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ABSTRACT

In the framework of adelic approach we consider real and p-adic properties of dy-
namical system given by linear fractional map f(z) = (az + b)/(cx + d), where
a, b, ¢, and d are rational numbers. In particular, we investigate behavior of this
adelic dynamical system when fixed points are rational. It is shown that any of
rational fixed points is p-adic indifferent for all but a finite set of primes. Only for
finite number of p-adic cases a rational fixed point may be attractive or repelling.
The present analysis is a continuation of the paper math-ph/0612058. Some possi-
ble generalizations are discussed.

1. Introduction

Many dynamical systems change their states in discrete time intervals by a
mapping

f:X—X, (1)
where X is the space of states and f describes how states € X evolve in

time. If the state at the time t = 0is g € X and f™* = fo.--o f then after
n iterations the state becomes

xn = f"(x0). (2)

X has usually some natural structures, e.g. hierarchies and distances be-
tween states. In physics of very complex systems X often displays a hierar-
chical structure, which implies that the classification of the states and their
relationships should use ultrametric distances, and in particular p-adic ones.
Recently much attention has been paid to some p-adic dynamical systems,
since they have a lot of potential applications (for a review, see [1]).

Ground states of the mean field models for spin glasses have ultrametric
structure [2]. Methods of p-adic analysis are applied to the investigation of
replica symmetry breaking [3] and p-adic reformulation of the ultrametric
structure of spin glasses [4].
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During the last two decades there have been many constructions of p-adic
physical models. In particular, p-adic numbers have been successfully used
in string theory, quantum mechanics and quantum cosmology (for a review,
see [5], [6], [7] and [8]).

Presently it is not known any physical principle or phenomenon that would
point out a particular prime number. Moreover, mathematical objects, e.g.
such as the Riemann zeta function, are very significant when all primes are
employed on the equal footing (see [9] for a recent example). Simultaneous
use of the real and p-adic numbers, which make all possible completions of
the field Q of rational numbers, is also of great importance in mathematics.
Their use in the form of adeles is particularly effective in the arithmetic the-
ory of algebraic groups. Adelic models of physical systems contain real and
p-adic submodels as parts of a whole (see, e.g. [10]). They give more infor-
mation on a dynamical system than real and p-adic treatments separately.
Since 1987 adelic models have been constructed and investigated in string
theory, quantum mechanics, quantum cosmology (for a review, see [5], [6],
[7] and [8]) and in some other fields of modern mathematical physics (see,
e.g. [11]).

In the recent article [12] we started p-adic and adelic investigation of dynami-
cal systems, which evolution is governed by linear fractional transformations

ar +b

f(l“):m,

(3)

where a, b, c,d € Q with conditions = # —%l, c# 0 and ad — bc = 1.

Some p-adic properties of this kind of dynamical systems were explored
in [13], where parameters a,b,c,d € C,. It is worth noting that taking
physical parameters to be rational numbers gives a possibility to treat real
and p-adic properties simultaneously and on the equal footing.

Linear fractional transformations (Mdbius transformations) (3) and related
SL(2,C), SL(2,C,) groups, and their subgroups, have very rich mathemat-
ical structures. They also have important applications in many parts of
mathematical and theoretical physics (see, e.g. [5], [14] [15] and references
therein).

Sec. 2 contains a very brief introductory review of p-adic numbers and adeles.
In Sec. 3 some new results of the above linear fractional dynamics (3) are
presented. Some general remarks, including possible generalizations, are
stated in Sec. 4.

2. p-Adic Numbers and Adeles

Rational numbers are significant in physics as well as in mathematics. Phys-
ical significance comes from the fact that a result of any measurement is a
rational number. One can obtain the field R of real numbers from Q by
employing the absolute value, which is an example of the norm (valuation)
on Q. In addition to the absolute value, for which we use usual arith-
metic notation | - |, one can introduce on Q a norm with respect to each
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prime number p. Note that any rational number can be uniquely written
as x = p” =, where p, m, n are mutually prime and v € Z. Then by defi-
nition p-adic norm (or, in other words, p-adic absolute value) is |z|, = p™"
if x # 0 and |0], = 0. One can verify that | - |, satisfies the strong triangle
inequality, i.e. |z +y|, < max (|z|,, |y|p). Thus p-adic norms belong to the
class of non-Archimedean (ultrametric) norms. According to the Ostrowski
theorem any nontrivial norm on Q is equivalent either to the |- |« or to
one of the | - |,. One can easily show that |m|, <1 for any m € Z and any
prime p. The p-adic norm is a measure of divisibility of the integer m by
prime p: the more divisible, the p-adic smaller. Using Cauchy sequences of
rational numbers one can make completions of Q to obtain R = Q, and the
fields @, of p-adic numbers using norms |- | and |- |, , respectively. p-Adic
completion of N gives the ring Z, = {x € Q, : |z|, < 1} of p-adic integers.
Denote by U, = {z € Q, : |z|, = 1} multiplicative group of p-adic units.

Any p-adic number z € @, can be presented in the unique way (unlike real
numbers) as the sum of p-adic convergent series of the form

r=p"(xo+xip+- -tz p" +-1), vEL, mz,€{0,1,---,p—1} (4
If v >0in (4), then x € Z,,. When v =0 and zp # 0 one has z € U,.

p-Adic metric dy(z,y) = |z — yl, satisfies all necessary properties of met-
ric with strong triangle inequality, i.e. dp(z,y) < max (dpy(z,2), dp(2,y))
which is of the non-Archimedean (ultrametric) form. Using this metric, Q,
becomes an ultrametric space with p-adic topology. A closed p-adic ball
(disk) is By(r, &) ={z € Q, : |x—¢|, <7}, where r = p™, m € Z, is radius
with discrete values, and £ is a center of the ball. Analogously, an open
ball (disk) is B, (r, §) = {x € Qp : |vr —&|, < r}. Sphere of radius p and
center £ is Sp(p, &) = {x € Q, : |z —&|, = p}. Any ball can be regarded
as closed as open. Any point x € By(r,&) can be treated as center of the
same ball. Note the following connections: Sy(p, &) = By(p, §) \ B, (p, §),

By(r, §) = Upgr Sp(p, &)
It is worth noting that « € Sp(p, §) has the form

r=¢6+y=p"E+&ap+t&ap+-)+p (yot+tyip+yap:+--),

where |y|, = p~' = p. For |z, there are the following possibilities: (i)
zlp = p > [Elp, ik >1(0) [z[, = [£lp > p, if b <1 (ili) [z, = [¢], = pif
k=1land & +yo # p, and (iv) |z], <[], = pif k=1 and & + yo = p.
When ¢ is fixed then |z|, depends on p.

For more details about p-adic numbers and their algebraic extensions, see,
e.g. [16].

To consider real and p-adic numbers simultaneously and on the equal footing
one uses concept of adeles. An adele x (see, e.g. [17]) is an infinite sequence

x:(xooax27x3a"'7xpv"')v (5)
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where zo, € R and z, € Q, with the restriction that for all but a finite set
P of primes p one has x, € Z,. Componentwise addition and multiplication
make the ring structure of the set A of all adeles, which is the union of
restricted direct products in the following form:

A=JAP), AP)=Rx [JQ x [] 2 (6)
P

pEP péP

A multiplicative group of ideles A* is a subset of A with elements x =
(oo s T2,23, -+, Tp, ), Where T € R* =R\ {0} and z,, € Q, = Q,\ {0}
with the restriction that for all but a finite set P one has that z, € U,
Thus the whole set of ideles is

= Ja*P), A*P)=R*x [T @ x [] Up- (7)
P

pEP péP

A principal adele (idele) is a sequence (z,z,---,x,---) € A , where z €
Q (xeQ*=Q\{0}). Q and Q* are naturally embedded in A and A*
respectively.

3. Linear Fractional Dynamical Systems

Let us first recall some basic notions from the theory of dynamical systems
[1] valid for mapping (1) and its iterations (2) at real and p-adic spaces. Let
us introduce an index v to denote real (v = oo) and p-adic (v = p) cases
simultaneously. A fized point £ is a solution of the equation f(&) = £. If
there exists a neighborhood V;,(£) of the fixed point £ such that for any point
Tn € ‘/1)(5)7 In 7& §, holds: ( ) |-’En §|v < |xn 1= §|v’ iLe. limy, oo Ty = §,

then ¢ is called an attractor; (i) |x, —&|y > |xn—1 —&|v, then £ is a repeller;
and (vit) |z, — &y, = \xn_l &lv, then ¢ is an indifferent point. Basin of
attraction A, () of an attractor ¢ is the set

A,(€) = {20 € Qy ¢ lim 1, — £}, )

A Siegel disk is called an open ball V,,(r,§) if every sphere S,(p, &), p < r is
an invariant sphere of the mapping f(x), i.e. if an initial point zg € S,(p, &)
then all iterations x,, also belong to S,(p,&). The union of all Siegel disks
Vy(r, &) with the same center ¢ is called a maximum Siegel disk and denoted
by SI,(§). Invariant spheres S,(p,&;) of Siegel disks V,,(r,&;) for indifferent
fixed points & have to satisfy |z, — &, = |xo — &ilv = po < 1y for all n € N.

When the mapping (1) has the first derivative in the fixed point £ then
one can use the following properties: |f'(£)|, < 1 - attractor, |f'(§)|, > 1 -
repeller and |f/(§)|, = 1 - indifferent point.

We shall mainly consider rational dynamical systems given by map (3) which
is isomorphic to the matrix

F_<Z Z) detF =1, (9)
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where a,b,c,d € Q and with condition ad — bc = 1. The corresponding
group of matrices F', with det F =1, is SL(2,Q).
Recall that iteration (2) may have periodic points. A point xq is called a

periodic point if there exists k such that f*(zg) = 2¢. The smallest such k
is the period of zg and then =z is called a k-periodic point. Note that fixed
points are 1l-periodic points. Iteration (2) can be periodic for all points
xg € X. Our map (3) generates periodicity of a period k when related

matrix (9) satisfies F* = I, where I is 2 x 2 unit matrix. For example, if
d= —a and a? + bc =1 one has k = 2 periodicity.
It is worth mentioning that the map (3) preserves the cross-ratio

(1 —a3) (a2 —aq) _ (flar) = flaz)) (faz) = f(ou))
(a1 —aq) (a2 —a3)  (f(a1) = flow)) (f(az) — fas))

between any different points x = a1, a9, a3, a4 .

(10)

To be (3) an adelic system, it must be satisfied |fy(z,)|p, < 1in

fa(@) = (foolaoe)  a(@2)  folws) - folap) oo ) we A, (1)

for all but a finite set P of prime numbers p. In other words, there has to
be a prime number ¢ such that |f,(z,)|, < 1 for all p > ¢. It is shown in

[12] that function (3) satisfies adelic behavior.

For the function (3) we find the following two fixed points:

a—d+\/(a—d?+4ad—4 a—d+/(a+d)?—4 (1)
2c

§12 = 5 =

with condition ad — bc = 1 and properties

f@) S =6-6=—2.  fE)FE@=1 0

For the fixed points it is important to notice that if the point &; is attractive
(|f'(&1)]» < 1) then the point & is repelling (|f'(£2)], > 1) and vice versa.
The indifferent fixed points always emerge in the pair. These facts obviously
follow from the relation (13). Generally, these points belong to C in real
case and C, in p-adic case, and their analysis will be done elsewhere.

We are interested in rational fixed points because they simultaneously belong
to real and p-adic numbers. Fixed rational points (12) for the dynamical
system (3) have been investigated in [12] for the following four particular
cases: (A)b=0, (B)b=c,d=a, (C)d=—a+2and (D)d=—a—2.
Basins of attraction, the Siegel disks and adelic trajectories are examined
for the case (A).

In this paper we continue investigation started in [12]. First of all let us
note that the general case of rational fixed points, i.e.
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(a+d)?*—4=26%, ad—bc=1, 6€Q (14)

has solution. Namely, the hyperbolic equation (a4 d)? —4 = §2 has rational
solution in the form

2(1+1t2) 4t
d=+2""2) 0 5= 0 4¢ 1,-1}. 15
a+ 11— 2 1_ 2 Q\{ } (15)
For given parameters a, d and § one has t = (a + d £ 2)/J. Rational values
for parameters a and b follow from the expression (15). Then b and ¢ are
also rational, because

62 — a2 — 2
bc:++1, c#0. (16)
Three of these parameters a, b, ¢, d and t are free. In the cases (A) and (B)
parameter ¢t € Q\ {1,—1}. For an analysis of the cases (A) and (B) see
Ref. [12]. Now we are going to investigate the cases (C) and (D) in more
details. These two cases exhaust all possibilities with § =¢ = 0.

3.1. Case (C):6=t=0,d=—-a+2, (a—1)*+bc=0.
This is a case with double fixed point:

axr +b a—1
= =& = . 1
1) cx—a+2’ =6 c (17)
For further investigation we need
/ ]‘ / !
e = =1. 18
f@)= ey T@=11@) (18)
Due to |f'(&1)|o = |f'(&2)|, = 1 it follows that the fused rational fixed point
&L =& = “;Cl is indifferent one in real as well as in all p-adic cases.

According to the above results we have only one adelic fixed point

¢V =¢@ =¢ e
52(5007527537557"'75})7"')7 §€A7 (19)

where (o = ) = “;Cl for any p. This is one pure adelic indifferent point
for any rational values of parameters a,b and c constrained by relation
(a—1)2+bc=0and c#0.

The n-th iteration is
(na—n+1)zg+nbd

= , 20
i ncrg—na+n-+1 (20)

where z( is an initial state. In the real case for all zg # (na —n —1)/nc we

have z,, — 2=L when n — oc.
n c
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3.1.1. Subcase: b=-c,d=a—2c, (a—c)?=1.
In this case one has again mapping with fused fixed points, i.e.

f(x):& Ss=86=1. (21)

cx+a—2c’
In the following we need

1

m ) f/(gl) - f,(£2) =1. (22)

fl(a) =

In this special case we have the only one possibility. Namely, due to
If'(&1)]w = |f(&2)]» = 1 it follows that the fused fixed point & = & =1 is
indifferent one in real as well as in all p-adic cases.

According to the above results one has only one adelic fixed point

¢ =@ =¢ ie.

52(5007527537557"'75})7"')7 fEA, (23)

where o = {, = 1 for any p. This is one pure adelic indifferent point for
any rational values of parameters a and ¢ constrained by relation (a—c)? = 1
and ¢ # 0.

The n-th iteration is

1 _
) — [a+ (n—1)c] zo nc’ (24)
ncxg +a— (n+1)c

which in the real case gives x,, — 1 when n — oo and g # W

3.2. Case (D):0=t=0,d=—a—2, (a+1)?+bc=0.
As in the previous case one has here coincidence of fixed points. Namely,

b
f(f’f):%a 51:§2za—|c_1- (25)
We also employ
fi@) = —— &) = &) =1. (26)

(cx —a—2)2"
Since |f'(&1)]v = |f'(&2)]v = 1 it follows that the fused fixed point § = & =
%1 is indifferent one in real as well as in all p-adic cases.

From the above results one has only one adelic fixed point & D =@ = ¢,
ie.

5:(6007527537557"'75}27"')7 fEA, (27)
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where {oo =, = %1 for any p. This is one pure adelic indifferent point for

any rational values of parameters a and ¢ constrained by relation (a +1)% +
bc=0 and ¢ # 0.

The n-th iteration is

_ (_I)TLJrl[n (a + 1) — 1] zo + (_1)n+1 nb
In = (—1)*+lncx — (—1)n+(1) m(at1)+1]’ (28)

n(a+1)+1

where xg # ( P is an initial state. In the real case x, — “Jcrl when
n — oo.
3.2.1. Subcase: b=-c,d=a+2c, (a+c)?=1.
This is the case with fused fixed points
ar — ¢
f(z) pES—— &1 =& (29)
For further investigation we need
/ 1 / /
f@) = f&)=rf(&)=1. (30)

(cx+a+2c)?’

In this special case we have the only one possibility. Namely, due to
I (&1)]o = |f'(&2)] = 1 it follows that the fused fixed point & = & = —1 is
indifferent one in real as well as in all p-adic cases (i.e. for all primes p).

According to the above results one has only one adelic fixed point

€D =¢@ =¢ je.
52(5007527537557"'75})7"')7 éeAv (31)

where £, = {, = —1 for any p. This is one pure adelic indifferent point for
any rational values of parameters a and ¢ constrained by relation (a+c)? = 1
and ¢ # 0.

The n-th iteration is
[a— (n—1)czy—nc

n = s 2
ncxg +a+ (n+1)c (32)

which for xg # — W leads to z,, — —1 when n — oo in the real case.

4. Concluding Remarks
According to [13] radius of the p-adic Siegel disks in all above considered

cases is r = lalp
|C‘p ’
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In the above analysis the space of states X can be extended to the whole
projective line P!. Then 2y = —d/c maps to the point at infinity and
xo = 00 maps to a/c.

There are many possibilities for generalization of dynamical system (3). Two
directions seem to be very interesting: 1) maintain one-dimensional space of
states and increase nonlinearity and 2) maintain nonlinearity but increase
dimensionality of the space of states.

Under 1) we understand f(z) = Py(x)/Qi(z), where Py(z) and Q;(z) are
polynomials of degrees k£ and [, respectively. In particular, one can take

flx) = Hle(ai:c + b;)/(c; x + d;) with some restrictions on parameters
ai,bi,ci and d; . Already f(z) = [[>_,(a;z + b;)/(ci x + d;) contains some
interesting cases (see [18] and references therein).

. . k k
Direction 2) has the form f;(z) = (327, aujz; + io)/(3°5=4 Bij ©5 + Bio),
wherei =1, 2, ---, k. Two-dimensional case also offers a rich structure. For
instance, iterative projective transformations

011 Tp-1 1+ Q12 Yn—1 + Q13

; (33)
a31 Tp—1 + a32Yn—1 + ass3
a1 Tn—1+a 1+a
_ 021 Tn—1+ a22Yn—1 + a23 (34)
a31 Tp—1 + a32Yn—1 + as3
are isomorphic to matrices
ail a2 ais
F = agl ao2 agy s det I 7& 0. (35)
as1 azz2 ass
Another possibility is to consider the recurrence relation [19]
ag+ o] Tyl + 0+ O Ttk
Tn+k+1 = . = ’ (36)
Bo + b1 @n+1 + -+ Bk Tntk
where ag, -+, and By, - - -, O are given rational numbers. Here an initial
k-tuple (x1,--- ,x) generates an infinite sequence of states by map
g+ o127 +"'—|-Oékxk)
f( 1, ; k) (27 ) k’/80+/81x1+"'+/8kxk 3 ( )

for which periodicity of the case k = 2 is investigated in [19].
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