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Abstract

In the framework of adelic approach we consider real and p-adic properties of dy-
namical system given by linear fractional map f(x) = (a x + b)/(cx + d), where
a, b, c, and d are rational numbers. In particular, we investigate behavior of this
adelic dynamical system when fixed points are rational. It is shown that any of
rational fixed points is p-adic indifferent for all but a finite set of primes. Only for
finite number of p-adic cases a rational fixed point may be attractive or repelling.
The present analysis is a continuation of the paper math-ph/0612058. Some possi-
ble generalizations are discussed.

1. Introduction

Many dynamical systems change their states in discrete time intervals by a
mapping

f : X −→ X, (1)

where X is the space of states and f describes how states x ∈ X evolve in
time. If the state at the time t = 0 is x0 ∈ X and fn = f ◦ · · · ◦ f then after
n iterations the state becomes

xn = fn(x0). (2)

X has usually some natural structures, e.g. hierarchies and distances be-
tween states. In physics of very complex systems X often displays a hierar-
chical structure, which implies that the classification of the states and their
relationships should use ultrametric distances, and in particular p-adic ones.
Recently much attention has been paid to some p-adic dynamical systems,
since they have a lot of potential applications (for a review, see [1]).
Ground states of the mean field models for spin glasses have ultrametric
structure [2]. Methods of p-adic analysis are applied to the investigation of
replica symmetry breaking [3] and p-adic reformulation of the ultrametric
structure of spin glasses [4].
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During the last two decades there have been many constructions of p-adic
physical models. In particular, p-adic numbers have been successfully used
in string theory, quantum mechanics and quantum cosmology (for a review,
see [5], [6], [7] and [8]).
Presently it is not known any physical principle or phenomenon that would
point out a particular prime number. Moreover, mathematical objects, e.g.
such as the Riemann zeta function, are very significant when all primes are
employed on the equal footing (see [9] for a recent example). Simultaneous
use of the real and p-adic numbers, which make all possible completions of
the field Q of rational numbers, is also of great importance in mathematics.
Their use in the form of adeles is particularly effective in the arithmetic the-
ory of algebraic groups. Adelic models of physical systems contain real and
p-adic submodels as parts of a whole (see, e.g. [10]). They give more infor-
mation on a dynamical system than real and p-adic treatments separately.
Since 1987 adelic models have been constructed and investigated in string
theory, quantum mechanics, quantum cosmology (for a review, see [5], [6],
[7] and [8]) and in some other fields of modern mathematical physics (see,
e.g. [11]).
In the recent article [12] we started p-adic and adelic investigation of dynami-
cal systems, which evolution is governed by linear fractional transformations

f(x) =
ax + b

cx + d
, (3)

where a, b, c, d ∈ Q with conditions x �= −d
c , c �= 0 and ad − bc = 1.

Some p-adic properties of this kind of dynamical systems were explored
in [13], where parameters a , b , c , d ∈ Cp. It is worth noting that taking
physical parameters to be rational numbers gives a possibility to treat real
and p-adic properties simultaneously and on the equal footing.
Linear fractional transformations (Möbius transformations) (3) and related
SL(2, C), SL(2, Cp) groups, and their subgroups, have very rich mathemat-
ical structures. They also have important applications in many parts of
mathematical and theoretical physics (see, e.g. [5], [14] [15] and references
therein).
Sec. 2 contains a very brief introductory review of p-adic numbers and adeles.
In Sec. 3 some new results of the above linear fractional dynamics (3) are
presented. Some general remarks, including possible generalizations, are
stated in Sec. 4.

2. p-Adic Numbers and Adeles

Rational numbers are significant in physics as well as in mathematics. Phys-
ical significance comes from the fact that a result of any measurement is a
rational number. One can obtain the field R of real numbers from Q by
employing the absolute value, which is an example of the norm (valuation)
on Q. In addition to the absolute value, for which we use usual arith-
metic notation | · |∞, one can introduce on Q a norm with respect to each
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prime number p. Note that any rational number can be uniquely written
as x = pν m

n , where p, m, n are mutually prime and ν ∈ Z. Then by defi-
nition p-adic norm (or, in other words, p-adic absolute value) is |x|p = p−ν

if x �= 0 and |0|p = 0. One can verify that | · |p satisfies the strong triangle
inequality, i.e. |x + y|p ≤ max (|x|p , |y|p). Thus p-adic norms belong to the
class of non-Archimedean (ultrametric) norms. According to the Ostrowski
theorem any nontrivial norm on Q is equivalent either to the | · |∞ or to
one of the | · |p. One can easily show that |m|p ≤ 1 for any m ∈ Z and any
prime p. The p-adic norm is a measure of divisibility of the integer m by
prime p: the more divisible, the p-adic smaller. Using Cauchy sequences of
rational numbers one can make completions of Q to obtain R ≡ Q∞ and the
fields Qp of p-adic numbers using norms | · |∞ and | · |p , respectively. p-Adic
completion of N gives the ring Zp = {x ∈ Qp : |x|p ≤ 1} of p-adic integers.
Denote by Up = {x ∈ Qp : |x|p = 1} multiplicative group of p-adic units.

Any p-adic number x ∈ Qp can be presented in the unique way (unlike real
numbers) as the sum of p-adic convergent series of the form

x = pν (x0 + x1p + · · · + xnpn + · · ·), ν ∈ Z, xn ∈ {0, 1, · · · , p − 1}. (4)

If ν ≥ 0 in (4), then x ∈ Zp . When ν = 0 and x0 �= 0 one has x ∈ Up .

p-Adic metric dp(x, y) = |x − y|p satisfies all necessary properties of met-
ric with strong triangle inequality, i.e. dp(x, y) ≤ max ( dp(x, z), dp(z, y) )
which is of the non-Archimedean (ultrametric) form. Using this metric, Qp
becomes an ultrametric space with p-adic topology. A closed p-adic ball
(disk) is Bp(r, ξ) = {x ∈ Qp : |x− ξ|p ≤ r}, where r = pm, m ∈ Z , is radius
with discrete values, and ξ is a center of the ball. Analogously, an open
ball (disk) is B−

p (r, ξ) = {x ∈ Qp : |x − ξ|p < r}. Sphere of radius ρ and
center ξ is Sp(ρ, ξ) = {x ∈ Qp : |x − ξ|p = ρ}. Any ball can be regarded
as closed as open. Any point x ∈ Bp(r, ξ) can be treated as center of the
same ball. Note the following connections: Sp(ρ, ξ) = Bp(ρ, ξ) \B−

p (ρ, ξ) ,
Bp(r, ξ) =

⋃
ρ≤r Sp(ρ, ξ).

It is worth noting that x ∈ Sp(ρ, ξ) has the form

x = ξ + y = pk (ξ0 + ξ1 p + ξ2 p2 + · · ·) + pl (y0 + y1 p + y2 p2 + · · ·),
where |y|p = p−l = ρ. For |x|p there are the following possibilities: (i)
|x|p = ρ > |ξ|p , if k > l (ii) |x|p = |ξ|p > ρ, if k < l (iii) |x|p = |ξ|p = ρ if
k = l and ξ0 + y0 �= p, and (iv) |x|p < |ξ|p = ρ if k = l and ξ0 + y0 = p.
When ξ is fixed then |x|p depends on ρ.

For more details about p-adic numbers and their algebraic extensions, see,
e.g. [16].
To consider real and p-adic numbers simultaneously and on the equal footing
one uses concept of adeles. An adele x (see, e.g. [17]) is an infinite sequence

x = (x∞ , x2 , x3 , · · · , xp , · · ·), (5)
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where x∞ ∈ R and xp ∈ Qp with the restriction that for all but a finite set
P of primes p one has xp ∈ Zp. Componentwise addition and multiplication
make the ring structure of the set A of all adeles, which is the union of
restricted direct products in the following form:

A =
⋃
P

A(P), A(P) = R ×
∏
p∈P

Qp ×
∏
p �∈P

Zp . (6)

A multiplicative group of ideles A∗ is a subset of A with elements x =
(x∞ , x2 , x3 , · · · , xp , · · ·) , where x∞ ∈ R∗ = R\{0} and xp ∈ Q∗

p = Qp \{0}
with the restriction that for all but a finite set P one has that xp ∈ Up .
Thus the whole set of ideles is

A∗ =
⋃
P

A∗(P), A∗(P) = R∗ ×
∏
p∈P

Q∗
p ×

∏
p �∈P

Up . (7)

A principal adele (idele) is a sequence (x, x, · · · , x, · · ·) ∈ A , where x ∈
Q (x ∈ Q∗ = Q \ {0}). Q and Q∗ are naturally embedded in A and A∗ ,
respectively.

3. Linear Fractional Dynamical Systems

Let us first recall some basic notions from the theory of dynamical systems
[1] valid for mapping (1) and its iterations (2) at real and p-adic spaces. Let
us introduce an index v to denote real (v = ∞) and p-adic (v = p) cases
simultaneously. A fixed point ξ is a solution of the equation f(ξ) = ξ. If
there exists a neighborhood Vv(ξ) of the fixed point ξ such that for any point
xn ∈ Vv(ξ), xn �= ξ, holds: (i) |xn − ξ|v < |xn−1 − ξ|v , i.e. limn→∞ xn = ξ,
then ξ is called an attractor ; (ii) |xn − ξ|v > |xn−1− ξ|v, then ξ is a repeller ;
and (iii) |xn − ξ|v = |xn−1 − ξ|v, then ξ is an indifferent point. Basin of
attraction Av(ξ) of an attractor ξ is the set

Av(ξ) = {x0 ∈ Qv : lim
n→∞xn → ξ}. (8)

A Siegel disk is called an open ball Vv(r, ξ) if every sphere Sv(ρ, ξ), ρ < r is
an invariant sphere of the mapping f(x), i.e. if an initial point x0 ∈ Sv(ρ, ξ)
then all iterations xn also belong to Sv(ρ, ξ). The union of all Siegel disks
Vv(r, ξ) with the same center ξ is called a maximum Siegel disk and denoted
by SIv(ξ). Invariant spheres Sv(ρ, ξi) of Siegel disks Vv(r, ξi) for indifferent
fixed points ξi have to satisfy |xn − ξi|v = |x0 − ξi|v = ρv < rv for all n ∈ N.
When the mapping (1) has the first derivative in the fixed point ξ then
one can use the following properties: |f ′(ξ)|v < 1 - attractor, |f ′(ξ)|v > 1 -
repeller and |f ′(ξ)|v = 1 - indifferent point.
We shall mainly consider rational dynamical systems given by map (3) which
is isomorphic to the matrix

F =
(

a b
c d

)
, detF = 1 , (9)
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where a, b, c, d ∈ Q and with condition ad − bc = 1. The corresponding
group of matrices F , with detF = 1, is SL(2, Q).
Recall that iteration (2) may have periodic points. A point x0 is called a
periodic point if there exists k such that fk(x0) = x0. The smallest such k
is the period of x0 and then x0 is called a k-periodic point. Note that fixed
points are 1-periodic points. Iteration (2) can be periodic for all points
x0 ∈ X. Our map (3) generates periodicity of a period k when related
matrix (9) satisfies F k = I, where I is 2 × 2 unit matrix. For example, if
d = −a and a2 + b c = 1 one has k = 2 periodicity.
It is worth mentioning that the map (3) preserves the cross-ratio

(α1 − α3) (α2 − α4)
(α1 − α4) (α2 − α3)

=
(f(α1) − f(α3)) (f(α2) − f(α4))
(f(α1) − f(α4)) (f(α2) − f(α3))

(10)

between any different points x = α1 , α2 , α3 , α4 .
To be (3) an adelic system, it must be satisfied |fp(xp)|p ≤ 1 in

fA(x) =
(
f∞(x∞) , f2(x2) , f3(x3) , · · · , fp(xp) , · · ·

)
, x ∈ A , (11)

for all but a finite set P of prime numbers p. In other words, there has to
be a prime number q such that |fp(xp)|p ≤ 1 for all p > q. It is shown in
[12] that function (3) satisfies adelic behavior.

For the function (3) we find the following two fixed points:

ξ1,2 =
a − d ±√(a − d)2 + 4ad − 4

2c
=

a − d ±√(a + d)2 − 4
2c

(12)

with condition ad − bc = 1 and properties

f(ξ1) · f(ξ2) = ξ1 · ξ2 = −b

c
, f ′(ξ1) · f ′(ξ2) = 1. (13)

For the fixed points it is important to notice that if the point ξ1 is attractive
(|f ′(ξ1)|v < 1) then the point ξ2 is repelling (|f ′(ξ2)|v > 1) and vice versa.
The indifferent fixed points always emerge in the pair. These facts obviously
follow from the relation (13). Generally, these points belong to C in real
case and Cp in p-adic case, and their analysis will be done elsewhere.
We are interested in rational fixed points because they simultaneously belong
to real and p-adic numbers. Fixed rational points (12) for the dynamical
system (3) have been investigated in [12] for the following four particular
cases: (A) b = 0, (B) b = c, d = a, (C) d = −a + 2 and (D) d = −a − 2.
Basins of attraction, the Siegel disks and adelic trajectories are examined
for the case (A).
In this paper we continue investigation started in [12]. First of all let us
note that the general case of rational fixed points, i.e.
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(a + d)2 − 4 = δ2 , a d − b c = 1 , δ ∈ Q (14)

has solution. Namely, the hyperbolic equation (a+d)2 −4 = δ2 has rational
solution in the form

a + d = ± 2 (1 + t2)
1 − t2

, δ =
4 t

1 − t2
, t ∈ Q \ {1 ,−1} . (15)

For given parameters a, d and δ one has t = (a + d ± 2)/δ. Rational values
for parameters a and b follow from the expression (15). Then b and c are
also rational, because

b c =
δ2 − a2 − d2

2
+ 1 , c �= 0 . (16)

Three of these parameters a, b, c, d and t are free. In the cases (A) and (B)
parameter t ∈ Q \ {1 ,−1}. For an analysis of the cases (A) and (B) see
Ref. [12]. Now we are going to investigate the cases (C) and (D) in more
details. These two cases exhaust all possibilities with δ = t = 0.

3.1. Case (C): δ = t = 0, d = −a + 2, (a − 1)2 + bc = 0.
This is a case with double fixed point:

f(x) =
ax + b

cx − a + 2
, ξ1 = ξ2 =

a − 1
c

. (17)

For further investigation we need

f ′(x) =
1

(cx − a + 2)2
, f ′(ξ1) = f ′(ξ2) = 1 . (18)

Due to |f ′(ξ1)|v = |f ′(ξ2)|v = 1 it follows that the fused rational fixed point
ξ1 = ξ2 = a−1

c is indifferent one in real as well as in all p-adic cases.
According to the above results we have only one adelic fixed point
ξ(1) = ξ(2) ≡ ξ, i.e.

ξ = (ξ∞ , ξ2 , ξ3 , ξ5 , · · · , ξp , · · ·
)

, ξ ∈ A , (19)

where ξ∞ = ξp = a−1
c for any p. This is one pure adelic indifferent point

for any rational values of parameters a , b and c constrained by relation
(a − 1)2 + b c = 0 and c �= 0.
The n-th iteration is

xn =
(n a − n + 1)x0 + n b

n c x0 − n a + n + 1
, (20)

where x0 is an initial state. In the real case for all x0 �= (n a−n− 1)/nc we
have xn → a−1

c when n → ∞.
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3.1.1. Subcase: b = −c , d = a − 2c , (a − c)2 = 1.
In this case one has again mapping with fused fixed points, i.e.

f(x) =
ax − c

cx + a − 2c
, ξ1 = ξ2 = 1 . (21)

In the following we need

f ′(x) =
1

(cx + a − 2c)2
, f ′(ξ1) = f ′(ξ2) = 1 . (22)

In this special case we have the only one possibility. Namely, due to
|f ′(ξ1)|v = |f ′(ξ2)|v = 1 it follows that the fused fixed point ξ1 = ξ2 = 1 is
indifferent one in real as well as in all p-adic cases.
According to the above results one has only one adelic fixed point
ξ(1) = ξ(2) ≡ ξ, i.e.

ξ = (ξ∞ , ξ2 , ξ3 , ξ5 , · · · , ξp , · · ·
)

, ξ ∈ A , (23)

where ξ∞ = ξp = 1 for any p. This is one pure adelic indifferent point for
any rational values of parameters a and c constrained by relation (a−c)2 = 1
and c �= 0.
The n-th iteration is

xn =
[a + (n − 1)c]x0 − nc

nc x0 + a − (n + 1)c
, (24)

which in the real case gives xn → 1 when n → ∞ and x0 �= (n+1) c−a
n c .

3.2. Case (D): δ = t = 0, d = −a − 2, (a + 1)2 + bc = 0.
As in the previous case one has here coincidence of fixed points. Namely,

f(x) =
ax + b

cx − a − 2
, ξ1 = ξ2 =

a + 1
c

. (25)

We also employ

f ′(x) =
1

(cx − a − 2)2
, f ′(ξ1) = f ′(ξ2) = 1 . (26)

Since |f ′(ξ1)|v = |f ′(ξ2)|v = 1 it follows that the fused fixed point ξ1 = ξ2 =
a+1

c is indifferent one in real as well as in all p-adic cases.

From the above results one has only one adelic fixed point ξ(1) = ξ(2) ≡ ξ,
i.e.

ξ = (ξ∞ , ξ2 , ξ3 , ξ5 , · · · , ξp , · · ·) , ξ ∈ A , (27)
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where ξ∞ = ξp = a+1
c for any p. This is one pure adelic indifferent point for

any rational values of parameters a and c constrained by relation (a + 1)2 +
b c = 0 and c �= 0.
The n-th iteration is

xn =
(−1)n+1[n (a + 1) − 1]x0 + (−1)n+1 n b

(−1)n+1 n cx0 − (−1)n+1 [n (a + 1) + 1]
, (28)

where x0 �= n (a+1)+1
n c is an initial state. In the real case xn → a+1

c when
n → ∞.

3.2.1. Subcase: b = −c , d = a + 2c , (a + c)2 = 1.
This is the case with fused fixed points

f(x) =
ax − c

cx + a + 2c
, ξ1 = ξ2 = −1 . (29)

For further investigation we need

f ′(x) =
1

(cx + a + 2c)2
, f ′(ξ1) = f ′(ξ2) = 1 . (30)

In this special case we have the only one possibility. Namely, due to
|f ′(ξ1)|v = |f ′(ξ2)|v = 1 it follows that the fused fixed point ξ1 = ξ2 = −1 is
indifferent one in real as well as in all p-adic cases (i.e. for all primes p).
According to the above results one has only one adelic fixed point
ξ(1) = ξ(2) ≡ ξ, i.e.

ξ = (ξ∞ , ξ2 , ξ3 , ξ5 , · · · , ξp , · · ·) , ξ ∈ A , (31)

where ξ∞ = ξp = −1 for any p. This is one pure adelic indifferent point for
any rational values of parameters a and c constrained by relation (a+c)2 = 1
and c �= 0.
The n-th iteration is

xn =
[a − (n − 1)c]x0 − nc

nc x0 + a + (n + 1)c
, (32)

which for x0 �= − (n+1) c+a
n c leads to xn → −1 when n → ∞ in the real case.

4. Concluding Remarks

According to [13] radius of the p-adic Siegel disks in all above considered
cases is r = |a|p

|c|p .
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In the above analysis the space of states X can be extended to the whole
projective line P1. Then x0 = −d/c maps to the point at infinity and
x0 = ∞ maps to a/c.
There are many possibilities for generalization of dynamical system (3). Two
directions seem to be very interesting: 1) maintain one-dimensional space of
states and increase nonlinearity and 2) maintain nonlinearity but increase
dimensionality of the space of states.
Under 1) we understand f(x) = Pk(x)/Ql(x), where Pk(x) and Ql(x) are
polynomials of degrees k and l, respectively. In particular, one can take
f(x) =

∏k
i=1(ai x + bi)/(ci x + di) with some restrictions on parameters

ai , bi , ci and di . Already f(x) =
∏2

i=1(ai x + bi)/(ci x + di) contains some
interesting cases (see [18] and references therein).

Direction 2) has the form fi(x) = (
∑k

j=1 αij xj + αi0)/(
∑k

j=1 βij xj + βi0),
where i = 1, 2, · · · , k. Two-dimensional case also offers a rich structure. For
instance, iterative projective transformations

xn =
a11 xn−1 + a12 yn−1 + a13

a31 xn−1 + a32 yn−1 + a33
, (33)

yn =
a21 xn−1 + a22 yn−1 + a23

a31 xn−1 + a32 yn−1 + a33
(34)

are isomorphic to matrices

F =

(
a11 a12 a13

a21 a22 a23

a31 a32 a33

)
, det F �= 0 . (35)

Another possibility is to consider the recurrence relation [19]

xn+k+1 =
α0 + α1 xn+1 + · · · + αk xn+k

β0 + β1 xn+1 + · · · + βk xn+k
, (36)

where α0, · · · , αk and β0, · · · , βk are given rational numbers. Here an initial
k-tuple (x1 , · · · , xk) generates an infinite sequence of states by map

f(x1 , · · · , xk) =
(
x2 , · · · , xk ,

α0 + α1 x1 + · · · + αk xk

β0 + β1 x1 + · · · + βk xk

)
, (37)

for which periodicity of the case k = 2 is investigated in [19].
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