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Abstract In the present paper, we will incorporate three
very useful aspects of astrophysics, generalized polytropes,
Karmarkar condition and complexity factor to study the com-
pact objects. For this purpose a charged anisotropic fluid dis-
tribution is used under static spherical symmetry. We develop
a framework for class I generalized charged Lane–Emden
equations for non-isothermal and isothermal regimes. Gen-
eralized polytropic equation of state with its two cases, mass
density and energy density along with complexity factor lead
us to the systems of differential equations and these systems
are solved numerically. Finally, solutions of these systems
are discussed graphically.

1 Introduction

Polytropic equation of state (PEoS) has great significance in
the study of stellar structure and played a unique roll in astro-
physics. Many researchers and mathematicians have applied
PEoS in the context of general relativity to investigate differ-
ent astronomical objects. Lane [1] studied some basic out-
comes which were incorporated to the modeling of stellar
structure by using polytropes. Chandrasekhar [2] obtained
the density and mass limit of white dwarf by using the idea
of thermodynamics in Newtonian polytropes. In the context
of general relativity, Tooper [3,4] used Lane–Emden equa-
tion (LEe) to study the different models of very large radiat-
ing star and with the help of PEoS he discussed compress-
ible fluid sphere through the solution of field equation. Man-
aghan and Roxburgh [5] used approximation technique for
matching two solutions at interface to investigate the struc-
ture of turning polytropes. Occhionero [6] studied the second
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order approximation for internal core of polytropic struc-
tures was more suitable than first order approximation with
appropriate parameters for polytropic index n � 2. Horedt
[7,8] investigated the unstable distorted sphere with poly-
tropic index n > 3 and analyzed the finiteness of mass and
radius for one dimension (Slabe), for two dimension (Cylin-
der) and for three dimension (Sphere) with the help of gamma
function. By using the method defined in [5], Singh and
Singh [9] developed some models for the structure of turning,
tidally and distorted relativistic polytropes. For static spheri-
cally symmetric structure, Pandey et al. [10] used relativistic
PEoS to study the all possible variations of various param-
eters. Hendry [11] showed that certain region of sun’s inte-
rior exhibited the polytropic power-law and developed some
polytropic models which were easily computable. Herrera
and Barreto [12] presented a method to evaluate the relativis-
tic polytropes for the static dissipative fluid sphere. They [13]
also laid out general structure to model some static spherical
relativistic stars by using PEoS and brought out Tolman mass
to explain some features of these models. The PEoS was used
[14,15] to discuss the spherical static fluid in case of mass and
energy density under conformally flat condition and crack-
ing technique. Some physical models and numerical results
were also discussed about spherical compact stars.

Astronomical objects can be studied more deeply by using
the generalized polytropic equation of state (GPEoS) which
is defined as,

Pr = α1μo + Kμ
γ
o = α1μo + Kμ

1+ 1
n

o , (1)

where α1, Pr , γ , n and K are constant of proportionality,
radial pressure, polytropic exponent, polytropic index and
polytropic constant respectively. First and second terms in
R.H.S. of Eq. (1) discuss dark energy and dark matter of
universe respectively.
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If μo is changed by μ then Eq. (1) takes the form

Pr = α1μ + Kμ1+ 1
n . (2)

With the help of GPEoS, Azam et al. [16,17] discussed the
effect of charge on generalized polytropes (GPs) by taking
into account the spherical and cylindrical inner fluid distri-
bution. Mardan et al. [18,19] carried out spherical symmetry
to study the gravitational effects of massive compact objects
(COs) through the GPs. They also used GPEoS to analyze
some mathematical models of COs with radiation factor for
different values of polytropic index n and found that these
models were physically feasible and well behaved. By using
GPEoS and spherical symmetry, Mardan et al. [20,21] devel-
oped new classes of mathematical models and investigated
the radius-mass of compact stars.

Electric charge plays an important role in the stability of
stars under the strong gravitational field. Bonnor [22] used
general relativity to investigate the electromagnetic effect on
the static spherically symmetric mass distribution. He esti-
mated the input of electric energy to the gravitation mass
with the help of certain models. Bondi [23] gave a rigorous
and useful method in Minkowski coordinates to examine the
contraction of radiating CO under a relation of density and
pressure for high gravitational potential. Wilson [24] com-
puted the self-energy contribution to the total gravitational
mass by obtaining the exact solution of field equation for
charged spherically static fluid distribution. In [25] Beken-
stein made a formalism to split the mass of charged black
hole into two parts, irreducible part and charged reducible
part in spherical symmetry. Takisa and Maharaj [26] used
charged spherical anisotropic fluid distribution to find the
exact solution of Einstein-Maxwell field equations. They also
discussed some graphical results of different quantities with
help of polytropic equation of state (PEoS).

Karmarkar [27] embeddedn dimension Riemannian space
in to higher dimension n+ p, called class p dimension. When
n = 4 and p = 1, this is called class I Karmarkar condition.
Maurya et al. [28] used Karmarkar condition for static spher-
ically symmetric metric with charge to study some stellar
models. Singh and Pant [29,30] obtained some exact solu-
tion for anisotropic fluid distribution using Karmarkar class
I condition and discussed some well behaved models for dif-
ferent neutron stars. Ramos et al. [31] developed class I inte-
rior solution using PEoS for spherically symmetric interior
space time. They obtained a compatible LEs with Karmarkar
condition under isothermal and non isothermal regimes.

Herrera [32] gave a new idea for the complexity factor
(CF) by taking into consideration the orthogonal splitting of
curvature tensor into scalars, called structure scalars for a
spherical symmetric object. Abbas and Nazar [33] brought
about this idea of CF in the context of f (R) theory for
anisotropic self gravitating fluid distribution. They observed

the effects of f (R) term on CF and also obtained exact solu-
tion of modify field equation. Sharif and Butt [34,35] studied
the static cylindrical system with CF in general relativity and
also discussed the impacts of charge on this system. Khan
et al. [36,37] applied the idea of CF with GPEoS by using
spherical anisotropic fluid distribution to develop two system
of DEs and analyzed the GPs and charged GPs. They [38]
also studied the same idea for static cylindrical GPs with CF.

The outline of this work will be as. In Sect. 2 Einstein
Maxwell field equations and Tolman–Oppenheimer–Volkoff
(TOV) equation will be developed for spherically static sym-
metry. In Sect. 3 Weyl tensor will be taken into considera-
tion for the development of mass function for self gravitat-
ing source under the influence of charge. Section 4 will be
devoted for the study of CF which is defined by structure
scalars derived from orthogonal splitting of curvature tensor.
In Sect. 5, a discussion will be carried out about relativistic
GPs for two cases (i) mass density and (ii) energy density.
We will establish the charged class I GPs using Karmarkar
condition in Sect. 6 and physical conditions about different
cases will also be derived. A graphical solution will be given
for the charged class I GPs with CF complemented by Kar-
markar condition in Sect. 7. In Sect. 8 we will conclude our
work.

2 Einstein Maxwell field equations

Let us consider a metric for an anisotropic fluid distribution
which is spherically symmetric and static, as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (3)

where ν = ν(r) and λ = λ(r). Einstein field equation
Gμ

ν = −8πTμ
ν must be satisfied by Eq. (3). Coordinates

are numbered as: x0 = t, x1 = r, x2 = θ, x3 = φ. The
matter content for anisotropic fluid distribution is defined by
the energy–momentum tensor

Tμν = (μ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (4)

where P⊥ is the tangential pressure.

uμ = (e
−ν
2 , 0, 0, 0), (5)

is the four velocity and four vector sμ of the fluid distribution
is given by

sμ = (0, e
−λ
2 , 0, 0), (6)

with sμuμ = 0, sμsμ = −1.
The electromagnetic tensor is defined by

�i
j = 1

4π

(
−Fi

μF
μ
j + 1

4
FμνFμνg

i
j

)
,
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where Fi j is the Maxwell field tensor defined by Fi j = ϕ j,i −
ϕi, j and ϕ j is four potential given by ϕi = ϕδ0

i .

The Maxwell field equations in term of four-vector are

Fi j
; j = φo J

i , F[i j;k] = 0,

where φo is the magnetic permeability and J i is the four
current defined by J i = σui , where σ is the charge density.
The Maxwell field equation for metric (3), given as

ϕ
′′ +

(
2

r
− ν

′

2
− λ

′

2

)
ϕ

′ = 4πσe
ν+λ

2 .

Above equation implies that

ϕ
′ = q(r)e

ν+λ
2

r
,

where q(r) = 4π
∫ r

0 σe
λ
2 rdr denote the total charge inside

the sphere.
The basic field equations are

8πμ = −e−λ

(
1

r2 + λ′

r

)
− 1

r2 + q2

r4 , (7)

8π Pr = e−λ

(
1

r2 − ν′

r

)
− 1

r2 + q2

r4 , (8)

8π P⊥ = e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
− q2

r4 , (9)

where primes shows the derivative with respect to ‘r’. At
the exterior of the fluid distribution, we take Schwarzschild
space time, as

ds2 =
(

1 − 2M

r
dt2

)
−

(
1 − 2M

r

)−1

dr2

−r(dθ2 + sin2 θdφ2). (10)

We require the continuity of the first and second fundamental
form (Darmois condition) for the smooth matching of two
metrics Eqs. (3) and (10) on the boundary r = r� = constant.
This matching gives following results

1 − 2M

r�
= eν� , (11)

1 − 2M

r�
= e−λ� , (12)

P� = 0. (13)

Using Eqs. (7)–(9) the hydrostatic equilibrium equation,
called generalized TOV equation, can be read as

P
′
r = 2[(P⊥ − Pr ) + qq ′

8πr3 ]
r

− ν
′

2
(μ + Pr ), (14)

but

ν′ = 2
rm + 4π Prr4 − q2

r(r2 − 2rm + q2)
, (15)

then

P ′
r = 2[(P⊥ − Pr ) + qq ′

8πr3 ]
r

−rm + 4π Prr4 − q2

r(r2 − 2rm + q2)
(μ + Pr ), (16)

here the mass function m is given by

2m

r
− q2

r2 = 1 − e−λ, (17)

otherwise

m = 4π

∫ r

0
r2μdr +

∫ r

0

qq ′

r
dr . (18)

Energy–momentum tensor can be put down as

Tμ
ν = 
μ

ν + μuμuν − Phμ
ν , (19)

with


μ
ν = 
(sμsν + 1

3
hμ

ν ); P = Pr + 2P⊥
3

.


 = Pr − P⊥; hμ
ν = δμ

ν − uμuν . (20)

3 The Weyl tensor and mass function

Riemann tensor Rρ
αβμ, can be demonstrated through Weyl

tensor Cρ
αβμ, Ricci scalar R and Ricci tensor Rβ

α , as

Rρ
αβμ = Cρ

αβμ + 1

2
Rρ

βgαμ − 1

2
Rαβδρ

μ + 1

2
Rαμδ

ρ
β

−1

2
Rμ

μgαβ − 1

6
R(δ

ρ
βgαμ − gαβδρ

μ). (21)

The electric part (Eαβ = Cαγβδuγ uδ) of the Weyl tensor can
be write as

Cμνκλ = (gμναβgκλγ δ − ημναβηκλγ δ)u
αuγ Eβδ, (22)

with gμναβ = gμαgνα and ημναβ denoting the Levi-Civita
tensor while, in spherical symmetric case its magnetic part
dissipates. Note that Eαβ can also be expressed as

Eαβ = E

(
sαsβ + 1

3
hαβ

)
, (23)

with

E = −e−λ

4

[
ν′′+ ν

′2−λ′ν′

2
− ν′ − λ′

r
+ 2(1 − eλ)

r2

]
, (24)

satisfying

Eα
α = 0, Eαγ = E(αγ ), Eαγ u

γ = 0. (25)

Using Eqs. (7)–(9), (17), (21) and (23) we have

m = 8πq2

3r
+ r3E

3
+ 4π

3
r3(P⊥ − Pr + μ), (26)

123
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and

E

4π
= − 1

r3

∫ r

0
r3μ′dr + (Pr − P⊥) − 2q2

r4

+ 3

4πr3

∫ r

0

qq ′

r
dr . (27)

Using Eqs. (27) and (26) we have

m(r) = 4π

3
r3μ − 4π

3

∫ r

0
r3μ′dr +

∫ r

0

qq ′

r
dr . (28)

4 Orthogonal splitting of Riemann tensor and vanishing
complexity factor

Now we discuss structure scalars which are obtained by
orthogonal splitting of curvature tensor [39]. These scalars
helps us to define CF [32] and the following tensors are the
result of this splitting [40,41].

Yαβ = Rαγβδu
γ uδ, (29)

Zαβ = ∗Rαγβδu
γ uδ = 1

2
ηαγ εμR

εμ
βδ u

γ uδ, (30)

Xαβ = ∗R∗
αγβδu

γ uδ = 1

2
ηεμ

αγ R
∗
εμβδu

γ uδ, (31)

where ∗ represents the dual tensor i.e. R∗
αβγ δ = 1

2ηεμγ δ Rεμ
αβ .

Using the field equations, Eq. (21) may be expressed as

Rαγ
βδ = Cαγ

βδ + 28πT [αγ ]
[βδδ] + 8πT

(
1

3
δ
αγ

[βδδ] − δ
[αγ ]
[βδδ]

)
, (32)

we split the Riemann tensor by using Eq. (18) into Eq. (32)

Rαγ
βδ = Rαγ

(I )βδ + β
αγ

(I I )βδ + Rαγ

(I I I )βδ, (33)

where

Rαγ

(I )βδ = 16πμu[αγ ]u[βδδ] − 28π Ph[αγ ]
[βδδ]

+8(μ − 3P)(
1

3
δ
[αγ ]
[βδδ]) − δ

[αγ ][βδδ], (34)

Rαγ

(I I )βδ = 16π

[αγ ]
[βδδ], (35)

Rαγ

(I I I )βδ = 4u[αγ ]u[βE δ] − εαγ
μ εβδνE

μν = 0, (36)

with

εαγβ = uμημαγβ, εαγβu
β = 0. (37)

We can find the explicit expressions for the three tensors
Yαβ, Zαβ and Xαβ in term of the physical variables by using
the above results, as

Yαβ = 4π

3
(μ + 3P)hαβ + 4π
αβ + Eαβ, (38)

Zαβ = 0, (39)

and

Xαβ = 8π

3
μhαβ + 4π
αβ − Eαβ. (40)

The structure scalars can be derived from these tensors [39].
The scalars functions XT , XT F , YT , YT F , are defined by
using tensor Xαβ and Yαβ , as

XT = 8πμ + q2

r4 , (41)

XT F = 4π
αβ − E + q2

r4 , (42)

XT F = 4π

r3

∫ r

0
r3μ′dr + (8π − 1

2
) + q2

r4 , (43)

YT = 4π(3Pr + μ + −2
) + q2

r4 , (44)

YT F = E + q2

r4 + 4π
, (45)

using Eq. (27)

YT F = 8π
 − 4π

r3

∫ r

0
r3μ′dr +

(
5

2
− 8π

)
q2

r4 . (46)

From Eqs. (43) and (46)

8π
 + 2q2

r4 = XT F + YT F . (47)

Complexity of a system depends on many elements like
viscosity, heat dissipation, charge, pressure anisotropy and
density inhomogeneity. Any system, in general without these
elements except isotropic pressure and energy density is to be
considered simplest system with vanishing complexity. But
for fluid distribution, inhomogenous density and anisotropic
pressure are responsible for complexity in system. Since
Eq. (46), which define structure scalar YT F contains these
elements, so the term complexity factor is associated with
structure scalar YT F . Therefore, when we apply condition
YT F = 0 on (46), it gives


 = 1

2r3

∫ r

0
r3μ′dr +

(
1 − 5

16π

)
q2

r4 . (48)

5 Relativistic generalized charged polytropes

Now we discuss two cases, mass density and energy density
of GPEoS for anisotropic fluid [16], with non-isothermal and
isothermal regimes.

5.1 Non-isothermal regime

5.1.1 Case 1

In this case GPEoS is studied with mass density as

Pr = α1μo + Kμ
γ
o = α1μo + Kμ

1+ 1
n

o , (49)

123
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for non-isothermal regime we take γ �= 1 and mass density
μo connected with total energy density μ [14] as

μ = μo + nPr . (50)

Let us now introduce the following assumption

α = Prc
μc

, r = ξ

A
, A2 = 4πμc

α(n + 1)
. (51)

ψo = μo

μoc
, v(ξ) = m(r)A3

4πμc
. (52)

Then charged TOV Eq. (16) reads as

− A4qq ′

4πξ4 + 1

αξ(αA4q2 + ξ(αA2ξ − 8π Prcv))

×
[
APrcψo

n((n + 1)ψo(α

−α1 + αα1n) − (αn − 1)(α1 + α1n + 1))

×(4πξ Prc(ξ
3ψo

n(α1 + ψo(α

−α1 + αα1n) + αα1(−n)) + v) − αA4q2)
]

−2A


ξ
+ 1

α

[
APrcψo

n−1ψo
′((n + 1)ψo(α − α1

+αα1n) + α1n(1 − αn))
]

= 0, (53)

where prime indicates the differentiation with respect to ξ .
From the definition of mass function Eqs. (17) and (7), we
have

m′ = 4πr2μ + qq ′

r
, (54)

or using Eqs. (51) and (52),

dv

dξ
= αA4qq ′

4πξ Prc
+ ξ2ψo

n(nψo(α − α1 + αα1n)

−(αn − 1)(α1n + 1)). (55)

The boundary of surface of sphere is defined by ξ = ξn
such that ψo(ξo) = 0 and following boundary conditions are
applied

ψo(ξ = 0) = 1 and v(ξ = 0) = 0. (56)

Equations (53) and (55) to gather give the generalized
charged LEe equation for GPEoS in this case

1

α

[
4(n − 1)Prc(n(1 − nα)α1 + (n + 1)(nα1α + α

−α1)ψo)ψo
′2ψo

n−2
]

+ 1

α

[
4(n + 1)Prc(nα1α + α

−α1)ψo
′2ψo

n−1
]

+ 1

α

[
4Prc(n(1 − nα)α1 + (n

+1)β1ψo)ψo
′′ψo

n−1
]

+ 1

β2

[
8Prcψo

n((n + 1)β1ψo

−(nα − 1)(nα1 + α1 + 1))(4π Prcξ(ξ3(−nαα1 + α1

+(nα1α + α − α1)ψo)ψo
n + v)

−A4αq2)(4π Prc(ξ
3(nβ1ψo − (nα

−1)(nα1 + 1))ψo
n + v) − A2αξ)

]
+ 4A3qq ′

πξ5
+ 1

β

[
4(n

+1)Prcβ1ψo
n(4π Prcξ(ξ3(−nαα1 + α1 + β1ψo)ψo

n

+v) − A4αq2)ψo
′] + 1

β

[
4nPrcψo

n−1((n + 1)β1ψo

−(nα − 1)(nα1 + α1 + 1))(4π Prcξ(ξ3(−nαα1 + α1

+(nα1α + α − α1)ψo)ψo
n + v) − A4αq2)ψo

′]

+ 1

β

[
4Prcψo

n−1((n + 1)β1ψo − (nα − 1)(nα1 + α1

+1))(4π Prcξ
3(ψo((n + 4)β1ψo − (nα − 1)((n + 4)α1 + 1))

+ξ(n(1 − nα)α1 + (n + 1)β1ψo)ψo
′)ψo

n + 4π Prcvψo

−A4αqq ′ψo)
]

+ 8


ξ2 − A3q ′2

πξ4 − A3qq ′′

πξ4

− 1

ξ β

[
4Prcψo

n((n

+1)β1ψo − (nα − 1)(nα1 + α1 + 1))(4π Prcξ(ξ3(−nαα1

+α1 + β1ψo)ψo
n + v) − A4αq2)

]
, (57)

where αξ(αq2A4 + ξ(A2αξ − 8π Prcv)) = β and (nα1α +
α − α1) = β1.

5.1.2 Case 2

GPEoS with energy density case can be consider [16] as

Pr = α1μ + Kμ1+ 1
n , (58)

mass density μo is replaced by total energy density μ in
Eq. (50), by the relation as [42]

μ = μo

(1 − Kμ
1/n
o )n

. (59)

taking

ψn = μ

μ c
, (60)

charged TOV equation is obtained as

− A4qq ′

4πξ4 + 1

β

[
APrcψ

n((α − α1)ψ + α1 + 1)(−αA4q2

+4πξ4Prcψ
n((α − α1)ψ + α1) + 4πξ Prcv)

]
− 2A


ξ

+ 1

α

[
APrcψ

n−1ψ ′((n + 1)(α − α1)ψ + α1n)
]

= 0,

(61)

and from Eq. (54) we have

dv

dξ
= ξ2ψn + αA4qq ′

4πξ Prc
. (62)

123
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Equations (61) and (62) to gather give the generalized
charged LEe

− A3qq ′′

πξ4 + 4A3qq ′

πξ5
− A3q ′2

πξ4 + 1

β

[
4Prcψ

n−1((α − α1)ψ

+α1 + 1)(−αA4ψqq ′ + 4πξ3Prcψ
n(ψ(4(α − α1)ψ

+4α1 + 1) + ξψ ′((n + 1)(α − α1)ψ + α1n)) + 4π Prcψv)
]

+ 1

β

[
4nPrcψ

n−1ψ ′((α − α1)ψ + α1 + 1)(−αA4q2

+4πξ4Prcψ
n((α − α1)ψ + α1) + 4πξ Prcv)

]
+ 1

β

[
4Prc(α

−α1)ψ
nψ ′(−αA4q2 + 4πξ4Prcψ

n

×((α − α1)ψ + α1) + 4πξ Prcv)
]

+ 1

β2

[
8Prcψ

n((α − α1)ψ + α1 + 1)(4π Prc(ξ
3ψn + v)

−αA2ξ)(−αA4q2 + 4πξ4Prcψ
n((α − α1)ψ + α1)

+4πξ Prcv)
]

− 1

ξβ

[
4Prcψ

n((α − α1)ψ + α1 + 1)

×(−αA4q2 + 4πξ4Prcψ
n((α

−α1)ψ + α1) + 4πξ Prcv)
]

+ 8


ξ2

+ 1

α

[
4Prcψ

n−1ψ ′′((n + 1)(α

−α1)ψ + α1n)
]

+ 1

α

[
4(n − 1)Prcψ

n−2ψ ′2

×((n + 1)(α − α1)ψ + α1n)
]

+ 1

α

[
4(n + 1)Prc(α − α1)ψ

n−1ψ ′2] = 0. (63)

5.2 Isothermal regime

In isothermal regime (γ = 1) we see that both cases, mass
density (μo) and energy density (μ) become same so here we
discuss only energy density (μ). In this regime ψ is defined
as

e−ψ = μ

μc
. (64)

Introducing dimensionless variables

α = Prc
μc

, r = ξ

B
, B2 = 4πμc

α
v(ξ) = m(r)B3

4πμc
, (65)

so Eq. (54) becomes

dv

dξ
= e−ψξ2 + αB4qq ′

4πξ Prc
, (66)

and TOV equation will be read as

− B4qq ′

4πξ4 + 1

β2

[
(α + 1)BPrce

−2ψ

×(eψ(4πξ Prcv − αB4q2) + 4παξ4Prc)
]

−2B


ξ
− BPrce

−ψψ ′ = 0 (67)

where αξ(αB4q2 + ξ(αB2ξ − 8π Prcv)) = β2. From
Eqs. (66) and (67), we have second ordered generalized LEe

− B3qq ′′

πξ4 + 4B3qq ′

πξ5
− B3q ′2

πξ4

− 1

β2

[
4(α + 1)Prce

−2ψ(eψ(αB4q(q ′

+qψ ′) − 4π Prcv(ξψ ′ + 1)) − 4π(4α + 1)ξ3Prc)
]

− 1

β2

[
8(α + 1)Prce

−2ψψ ′(eψ(4πξ Prcv − αB4q2)

+4παξ4Prc)
]

+ 1

β2
2

[
8(α + 1)Prce

−3ψ(eψ(4π Prcv

−αB2ξ) + 4πξ3Prc)(e
ψ(4πξ Prcv − αB4q2)

+4παξ4Prc)
]

− 1

ξβ2

[
4(α + 1)Prce

−2ψ(eψ(4πξ Prcv − αB4q2)

+4παξ4Prc)
]

+8


ξ2 − 4Prce
−ψψ ′′ + 4Prce

−ψψ ′2 = 0. (68)

6 Class I generalized charged polytropes

During the study of cosmological objects it is often found
useful to marge four dimension space time to higher dimen-
sion [27] and one of this merging is Karmarkar condition
[28] for spherical symmetric fluid distribution, read as

R1010R2323 = R1212R0303 + R1202R1303, (69)

with R2323 �= 0, gives

2ν′′ = eλλ′

eλ − 1
− λ′2, eλ �= 1. (70)

6.1 Case 1

From Eqs. (49)–(52) and (70) we have


 = − 1

8πr3(q2 − 2mr)

[
(−r2m′ + 3mr − 2q2 + qrq ′)(m

+4πα1r
3ψo

n(nPrc − μc) − 4πr3ψo
n+1(−α1μc

+α1nPrc + Prc))
]
, (71)

and the dimensionless form of Eq. (71) is


 = 1

2ξ3(8πμcξv − A4q2)

[
μc(v − ξ3ψo

n(α1 + ψo(α − α1

123
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+αα1n) + αα1(−n)))(A3(ξqq ′ − A(2q2 + ξqq ′))
−4πμcξ

4ψo
n(nψo(α − α1 + αα1n) − (αn − 1)(α1n

+1)) + 12πμcξv)
]
. (72)

After using Eq. (72) with Eq. (53), we obtain class I gener-
alized charged TOV equation

− A4qq ′

4πξ4 + 1

αξ4(αA4q2 − 8πξ Prcv)

×
[
APrc(ξ

3ψo
n(α1 + ψo(α − α1

+αα1n) + αα1(−n)) − v)(αA3(2Aq2 + Aξqq ′ − ξqq ′)
+4πξ4Prcψo

n(nψo(α − α1 + αα1n) − (αn − 1)(α1n + 1))

−12πξ Prcv)
]

+ 1

β

[
APrcψo

n((n + 1)ψo

×(α − α1 + αα1n) − (αn

−1)(α1 + α1n + 1))(4πξ Prc(ξ
3ψo

n

×(α1 + ψo(α − α1 + αα1n)

+αα1(−n)) + v) − αA4q2)
]

+ 1

α

[
APrcψo

n−1ψo
′((n + 1)ψo(α − α1

+αα1n) + α1n(1 − αn))
]

= 0, (73)

so second ordered class I generalized charged LEe takes the
form

1

α

[
4(n − 1)Prc(n(1 − nα)α1 + (n + 1)β1ψo)ψ

′2
o ψn−2

o

]

+ 1

α

[
4(n + 1)Prcβ1ψ

′2
o ψn−1

o

]
+ 1

α

[
4Prc(n(1 − nα)α1

+(n + 1)β1ψ
′′
oψn−1

o

]
+ 1

αξ(αq2A4 + ξ(β3))2

×
[
8Prcψ

n
o ((n

+1)β1ψo − (nα − 1)(nα1 + α1 + 1))(4π Prcξ(ξ3(−nαα1

+α1 + (β1)ψo)ψ
n
o + v) − A4αq2)

×(4π Prc(ξ
3(n(β1)ψo − (nα

−1)(nα1 + 1))ψn
o + v) − A2αξ)

]
+ 4A3qq ′

πξ5

− 1

αξ5(β4)

[
16Prc(ξ

3ψn
o (−nαα1 + α1 + β1ψo) − v)

×(4π Prcξ
4

×(nβ1ψo − (nα − 1)(nα1 + 1))ψn
o − 12π Prcξv

+A3α(2Aq2 − ξq ′q + Aξqq ′))
]

+ 1

αξ4(β4)2

×
[
8Prc(v − ξ3ψn

o (−nαα1 + α1

+β1ψo))(4π Prcξ
3(n(β1)ψo − (nα − 1)

×(nα1 + 1))ψn
o + 4π Prcv

+A4αqq ′)(−4π Prcξ
4(n(β1)ψo − (nα − 1)(nα1 + 1))ψn

o

+12π Prcξv + A3α(qξq ′ − A(2q2 + ξqq ′)))
]

+ 1

αξ(αq2A4 + ξ(β3))

[
4(n + 1)Prcβ1ψ

n
o

×(4π Prcξ(ξ3(−nαα1 + α1

+β1ψo)ψ
n
o + v) − A4αq2)ψ ′

o

]
+ 1

αξ(αq2A4 + ξ(β3))

×
[
4nPrcψ

n−1
o ((n + 1)β1ψo − (nα − 1)(nα1 + α1 + 1))

×(4π Prcξ(ξ3(−nαα1

+α1 + β1ψo)ψ
n
o + v) − A4αq2)ψ ′

o

]

− 1

παξ5(A4q2α − 8π Prcξv)ψo

[
(4π Prcξ

4(n(β1)ψo − (nα

−1)(nα1 + 1))ψn
o − 12π Prcξv + A3α(2Aq2 − ξq ′q

+Aξqq ′))(4nπ Prc(nα − 1)α1ξ
4ψ ′

oψ
n
o − 4π Prcξ

3

×((nα − 1)((n − 3)α1

+1) + (n + 1)(β1)ξψ ′
o)ψ

n+1
o + 4(n − 3)π Prc(nα1α + α

−α1)ξ
3ψn+2

o + A4αqq ′ψo)
]

+ 1

αξ(αq2A4 + ξ(β3))

[
4Prcψ

n−1
o ((n + 1)(nα1α + α

−α1)ψo − (nα − 1)(nα1 + α1 + 1))

×(4π Prcξ
3(ψo((n + 4)(nα1α

+α − α1)ψo − (nα − 1)((n + 4)α1 + 1)) + ξ(n(1 − nα)α1

+(n + 1)(β1)ψo)ψ
′
o)ψ

n
o + 4π Prcvψo − A4αqq ′ψo)

]

+ 1

αξ4(β4)ψo

[
4Prc(ξ

3ψn
o (−nαα1 + α1 + (nα1α

+α − α1)ψo) − v)(4π Prcξ
3(ψo(n(β1)ψo − (nα

−1)(nα1 + 1)) + nξ((n + 1)(β1)ψo − (nα

−1)(nα1 + 1))ψ ′
o)ψ

n
o − 12π Prcvψo + A3α(Aξq ′2 − qq ′

+Aq(ξq ′′ − 2q ′))ψo)
]

− A3q ′2

πξ4 − A3qq ′′

πξ4

− 1

αξ2(αq2A4 + ξ(β3))

[
4Prcψ

n
o ((n + 1)(nα1α + α

−α1)ψo − (nα − 1)(nα1 + α1 + 1))(4π Prcξ(ξ3(−nαα1 + α1

+(β1)ψo)ψ
n
o + v) − A4αq2)

]
= 0, (74)

where β3 = A2αξ − 8π Prcv and β4 = A4qα − 8π Prcξv.

6.2 Case 2

Using Eqs. (58), (60) and Eq. (70)


 = 1

8πr3(q2 − 2mr)

[
(−r2m′ + 3mr − 2q2 + qrq ′)(m

−4πr3ψn+1(Prc − α1μc) − 4πα1μcr
3ψn)

]
, (75)

dimensionless form of Eq. (75) is


 = 1

2ξ3(8πμcξv − A4q2)

[
μc(ξ

3ψn((α1 − α)ψ − α1) + v)

(A3(−2Aq2 − Aξqq ′ + ξqq ′) − 4πμcξ
4ψn + 12πμcξv)

]
(76)
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for energy density case, class I generalized charged TOV
equation is

− A4qq ′

4πξ4 + 1

αξβ3

[
4π AP2

rcψ
n((α − α1)ψ + α1 + 1)(v

−ξ3ψn((α1 − α)ψ − α1))
]

− 1

αξ4β4

[
APrc(ξ

3ψn((α1

−α)ψ − α1) + v)(αA3(2Aq2 + Aξqq ′ − ξqq ′)

+4πξ4Prcψ
n − 12πξ Prcv)

]
+ 1

α

[
APrcψ

n−1ψ ′((n

+1)(α − α1)ψ + α1n)
]

= 0. (77)

Then by using the Eqs. (62) and (77), second ordered class
I generalized charged LEe for this case is

1

α

[
4Prcψ

n−2(ψψ ′′((n + 1)(α − α1)ψ + α1n) + nψ ′2((n

+1)(α − α1)ψ + α1(n − 1)))
]

+ 1

αξ(β3)

[
16nπ P2

rc(α1

+(α − α1)ψ + 1)(v − ξ3ψn((α1 − α)ψ − α1))ψ
′ψn−1

]

− 1

αξ2(β3)

[
16π P2

rc(α1 + (α − α1)ψ + 1)(v

−ξ3ψn((α1 − α)ψ − α1))ψ
n
]

+ 1

αξ(β3)

[
16π P2

rc(α

−α1)(v − ξ3ψn((α1 − α)ψ − α1))ψ
′ψn

]

+ 1

αξ2(β3)2

[
16π P2

rcψ
n(α1

+(α − α1)ψ + 1)(v − ξ3ψn((α1 − α)ψ − α1))(8π Prcξ
3ψn

−A2αξ + 2A4αqq ′)
]

+ 1

αξ5(β4)

[
16Prc(ξ

3((α1

−α)ψ − α1)ψ
n + v)(4π Prcξ

4ψn

−12π Prcξv + A3α(2Aq2 − ξq ′q

+Aξqq ′))
]

+ 1

αξ4(β4)2

[
8Prc(ξ

3((α1 − α)ψ − α1)ψ
n

+v)(αqq ′A4 + 4π Prc(ξ
3ψn + v))

×(−4π Prcξ
4ψn + 12π Prcξv + A3α(

−2Aq2 + ξq ′q − Aξqq ′))
]

+ 1

αξ2(β3)

[
4Prcψ

n−1(α1 + (α

−α1)ψ + 1)(4π Prcξ
3(ψ(3α1 + 3(α − α1)ψ + 1)

+ξ(nα1 + (n + 1)(α

−α1)ψ)ψ ′)ψn + A4αqq ′ψ)
]

− 1

παξ5(β4)ψ

[
(4π Prcξ

4ψn

−12π Prcξv + A3α(2Aq2 − ξq ′q + Aξqq ′))
×(4π Prcξ

3(ψ(−3α1

+3(α1 − α)ψ + 1) + ξ((n + 1)(α1 − α)ψ

−nα1)ψ
′)ψn + A4αqq ′ψ)

]

+ 1

αξ4(β4)ψ

[
4Prc(−ξ3((α1 − α)ψ − α1)ψ

n − v)

×(4π Prcξ
3(ψ

+nξψ ′)ψn + (A3α(Aξq ′2 − qq ′ + Aq(ξq ′′ − 2q ′))

−12π Prcv)ψ)
]

− 1

πξ5
A3(ξq ′2 + q(ξq ′′ − 4q ′)) = 0. (78)

Now we repeat the same procedure for isothermal regime
(γ = 1) for which only energy density case is taken into
consideration. For this purpose, we use Eqs. (58), (64) and
Eq. (70), so obtain


 = −1

8πr3(q2 − 2mr)

[
e−ψ(meψ − 4π Prcr

3)

×(−r2m′ + 3mr − 2q2 + qrq ′)
]
, (79)

dimensionless form of Eq. (79) is


 = 1

2ξ3(8πμcξv − B4q2)

[
μce

−ψ(veψ − αξ3)(−2B4q2

+B3ξqq ′ − 4πμcξ
2v′ + 12πμcξv)

]
, (80)

class I generalized charged TOV equation (γ = 1) is

− B4qq ′

4πξ4 + 1

αξ(αB2ξ − 8π Prcv)

×
[
4πBP2

rce
−2ψ(α + e2ψ)(αξ3 + eψv)

]

+ 1

αξ4(αB4q2 − 8πξ Prcv)

×
[
BPrce

−ψ(αξ3 − eψv)(αB3q((B − 1)ξq ′

+2Bq) + 4πξ Prc(ξ
3eψ − 3v))

]
− BPrce

−ψψ ′ = 0,

(81)

and second ordered class I generalized charged LEe is

4qq ′B3

πξ5
− q ′2B3

πξ4 − qq ′′B3

πξ4 + 4e−ψ Prcψ
′2

+ 1

αξ2(B2αξ − 8π Prcv)2

[
16e−2ψπ P2

rc(α + e2ψ)(αξ3

+eψv)(2αqq ′B4 + 8eψπ Prcξ
3 − B2αξ)

]

+ 1

αξ(8π Prcv − B2αξ)

[
32e−2ψπ P2

rc(α + e2ψ)(αξ3

+eψv)ψ ′] + 1

αξ(B2αξ − 8π Prcv)

×
[
32π P2

rc(αξ3 + eψv)ψ ′]

+ 1

παξ5(8π Prcξv − B4αq2)

×
[
e−ψ(αq(2Bq + (B − 1)ξq ′)B3

+4π Prcξ(eψξ3 − 3v))(4π Prc(e
2ψ − 3α)ξ3

+eψ(αqq ′B4 + 4π Prcξvψ ′))
]

+ 1

αξ4(8π Prcξv − B4αq2)

[
4e−ψ Prc(e

ψv

−αξ3)(α((B − 1)ξq ′2 + q((2B − 1)q ′ + (B − 1)ξq ′′))B3

123
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−12π Prcv + 4eψπ Prcξ
3(ξψ ′ + 1))

]
− 4e−ψ Prcψ

′′

+ 1

αξ2(8π Prcv − B2αξ)

[
16e−2ψπ P2

rc(α + e2ψ)(αξ3 + eψv)
]

− 1

αξ2(8π Prcv − B2αξ)

[
4e−2ψ Prc(α + e2ψ)(4π Prc(3α

+e2ψ)ξ3 + eψ(αqq ′B4 + 4π Prcξvψ ′))
]

− 1

αξ4(B4αq2 − 8π Prcξv)

[
4e−ψ Prc(αξ3 − eψv)(αq(2Bq

+(B − 1)ξq ′)B3 + 4π Prcξ(eψξ3 − 3v))ψ ′]

− 1

αξ5(B4αq2 − 8π Prcξv)

×
[
16e−ψ Prc(αξ3 − eψv)(αq(2Bq

+(B − 1)ξq ′)B3 + 4π Prcξ(eψξ3 − 3v))
]

− 1

αξ4(B4αq2 − 8π Prcξv)2

[
32e−ψπ P2

rc(e
ψξ3 + v)(eψv

−αξ3)(αq(2Bq + (B − 1)ξq ′)B3

+4π Prcξ(eψξ3 − 3v))
]

= 0. (82)

Following energy conditions must be satisfied

μ + q2

8πr4 > 0,
Pr
μ

≤ 1 + q2

4πr4 ,
P⊥
μ

≤ 1. (83)

For case 1 (γ �= 1) conditions (83) takes the form

A4q

8πξ4 (q + 2ξq ′) + μoψo[(1 − nα)(1 + nα1) + n(α

−α1 + nαα1)ψo] > 0,

A4q(ξq ′ + q) + 4πξ4ψn
o (−α1μoc + ψo(α1μoc + α1μcn(αn

−1) + αμc(n − 1)) + μc(−(αn − 1))(α1n + 1)) ≥ 0,

1

2ξ3(8πμcξv − A4q2)

[
μc(v − ξ3ψn

o (α1

+ψo(α − α1 + αα1n)

+αα1(−n)))(A3(ξqq ′ − A(2q2 + ξqq ′))
−4πμcξ

4ψn
o (nψo(α

−α1 + αα1n) + (1 − αn)(α1n + 1)) + 12πμcξv)
]

≤ A4qq ′

4πξ3

+μcψ
n
o (nψo(α − α1 + αα1n) + (1 − αn)(α1n + 1))

+α1μoc(ψo − 1)ψn
o , (84)

and for Case 2 (γ �= 1) these conditions (83) are

μ + A4q2

8πξ4 > 0, α1 + ψ(α − α1) ≤ 1 + A4q2

4πξ4ψn
,

1

2ξ3(8πμcξv − A4q2)

[
μc(ξ

3ψn((α1 − α)ψ − α1) + v)(A3q(−(A

−1)ξq ′ − 2Aq) − 4πμcξ(ξ3ψn − 3v))
]

+αμcψ
n+1 ≤ A4qq ′

4πξ3

+ψn(α1μocψ − α1μoc + μc). (85)

Fig. 1 Curves of v(ξ)

Now for isothermal regime (γ = 1) energy conditions will
be

μce
−ψ + A4q2

8πξ4 > 0, α ≤ 1,
1

2
μce

−2ψ(2αeψ

+ 1

ξ3(8πμcξv − B4q2)

[
(αξ3 − eψv)(eψ(B3q((B

−1)ξq ′ + 2Bq) − 12πμcξv) + 4πμcξ
4)

)

≤ B4qq ′

4πξ3 + μce
−ψ. (86)

7 Class I relativistic generalized polytropes with
vanishing complexity factor

7.1 Case no. 1

Class I GPEoS with the notation in Eqs. (51, 52) will be
integrated with vanishing complexity factor YT F = 0, and
read as

(5 − 16π)A4ξqq ′ + (8π − 1)A4q2

+ 1

8πμcξv − A4q2

[
12πξ(μcξ

3ψn
o (α1

+ψo(α − α1 + αα1n) + αα1(−n)) − μcv)

×(A3q((A − 1)ξq ′ + 2Aq)

+4πμcξ(ξ3ψn
o (nψo(α − α1 + αα1n)

+(1 − αn)(α1n + 1)) − 3v))
]

+8πξ5
′ − 4πμcnξ5ψn−1
o ψ ′

o((n + 1)ψo(α − α1 + αα1n)

−(αn − 1)(α1n + 1)) = 0. (87)

Equations (55, 73, 87) form a system of first order DEs. This
system is solved numerically for fixed values of α = .5,
α1 = .5 and q = .5. Figures 1, 2 and 3 show the patterns of
v, ψo and 
 for different values of n.
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Fig. 2 Curves of ψo(ξ)

Fig. 3 Curves of 
(ξ)

7.2 Case no. 2

In this case the complexity factor will be read as

(5 − 16π)A4ξqq ′ + (8π − 1)A4q2

− 1

8πμcξv − A4q2

[
12πμcξ(ξ3ψn((α1

−α)ψ − α1) + v)(A3q((A − 1)ξq ′ + 2Aq)

+4πμcξ(ξ3ψn − 3v))
]

+8πξ5
′ − 4πμcnξ5ψn−1ψ ′ = 0. (88)

For α1 = .5, α = .5 and n = .5. Figures 4, 5 and 6 show
the behaviors of v, ψ and 
 for fixed values of α = .5,
α1 = .5, q = .125 and different values of n. These behaviors
are numerically obtained by solving the system of ordinary
DEs (62, 77, 88).

Now we set class I GPs (γ = 1) with vanishing complex-
ity factor YT F = 0 will be consider as

(5 − 16π)B4ξqq ′ + (8π − 1)B4q2

+ 1

8πμcξv − B4q2

[
12πμcξe

−2ψ(αξ3

−eψv)(eψ(B3q((B − 1)ξq ′ + 2Bq) − 12πμcξv)

Fig. 4 Curves of v(ξ)

Fig. 5 Curves of ψ(ξ)

Fig. 6 Curves of 
(ξ)

+4πμcξ
4)

]

+8πξ5
′ + 4πμcξ
5e−ψψ ′ = 0. (89)

Equations (64, 81, 89) form a system of first order DEs with
the same variables as discussed in case 2 (γ �= 1). This sys-
tem also solved numerically for fixed value of α and different
values of charge. Its solution is depicted through graphs of
Figs. 7, 8 and 9, describe the behavior of v, ψ and 
.
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Fig. 7 Curves of v(ξ)

Fig. 8 Curves of ψ(ξ)

Fig. 9 Curves of 
(ξ)

8 Conclusion

To study the different physical features and characteristics
of self gravitating sources, the idea of GPEoS [16–21,36–
38], Karmarkar condition [27–31], complexity factor [32–
38] and phenomena of charge [16,17,22–26,35,38] have
been widely used in the recent past. In the present work
these ideas regarding self gravitating sources have been inte-

grated to discuss some properties (v, ψo, ψ,
) under non-
isothermal and isothermal regimes. For this purpose a gener-
alized framework is established to develop a modified form
of class I charged LEe by using the spherical symmetry for
static anisotropic fluid distribution. Basic field equations are
implemented to set up class I TOV equation under elec-
tromagnetic effect. The Weyl tensor and mass function are
developed, structure scalars are calculated with the help of
curvature and tensor and CF is defined through these scalars.
Class I charged GPs, with two cases: (1) mass density, and
(2) energy density for spherically charged static fluid distri-
bution brought into play to establish the class I charged LEe
under both non-isothermal and isothermal regimes. Energy
conditions for all the cases have also been established in the
presence of charge. Then three pair of LEs (53, 73), (62, 77)
and (66, 81) form three sets of ordinary DEs with vanish-
ing CF. These sets of DEs are solved numerically and their
solutions are discussed graphically below.

It is noticeable that behaviors of v, ψo, ψ and 
 func-
tions Figs. 1, 2, 3, 4, 5 and 6, are not much effected by the
charge. It is observed that the systems (55, 73, 87) and (62,
77, 88) remain stable only for very low fixed value of charge.
It is made out that in Figs. 1 and 4 the value of mass v for
case (1) and case (2) respectively in non isothermal regime
behave in the same manner. Curves of these figures show
that a self gravitating astronomical object is more dense in
mass at boundary surface and becomes less dense with the
increase of value of n at boundary.

Figures 2 and 5 tell us about the pattern of ψo and ψ

for mass density case and energy density case respectively.
These figures show that ψo and ψ have maximum value at
center and gradually decreases with the increase of value of
n toward the boundary of object.

The value of anisotropic factor 
 shows entirely different
pattern for case (1) and case (2) in Figs. 3 and 6 respectively.
As we know the fact that radial and tangential pressure must
be same at center for the stability of self gravitating object,
so the Fig. 3 is exactly according to this fact but Fig. 6, in
energy density case shows abnormality.

For isothermal regime (γ = 1), the solutions of set of
DEs (64), (81), (89) illustrate the results of variables v, ψ

and 
 for fixed value of parameters and decreasing values
of charge q, shown in Figs. 7, 8 and 9. Figure 7 shows that
value of mass function v increases from center to the bound-
ary as value of q increases. While variable ψ in Fig. 8 has
maximum value at center then become constant going along
radius and then decreasing at boundary surface of self grav-
itating source. The variable 
 in Fig. 9 exhibit almost same
behavior for different value of charge as shown by variable v

in Fig. 7. It is worth mentioning that sets of DEs (53, 73, 87),
(62, 77, 88) and (64, 81, 89) give numerical solution for
constant and decreasing value of charge. If we change this
configuration of charge all these set of DEs show singularity
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and system dose not remain stable. The main purpose of this
work is to established the modified form of class I charged
generalized LEe in connection with CF complemented by the
Karmarkar condition as it gives solution of some system of
DEs numerically in view of spherically symmetry to describe
the internal structure of self gravitating object.
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