perfect match appears to be somewhat

coincidental. In see supplementary information  S-I , we have explained the Bulirsch-Stoer

algorithm which sets the criteria used to deduce these convergence results. The convergence

plots have been added to the Supporting Information section.

2.4 Discussion and Outlook

In this chapter we have used the Finite-Size Scaling in Hilbert Space approach to calculate

the critical point of the Quantum Rabi Model. We used the low-energy effective Hamiltonians

for both the normal and superradiant phases respectively to show that the critical point is

gc ≈ 1. The original FSS approach in which the truncation is done in the physical space

has been widely used to calculate critical points and critical exponents since its inception.

However that approach was not applicable to Quantum Phase Transitions which occur at a

finite system size. With the rise in interest in QPTs occurring in these finite size systems,

our approach provides a natural extension of the original FSS method to study such phase

transitions. To our knowledge, this is the first time this approach has been used to study a

QPT in a light-matter interaction system.

We have also provided a recipe for the implementation of this method on a universal

quantum computer using the Quantum Restricted Boltzmann Machine algorithm. It was

shown that results obtained from the classical gate simulation match those obtained from

the IBM-Q’s qasm simulator. Such an implementation scales quadratically while the exact

diagonalization scales cubically in the best case and exponentially in the worst case. Looking

forward, we are interested in applying this approach to other QPTs such as the QPT in

anisotropic QRM. We would also like to use our method to calculate the critical exponents

in addition to the critical points in these phase transitions. It would also be interesting
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to see if this approach can be used to predict any new phase transition for some other

non-integrable model.

Another very promising research direction is to implement the FSS method for phase tran-

sitions in classically intractable many-body models such as exotic electronic and magnetic

systems. These include general quantum materials, for example where Coulomb potential

leads to a gapped spectrum in energy, including in direct band-gap semiconductors in the

thermodynamic limit. Conventionally speaking, it might be necessary to resort to the orig-

inal finite-size scaling in the physical space approach for these systems since they exhibit

criticality only in the limit N → ∞. However, the ground state of an appropriately trun-

cated Hamiltonian could be deduced using the QRBM algorithm as shown in the chapter

towards efficient implementation on a digital quantum simulator. A simile can also be drawn

between a many-body bulk gap separating a continuum of excited states from the ground

state manifold to the gapped Rabi model discussed in this chapter. Such an approach can be

useful in emergent topological systems, such as in Weyl semimetals, 1-D Kitaev spin chains,

quantum spin liquids, and others, on which there is a tremendous explosion of interest [ 34 –

 39 ]. Topological phase transitions are devoid of any conventional order parameter and a

quantum solution deriving from the approach outlines in this chapter can help us bypass

resource and scaling limitations of DMRG and exact diagonalization approaches to calculate

the critical point and the critical exponents.
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Supplementary Information

S-I Bulirsch-Stoer Algorithm

For hN = 1/N where N = 0, 1, 2, . . ., the Bulirsch-Stoer algorithm can be used to find

the limit of a function T (hN) as N → ∞ [ 40 ,  41 ]. For demonstration, consider that we only

have T (hN) for N = 0, 1, 2, 3, then the following rows are computed successively,

n =0 T
(0)
0 T

(1)
0 T

(2)
0 T

(3)
0

n =1 T
(0)
1 T

(1)
1 T

(2)
1

n =2 T
(0)
2 T

(1)
2

n =3 T
(0)
3

using the following rules

T
(N)
−1 = 0 (2.22)

T
(N)
0 = T (hN) (2.23)

T
(N)
m≥1 = T

(N+1)
m−1 + (T (N+1)

m−1 − T
(N)
m−1)

 hN

hN+m

ω1 − T
(N+1)
m−1 − T

(N)
m−1

T
(N+1)
m−1 − T

(N+1)
m−2

− 1
−1

(2.24)

where ω is a free parameter determined by minimizing ε(i)
m =

∣∣∣T (i+1)
m − T (i)

m

∣∣∣. The final answer

is T (0)
3 .

S-II Error Plots

Fig.  2.6 displays the enlarged error plots included in the insets of Fig.  2.5 . Fig.  2.7 shows

the convergence plots for the data in Fig.  2.5 .
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Figure 2.6. Error plots from the insets of Fig  2.5 .

Figure 2.7. Convergence diagrams for results in Fig  2.5 . (a), (b),
(c), (d) correspond to convergence results for data in Fig.  2.5 (a), (b), (c), (d)
respectively. The same procedure was used as the one shown in Fig.  2.4 (b)
and (d).
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3. PROJECT II: GROUND STATES OF FRUSTRATED ISING

HAMILTONIANS

The contents of this chapter are adapted from the following article:

P. C. Lotshaw, H. Xu, B. Khalid, G, Buchs, T. S. Humble and A. Banerjee, “Simulations of

frustrated Ising Hamiltonians using quantum approximate optimization”,  Phil. Trans. R.

Soc. A.38120210414 (2023.)  

Abstract: Novel magnetic materials are important for future technological advances. The-

oretical and numerical calculations of ground state properties are essential in understanding

these materials, however, computational complexity limits conventional methods for studying

these states. Here we investigate an alternative approach to preparing materials ground states

using the quantum approximate optimization algorithm (QAOA) on near-term quantum com-

puters. We study classical Ising spin models on unit cells of square, Shastry-Sutherland, and

triangular lattices, with varying field amplitudes and couplings in the material Hamiltonian.

We find relationships between the theoretical QAOA success probability and the structure of

the ground state, indicating that only a modest number of measurements (. 100) are needed

to find the ground state of our nine-spin Hamiltonians, even for parameters leading to frus-

trated magnetism. We further demonstrate the approach in calculations on a trapped-ion

quantum computer and succeed in recovering each ground state of the Shastry-Sutherland

unit cell with probabilities close to ideal theoretical values. The results demonstrate the vi-

ability of QAOA for materials ground state preparation in the frustrated Ising limit, giving

important first steps towards larger sizes and more complex Hamiltonians where quantum

computational advantage may prove essential in developing a systematic understanding of

novel materials.
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3.1 Introduction

Quantum magnetism has been a major focus in condensed matter research, driven by the

potential for new disruptive applications ranging from quantum computing to quantum sens-

ing [  1 ]. Quantum material properties are intrinsically related to the structure of the ground

states. However, exact ground states are notoriously challenging to calculate classically, re-

quiring the field to resort to using semi-classical limits [  2 – 5 ] or fully quantum approaches with

restricted applicability [  6 – 12 ]. New, fully quantum computational tools are required to un-

derstand current problems including frustrated two-dimensional quantum magnets currently

explored by bulk neutron scattering and thin film susceptibility [  13 ,  14 ]. Digital and analog

quantum simulators have emerged as a new tool for the simulation of quantum many-body

phenomena towards efficient modeling of exotic quantum phases of matter beyond classical

tractability [ 15 ,  16 ]. They are naturally suited for magnetic Hamiltonians since spins can

be directly mapped to qubits. Non-trivial phases in magnetic systems, such as frustrated

phases [  17 ] , spin glasses [ 18 ], and topologically ordered phases [  19 ,  20 ] have been realized

on multiple qubit platforms using a variety of techniques.

In this paper, we investigate an alternative approach to preparing materials ground states

using the quantum approximate optimization algorithm (QAOA) [  21 ] on near-term quantum

computers. We apply QAOA to lattices of interest in materials science, considering the clas-

sical Ising limit (equivalently, S = ∞) where standard QAOA is directly applicable. This

serves as a stepping stone towards truly quantum problems such as the XY and Heisenberg

models in the fully frustrated limit, which will require further algorithmic research and mod-

ifications to the approach presented here. Our results validate that QAOA achieves sufficient

accuracy for the simpler classical limit and provides insights into algorithmic behavior for

material lattice problems.

We consider lattice instances with varying degrees of frustration. The smallest building

block of a frustrated magnetic Hamiltonian is an anti-ferromagnetic triangular motif of three

spins where all the bonds cannot be satisfied simultaneously. In these materials, exchange

interactions compete such that it is impossible to satisfy them all simultaneously, see Fig.  3.1 .
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If all spin configurations are equally favorable, frustration can lead to non-ordered states such

as spin liquids [ 5 ], spin glasses [ 22 ], or plaquette states [ 8 ], each with distinct signatures.

?

Figure 3.1. Example of frustration on an anti-ferromagnetic triangular motif.
Two spins in opposite orientations (black and green) minimize the energy along
one bond, however, there is no configuration for the final spin that minimizes
energy along both remaining bonds.

We solve three different types of Hamiltonians for unit cells pictured in Fig.  3.2 . The

first is a square unit cell Hamiltonian, which exhibits only simple ferromagnetic and anti-

ferromagnetic phases in the infinite size (thermodynamic) limit. The second is the celebrated

Shastry-Sutherland lattice. Interestingly, this problem already lends itself to materials appli-

cations and experimental data analysis. Among other examples, it is conjectured to describe

the class of rare-earth tetraborides (ErB4, TmB4 and NdB4) and allows a direct compar-

ison with several existing results both theoretical [  23 – 27 ] and experimental [  28 – 33 ]. The

third case is the more complex Ising triangular lattice which represents a maximally frus-

trated problem with an infinite number of possible ground states in the infinite size limit

[ 34 ,  35 ]. We compute theoretical probabilities to prepare the ground state for each of these

9-spin Hamiltonians under varying choices of the external field and coupling parameters and

compare these theoretical results against computations on a trapped ion quantum computer.

We choose N = 9 spins as this is the logical minimum number of spins required to

construct a unit cell of the Shastry Sutherland lattice and also it is a feasible size for the

Quantinuum quantum computer (with 12 qubits available at the time this work was com-

pleted). We focus on p = 1 layers of the QAOA algorithm; for larger N instances more

layers p of QAOA will be needed to maintain a significant success probability [  36 – 38 ]. Im-

plementations on quantum computers will also have to overcome predicted limitations due

to noise [ 39 – 42 ] including an exponential scaling in the number of measurements with circuit
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size, depth, and other factors [  43 ]. Noise in modern quantum computers has negative con-

sequences for all quantum algorithms, not only QAOA. Ongoing testing and development

of these devices is necessary to assess realistic performance scaling in the presence of noise

and to determine whether QAOA, or other quantum algorithms, will ultimately succeed in

providing a useful computational advantage over conventional approaches.
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Figure 3.2. Unit cells of (a) square, (b) Shastry-Sutherland, and (c) triangular
geometries. Colors indicate two spin values si = ±1 in examples of ground
states with h/J1, J2/J1,� 1. (d-f) phase diagrams for each of the unit cells (a-
c) respectively, with labels ”A”, ”B”,... denoting regions with distinct ground
states for each lattice. Magnetization M = 0 at h = 0 is due to degeneracy in
the ground states, where spin-flip-related pairs of states are present in absence
of the field (h = 0).

3.2 Ising Hamiltonian and Model Unit Cell Lattices

A single unpaired spin on the outermost orbital of a magnetic ion constitutes a s = 1/2

state which is implemented straightforwardly on a qubit. In a magnetic material, several

such spins in a lattice interact via pairwise superexchange interactions Jα. The nature and
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strength of these interactions, Jα, depend on several factors. These include the distance

between the magnetic ions (typically Jα scales as the inverse cube of the distance between

the ions), the shape of the orbitals, the symmetry of the lattice, and the local crystal fields.

Magnetic frustration can arise in the lattice, for example, if spins arranged on a triangular

motif in the lattice experience equal Ising anti-ferromagnetic interactions. Such a magnetic

frustration can arise via a combination of straight edge bonds J1 which are either horizontal

or vertical, and the diagonal bonds J2. This is given by the Hamiltonian

H(s) = J1
∑

(i,j)∈NN
sisj + J2

∑
(i,j)∈NNN

sisj + h
N∑

i=1
si, (3.1)

where the first sum is over the nearest neighbors (NN), the second sum is over the diagonal

next-nearest neighbors (NNN), and s = (s1, ..., sN) lists the spin orientations si ∈ {1,−1}

of the N spins. We study anti-ferromagnetic couplings with positive J1, J2. The term

h represents a longitudinal magnetic field (parallel to the spin axis), which for the real

material represents either a mean crystal field or an external magnetic field. The unit cell

motif of the Hamiltonian is shown in Fig.  3.2 . Materials described by this model are being

actively researched in condensed matter physics. The Ising Shastry-Sutherland model is a

special case of a model, inspired by the geometry of real materials, where some but not all of

the diagonal bonds are present (Fig.  3.2 (b)). The triangular lattice is shown in Fig.  3.2 (c).

In all cases we consider open boundary conditions. Analytical ground state properties of

Ising models on Shastry-Sutherland and triangular lattices have been derived analytically

[ 44 ,  45 ].

Multiple methods have been proposed to solve for ground states of Ising Hamiltonians

and related optimization problems, notably Integer Programming method [ 46 ], Simulated

Annealing [  47 ] and its variants, Large Neighborhood Search [  48 ] and Quantum or Quantum-

inspired physical annealing devices. Among them, the Integer Programming method solves

exactly but suffers from exponential scaling of computational time. Simulated Annealing

and Large Neighborhood Search are both herustics methods that promise faster runtime but

there is no guarantee of the solution qualities. Quantum annealers, digital annealers and

coherent Ising machines are hardwares dedicated to solving Ising models [  49 ,  50 ]. Depending
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on the connectivity of these various (qu)bits, every backend could be good at a different task

- parallel tempering machines could be good in finding the classical phases [ 26 ], while others

could reveal intricate dynamical behaviour in a transverse field Ising universality [  51 ]. For

frustrated lattice problems, QAOA allows us to sample different ground states with certain

probabilities due to quantum randomness, whereas classical and deterministic algorithms

may generate a ground state efficiently, but fail to explore the states which might arise

because of a coherent superposition between all the spins. Additionally, future extensions

beyond the Ising limit also becomes an exciting possibility.

3.2.1 Ground state magnetization phase diagrams

We consider the nine-spin unit cells with geometries in Fig.  3.2 (a-c) which represent the

number of spins required to simply construct an unit cell of the Shastry-Sutherland lattice.

In materials represented by Bravais lattices, these unit cells repeat periodically to realize

the very large lattices in a real material. We computed ground states for each unit cell

by evaluating (  3.1 ) for each possible spin configuration to identify the lowest energy states,

for varying choices of h and J2, with J1 = 1 taken as the unit of energy. We plot the

magnetization

M = 1
N

N∑
i=1

si, (3.2)

of these ground states in the phase diagrams of Fig.  3.2 (d-f). We further separate each

diagram into regions A,B,... with distinct sets of ground states but sometimes equivalent

magnetizations. For example, ”A” and ”B” in Fig.  3.2 (e) have different ground states but

identical magnetizations. The individual ground states are shown in the Supplemental In-

formation (Figs. S4-S6) [ 52 ].

Starting with the non-frustrated square lattice with J1 - only interactions with simple

ferromagnetic or antiferromagnetic ground states, the degree of frustration is tuned progres-

sively by a) addition of J2 bonds and b) bringing J2 → J1. The triangular lattice with uniform

coupling parameters represents the maximally frustrated limit with highly degenerate solu-

tions. The Shastry-Sutherland model represents a scenario with the minimum number of J2

61



bonds required to realize a fully frustrated lattice. The solution of these states represent a

problem of polynomial time complexity in two-dimensions and without a magnetic field.

The ground state for a given h shows a number of magnetization plateaus, where each

plateau has a different proportion of spins pointing up. Unsurprisingly, at large h, the ground

state for each lattice is ferromagnetic, in regions C, G, and E in Fig.  3.2 (d-f) respectively.

The situation becomes more interesting at small h in regions ”A”, the ground state is anti-

ferromagnetic with magnetization M = 1/9, as five spins are aligned with the field while

four are anti-aligned. For fields 8/3 ≤ h ≤ 4 and small J2, there is a ground state with

M = 7/9 in which a single spin in the center of the unit cell is anti-aligned with the field.

Besides frustration, these states are also determined by the finite size of the unit cells,

where the central spin is distinguished as the only spin with four interactions in the square

lattice. As J2 and h are varied, frustration leads to a variety of different ground states for

the Shastry-Sutherland and triangular lattices, with varying magnetizations in Fig.  3.2 (e-f),

with ground states in Supplemental Information [ 52 ]. These are true ground states of the

9-spin Hamiltonians, with boundary spins playing a big role. In the infinite size limit we

expect the ground states to be progressively less dependent on the boundary, and more on

the symmetry of the Hamiltonian, which we discuss in the next section.

3.2.2 Finite size effects

The finite sizes of our lattice unit cells, as well as the unusual M = 7/9 ground state noted

in the previous section, raise questions of how the ground states for our unit cells match with

ground states that would be obtained in the large size limit, and the minimum number of

spins that are needed to achieve quantitative behavior consistent with large sizes. To ad-

dress these questions, we computed the magnetization of triangular and Shastry-Sutherland

lattices of N = n × n spins to analyze the size-dependent behavior. Due to the exponen-

tial complexity of the problem, we used neal [ 53 ], a software implementation of simulated

annealing to approximate the ground state configurations with h, J2 ∈ [0, 6] and J1 = 1.

Each combination of h and J2 was run 50 times and the solution with minimum Ising energy

was picked. Examples with 3 ≤ n ≤ 30 are shown in Fig.  3.3 . We assessed convergence of
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the global phase diagrams to the large size limit by computing the root mean square error

(RMSE) between the target lattice’s and 30×30 lattice’s magnetization across points in the

phase diagram. We fitted the RMSE to both a power-law as well as an exponential form

(see Supplemental Information, Fig. S1 [  52 ]), and we find that the power-law scaling with n

exponent γ and prefactor a fits the RMSE better. The equation takes the form:

RMSE(Mn×n,M30×30) =
√∑

g(Mn×n,g −M30×30,g)2

N
≈ anγ. (3.3)

where N = 900 is the number of points g we evaluated in each phase diagram (30 evaluations

for h ∈ [0, 6] and 30 evaluations for J2 ∈ [0, 6] with a step size of 0.2 in each variable). The

computed RMSEs and fitted power-law curves are shown in Fig.  3.4 . Empirically, the RMSE

diminishes following a power law scaling with the exponent γ = −1.27(4) for the triangular,

and γ = −1.34(4) for the Shastry-Sutherland lattice. We note that the size of the boundary

scales as O(n) while the size of the bulk scales as O(n2). If the RMSE had arisen strictly from

the boundary effects, it would diminish following the proportion of boundary/bulk ∼ O(1/n).

However, γ < −1 signifies a faster drop off of RMSE as compared to 1/n, which could be

because of enhanced correlations between the various spins subject to the Hamiltonian.

A more rigorous analysis of finite-size scaling [  54 ,  55 ] around each critical point could yield

a careful analysis of the required lattice size for target fidelity for every phase transition, our

result based on an overall RMSE demonstrates that a 15×15 spin grid is already obtaining

results close to the much larger 30×30 grid. Based on this trend, we expect that finite size

effects in M will diminish quickly with the size of the lattice, indicating that lattices of only

a few hundred spins may diminish the errors sufficiently to achieve a realistic ”bulk”, and

therefore meaningful results for comparison with experiments which probe bulk properties,

such as diffraction and heat-capacity. This suggests that quantum processors with hundreds

of qubits, achievable within the noisy intermediate-scale quantum era [  56 ], may be capable

of meaningful applications for materials science applications.
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Figure 3.4. Root mean square errors ( 3.3 ) of total magnetization between
n × n lattices relative to a 30 × 30 lattice, plotted on a log-log scale. Solid
lines show fits to the power-law scaling relation (  3.3 ); the slopes indicate the
best-fit exponents γ = −1.34(4) and γ = −1.27(4) , with fit R2 = 0.994 and
0.990 for the triangular and Shastry-Sutherland lattices, respectively. Best-
fit intercepts are γ log10(a) = 0.19 and γ log10(a) = 0.10 for the triangular
and Shastry-Sutherland lattices respectively. The fit and the errors in the
exponent are based on standard Levenberg-Marquardt routines and assume
Poisson statistics at each point.
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3.3 Quantum Approximate Optimization Algorithm

Quantum computers offer a route to overcoming issues associated with identifying ground

states through conventional methods. One approach to address these problems uses the quan-

tum approximate optimization algorithm, which was originally designed to find approximate

solutions to difficult combinatorial optimization problems [  21 ] that are often expressed in

terms of Ising Hamiltonians [ 57 ]. Empirical performance of QAOA has been characterized

for a variety of combinatorial problems [  36 ,  58 – 61 ] and this has also led to generalizations

[ 62 – 67 ] that have been applied to preparing chemical ground states [ 68 ] as well as ground

state preparation for one-dimensional [ 38 ,  69 ] and two-dimensional [ 70 ] quantum spin models

in theory and experiment [ 71 ].

To formulate our Ising problems in a structure that is suitable for QAOA, we first express

the Ising Hamiltonian ( 3.1 ) in terms of a quantum Hamiltonian operator

H = J1
∑

(i,j)∈NN
ZiZj + J2

∑
(i,j)∈NNN

ZiZj + h
N∑

i=1
Zi. (3.4)

Here the N spins si ∈ {+1,−1} in ( 3.1 ) are encoded into the eigenvalues of the Pauli Z

operators, with Zi|zi〉 = si|zi〉, where zi ∈ {0, 1} and si = 1 − 2zi. The set of all spin values

is then encoded into a computational basis state |z〉 = ⊗N
i=1 |zi〉. Each |z〉 is an energy

eigenstate of H with the energy eigenvalue of the corresponding classical spin problem,

H|z〉 = H(z)|z〉, (3.5)

where H(z) comes from (  3.1 ) taking si = 1 − 2zi for each component |zi〉 in the total basis

state |z〉. This gives an encoding of the Ising spin problem (  3.1 ) that is useful for QAOA,

where we will sample eigenstates |z〉 to try to identify the ground state of the Ising problem.
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To find solutions, QAOA uses a quantum state prepared with p layers of unitary evolution,

where each layer alternates between Hamiltonian evolution under the Ising Hamiltonian H

and under a “mixing” Hamiltonian B = ∑
i Xi

|ψp(γ,β)〉 =
( p∏

l=1
e−iβlBe−iγlH

)
|ψ0〉 (3.6)

where the initial state |ψ0〉 = 2−N/2∑
z |z〉 is the ground state of −B represented in the

computational basis. The parameters γ = (γ1, ..., γp) and β = (β1, ..., βp) are typically

chosen to minimize the expectation value of the energy 〈H〉, though other objectives have

also been studied [  68 ,  72 ,  73 ]. The minimization is typically accomplished using a quantum-

classical hybrid feedback loop, shown schematically in Fig.  3.5 . For a given set of parameters

γ and β, a set of states |ψp(γ,β)〉 is prepared and measured by a quantum computer. The

measurement results are sent to a conventional (classical) computer to compute the classical

objective function. If the objective function is not converged relative to previous evaluations,

then the conventional computer uses an optimization routine to select new parameters γ ′,β′.

The process is repeated until convergence to a minimal objective with optimized parameters

γ∗,β∗. The final result is taken as the measurement result |z∗〉 that gives the lowest energy

H(z∗). In the best case, z∗ = zground is a ground state, while more generally z∗ may be a

low-energy state that is an approximate solution to the problem.

An analytic proof has demonstrated that QAOA can prepare an exact ground state

|zground〉 of Ising Hamiltonians as p → ∞ [ 21 ,  57 ]. Apart from the formal proof of conver-

gence at large p, there has been significant interest in applying QAOA at small p, where

approximations exceeding conventional lower bounds have been observed in simulations [ 36 ,

 74 ] and predicted for large problems in certain contexts [  75 ]. Realizing such advantages

on devices with hundreds of qubits or more is an important topic of ongoing research as

quantum computing technologies continue to develop.

For the materials problems we consider, we are interested in preparing the ground states

of the Ising Hamiltonian. We compute exact ground states for our unit cells in Fig.  3.2 

by evaluating all eigenvalues of the Hamiltonian using Eqs. (  3.1 ) and (  3.4 ) to identify the

lowest energy state. For some phases the number of ground states is Nground > 1 due to
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degeneracies, while for other phases there is a single ground state Nground = 1, as pictured

in Supplemental Information [ 52 ]. To assess QAOA performance, we compute the average

ground state probability

P ground = 1
Nground

∑
zground

P (zground), (3.7)

where the sum contains a single term in the case of a non-degenerate ground state or multiple

terms in the degenerate case. Analytically, the probabilities are given by the Born rule

P (z) = |〈z|ψp(γ,β)〉|2, while for experiments on a quantum computer they are given by

the frequencies of measurement results, P (z) = N(z)/Ntot, where N(z) is the number of

times |z〉 was measured and Ntot is the total number of measurements. If QAOA identifies

a ground state then |z∗〉 = |zground〉 and P ground > 0, while if QAOA only finds sub-optimal

solutions then P ground = 0.

{
p layers

If not converged, 

pick new γ', β'

Figure 3.5. Quantum-classical optimization loop for QAOA. For a given
set of parameters γ,β, a quantum computer generates and measures states
|ψp(γ,β)〉. The measurements are sent to a conventional computer to compute
〈H〉 and check its convergence. If 〈H〉 is not converged, then an optimization
routine selects new γ ′ and β′ for the quantum computer. If 〈H〉 is converged,
then the algorithm terminates and the final solution is the measured result z∗

that minimizes the energy.
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Ground state preparation is a goal specific to the materials problem context we are in-

terested in here. This is, importantly, a departure from the standard goal of QAOA in the

context of approximate combinatorial optimization, where the goal is to find approximate

solutions that are not necessarily the ground states. While QAOA is not expected to effi-

ciently find exact ground states for generic NP-hard optimization problems, it may still prove

useful for finding ground states of specific structured problems such as materials problems

on a lattice similar to those we explore here [ 38 ,  69 – 71 ].

3.3.1 Numerical simulations of ideal QAOA

We use numerical calculations to assess the theoretical performance of QAOA for ground

state preparation. These demonstrate the ideal performance of QAOA in exact pure state

calculations that use matrix multiplication to evaluate ( 3.6 ). This gives an ideal baseline for

later comparison against results from a noisy quantum computer, where errors lead to mixed

states with degraded performance. We use p = 1 QAOA layers throughout this section and

our results.

To identify QAOA states for our Ising problems we must determine optimized QAOA

parameters γ∗
1 and β∗

1 . We choose regions to evaluate parameters in determining γ∗
1 and β∗

1

as follows. QAOA is periodic when β1 → β1 ± π [ 58 ], hence we consider −π/2 ≤ β1 ≤ π/2,

which gives all unique β1 up to symmetries. The periodicity of the γ1 parameter is more

complicated, as it depends on the Hamiltonian in exp(−iγ1H) in ( 3.6 ). Here we focus on γ1

intervals near the origin and dependent on the magnitude of the Hamiltonian terms, which

has been highly successful in previous work [  76 ]. The basic idea is that the QAOA unitary

exp(−iγ1H) changes at varying speeds with respect to γ1, depending on the Hamiltonian

coefficients J1, h, and J2. When the Hamiltonian coefficients increase, then γ1 should decrease

to obtain a similar unitary. The rate at which the unitary changes with respect to γ1 is related

to the average magnitude of the Hamiltonian coefficients

ι = Nh+ J1ENN + J2ENNN

N + ENN + ENNN
, (3.8)
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where ENN is the number of nearest-neighbor interactions and ENNN is the number of next-

nearest-neighbor interactions. Previous work on generic Ising Hamiltonians with h = 0

has shown that high quality solutions are obtained at small γ1 with an empirical scaling

of optimized parameters similar to γ∗
1 ∼ 1/ι. The scaling 1/ι compensates for the varying

rates of evolution that are present for varying choices of the Hamiltonian, and also limits

the interval of γ1 values that are explored, simplifying the optimization [  76 ]. Based on these

ideas we choose γ1 in the interval −0.55 × π/ι ≤ γ1 ≤ 0.55 × π/ι.

We show an example of how the energy expectation value and average ground state

probability depend on the choice of parameters in Fig.  3.6 for an example with the Shastry-

Sutherland unit cell with Hamiltonian coefficients J1 = 1, J2 = 3.7, and h = 1.4 (similar

patterns are observed in sample calculations using other choices of Hamiltonian coefficients

and also for the triangular unit cell). There are two regions in Fig.  3.6 (a) with optimized

〈H〉 in yellow. The ground state probabilities in Fig.  3.6 (b) are also relatively large near the

γ∗
1 and β∗

1 that optimize 〈H〉.

We have found in searches over much larger γ1 intervals that the local optima for P ground

and 〈H〉 do not always approximately align as in Fig.  3.6 , which can lead to poor P ground

at optimized 〈H〉 in these larger intervals. However, this does not appear to be a prevalent

issue for the smaller ι-dependent γ1 intervals in cases we have looked at. The results are

somewhat sensitive to the specific choice of γ1 interval, however, our choice of −0.55×π/ι ≤

γ1 ≤ 0.55 × π/ι gives satisfactory results across the varying lattices.

To identify optimized parameters, we perform a grid search over γ1 and β1 for each

Hamiltonian considered. We evaluate the QAOA states in (  3.6 ) on 201 evenly spaced intervals

with −π/2 ≤ β1 ≤ π/2 and over 300 evenly spaced intervals with −0.55 × π/ι ≤ γ1 ≤

0.55 × π/ι for a total of 201 × 300 = 60, 300 grid evaluations for each Hamiltonian. This

approach gives optimal parameters in our intervals up to coarse graining in the grid search.

We select parameters γ∗
1 and β∗

1 that optimize 〈H〉.

The optimized parameters γ∗
1 and β∗

1 do not necessarily give the optimal ground state

probabilities that are possible from QAOA. The reason is that the average energy opti-

mization accounts for energies and probabilities of all states, which together may yield low

energies at parameter choices that are not optimal for the ground states alone [  36 ]. To assess
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performance, we further compare our parameter choices against parameters γ∗′
1 and β∗′

1 that

directly optimize P ground. The direct optimization of P ground is used here for benchmark-

ing purposes and is not a realistic approach for large problems where the ground states are

unknown. For our small problems, the comparison gives an idea of how the ground state

probabilities from a standard optimization of 〈H〉 compare against the best ground state

probabilities that could be obtained by QAOA in our setup.
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Figure 3.6. Numerical simulations of the (a) average energy 〈H〉 and (b)
average ground state probability P ground with varying choices of QAOA pa-
rameters γ1 and β1, for the Shastry-Sutherland unit cell with J1 = 1, J2 = 3.7,
and h = 1.4 (Sec.  3.3.1 ). Each plot has the same range of β1 and γ1; the color
scales are reversed in (a) and (b) so that small 〈H〉 and large P ground are each
represented by bright colors.

3.3.2 Quantum computations of QAOA

We next investigate the performance of QAOA using the Quantinuum H1-2 quantum

computer. H1-2 contains trapped-ion qubits and uses lasers to implement gates on these

qubits. Typical error rates are reported as 3.5 × 10−3 for two-qubit gates and 1 × 10−4

for single-qubit rotation gates [  77 ]. In addition to the device H1-2, we also us the H1-1E

device ”emulator” to simulate noisy device behavior. This gives results that approximately

correspond to expected device behavior while avoiding the financial expense and wait times

that are associated with running the device. The emulator models a variety of device-

specific noise processes for the H1-class computers, including depolarizing noise, leakage

errors, crosstalk, dephasing in transport, and qubit idling errors [ 78 ].
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We test QAOA on the H1-2 using the QCOR software stack [  79 ]. The QCOR stack

translates the series of unitary operators expressing QAOA into quantum circuits for H1-2;

see Supplemental Information [  52 ], Appendix B, for details. The QCOR program used for

submitting jobs to the device as well as our calculations are available online, cf. ”Data

Accessibility”.

Furthermore, modern quantum computers are known to be affected by state preparation

and measurement (SPAM) errors as well as gate infidelities from a variety of physical sources.

We assessed SPAM errors expected in our quantum computations using the device emulator,

with details in Supplemental Information Appendix C [  52 ]. The probability to observe no

error in circuits we tested was approximately 96%, with errors distributed approximately

uniformly across qubits. We account for these errors using an independent bit-flip model

and associated SPAM matrix P̃ , which transforms an ideal set of measurement results to

the expected noisy set of results. The inverse matrix P̃−1 can then be applied to our noisy

measurements from the quantum computer to approximately correct for SPAM errors. A

technical issue arises in that the mitigated measurement probabilities can sometimes be

negative, due to the approximate nature of the mitigation scheme. This leads to a second

mitigation scheme that additionally sets all negative probabilities to zero and renormalizes so

the total probability is one. We use each of these approaches to attempt to correct the small

SPAM errors we expect from the quantum computer, as described in detail in Supplemental

Information [ 52 ].

3.4 Results

In this section we consider the results from QAOA applied to the materials lattices of

Fig.  3.2 . We take J1 = 1 as the unit of energy and analyze the success of QAOA in preparing

ground states at variable h and J2, first in numerical simulations (Sec.  3.3.1 ) and then in

quantum computations on a trapped-ion quantum computer (Sec.  3.3.2 ).
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3.4.1 Ground state measurement probabilities

We first consider theoretical probabilities to measure the ground state with QAOA and

how these vary for different parameter choices in the Hamiltonian. We begin with the simple

square lattice in Fig.  3.2 (a,d), which does not exhibit frustration as there are no triangles in

the interaction graph. The probability to measure the ground state for varying h is shown in

Fig.  3.7 . Fig.  3.7 (a) shows the probabilities obtained from optimizing the standard objective

〈H〉 while Fig.  3.7 (b) shows the best-case results based on optimizing P ground, as described

in Sec.  3.3.1 . The probabilities in each case are similar, demonstrating that optimizing 〈H〉

is nearly as successful in increasing the ground state probability as a direct optimization.

The average ground state probability shows distinct behaviors for each of the three ground

states at varying h, visually separated by dotted lines. In the anti-ferromagnetic ground state

at small h, the probability P ground approximately oscillates between h = 0 and h = 2, with

small probabilities observed near integer values of h and larger probabilities near h = 1/2

and h = 3/2. The M = 7/9 ground state with 8/3 < h < 4 has a near-constant probability of

≈ 0.06. At h = 4 the ground state becomes ferromagnetic and P ground increases significantly,

with monotonic increases at larger h.

We rationalize the varying success probabilities in the figure as attributable to structures

of the ground states at varying h and the interplay with the structure of the QAOA state

in ( 3.6 ). We show in Supplemental Information [ 52 ] Appendix D that QAOA can exactly

prepare the ferromagnetic ground state when h � J1 for arbitrary lattice sizes, based on

the fact that exp(−iγH) ≈ exp
(
−iγh∑N

i=1 Zi

)
in this limit. This is consistent with the

behavior in the figure, where P ground increases monotonically with h for the ferromagnetic

ground state at h ≥ 4. We further show in Supplemental Information [  52 ] Appendix E

how the anti-ferromagnetic ground state probability is maximized at h = 0.5, and we devise

large γ1 parameters that can further improve these results (We did not include larger γ1

parameters in our numerical searches as this can lead to poor P ground at parameters that

optimize 〈H〉 for the frustrated lattices, as remarked in Sec.  3.3.1 ). However, the mechanism

for anti-ferromagnetic ground state preparation here depends on the specific choice of the

3 × 3 lattice, and it is not clear how QAOA will behave for other lattice sizes. For the
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M=7/9 phase the QAOA state is more complicated, as it is a superposition of many basis

states that depends on the optimized parameters, and we do not have an analytic account for

this behavior. The optimized parameters that create each QAOA state in the square-lattice

phase diagram are shown in Supplemental Information Appendix F [ 52 ].
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Figure 3.7. The square unit cell ground state probabilities when (a) opti-
mizing 〈H〉 and (b) optimizing P ground as described in Sec.  3.3.1 . The P ground
ranges are identical in each figure. Phases A, B, C refer the anti-ferromagnetic,
M=7/9, and ferromagnetic phases of Fig.  3.2 respectively, with vertical dotted
lines showing the phase boundaries.

Ground state probabilities P ground for the Shastry-Sutherland and triangular lattices are

pictured in Figs.  3.8 and  3.9 , respectively. Ground state probabilities from optimizing

〈H〉 are presented in panels (a) while panels (b) show the best case probabilities from a

direct optimization of P ground as described in Sec.  3.3.1 . These probabilities show patterned

behavior, with distinct probabilities P ground observed throughout most of each individual

region A,B,..., with significant differences in P ground between different regions. At small J2,

there are oscillations in the probability for preparing the anti-ferromagnetic ground states

at small h, and large success probabilities for the ferromagnetic ground state at large h,

as foreshadowed by results from the square lattice. On the other hand, as the J2 coupling

increases, the triangular and Shastry-Sutherland lattices experience increased frustration,

with competing interactions within the triangular motifs in Fig.  3.2 . The average ground

state probability decreases significantly as J2 increases and frustration becomes dominant.
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This is especially evident when J2 & h, for example in the top left of each of Figs.  3.8 (b) and

 3.9 (b). The P ground are mostly uniform across h and J2 within each region, qualitatively

similar to the nearly-uniform probability for the M = 7/9 state at varying h for the square

lattice in Fig.  3.7 . Ground state probabilities are typically & 0.01, indicating that only . 100

measurements are expected to identify a ground state. We now turn to computations on a

trapped-ion quantum computer, to benchmark and assess performance of QAOA on a real

quantum computing device.
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Figure 3.8. Shastry-Sutherland unit cell ground state probabilities when (a)
optimizing 〈H〉 and (b) optimizing P ground as described in Sec.  3.3.1 . The
ranges for J2/J1 and P ground are identical in each figure.

3.4.2 QAOA quantum computations

Here we assess QAOA performance in preparing ground states on a trapped-ion quantum

computer. Ultimately, our aim is to validate the idea that a current quantum computing

technology is capable of preparing each ground state of a frustrated Ising Hamiltonian using

QAOA. An important first step is to assess whether optimized parameters from our theoret-

ical calculations are also optimized for the device, or whether further optimization is needed

to determine device-specific optimized parameters.
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Figure 3.9. Triangular unit cell ground state probabilities when (a) optimizing
〈H〉 and (b) optimizing P ground as described in Sec.  3.3.1 . The ranges for J2/J1
and P ground are identical in each figure.

Quantum computational performance with varying parameters

QAOA depends on the choice of parameters, as discussed in connection with Fig.  3.6 .

To test whether our theoretical parameters also yield good performance in the device, we

consider QAOA circuits evaluating a point in region E of the Shastry-Sutherland phase

diagram Fig.  3.2 (e), with Hamiltonian coefficients and QAOA parameters shown in Table

 3.1 . The parameters correspond to a local minimum in 〈H〉, similar to the minima observed

in Fig.  3.6 . We use the H1-1E device emulator to evaluate circuits at the optimized γ1

and β1 and circuits where either γ1 or β1 has been displaced from its optimal value, as

shown in Fig.  3.10 . Black crosses in the figure indicate how 〈H〉 increases in pure state

simulations as either of these parameters are varied individually. Error bars denote the

analytic standard error of the mean (S.E.M.) for Nshots = 1000 measurement shots, with

S.E.M.=
√

(〈H2〉 − 〈H〉2)/Nshots calculated numerically from the pure states. If the quantum

computations did not have any noise, then from the central limit theorem we would expect

about two-thirds of the 〈H〉 from the quantum computer to be within these error bars.

The theoretical 〈H〉 can be compared against the device emulator, with data point labels

in the figure beginning with “H1-1E”. There are three sets of data points for the emulator; the

75



first is direct output labeled “H1-1E”, the second includes SPAM error mitigation (Sec.  3.3.2 )

in “H1-1E, E.M.”, the third includes a variation of the SPAM mitigation that additionally

forces the mitigated probabilities to be P ≥ 0 in “H1-1E, E.M., P≥0”. These emulated 〈H〉

are larger than the theoretical values and we attribute this to noise in the device emulator,

which introduces errors that cause the energy to deviate from its ideal minimum value.

Despite these errors, the shape of the landscape is similar to our theoretical calculations,

with best performance observed near the theoretical parameters that minimize 〈H〉, and

energies that tend to increase away from these parameters.

Table 3.1. The parameters used for quantum computations with the Shastry-
Sutherland lattice. Here J2/J1 and h/J1 are the Hamiltonian coefficients
used in the calculations, γ and β are the QAOA parameters, and Nshots is the
number of measurement shots taken on the quantum computer.

region degeneracy M J2/J1 h/J1 β1/π γ1/π Nshots
A 1 1/9 0.240 1.440 0.750 -0.507 400
B 4 1/9 3.840 0.480 0.112 -0.048 1000
C 4 3/9 3.840 1.680 0.121 -0.043 1000
D 2 3/9 1.680 1.920 0.131 -0.056 400
E 4 5/9 2.000 2.480 0.143 -0.050 1000
F 1 7/9 1.680 3.600 0.182 -0.046 400
G 1 1.0 0.240 5.520 0.244 -0.041 400

We further validate that the H1-2 trapped-ion device itself is consistent with the emulator

in the data points that begin with “H1-2”. These actually yield better energies than the

emulator, and are within one standard error of the mean from our theoretical results. The

results from the device and emulator indicate that the energy landscape as a function of the

QAOA parameters γ1 and β1 is consistent between our theoretical calculations, the quantum

device, and emulator. We therefore proceed with our theoretically optimized parameters to

evaluate success in ground state preparation using the quantum computer.

Quantum calculations of ground states

We now perform calculations on the Honeywell H1-2 quantum computer to analyze suc-

cess probability in ground state preparation. We consider points in each region of the Shastry-
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Sutherland lattice, using parameters listed in Table  3.1 that correspond to local minima in

〈H〉, similar to the minima used to evaluate theoretical performance in Sec.  3.4.1 ). We

post-process the measurement results using the SPAM mitigation model with probabilities

P (z) ≥ 0 (see Sec.  3.3.2 ), to give a minor correction to the observed results that is designed

to counteract this known source of error.
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Figure 3.10. Angle sensitivity analysis for h = 2.48 and J2 = 2.0, with sepa-
rate variations in (a) β1 and (b) γ1 about the ideal values from Table  3.1 . Black
crosses show results from pure state calculations, with error bars denoting the
standard error of the mean at 1000 shots (see text). Data points showing re-
sults from the Honeywell emulator are denoted with ”E” in H1-1E and results
from the trapped-ion quantum computer are labeled H1-2. Data points labeled
’H1-1E’ and ’H1-2’ are raw data, labels ”E.M.” (error-mitigation) are with ba-
sic mitigation, and ”E.M. P≥0” are readout error mitigation that forces each
probability P (z) to be ≥ 0, as described in Sec.  3.3.2 .

Figure  3.11 shows the ground state probabilities from quantum computations in compar-

ison with ideal expectations from pure states. The ground states are separated by regions

A,B,... with markers a,b,... corresponding to the individual ground states pictured in elec-

tronic supplementary material Fig. S16. The quantum computations succeed in observing

each individual ground state in each region of the Shastry-Sutherland lattice, as seen by the

positive probabilities in each state ”a”, ”b”,. . .
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Figure 3.11. Probabilities to observe each ground state from pure state sim-
ulations compared with observed frequencies estimated by quantum compu-
tations with the H1-2 device for each different phase (A-G) of the Shastry-
Sutherland unit cell. Alphabetical labels “a”, “b”, etc., identify the different
ground states in electronic supplementary material Fig. S16.

For a closer comparison of probabilities, we plot error bars denoting the theoretical

standard error of the mean S.E.M.=
√
P (z)(1 − P (z))/Nshots. The S.E.M. defines a range

in which we expect about two-thirds of estimated Pest(z) = N(z)/Nshots are expected to

be found, where N(z) is the number of measurement results of a given ground state and

Nshots is the total number of measurements in Table  3.1 . The probabilities from the quantum

computation are largely consistent with the pure state results, with the majority of results

within one S.E.M. from the ideal P (z), as expected in finite sampling to estimate the ground

state probability. There are only two large deviations for states ”k” and ”i”, which may be

related to noise in the device. The quantum computations succeed in preparing ground

states with probabilities comparable to pure-state expectations.

3.5 Conclusion

We analyzed QAOA as an approach for preparing materials ground states on three types

of Ising Hamiltonians with longitudinal magnetic fields, focusing on nine-spin unit cells as

a starting size that is amenable to simulations and calculations on a trapped-ion quantum

computer.
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We applied QAOA to the nine-spin Ising unit cell problems to assess its success in ground

state preparation. We found that the theoretical success probability depends significantly

on the structure of the ground state, while it is mostly insensitive to the precise Hamilto-

nian parameters, which can vary within regions consistent with a fixed ground state. Each

Hamiltonian yields a ferromagnetic ground state in the presence of large magnetic fields,

and QAOA achieved large success probabilities for these relatively simple states. The prob-

abilities for other types of ground states were more variable, and tended to decrease as

next-nearest-neighbor couplings became stronger with associated frustration in the lattice.

For all of these nine-spin states, we typically find success probabilities indicating that .

100 measurements are expected to be necessary from an ideal quantum computer for these

problem instances.

To assess QAOA performance under realistic conditions we implemented the algorithm

on a trapped-ion quantum computer. These quantum computations succeeded in observing

each of the 17 ground states of the Shastry-Sutherland unit cell. The quantum computations

yielded ground state probabilities that were consistent with theoretical expectations based

on pure states, indicating that noise was not a significant issue at the sizes and depths

tested. This suggests that calculations with current technology can likely be extended to

greater QAOA depth parameters p, and to larger sizes as greater numbers of qubits become

available. At greater depths and sizes we expect higher performance and more realistic

results in comparison with the large size limit, respectively.

While the ground states and associated phase diagrams for our nine-spin unit cells were

found to have significant finite size effects relative to the large-size limit, the errors from

finite size effects on the classically-calculated magnetization phase diagrams on n×n lattices

up to n = 30 was found to be suppressed rapidly with n, with small errors at n = 15

indicating that only hundreds of spins may be necessary to reproduce large scale behavior.

This provides a baseline of hundreds of qubits for quantum computational experiments that

seek to explain materials science problems, which may be accessible to near-term quantum

computers in coming years.

Assessing scaling of the ground state probability with size N will be an essential aspect

of extending this approach to larger sizes N . This includes numerical simulations to quantify
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how the ground state probabilities depend on the number of spins N and number of QAOA

layers p; previous works have shown p ∝ N maintains a large ground state probability (& 0.7)

for simple models in different contexts [ 37 ,  38 ], but future work is needed to test scaling in

the current model. Benchmarking on quantum computers is also essential to understand

how real noise processes effect scalability.

Thus from our results we envision QAOA can be successfully applied to somewhat larger

lattice problems as quantum computing technologies develop and larger number of qubits

become available. These could be used for optimization of Ising lattice problems as we have

here, with increasing sizes that potentially describe real bulk properties of materials in the

N → ∞ limit. Additionally, the QAOA algorithm is general, with the application of a

magnetic field, and hence could be explored for lattice problems which are NP-Hard [ 80 ].

But a more promising future direction leveraging the full benefit of this approach is to extend

and modify QAOA to prepare ground states of quantum Hamiltonians such as the XY and

Heisenberg models, which can lead to a variety of quantum phenomena not captured in the

Ising model, such as quantum spin glasses [ 81 ], spin nematicity [ 82 ], Berzinski-Kosterlitz-

Thouless states [  83 ,  84 ] and long-range entangled states such as Dirac string excitations

[ 85 ], the likes of which exist in 2D frustrated quantum spin liquids and spin ice. Many of

these topics are fiercely researched and are of considerable interest and importance for future

quantum technologies and devices. Conventional numerical methods for understanding these

states are hindered by the exponential size of the Hilbert space, making it difficult to generate

a theoretical understanding of experimental observations. QAOA or related generalizations

[ 38 ,  62 ,  68 – 71 ] offer a potential route to overcome conventional computing bottlenecks. Some

successes along these lines have been observed in certain contexts, however, advances in

methodology and quantum computing technologies are needed to extend these methods to

complicated and larger-scale problems where quantum computational approaches may have a

significant impact in understanding and developing materials for technological applications.

80



Bibliography

1S. Blundell, Magnetism in condensed matter (Oxford University Press, Oct. 2001).

2A. M. Samarakoon, A. Banerjee, S.-S. Zhang, Y. Kamiya, S. E. Nagler, D. A. Tennant,

S.-H. Lee, and C. D. Batista, “Comprehensive study of the dynamics of a classical kitaev

spin liquid,”  Phys. Rev. B 96, 134408 (2017) .

3S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, “Challenges in design of kitaev materials:

magnetic interactions from competing energy scales,”  Phys. Rev. B 93, 214431 (2016) .

4M. Vojta, “Frustration and quantum criticality,”  Reports on Progress in Physics 81, 064501

(2018) .

5C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil,

“Quantum spin liquids,”  Science 367, eaay0668 (2020) .

6Q. Zhu, Z. Chen, S. Zhang, Q. Li, Y. Jiang, P. Wu, and K. Zhang, “Improving soft magnetic

properties in finemet-like alloys with ga addition,”  Journal of Magnetism and Magnetic

Materials 487, 165297 (2019) .

7A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, “Chiral spin liquid phase of the

triangular lattice hubbard model: a density matrix renormalization group study,”  Phys.

Rev. X 10, 021042 (2020) .

8C. Wessler, B. Roessli, K. W. Krämer, et al., “Observation of plaquette fluctuations in the

spin-1/2 honeycomb lattice,”  npj Quantum Mater 5 (2020) .

9E. Stoudenmire and S. R. White, “Studying two-dimensional systems with the density

matrix renormalization group,”  Annual Review of Condensed Matter Physics 3, 111–128

(2012) .

10S. Wessel, B. Normand, F. Mila, and A. Honecker, “Efficient Quantum Monte Carlo simu-

lations of highly frustrated magnets: the frustrated spin-1/2 ladder,”  SciPost Phys. 3, 005

(2017) .

11Y. Kamiya, Y. Kato, J. Nasu, and Y. Motome, “Magnetic three states of matter: a quantum

monte carlo study of spin liquids,”  Phys. Rev. B 92, 100403 (2015) .

81

https://doi.org/10.1103/PhysRevB.96.134408
https://doi.org/10.1103/PhysRevB.93.214431
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1088/1361-6633/aab6be
https://doi.org/10.1126/science.aay0668
https://doi.org/https://doi.org/10.1016/j.jmmm.2019.165297
https://doi.org/https://doi.org/10.1016/j.jmmm.2019.165297
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://www.nature.com/articles/s41535-020-00287-1#citeas
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.21468/SciPostPhys.3.1.005
https://doi.org/10.21468/SciPostPhys.3.1.005
https://doi.org/10.1103/PhysRevB.92.100403


12M. Troyer and U.-J. Wiese, “Computational complexity and fundamental limitations to

fermionic quantum monte carlo simulations,”  Phys. Rev. Lett. 94, 170201 (2005) .

13A. M. Samarakoon, P. Laurell, C. Balz, A. Banerjee, P. Lampen-Kelley, D. Mandrus,

S. E. Nagler, S. Okamoto, and D. A. Tennant, “Extraction of interaction parameters for

α−RuCl3 from neutron data using machine learning,”  Phys. Rev. Res. 4, L022061 (2022)  .

14Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev, “Disorder-induced mimicry

of a spin liquid in YbMgGaO4,”  Phys. Rev. Lett. 119, 157201 (2017) .

15E. Altman, K. R. Brown, G. Carleo, L. D. Carr, et al., “Quantum simulators: architectures

and opportunities,”  PRX Quantum 2, 017003 (2021) .

16I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,”  Rev. Mod. Phys. 86,

153–185 (2014) .

17A. D. King, C. Nisoli, E. D. Dahl, G. Poulin-Lamarre, and A. Lopez-Bezanilla, “Qubit spin

ice,”  Science 373, 576–580 (2021) .

18R. Harris, Y. Sato, A. J. Berkley, M. Reis, et al., “Phase transitions in a programmable

quantum spin glass simulator,”  Science 361, 162–165 (2018) .

19D. Bluvstein, H. Levine, G. Semeghini, et al., “A quantum processor based on coherent

transport of entangled atom arrays,”  Nature 604, 451–456 (2022) .

20K. J. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, et al., “Realizing topologically ordered

states on a quantum processor,”  Science 374, 1237–1241 (2021) .

21E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algo-

rithm,”  arXiv 1411.4028 (2014) .

22A. Ortiz-Ambriz, C. Nisoli, C. Reichhardt, C. J. O. Reichhardt, and P. Tierno, “Collo-

quium: ice rule and emergent frustration in particle ice and beyond,”  Rev. Mod. Phys. 91,

041003 (2019) .

23Y. I. Dublenych, “Ground states of the ising model on the shastry-sutherland lattice and

the origin of the fractional magnetization plateaus in rare-earth-metal tetraborides,”  Phys.

Rev. Lett. 109, 167202 (2012) .

82

https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevResearch.4.L022061
https://doi.org/10.1103/PhysRevLett.119.157201
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1126/science.abe2824
https://doi.org/10.1126/science.aat2025
https://www.nature.com/articles/s41586-022-04592-6#citeas
https://doi.org/10.1126/science.abi8378
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/RevModPhys.91.041003
https://doi.org/10.1103/RevModPhys.91.041003
https://doi.org/10.1103/PhysRevLett.109.167202
https://doi.org/10.1103/PhysRevLett.109.167202


24W. C. Huang, L. Huo, G. Tian, H. R. Qian, X. S. Gao, M. H. Qin, and J.-M. Liu, “Multi-

step magnetization of the Ising model on a Shastry-Sutherland lattice: a Monte Carlo

simulation,”  Journal of Physics: Condensed Matter 24,   10.1088/0953-8984/24/38/386003  

(2012) .

25P. Kairys, A. D. King, I. Ozfidan, K. Boothby, J. Raymond, A. Banerjee, and T. S. Humble,

“Simulating the shastry-sutherland ising model using quantum annealing,”  PRX Quantum

1, 020320 (2020) .

26A. Jha, E. Stoyanoff, G. Khundzakishvili, P. Kairys, H. Ushijima-Mwesigwa, and A. Baner-

jee, “Digital annealing route to complex magnetic phase discovery,” in (2021).

27P. Farkašovský, H. Čenčariková, and S. Mat’aš, “Numerical study of magnetization pro-

cesses in rare-earth tetraborides,”  Phys. Rev. B 82, 054409 (2010) .

28J. Trinh, S. Mitra, C. Panagopoulos, T. Kong, P. C. Canfield, and A. P. Ramirez, “Degen-

eracy of the 1/8 plateau and antiferromagnetic phases in the shastry-sutherland magnet

TmB4,”  Phys. Rev. Lett. 121, 167203 (2018) .

29K. Siemensmeyer, E. Wulf, H.-J. Mikeska, K. Flachbart, S. Gabáni, S. Mat’aš, P. Priputen,

A. Efdokimova, and N. Shitsevalova, “Fractional magnetization plateaus and magnetic

order in the shastry-sutherland magnet TmB4,”  Phys. Rev. Lett. 101, 177201 (2008) .

30L. Ye, T. Suzuki, and J. G. Checkelsky, “Electronic transport on the shastry-sutherland

lattice in ising-type rare-earth tetraborides,”  Phys. Rev. B 95, 174405 (2017) .

31A. S. Panfilov, G. E. Grechnev, I. P. Zhuravleva, A. V. Fedorchenko, and V. B. Muratov,

“Specific features of the magnetic properties of rb4 (r = ce, sm and yb) tetraborides. effects

of pressure,”  Low Temperature Physics 41, 193–198 (2015) .

32J. Y. Kim, N. H. Sung, B. Y. Kang, M. S. Kim, B. K. Cho, and J.-S. Rhyee, “Magnetic

anisotropy and magnon gap state of smb4 single crystal,”  Journal of Applied Physics 107,

09E111 (2010) .

83

https://doi.org/10.1088/0953-8984/24/38/386003
https://doi.org/10.1088/0953-8984/24/38/386003
https://doi.org/10.1088/0953-8984/24/38/386003
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1103/PhysRevB.82.054409
https://doi.org/10.1103/PhysRevLett.121.167203
https://doi.org/10.1103/PhysRevLett.101.177201
https://doi.org/10.1103/PhysRevB.95.174405
https://doi.org/10.1063/1.4916067
https://doi.org/10.1063/1.3365061
https://doi.org/10.1063/1.3365061


33S. Yoshii, K. Ohoyama, K. Kurosawa, H. Nojiri, M. Matsuda, P. Frings, F. Duc, B. Vignolle,

G. L. J. A. Rikken, L.-P. Regnault, S. Michimura, and F. Iga, “Neutron diffraction study

on the multiple magnetization plateaus in TbB4 under pulsed high magnetic field,”  Phys.

Rev. Lett. 103, 077203 (2009) .

34Y. Shokef, A. Souslov, and T. C. Lubensky, “Order by disorder in the antiferromagnetic

ising model on an elastic triangular lattice,”  Proceedings of the National Academy of

Sciences 108, 11804–11809 (2011) .

35Y. I. Dublenych, “Ground states of the Ising model on an anisotropic triangular lattice:

stripes and zigzags,”  Journal of Physics: Condensed Matter 25, 406003 (2013) .

36P. C. Lotshaw, T. S. Humble, R. Herrman, J. Ostrowski, and G. Siopsis, “Empirical

performance bounds for quantum approximate optimization,”  Quantum Inf Process 20,

  10.1007/s11128-021-03342-3  (2021) .

37V. Akshay, H. Philathong, E. Campos, D. Rabinovich, I. Zacharov, X.-M. Zhang, and J. D.

Biamonte, “Circuit depth scaling for quantum approximate optimization,”  Phys. Rev. A

106, 042438 (2022) .

38W. W. Ho and T. H. Hsieh, “Efficient variational simulation of non-trivial quantum states,”

 SciPost Phys. 6, 029 (2019) .

39S. Wang, E. Fontana, M. Merezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, “Noise-

induced barren plateaus in variational quantum algorithms,”  Nat Commun 12, 6961 (2021)  .

40J. Weidenfeller, L. C. Valor, J. Gacon, C. Tornow, L. Bello, S. Woerner, and D. J. Egger,

“Scaling of the quantum approximate optimization algorithm on superconducting qubit

based hardware,”  Quantum 6, 870 (2022) .

41G. González-García, R. Trivedi, and J. I. Cirac, “Error propagation in nisq devices for

solving classical optimization problems,”  PRX Quantum 3, 040326 (2022) .

42D. S. França and R. García-Patrón, “Limitations of optimization algorithms on noisy quan-

tum devices,”  Nat. Phys. 17, 1221–1227 (2021) .

84

https://doi.org/10.1103/PhysRevLett.103.077203
https://doi.org/10.1103/PhysRevLett.103.077203
https://doi.org/10.1073/pnas.1014915108
https://doi.org/10.1073/pnas.1014915108
https://doi.org/10.1088/0953-8984/25/40/406003
https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1007/s11128-021-03342-3
https://doi.org/10.1103/PhysRevA.106.042438
https://doi.org/10.1103/PhysRevA.106.042438
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.22331/q-2022-12-07-870
https://doi.org/10.1103/PRXQuantum.3.040326
https://doi.org/10.1038/s41567-021-01356-3


43P. C. Lotshaw, T. Nguyen, A. Santana, M. McCaskey, R. Herrman, J. Ostrowski, G. Siopsis,

and T. S. Humble, “Scaling quantum approximate optimization on near-term hardware,”

 Sci Rep 12, 12388 (2022) .

44B. Sriram Shastry and B. Sutherland, “Exact ground state of a quantum mechanical anti-

ferromagnet,”  Physica B+C 108, 1069–1070 (1981) .

45U. Brandt and J. Stolze, “Ground states of the triangular Ising model with two-and three-

spin interactions,”  Z. Physik B - Condensed Matter 64, 481–490 (1986) .

46A. Billionnet and S. Elloumi, “Using a mixed integer quadratic programming solver for the

unconstrained quadratic 0-1 problem,”  Math. Program. 109, 55–68 (2007) .

47S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

 Science 220, 671–680 (1983) .

48A. Selby, “Efficient subgraph-based sampling of Ising-type models with frustration,”  arXiv

1409.3934 (2014) .

49A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, et al., “Observation of topological

phenomena in a programmable lattice of 1,800 qubits,”  Nature 560, 456–460 (2018) .

50G. Semeghini, H. Levine, A. Keesling, S. Ebadi, et al., “Probing topological spin liquids

on a programmable quantum simulator,”  Science 374, 1242–1247 (2021) .

51Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, et al., “Probing the universality of topological

defect formation in a quantum annealer: kibble-zurek mechanism and beyond,”  Phys. Rev.

Res. 2, 033369 (2020) .

52
 https://doi.org/10.6084/m9.figshare.c.6260131 .

53D-wave systems,  https://github.com/dwavesystems/dwave-neal .

54N. Goldenfeld, Lectures on phase transitions and the renormalization group, Frontiers in

Physics (Addison-Wesley Publishing Company, 1992).

55B. Khalid, S. H. Sureshbabu, A. Banerjee, and S. Kais, “Finite-size scaling on a digital

quantum simulator using quantum restricted boltzmann machine,”  Frontiers in Physics

Volume 10 - 2022,   10.3389/fphy.2022.915863  (2022) .

85

https://doi.org/10.1038/s41598-022-14767-w
https://doi.org/https://doi.org/10.1016/0378-4363(81)90838-X
https://doi.org/10.1007/BF01312843
https://doi.org/10.1007/s10107-005-0637-9
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/1409.3934
https://arxiv.org/abs/1409.3934
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1103/PhysRevResearch.2.033369
https://doi.org/10.1103/PhysRevResearch.2.033369
https://doi.org/10.6084/m9.figshare.c.6260131
https://github.com/dwavesystems/dwave-neal
https://doi.org/10.3389/fphy.2022.915863
https://doi.org/10.3389/fphy.2022.915863
https://doi.org/10.3389/fphy.2022.915863


56J. Preskill, “Quantum Computing in the NISQ era and beyond,”  Quantum 2, 79 (2018) .

57A. Lucas, “Ising formulations of many np problems,”  Frontiers in Physics Volume 2 -

2014,   10.3389/fphy.2014.00005  (2014) .

58L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate opti-

mization algorithm: performance, mechanism, and implementation on near-term devices,”

 Phys. Rev. X 10, 021067 (2020) .

59J. Cook, S. Eidenbenz, and A. Bartschi, “ The Quantum Alternating Operator Ansatz on

Maximum k-Vertex Cover,” in  2020 ieee international conference on quantum computing

and engineering (qce) (Oct. 2020), pp. 83–92.

60P. Vikstål, M. Grönkvist, M. Svensson, M. Andersson, G. Johansson, and G. Ferrini, “Ap-

plying the quantum approximate optimization algorithm to the tail-assignment problem,”

 Phys. Rev. Appl. 14, 034009 (2020) .

61S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. Bernal Neira, and D. Greenberg,

“Formulating and solving routing problems on quantum computers,”  IEEE Transactions

on Quantum Engineering 2, 1–17 (2021) .

62S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas, “From the

quantum approximate optimization algorithm to a quantum alternating operator ansatz,”

 Algorithms 12,   10.3390/a12020034  (2019) .

63T. L. Patti, J. Kossaifi, A. Anandkumar, and S. F. Yelin, “Variational quantum optimiza-

tion with multibasis encodings,”  Phys. Rev. Res. 4, 033142 (2022) .

64R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle

quantum approximate optimization algorithm,”  Sci Rep 12, 6781 (2022) .

65E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, “Quantum algorithms for fixed qubit

architectures,”  arXiv 1703.06199 (2017) .

66R. Tate, M. Farhadi, C. Herold, G. Mohler, and S. Gupta, “Bridging classical and quantum

with sdp initialized warm-starts for qaoa,”  ACM Transactions on Quantum Computing 4,

  10.1145/3549554  (2023) .

86

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1109/QCE49297.2020.00021
https://doi.org/10.1109/QCE49297.2020.00021
https://doi.org/10.1103/PhysRevApplied.14.034009
https://doi.org/10.1109/TQE.2021.3049230
https://doi.org/10.1109/TQE.2021.3049230
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PhysRevResearch.4.033142
https://doi.org/10.1038/s41598-022-10555-8
https://arxiv.org/abs/1703.06199
https://doi.org/10.1145/3549554
https://doi.org/10.1145/3549554
https://doi.org/10.1145/3549554


67L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J. Mayhall, E. Barnes,

and S. E. Economou, “Adaptive quantum approximate optimization algorithm for solving

combinatorial problems on a quantum computer,”  Phys. Rev. Res. 4, 033029 (2022) .

68V. Kremenetski, T. Hogg, S. Hadfield, S. J. Cotton, and N. M. Tubman, “Quantum alter-

nating operator ansatz (QAOA) phase diagrams and applications for quantum chemistry,”

 arXiv 2108.13056v2 (2021) .

69G. Matos, S. Johri, and Z. Papić, “Quantifying the efficiency of state preparation via

quantum variational eigensolvers,”  PRX Quantum 2, 010309 (2021) .

70Z.-H. Sun, Y.-Y. Wang, J. Cui, and H. Fan, “Improving the performance of quantum

approximate optimization for preparing non-trivial quantum states without translational

symmetry,”  New J. Phys. 25, 013015 (2023) .

71G. Pagano, A. Bapat, P. Becker, K. S. Collins, et al., “Quantum approximate optimization

of the long-range ising model with a trapped-ion quantum simulator,”  Proceedings of the

National Academy of Sciences 117, 25396–25401 (2020) .

72P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner, “Improving

Variational Quantum Optimization using CVaR,”  Quantum 4, 256 (2020) .

73L. Li, M. Fan, M. Coram, P. Riley, and S. Leichenauer, “Quantum optimization with a

novel gibbs objective function and ansatz architecture search,”  Phys. Rev. Res. 2, 023074

(2020) .

74G. E. Crooks, “Performance of the quantum approximate optimization algorithm on the

maximum cut problem,”  arXiv 1811.08419 (2018) .

75J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou, “The Quantum Approximate

Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and

the Sherrington-Kirkpatrick Model,” in  17th conference on the theory of quantum compu-

tation, communication and cryptography (tqc 2022)  , Vol. 232, edited by F. Le Gall and

T. Morimae, Leibniz International Proceedings in Informatics (LIPIcs) (2022), 7:1–7:21.

87

https://doi.org/10.1103/PhysRevResearch.4.033029
https://arxiv.org/abs/2108.13056
https://doi.org/10.1103/PRXQuantum.2.010309
https://doi.org/10.1088/1367-2630/acb22c
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.1073/pnas.2006373117
https://doi.org/10.22331/q-2020-04-20-256
https://doi.org/10.1103/PhysRevResearch.2.023074
https://doi.org/10.1103/PhysRevResearch.2.023074
https://arxiv.org/abs/1811.08419
https://doi.org/10.4230/LIPIcs.TQC.2022.7
https://doi.org/10.4230/LIPIcs.TQC.2022.7


76R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble, “Parameter

transfer for quantum approximate optimization of weighted maxcut,”  ACM Transactions

on Quantum Computing 4,   10.1145/3584706  (2023) .

77Quantinuum system model H1 product data sheet, Mar. 2022.

78Quantinuum system model H1 emulator data sheet, Mar. 2022.

79T. M. Mintz, A. J. McCaskey, E. F. Dumitrescu, S. V. Moore, S. Powers, and P. Lougovski,

“Qcor: a language extension specification for the heterogeneous quantum-classical model

of computation,”  J. Emerg. Technol. Comput. Syst. 16,   10.1145/3380964  (2020) .

80F Barahona, “On the computational complexity of Ising spin glass models,”  J. Phys. A:

Math. Gen. 15, 3241 (1982) .

81H. Rieger and A. P. Young, “Quantum spin glasses,” in  Complex behaviour of glassy

systems , Vol. 492, edited by M. Rubí and C. Pérez-Vicente, Lecture Notes in Physics

(1997).

82P. Reiss, D. Graf, A. A. Haghighirad, T. Vojta, and A. I. Coldea, “Signatures of a quantum

griffiths phase close to an electronic nematic quantum phase transition,”  Phys. Rev. Lett.

127, 246402 (2021) .

83Ze Hu, Z. Ma, Y.-D. Liao, H. Li, et al., “Evidence of the Berezinskii-Kosterlitz-Thouless

phase transition in a frustrated magnet,”  Nat Commun 11, 5631 (2020) .

84J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in

two-dimensional systems,”  J. Phys. C: Solid State Phys. 6, 1181 (1973) .

85L. D. C. Jaubert and P. C. W. Holdsworth, “Signature of magnetic monopole and Dirac

string dynamics in spin ice,”  Nature Phys 5, 258–261 (2009) .

88

https://doi.org/10.1145/3584706
https://doi.org/10.1145/3584706
https://doi.org/10.1145/3584706
https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1007/BFb0104832
https://doi.org/10.1007/BFb0104832
https://doi.org/10.1103/PhysRevLett.127.246402
https://doi.org/10.1103/PhysRevLett.127.246402
https://doi.org/10.1038/s41467-020-19380-x
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1038/nphys1227


4. PROJECT III: A CLASSICAL ANALOGUE OF

ENTANGLEMENT

The contents of this chapter are adapted from the following article:

B. Khalid and S. Kais, “A classical analogue of entanglement for a kicked top”,  arXiv pre-

print: 2411.08857v2 (2025.)  

Abstract: It is widely believed that quantum mechanics cannot exhibit chaos, since unitar-

ity of time evolution ensures that distances between quantum states are preserved. However,

Ballentine has suggested that a parallel argument can be constructed in classical mechanics

that would seem to deny the existence of classical chaos too [  1 ]. The argument works by de-

scribing classical states as probability distributions in phase space and showing that the inner

product between distributions on phase space is preserved under Liouvillian dynamics. This

leads Ballentine to conclude that the more faithful classical analogy of a quantum state is not

a single phase space trajectory but is instead a phase space distribution, and chaos in such

states must be identified by some statistical signatures instead of exponential separation of

nearby states. The search for these signatures is the primary goal in quantum chaos research

[ 2 – 4 ]. However, this perspective also naturally motivates the search for classical analogues

of these signatures, to reveal the inner machinery of chaos in quantum systems. One widely

recognized signature of chaos in quantum systems is the dynamical generation of entangle-

ment. Chaos in the classical system is correlated with a greater entanglement production

in the corresponding quantum system [ 5 – 25 ]. One of the most well-studied examples of this

is the kicked top model [  26 ]. In this chapter, we construct a classical analogue of bipartite

entanglement in terms of the mutual information between phase space distributions of sub-

systems and find completely analogous signatures of chaos as those found in entanglement

for the kicked top Hamiltonian.
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4.1 Introduction

Quantum chaos is the study of the quantum mechanical properties characteristic of sys-

tems that exhibit chaos classically [ 2 – 4 ]. Traditionally, the primary focus in the field has

been on the determination of universal features in the spectral statistics and the eigenstates

of chaotic Hamiltonians. However, in recent years, developments in quantum information

science and phenomenal advances in quantum simulation technologies have enabled novel

theoretical and experimental avenues for exploring the dynamical manifestations of chaos in

quantum systems. Information-theoretic measures such as entanglement entropy, quantum

Fisher information, OTOCs (out-of-time-order correlators), etc. have been suggested as new

probes for tracking quantum chaos. Consequently, a fresh understanding of quantum chaos

has emerged that has revealed its fundamental significance in quantum dynamical processes,

crucial to understanding decoherence, many-body systems and black hole physics, such as

entanglement generation [  5 – 25 ], information scrambling [ 27 – 31 ] and quantum thermalization

[ 32 – 36 ].

The issue of quantum entanglement has been the subject of much debate since Einstein,

Podolsky and Rosen pointed out the “bizarre” consequences it can lead to [  37 ]. Schrödinger

declared it as “the characteristic trait of quantum mechanics, the one that enforces its en-

tire departure from classical lines of thought [ 38 ].” In its essence, entanglement expresses

the nonlocal and nonseparable nature of quantum states in a form that is completely alien

to classical physics [  39 ]. In quantum information science, it has been identified as a cen-

tral resource in quantum communication protocols, quantum cryptography and quantum

information processing and storage [ 40 ,  41 ].

Remarkably, the dynamical generation of entanglement (within the system or with an

environment) is intimately tied to the chaoticity properties of the underlying classical phase

space. It has been observed that wave packets centered on regions of phase space that are

classically chaotic yield a greater entanglement entropy production than classically regular

regions. For chaotic initial conditions, the entanglement entropy grows linearly at a rate given

by the sum of the positive Lyuapunov exponents, the classical Kolmogorov-Sinai entropy

rate; whereas for the regular case, the entropy grows only logarithmically with time [ 5 – 25 ].
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A system for which the chaos-entanglement relationship has been extensively studied is

the kicked top model [  10 ,  16 ,  21 – 26 ]. In this system, the evolution of the angular momentum

J (“the top”) is governed by two kinds of process: (i) precession of J around a fixed axis

at a constant rate and (ii) a periodic sequence of kicks that bring about an instantaneous

change in J. The Hamiltonian for this system commutes with J2, so the quantum evolution

is confined within a subspace characterized by an eigenvalue j(j + 1) of J2. Moreover, the

model is chaotic in the classical limit j → ∞. This model was introduced by Haake et al.

to analyze how chaos arises as a system becomes more and more classical [ 26 ].

A particularly interesting realization of this model is in terms of a collection of spins-1/2,

where J denotes the collective angular momentum of the spins. This approach has been used

to study bipartite entanglement in the model as a function of time and initial state [ 21 – 25 ].

In a common scenario, the system is initialized in a spin-coherent state i.e. a minimum

uncertainty angular momentum state, and the growth of entanglement entropy of a single

spin-1/2 is tracked. The growth of entropy has been found to carry strong signatures of

chaos in the underlying classical dynamics: (i) for an initial state centered in a classically

chaotic region of phase space, the entanglement entropy grows linearly at a rate given by

the Lyuapunov exponent before reaching the saturation point, whereas, for the classically

regular case, the entropy grows only logarithmically; (ii) for initial conditions centered in

classically chaotic regions of phase space, the equilibrium entropy (also known as average

entropy) is larger compared to those centered in classically regular regions [ 21 – 25 ].

With recent advances in a variety of quantum simulation platforms, there has also been

a lot of interest in experimental investigations of this correlation. A quantum simulation of

the kicked top was achieved by Chaudhury et al. using the F = 3 hyperfine ground state

of 133Cs [  23 ]. In their experiment, the total angular momentum in the Hamiltonian was

taken to be the sum of the electron and nuclear spins of a single 133Cs atom. Consequently,

the theoretically predicted correspondence between entanglement, as quantified by the linear

entropy of the electron spin, and classical chaos was corroborated. Later, similar conclusions

were obtained by Neill et al. in their quantum simulation experiment of the same Hamiltonian

using a three-qubit ring of planar transmons [  24 ]. Commenting on their findings, they added,
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“it is interesting to note that chaos and entanglement are each exclusive to their respective

classical and quantum domains, and any connection is surprising.”

The connection is surprising because a purely quantum property (entanglement) is being

related with a purely classical one (chaos), each one understood to have no counterpart

on the other side. The standard argument for the absence of chaos in quantum mechanics

proceeds like this. Suppose |ψ1(0)〉 and |ψ2(0)〉 represent two initially close quantum states

i.e. 〈ψ1(0)|ψ2(0)〉 = 1 − ε (ε being a small number.) Under unitary evolution of |ψ1(0)〉

and |ψ2(0)〉, we should have 〈ψ1(t)|ψ2(t)〉 = 1 − ε for all times t. So, the states do not

separate in time and this is taken to imply that there can be no chaos in quantum mechanics

[ 1 ]. However, Ballentine has argued that a parallel argument can be constructed in classical

mechanics too if classical states are taken to be represented by probability distributions in

phase space. For two phase space distributions ρ1(q, p, t) and ρ2(q, p, t), the construction

{ρ1(t)|ρ2(t)} =
∫ ∫

ρ1(q, p, t)ρ2(q, p, t) dqdp is a well-defined inner product on phase space

and is invariant under the Liouvillian dynamics of ρ1 and ρ2. But no one can deny the

existence of chaos in classical mechanics. Ballentine then concludes that the confusion about

quantum chaos is merely a reflection of the confusion about the notion of “state” in classical

and quantum mechanics. The more adequate classical analogue of a quantum state is not a

single trajectory but a phase space distribution, and chaos in such states must be identified

by some statistical signatures [ 1 ].

One such signature is the growth of entanglement in quantum systems as discussed

above. This naturally raises the question of what would be a good classical analogue of

entanglement in the statistical interpretation of classical physics. Constructing such an

analogue is desirable for two related reasons: (i) a comparison between conceptually similar

identifiers of chaos across the classical-quantum divide can enable a fresh understanding of

the classical-quantum correspondence, especially in light of the issues raised by chaos; (ii)

since quantum chaos is still far from understood, an analysis of a classical analogue of a

quantum signature of chaos can reveal the inner machinery of quantum chaos, that would

otherwise be hidden from view.

To construct this analogue, it would be convenient to consider the meaning of entangle-

ment in the Wigner function formalism of quantum mechanics as it provides a visualization
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of quantum states in phase space. In this formulation, the state of a quantum system is

represented by a real-valued function in phase space W (q, p), called the Wigner function.

This function in many ways acts like the classical phase space density ρ(q, p). However, an

important difference is that W (q, p) is not really a distribution as it can take negative values

unlike ρ(q, p) [ 42 ,  43 ].

In the Wigner function formalism, two systems are entangled iff their collective Wigner

function is nonseparable i.e. if W (q1, q2, p1, p2) is the Wigner function of the total system

and W1(q1, p1) =
∫ ∫

W (q1, q2, p1, p2) dq2dp2 and W2(q2, p2) =
∫ ∫

W (q1, q2, p1, p2) dq1dp1 are

the Wigner functions of systems 1 and 2 respectively, then W (q1, q2, p1, p2) 6= W1(q1, p1) ×

W2(q2, p2). This motivates the construction of a classical analogue in terms of the sep-

arability of phase space density ρ. The classical state is separable iff ρ(q1, q2, p1, p2) =

ρ1(q1, p1)×ρ2(q2, p2) and is nonseparable otherwise, where ρ1(q1, p1) =
∫
ρ(q1, q2, p1, p2)dq2dp2

and ρ2(q2, p2) =
∫
ρ(q1, q2, p1, p2) dq1dp1. To quantify the degree of nonseparability, we will

use mutual information which for two random variables X1 and X2 is defined as I12 =∫ ∫
ρ(X1, X2) log

[
ρ(X1, X2)/

(
ρ1(X1)ρ2(X2)

)]
dX1dX2. I12 ≥ 0 and I12 = 0 iff ρ(X1, X2) =

ρ1(X1)ρ2(X2). For other measures of classical nonseparability, see references [  7 ,  13 ,  18 ,  19 ].

In this chapter, we have analyzed the growth of mutual information in the classical

kicked top. We bipartition the total angular momentum J into two parts J1 and J2 and

compute the mutual information between the variables on the two sides of the partition.

We find striking resemblances between the growth of mutual information and the bipartite

entanglement. Mutual information, like entanglement, carries clear signatures of chaos in

the underlying dynamics. Under chaotic dynamics, it grows linearly at a rate proportional

to the Lyuapunov exponent. Whereas, for regular dynamics, the growth starts to slow down

well before equilibrium is attained. Similarly, initial states centered in chaotic regions of

phase space end up with a higher mutual information at equilibrium compared to regular

regions, in complete analogy with bipartite entanglement.

The organization of the chapter is as follows. In Sec.  4.2 , we introduce the kicked top

Hamiltonian and describe its classical dynamics. In Sec.  4.3 , we recall the correspondence

between entanglement and classical dynamics. Then, in Sec.  4.4 , we present our calculations
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for classical mutual information. Finally, in Sec.  4.5 , we provide a summary of the results

and an outlook for the future.

4.2 Classical Dynamics

Consider the angular momentum operator ~J = ~(Jx, Jy, Jz) satisfying the commutation

relations [Ji, Jj] = ι̇εijkJk. The Hamiltonian for the kicked top is then expressed in terms of

J as [ 26 ],

H(t) = ~p
τ
Jy + ~κ

2j J
2
z

+∞∑
n=−∞

δ(t− nτ). (4.1)

The first term describes the precession of the rotor around the y-axis at a rate p/τ . The

second term represents a periodic sequence of kicks separated by a period τ . Intuitively, this

term can be thought of as a sudden precession around the z-axis by an angle proportional

to Jz/j, where j is the total angular momentum quantum number. Once we initialize our

system in the subspace characterized by the eigenvalue j(j + 1) of the operator J2, we stay

within the same subspace for all times since [J2, H(t)] = 0. κ is a dimensionless constant

which controls the strength of the kick. For this chapter, we are going to choose p = π/2 i.e.

the top precesses around the y-axis by an angle π/2 between successive kicks.

Working in the Heisenberg picture, we are interested in tracking the evolution of J in time.

The evolution of the operator Ji in n time steps can be represented as J (n)
i = (U †)n Ji U

n,

where U is the unitary evolution corresponding to the interval τ between successive kicks

[ 26 ],

U = e−ι̇(κ/2j)J2
z e−ι̇(π/2)Jy . (4.2)

The evolution of J can be represented in terms of the following non-linear operator recursion

relations which determine how J = J(i) is updated to J′ = J(i+1) after each time step [ 26 ],

J ′
x = 1

2(Jz + ι̇Jy) e−ι̇ κ
j

(Jx− 1
2 ) + h.c.

J ′
y = 1

2ι̇(Jz + ι̇Jy) e−ι̇ κ
j

(Jx− 1
2 ) + h.c. (4.3)

J ′
z = −Jx.
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(a)

(d)(c)

(b)𝜿 = 𝟎. 𝟓

𝜿 = 𝟔. 𝟎𝜿 = 𝟐. 𝟓

𝜿 = 𝟏. 𝟓

Figure 4.1. Classical phase portraits for the kicked top. The trajec-
tories of rescaled angular momenta X = J/j in the classical limit j → ∞,
represented in terms of the polar and the azimuthal angles on a unit sphere.
As κ is tuned from low to high, an order-to-chaos transition occurs in the
phase space. Red markers represent the trajectories corresponding to the ini-
tial condition θ0 = 3π/4, φ0 = 3π/4 (black marker.)

Defining the rescaled angular momentum as X = J/j and taking the classical limit j → ∞,

we can track the evolution of the now real-valued X = (X,Y, Z) on the surface of a unit

sphere using the following recursion relations obtained from ( 4.3 ),

X ′ = Re{(Z + ι̇Y ) e−ι̇κX}

Y ′ = Im{(Z + ι̇Y ) e−ι̇κX} (4.4)

Z ′ = −X.
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In Fig.  4.1 , we have plotted some examples of the phase portraits in spherical coordinates

(i.e. X = sin θ cosφ, Y = sin θ sinφ and Z = cos θ) that are produced by the recursion

relations ( 4.4 ) for different values of the kick strength κ. As we increase the kick strength κ,

chaos emerges in the phase space and islands of regularity begin to shrink. Eventually, for a

large enough value of κ, chaos completely takes over.

4.3 Quantum Entanglement

Figure 4.2. von Neumann entropy and linear entropy for spin-1/2 systems.

Consider a collection ofN spins-1/2 with the corresponding spin operators Si = (Six, Siy, Siz)

such that the dynamics of the total angular momentum J = ∑N
i=1 Si is governed by the

Hamiltonian ( 4.1 ). In terms of the spin operators Si, the Hamiltonian can be re-written as

H(t) = ~π
2τ

N∑
i=1

Siy + ~κ
2j

 N∑
i=1

S2
iz +

∑
i 6=j

SizSjz

 +∞∑
n=−∞

δ(t− nτ). (4.5)

Before each kick, each spin independently precesses around the y-axis by an angle π/2.

Noting that (∑N
i=1 S

2
iz +∑

i 6=j SizSjz) = Jz (∑N
i=1 Siz), the kick can be understood as causing

a sudden precession of each spin around the z-axis by an angle proportional to Jz/j, a

collective variable of the system.
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(a) (b)

(c) (d)
𝑆𝑒𝑞 𝑆𝑒𝑞

Figure 4.3. Linear entropy. Linear entropy of a single spin S = 1 − Tr1(ρ2
1)

as a function of time steps T and initial orientation (θ0, φ0). (a) and (b) show
the time dynamics of S with the initial orientation (θ0 = 3π/4, φ0 = 3π/4) for
κ = 0.5 and κ = 2.5 respectively. (c) and (d) display the equilibrium value Seq

of linear entropy as a function of the initial orientation (θ0, φ0) for κ = 0.5 and
κ = 2.5 respectively. The system size is taken to be N = 40. Seq is estimated
by averaging S over an appropriate time interval after reaching saturation. For
(c), the average is performed for 60 ≤ T ≤ 100 whereas for (d), the average is
computed over 20 ≤ T ≤ 40. There is a striking resemblance of the plots (c)
and (d) with the corresponding classical phase portraits shown in Figs.  4.1 (a)
and (c).

In this section, we recall the dynamics of bipartite entanglement generated by this Hamil-

tonian. We initialize the system in the spin-coherent state,

|ψ(t = 0)〉 =
N⊗

i=1
|θ0, φ0〉i = exp{ι̇θ0(Jx sin φ0 − Jy cos φ0)} |j, j〉 . (4.6)

This is the minimum uncertainty angular momentum state pointing along a certain direction

(θ0, φ0) for a given total angular momentum quantum number j. For N spins-1/2 pointing

in the same direction, we have j = N/2. |θ0, φ0〉 is the spin-1/2 state pointing along (θ0, φ0)
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on the Bloch sphere i.e. |θ0, φ0〉 = cos(θ0/2) |↑〉 + e−ι̇φ0sin(θ0/2) |↓〉. The initial state is

completely separable, however, entanglement is generated as a result of the unitary evolution

( 4.2 ).

To track the dynamics of bipartite entanglement, we use linear entropy of a single spin-1/2

defined as S = 1 − Tr1(ρ2
1), where ρ1 is the reduced density matrix for a single spin. S = 0

for a pure state, and is maximized at S = 0.5 for a completely mixed state. This measure

is used only for convenience; qualitatively, the results are expected to be independent of the

choice for pure states [  21 ]. Even quantitatively, there is a nearly linear relationship between

von Neumann entropy and linear entropy for spin-1/2 states as shown in Fig.  4.2 .

In Figs.  4.3 (a) and (b), we have plotted the time dynamics of entropy for the regular

(κ = 0.5) and chaotic (κ = 2.5) scenarios, respectively. For both cases, the initial state is

centered at (θ0 = 3π/4, φ0 = 3π/4). The dynamics has been plotted for three different system

sizes N = 40, 100, 200. For both scenarios, entropy grows consistently before saturating

after some time Teq. For the regular case, Teq increases with the size of the system N as

O(
√
N). On the other hand, the increase is only logarithmic O(lnN) for the chaotic case

[ 25 ]. Moreover, the rate of entropy growth in the regular case starts to slow down well before

reaching saturation, signifying a logarithmic growth of entropy. However, for the chaotic

case, the growth is linear at a rate given by the Lyuapunov exponent [  25 ]. For larger times,

the entropy undergoes sequences of collapses and revivals, which recede into the indefinite

future as the system size approaches the thermodynamic limit.

In Figs.  4.3 (c) and (d), equilibrium values of entropy Seq have been plotted as a function

of the initial orientations (θ0, φ0) for N = 40. Seq is estimated by averaging the entropy over

a chosen time interval after saturation. Remarkably, the plots of entanglement reflect the

structure of the classical phase space in Figs.  4.1 (a) and (c). For κ = 2.5 specifically, we find

that the regions of chaos in classical phase space correspond to regions of higher entropy on

the quantum side and the regions of regularity correspond to a lower entropy [ 24 ].
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(a) (b)
𝑆𝑒𝑞
∞ 𝑆𝑒𝑞

∞

Figure 4.4. Linear entropy in the thermodynamic limit. We have
estimated the equilibrium value of linear entropy in the thermodynamic limit
S∞

eq as a function of the initial orientation (θ0, φ0). For each (θ0, φ0), S∞ =
〈(∆X)2〉 /2 is computed classically by evolving 200 trajectories sampled from
a region of angular spread sin θ0∆θ∆φ = 1/j for j = 100 centered at (θ0, φ0).
For both plots, S∞ is averaged between 400 ≤ T ≤ 500.

Finally, to obtain an estimate of entropy in the thermodynamic limit, we note that linear

entropy for a state symmetric with respect to all the spins can be expressed as [ 22 ],

S = 1 − Tr1(ρ2
1) = 1

2

[
1 − 1

j2 (〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2)
]
. (4.7)

As j → ∞, this becomes S = 〈(∆X)2〉 /2 where 〈(∆X)2〉 = (
〈
J2
〉

− 〈J〉2)/j2. We can

then compute 〈(∆X)2〉 in the classical limit to estimate S in the thermodynamic limit. The

results for this calculation are shown in Fig.  4.4 . For each (θ0, φ0), we evolved 200 trajectories

initialized in a region of angular spread sin θ0∆θ∆φ = 1/j centered at (θ0, φ0) to calculate

〈(∆X)2〉. These plots contain some extra minima regions (i.e. red regions) located around

the fixed points of the classical phase space [Figs.  4.1 (a) and (c)] that were not captured in

Figs.  4.3 (c) and (d).

4.4 Classical Mutual Information

In the Introduction, we have motivated a classical notion of nonseparability quantified

by mutual information. In this section, we use that measure to track nonseparability in the
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classical kicked top. Suppose we bipartition the system by dividing J into J1 and J2 so that

J =J1+J2. The Hamiltonian (  4.1 ) can then be re-expressed in terms of J1 and J2 as

H(t) = ~π
2τ (J1y + J2y) + ~κ

2j (J2
1z + J2

2z + 2J1zJ2z)
+∞∑

n=−∞
δ(t− nτ). (4.8)

J2
1 and J2

2 are conserved quantities since [J2
1,2, H(t)] = 0. The unitary evolution operator

over one cycle is U = Uz2U12Uy where Uz2 = e−ι̇(κ/2j)J2
1ze−ι̇(κ/2j)J2

2z , U12 = e−ι̇(κ/j)J1zJ2z and

Uy = e−ι̇(π/2)J1ye−ι̇(π/2)J2y . We can compute J′
1 = U †J1U to produce the following recursion

relations for the update of angular momentum of subsystem 1 (see supplementary information

 S-I ,)

J ′
1x = 1

2(J1z + ι̇J1y) e−ι̇ κ
j

(J1x+J2x+ 1
2 ) + h.c.

J ′
1x = 1

2ι̇(J1z + ι̇J1y) e−ι̇ κ
j

(J1x+J2x+ 1
2 ) + h.c. (4.9)

J ′
1x = −J1x.

For J′
2, we only need to interchange the indices 1 and 2 in the above equations. Finally,

defining X1,2 = J1,2/j and taking the classical limit j → ∞ we get

X ′
1 = Re{(Z1 + ι̇Y1) e−ι̇κ(X1+X2)}

Y ′
1 = Im{(Z1 + ι̇Y1) e−ι̇κ(X1+X2)} (4.10)

Z ′
1 = −X1.

We take subsystem 1 to be the analogue of a spin-1/2, while subsystem 2 represents the rest

of the system. This motivates our choice ‖J1‖ = 1/2 and ‖J2‖ = j − ‖J1‖. We initialize

the system in a completely separable distribution i.e. the distribution for the total system

is simply a product of the marginal distributions for subsystems 1 and 2. Both marginal

distributions are taken to be uniformly distributed around (θ0, φ0). For subsystem 2, the

angular spread of the initial distribution is taken to be sin θ0∆θ∆φ = 1/j, in analogy with

the quantum state ( 4.6 ). On the other hand, for subsystem 1, the initial angular spread is

fixed at sin θ0∆θ∆φ = 1/4. We sample initial conditions from this initial distribution for the
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total system, evolve them into trajectories and estimate the mutual information I12 between

the variables X1 = J1x/j and X2 = J2x/j based on k-nearest neighbor statistics [ 44 ].

(a) (b)

(c) (d)

Figure 4.5. Mutual information growth and system size. Mutual in-
formation I12 between the variables X1 = J1x/j and X2 = J2x/j with initial
orientation (θ0 = 3π/4, φ0 = 3π/4) for κ = 0.5 [(a) and (c)] and κ = 2.5 [(b)
and (d)], respectively. The system starts in a completely separable distribution
with angular spread sin θ0∆θ∆φ = 1/4 for subsystem 1 and sin θ0∆θ∆φ = 1/j
for subsystem 2. A sample of 500 points is drawn from this distribution and
the corresponding trajectories are evolved to compute the statistics. (a) and
(b) show the growth of I12 with time, whereas, (c) and (d) display the ad-
vancement in saturation time Teq with system size j.

In Fig.  4.5 , we have shown the dynamics of I12 for different system sizes j (recall j = N/2.)

Fig.  4.5 (a) shows the growth of I12 for regular classical dynamics. The rate of growth decays

with time, a signature of logarithmic growth. Moreover, as the system size j increases, the

growth slows further as the system is expected to take longer to reach equilibrium. Plot (c)

shows that the saturation time Teq increases as O(
√
j) with j. All these trends are completely

analogous to the growth of quantum entropy for classically regular phase space.
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(a) (b)

(c) (d)

Figure 4.6. Mutual information growth and Lyuapunov exponents.
A comparison of the growth rate of I12 with the corresponding Lyuapunov
exponents for four different cases: (a) κ = 2.5, (θ0 = 3π/4, φ0 = 3π/4),
λa = 0.145; (b) κ = 2.5, (θ0 = 1.0, φ0 = π/10), λb = 0.143; (c) κ = 6.0,
(θ0 = 3π/4, φ0 = 3π/4), λc = 0.978; (d) κ = 8.0, (θ0 = 3π/4, φ0 = 3π/4),
λd = 1.254. For all these scenarios, j = 100, and 200 samples are drawn from
the initial distribution.

In Fig.  4.5 (b), we have plotted the dynamics of I12 for chaotic classical dynamics. Clearly,

I12 grows almost linearly once the initial transient subsides, during which it does not grow

at all, for larger j. Moreover, plot (d) shows that the saturation time Teq for I12, just like

quantum entropy, increases with j much more slowly as O(ln j) compared to the regular case.

The uniform growth rate for quantum entropy under chaotic classical dynamics is known to

be proportional to the positive Lyuapunov exponent 

1
 of the corresponding classical dynamics

[ 25 ]. In Fig.  4.6 , we present evidence that this holds for mutual information I12 too. We

have compared the growth rate of I12 with the corresponding Lyuapunov exponents for four

different cases. To estimate the Lyuapunov exponents, we used the standard algorithm of
1

 ↑ More generally, the growth rate is proportional to the sum of the positive Lyuapunov exponents, but for
the kicked top, there is just one such exponent.
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Benettin et al [ 25 ,  45 – 47 ] (see supplementary information  S-II .) In all these cases, we find

that the growth rate is ∼ 0.5×λ, where λ is the positive Lyuapunov exponent corresponding

to the point (θ0, φ0).

(a) (b)

𝐼12
𝑒𝑞

𝐼12
𝑒𝑞

Figure 4.7. Equilibrium mutual information. Equilibrium value of mu-
tual information Ieq

12 is estimated as a function of (θ0, φ0) for: (a) κ = 0.5
and (b) κ = 2.5. For each (θ0, φ0), 200 trajectories are sampled to compute
the statistics and j = 100 is used. To obtain Ieq

12, I12 is averaged between
400 ≤ T ≤ 500 for both cases. The plots are remarkably similar to equilib-
rium entropy Seq in Figs.  4.3 and  4.4 .

Finally, in Fig.  4.7 , we have plotted the equilibrium value of I12 as a function of the

initial orientation (θ0, φ0) for regular (κ = 0.5) and chaotic (κ = 2.5) cases, respectively.

The equilibrium value Ieq
12 is estimated by averaging I12 in the time range 400 ≤ T ≤ 500 for

both cases. The plots obtained look remarkably similar to the plots of equilibrium entropy

Seq in Figs.  4.3 and  4.4 . Like quantum entropy, classical mutual information as a function

of the initial orientation is also able to reflect the structure of the classical phase space.

So, the results in Figs.  4.5 ,  4.6 and  4.7 show that the signatures of chaos associated with

entanglement have clear analogues in the statistical interpretation of classical mechanics.

4.5 Summary and Outlook

In this chapter, we have demonstrated that the signatures of chaos displayed by biparitite

entanglement can also be observed through a classical statistical measure. Our measure is

based on the mutual information between the marginal phase space densities of individual
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subsystems. We have evolved this quantity dynamically using the kicked top Hamiltonian.

Our results can be summarized as follows: (i) mutual information I12 grows logarithmically

for regular classical dynamics, whereas, the growth is linear and the rate of growth is propor-

tional to the Lyuapunov exponent for chaotic dynamics; (ii) the saturation time Teq grows

with system size j = N/2 as O(
√
j) for regular dynamics and O(ln j) for chaotic dynam-

ics; (iii) the equilibrium mutual information Ieq
12, estimated by averaging I12, is larger for

initial conditions that produce chaotic trajectories than those that lead to regular motion

for a mixed regular-chaotic phase space. All of these are well-known signatures of chaos in

bipartite quantum entanglement [ 21 – 25 ].

Although this study has been conducted using a specific measure of classical nonsep-

arability, we believe that the results should be independent of the choice of measure (for

other measures, see references [ 7 ,  13 ,  18 ,  19 ]). Moreover, while the focus herein has been

on bipartite entanglement, quantum entanglement is certainly not restricted to bipartite

measures only. Multipartite entanglement measures such as quantum Fisher information are

also known to exhibit signatures of chaos [  25 ]. Therefore, an important direction for the fu-

ture would be to extend this classical analogy to multipartite measures. Another important

question that we leave for future exploration is whether this analogy carries over to more

nontrivial states beyond the simple spin-coherent states considered in this work.

Finally, these results might also have implications for the foundations of classical and

quantum mechanics. In recent years, Gisin et al. have advanced an alternative interpretation

of classical mechanics as an attempt to bridge the conceptual gap between classical and

quantum physics [  48 – 54 ]. Their basic claim is that the orthodox understanding of classical

mechanics takes for granted an assumption that they have called the principle of infinite

precision; that physical quantities can be specified to an infinite number of digits. Once this

assumption is relaxed, they have argued, many features exclusively attributed to quantum

physics such as the fundamental role of measurement and the nonseparability of states appear

analogously in classical physics too [ 54 ].

We have argued in this chapter that classical nonseparability certainly reveals new con-

nections between classical and quantum realms. Gisin et al. go a step further and allow

the possibility for classical nonseparability to be a physically real phenomenon. However,
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the question will remain unresolved until experimental investigations are carried out. One

possible route could be to monitor the motion of charged particles in classical and quantum

wells [  55 ]. Charges moving between parallel planar potential barriers under a magnetic field

tilted with respect to the barriers exhibit chaotic dynamics. The emergence of chaos in this

system is described by the kicked top map in certain regimes. In the classical version of the

system, chaos is accompanied with a large energy transfer between the longitudinal and the

cyclotron motion of the charges; however, this energy exchange is suppressed in the quantum

limit [  55 ]. Further analysis will be needed to investigate the possible experimental signatures

of classical nonseparability in this system.
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Supplementary Information

S-I Update of Angular Momentum

To compute J′
1 = U †J1U , we first note that U †

z2J1Uz2 is as follows [ 26 ]

U †
z2J1xUz2 = 1

2(J1x + ι̇J1y) eι̇ κ
j

(J1z+ 1
2 ) + h.c.

U †
z2J1yUz2 = 1

2ι̇(J1x + ι̇J1y) eι̇ κ
j

(J1z+ 1
2 ) + h.c. (4.11)

U †
z2J1zUz2 = J1z.

On the other hand, U †
12J1U12 simply rotates J1 in the following way

U †
12J1xU12 = J1x cos

(
κ
J2z

j

)
− J1y sin

(
κ
J2z

j

)
U †

12J1yU12 = J1x sin
(
κ
J2z

j

)
+ J1y cos

(
κ
J2z

j

)
(4.12)

U †
12J1zU12 = J1z.

Combining ( 4.11 ) and ( 4.12 ), we get

U †
12U

†
z2J1xUz2U12 = 1

2(J1x + ι̇J1y) eι̇ κ
j

(J1z+J2z+ 1
2 ) + h.c.

U †
12U

†
z2J1yUz2U12 = 1

2ι̇(J1x + ι̇J1y) eι̇ κ
j

(J1z+J2z+ 1
2 ) + h.c. (4.13)

U †
12U

†
z2J1zUz2U12 = J1z.

Finally, performing the rotation around the y-axis gives us the following answer for J′
1 =

U †J1U = U †
yU

†
12U

†
z2J1Uz2U12Uy,

J ′
1x = 1

2(J1z + ι̇J1y) e−ι̇ κ
j

(J1x+J2x+ 1
2 ) + h.c.

J ′
1x = 1

2ι̇(J1z + ι̇J1y) e−ι̇ κ
j

(J1x+J2x+ 1
2 ) + h.c. (4.14)

J ′
1x = −J1x.
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S-II Calculation of Lyuapunov Exponents

In this section, we apply the procedure of Benettin et al. [  25 ,  45 – 47 ] to estimate the

Lyuapunov exponents for the kicked top map (  4.4 ). Suppose our initial point is X0 =

(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0). First, we pick two independent tangent vectors (W(1)
0 ,W(2)

0 )

at the point X0 on the unit sphere. These vectors can be chosen at random. For our calcu-

lations, we choose

W(1)
0 =


cos θ0 cosφ0

cos θ0 sinφ0

− sin θ0

 ; W(2)
0 =


sinφ0

− cosφ0

0

 . (4.15)

Xi is updated through Xi+1 = (FX [Xi], FY [Xi], FZ [Xi]) where FX , FY and FZ are given in

eqs. ( 4.4 ). The tangent vectors are updated using the map W(1)
i+1 = A[Xi] W(1)

i where

A[Xi] =


∂Xi

FX [Xi] ∂Yi
FX [Xi] ∂Zi

FX [Xi]

∂Xi
FY [Xi] ∂Yi

FY [Xi] ∂Zi
FY [Xi]

∂Xi
FZ [Xi] ∂Yi

FZ [Xi] ∂Zi
FZ [Xi]

 . (4.16)

The procedure to obtain the Lyuapunov exponent is as follows [ 25 ]:

1. Evolve the tangent vectors (W(1)
(i−1)s,W

(2)
(i−1)s) for s time steps to (W(1)

is ,W
(2)
is ).

2. Apply the Gram-Schmidt procedure:

αi = |W(1)
is |, V(1) = W(1)

is /αi; (4.17)

βi = |W(2)
is − (V(1) · W(2)

is )V(1)|, V(2) = 1
βi

[W(2)
is − (V(1) · W(2)

is )V(1)]. (4.18)

3. Reinitialize W(1)
is = V(1) and W(2)

is = V(2).

Then, for large n, an estimate of the postive Lyuapunov exponent λ is obtained through

λ(n,s) = 1
ns

n∑
i=1

lnαi. (4.19)
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This expression converges to λ in the limit n → ∞. Fig.  4.8 shows the convergence of

Lyuapunov exponents for the four scenarios of Fig.  4.6 .

(a) (b)

(c) (d)

Figure 4.8. Convergence of Lyuapunov exponents. Convergence of
Lyuapunov exponents for the four scenarios of Fig.  4.6 .: (a) κ = 2.5,
(θ0 = 3π/4, φ0 = 3π/4), s = 5; (b) κ = 2.5, (θ0 = 1.0, φ0 = π/10), s = 5; (c)
κ = 6.0, (θ0 = 3π/4, φ0 = 3π/4), s = 10; (d) κ = 8.0, (θ0 = 3π/4, φ0 = 3π/4),
s = 10.
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5. OUTLOOK

The entire edifice of modern physics can be understood as resting upon five pillars: classi-

cal mechanics, quantum mechanics, relativity, statistical mechanics, and condensed matter

physics. Other modern fields of study such as quantum information and computing, quantum

field theory, quantum gravity etc. arise from the interactions between these foundational sub-

jects. Now, the health of any structure depends not only on the individual strength of each

of the foundations supporting it but also on their mutual affinity. If the overall organization

lacks coherence, the stability of the entire structure is compromised.

For the case of physics, the foundational subjects individually are backed up by rigorous

historical developments. Moreover, they generally show a good deal of compatibility with

each other. However, there are instances where coherence is missing; and the consequent

risk for the overall health of physics makes these instances all the more worthy of our atten-

tion. One such incompatibility is found in the well-established discord between classical and

quantum mechanics. The problem of interpretation in quantum mechanics is a direct man-

ifestation of this divide. Arguably, this is also reflected in the problem of quantum gravity

– the problem of reconciling quantum mechanics and relativity, which is another example

of such incompatibility – since relativity inherits some very prominent features of classical

mechanics.

Roughly speaking, physical processes occurring on the scale of our everyday reality are

understood using classical mechanics. On the other hand, quantum mechanics is concerned

with phenomena on the scale of electrons, atoms and molecules. Quantum mechanics has

had extraordinary success in this domain. However, what is quite perplexing about quantum

theory is that despite its extraordinary empirical success, a coherent conceptual understand-

ing of the theory has eluded us so far [  1 ], as aptly summarized by Richard Feynman, “I think

I can safely say that nobody understands quantum mechanics [  2 ].” This is the problem of

interpretation in quantum mechanics. This problem essentially reflects a lack of coherence

between the “quantumness” of the microscopic realm and the “classicality” of our everyday

reality as they are currently formulated.
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Table 5.1. A comparison of the mathematical formalisms of classical and
quantum mechanics.

Classical Quantum

Mathematical
Framework Calculus

Functional analysis/Linear
algebra (for states) + Calculus

(for dynamics)

State

The state for an N -particle
system is specified by providing

the real-valued positions and
momenta for all the N particles
i.e. the state is a point in the
6N -dimensional phase space.

The state of a system is a
vector in a Hilbert space that is
associated to that system. The

Hilbert space H for an
N -particle system is simply the
tensor product of the Hilbert
spaces Hi associated to each

particle i.e.

H =
N⊗

i=1
Hi.

Dynamics

The time evolution of the state
{xi, pi} is given by the
Hamilton’s equations,

q̇i = {qi, H} = ∂H

∂pi

,

ṗi = {pi, H} = −∂H

∂qi

,

where H is the Hamiltonian of
the system.

The time evolution for any
state ψ is given by the
Schrödinger’s equation,

ι̇~
∂ψ

∂t
= Hψ,

where H is the Hamiltonian
(operator) of the system.

Alternatively, in the Heisenberg
picture, the time evolution for
an observable O is given by,

ι̇~
dO

dt
= [O,H].
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Table 5.2. A brief sketch of the prominent distinguishing features across the
classical-quantum divide.

Classical Quantum

Derivative Fundamental

Deterministic Probabilistic

States are separable States are nonseparable

Local Nonlocal?

Waves and particles are distinct
categories Wave-particle duality

No role for observer Observer is central to physics

116



One of the main concerns of the question of interpretation is the process of measurement.

A quantum object under ordinary circumstances can be in a superposition of states, but

as soon as it comes into contact with a measurement device (belonging to the classical

realm) the superposition is lost and the state “collapses” onto a single value for the variable

being measured. What is there in a measurement that makes quantum objects lose their

“quantumness?” What counts as a measurement and what does not? These are some of the

central questions in the foundations of quantum mechanics. Other questions are related to

the nature of the wavefunction and non-locality. For example, is the wavefunction a complete

description of the system or is it merely a convenient statistical approximation reflecting our

lack of information? Does quantum theory imply non-locality etc. [  1 ]?

Quantum interpretations have been hotly debated for the last century. The icons of 20th

century physics such as Neils Bohr, Albert Einstein, Werner Heisenberg, John S. Bell and

others have each developed their unique accounts to wrestle with quantum “bizarreness.”

Nevertheless, the physics community has never appeared to come any closer to a consensus.

A common feature, though, of the vast majority of approaches to quantum interpretation

is that they were developed in the early years of quantum mechanics. Thus, they do not

take into account developments that have come to light only in recent decades, such as

those related to emergence and chaos. In previous chapters, we have already presented

some technical investigations into these themes. Now, in this last chapter, our goal will

be to outline the possible implications of emergence and chaos for the more comprehensive

problem of the classical-quantum correspondence.

5.1 A comparison of “Classicality” and “Quantumness”

In order to compare the prominent features of classical and quantum mechanics, it will

be helpful to recall the mathematical formalisms of the two theories. Table  5.1 presents a

short summary of the two formalisms. Perhaps, the most notable difference between the two

is found in their respective definitions of the state of a system. While classical states are

simply collections of real-valued variables, the structure of quantum states seems to be a bit

117



more intricate (see also Fig.  1.1 .) It is this elaborate structure of the state that underlies

the many “bizarre” features of quantum mechanics.

Keeping Table  5.1 in view, the main distinguishing features of the two theories can be

identified as follows:

1. Derivative vs. Fundamental

Quantum mechanics is employed to understand phenomena occurring on the atomic

and sub-atomic scales. Classical mechanics, on the other hand, describes physical

processes taking place in the everyday world around us. According to the reductionist

approach prevalent in physics, the physics of a macroscopic object should be completely

explicable in terms of the physics of its microscopic constituents. Such a paradigm

necessarily implies that quantum mechanics is the more fundamental theory of the

two. In this view, classical mechanics becomes merely a limiting case of quantum

mechanics.

2. Deterministic vs. Probabilistic

Classical mechanics is widely held to be fully deterministic. Given the present state

of a system, all its past and future states can be precisely determined using Hamil-

ton’s equations (see Table  5.1 .) While a quantum state also evolves deterministically

under ordinary circumstances, the process of measurement disrupts this determinism.

Quantum mechanics, at best, can only tell us the probabilities of possible outcomes in

a measurement.

3. Separability of states

The state of a classical system is completely specified by defining the states of all its

constituents. There is essentially no difference between the state of the whole and the

states of the parts. On the other hand, the state of a quantum system is, in general,

nonseparabale in terms of the states of its constituents due to the property of quantum

entanglement.

4. Locality

Classical mechanics adheres to the principle of locality. According to this principle,

118



all physical interactions result from local pushes and pulls. That is, objects cannot

influence each other from afar, they have to be brought into contact directly or by

exchange of information between them through a third body that comes into contact

with both of them. However, the issue of locality has been quite controversial in quan-

tum mechanics. Nevertheless, the “wholeness” of composite quantum systems seems to

suggest that quantum mechanics supports nonlocality since a measurement performed

on one subsystem can immediately “collapse” the state of another subsystem an ar-

bitrary distance away that was entangled to the first subsystem  

1
 . Einstein famously

called this spooky action at a distance [ 1 ,  3 ].

5. Waves vs. Particles

In classical mechanics, waves and particles are taken to be distinct categories. A

classical particle doesn’t exhibit wave-like behavior and vice versa. On the other hand,

in quantum mechanics, a single object can demonstrate both particle-like and wave-

like characteristics. Matter can act like waves and waves can act like matter. This is

known as the wave-particle duality.

6. Role of observer

In classical mechanics, the observer has no active role to play in the physics of the

system. In quantum mechanics, the interaction of the system with the observer is

a crucial component in its physical description. It is precisely this interaction that

brings about the “collapse” of the quantum state. However, the set of attributes that

constitutes an observer is not clear [ 1 ].

This comparison has been summarized in Table  5.2 .

5.2 The Quantum Interpretation Problem

As stated earlier, the central concern of the quantum interpretation problem is to make

sense of the “quantumness” of the microscopic realm in light of the “classicality” of our ev-

eryday experience. Or in other words, to come to terms simultaneously with the two columns
1

 ↑ Note that quantum entanglement entails both nonseparability and nonlocality.
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of Table  5.2 in a coherent worldview. The questions involved in these interpretational issues

can be broadly classified into three categories:

1. The first category of questions pertains to the issue of completeness of the quantum

description of a system. Some examples of these questions are [  1 ]:

− Is the quantum state a complete description of a physical system or is it merely

an effective statistical representation?

− Is it possible to complement the quantum state with some hidden variables for a

more comprehensive account of the system?

2. The quantum state of a system evolves linearly according to Schrödinger’s equation

under normal circumstances (see Table  5.1 ). However, when the system comes into

contact with a measurement device, the state of the system suddenly “collapses” to

one of the eigenstates of the measured observable in a nonlinear fashion. The fric-

tion between these two different kinds of dynamics is referred to as the measurement

problem. Some issues involved in this problem are [  1 ]:

− Why does the linearly evolving quantum state suddenly “collapse” upon measure-

ment?

− Which physical processes can be considered as measurements and what properties

must a measurement device possess?

− Is the “collapse” of the quantum state a real physical process?

− What is the role of the observer in “collapse” of the quantum state?

3. The last set of questions is concerned with quantum entanglement i.e. the nonseparable

and nonlocal nature of the quantum state. Examples are [  1 ,  3 ]:

− Does the nonseparability of quantum states imply true nonseparability in the phys-

ical world?

− Does quantum mechanics imply nonlocality?
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− What consequences does quantum nonlocality have for spacetime structure and

causality?

Numerous viewpoints have been put forward in the history of quantum mechanics to

address these issues; the most prominent ones being: Copenhagen interpretation, Everett’s

many-worlds interpretation, Bohmian mechanics and dynamical collapse theories. Neverthe-

less, all of them undertake the same fundamental strategy. They accept without criticism

the classical worldview and try to explain the existence of “quantumness” in light of that;

that is they all attempt to justify the second column in Table  5.2 given the first. So, all the

activity occurs on the quantum side of the correspondence, and no possibility for a revision

of the classical side is considered. While this makes sense in the historical context of these

developments since most of these approaches were formulated in the early years of quantum

mechanics; however, this attitude towards the classical is no longer tenable today due to the

incredible 20th century developments in classical mechanics which have completely revised

our understanding of the subject [ 4 ,  5 ].

5.3 Implications of Emergence and Chaos

The revolutions of quantum mechanics and relativity overshadowed all the other 20th

century developments in physics. However, while these nascent fields were attracting all

the attention, classical mechanics was silently undergoing a revolution of its own [  6 ]. Henri

Poincaré had already observed the divergence of the perturbation series for the three-body

problem around the end of the 19th century. But it was realized only after the 1950s that

these difficulties were due to a fundamentally new type of dynamical behavior in systems

satisfying Newton’s laws. It was discovered that the vast majority of classical systems exhib-

ited what was called instability of motion; two phase space trajectories starting arbitrarily

close would diverge greatly in time [ 4 ,  5 ]. This dynamical behavior of classical systems has

been termed as chaos (see also Sec.  1.3 ).

The discovery of unpredictability at the heart of classical mechanics, which throughout

history has been the cornerstone of scientific determinism, is truly revolutionary. The still

prevalent deterministic view of classical mechanics implicitly assumes that the initial condi-
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tions for a given system can, in principle, be specified to an infinite precision. However, this

assumption has been challenged on both ontological (the nature of reality) and epistemolog-

ical (the nature of knowledge) grounds [  7 – 15 ]. Once this assumption is relaxed, it has been

argued, the features that have been held to be exclusively quantum (see second column in

Table  5.2 ) start to become visible in classical mechanics too [ 15 ].

Max Born is noted to have said as early as 1955 that, “statements like ‘a quantity x has

a completely definite value’ (expressed by a real number and represented by a point in the

mathematical continuum) seem to me to have no physical meaning [  8 ]”. In fact, this seems

to be one of the key messages of Heisenberg’s uncertainty principle as well; it rules out the

possibility of identifying the state of a system with an infinitely precise phase space point.

In recent years, Gisin et. al. have presented an information-theoretic approach to this issue.

They have argued that real numbers cannot be physically real since they contain an infinite

number of bits but a finite volume of space can only hold a finite amount of information

[ 9 – 15 ]. However, regardless of whether real numbers are real or not, practically there is no

measurement in the world that can determine any physical quantity to infinite precision [ 7 ].

Thus, even classical mechanics can, at best, make only probabilistic predictions for the long

time behavior of physical systems. Moreover, once a probabilistic interpretation of classical

mechanics is admitted, it too has to deal with its own version of the measurement problem

[ 10 ] i.e. to explain how potential outcomes become actual; thus, potentially allowing the

observer a more active participation in the physics of the system.

In the absence of infinite precision, classical states are more faithfully represented by

phase space distributions instead of points in phase space. Naturally, classical mechanics in

terms of phase space distributions is expected to show greater affinity with quantum mechan-

ics since both phase space distributions and quantum states admit statistical interpretations.

Firstly, such a formulation of classical mechanics is more likely to display wavelike charac-

teristics than the traditional version since phase space distributions stretch across a region

of phase space like quantum states. Moreover, phase space distributions by virtue of being

probability distributions are nonseparable, by definition i.e. the distribution for a system

cannot, in general, be written as a product of the distributions for the corresponding sub-

systems. This enables the possibility for genuine nonseparability in classical mechanics [ 15 ].
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We have already discussed some of its implications in Chapter 4. Furthermore, if these cor-

relations are real, the natural question to ask next is whether these correlations survive as

the parts of the system are separated in space akin to quantum entanglement [ 15 ]. Not only

does this give an opportunity to investigate potential nonlocal physics in classical mechan-

ics but an answer to this question can also help in clarifying the conundrums surrounding

nonlocality in quantum mechanics.

Finally, we turn to the implications of emergence. We have already discussed that a

reductionist approach to physics necessitates the understanding of classical mechanics as

a limiting case of quantum mechanics. Emergence is an alternative paradigm that allows

for the appearance of genuinely new laws and properties as we move up on the scale of

complexity (see Sec.  1.2 .) We have already seen examples of this in the study of phases of

matter and phase transitions in the preceding chapters. The advantage of this viewpoint

for the classical-quantum correspondence is that it doesn’t merely reduce one side of the

duality into the other; instead it allows us to appreciate classical mechanics as a fundamental

description of nature in its own right [  16 ,  17 ]. Just like chemistry is not mere applied physics,

and biology not applied chemistry [ 16 ], so classical mechanics is not mere applied quantum

mechanics.

Emergence and chaos are still in their infancy despite all the details that have so far been

discovered about them. A comprehensive understanding of both the principles of emergence

and the manifestations of chaos beyond simple classical systems is still missing. However, the

preceding discussion makes clear that whatever little we know about them already demon-

strates great promise in addressing the divisions that permeate physics. These new paradigms

outline a roadmap to carry these problems beyond old discussions that despite their extraor-

dinary value have ended up deepening these divisions and led to an overall disinterest in

these issues as expressed in the popular maxim “shut up and calculate!” In the words of

Prof. Ballentine [  18 ]: “The ongoing debates about the interpretation of quantum mechanics

have often taken place in forums such as the measurement problem and Schrödinger’s cat

paradox. I urge that we move beyond those old forums, and consider instead the more gen-

eral problem of how classical properties emerge from quantum mechanics. Quantum chaos

appears as a special case of this general problem, being the study of the emergence of classical
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chaos from QM.” We hope that the optimism surrounding emergence and chaos is realized

and further developments along these lines spark new revolutions in physics.
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