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ABSTRACT

Geometrical methods of analytic completion are used
to enlarge the primitive domain of analyticity of the four-
point function in p space. The results imply, in particular,
analyticity of the scattering amplitude in two variables, on
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city of partial wave amplitudes in s near the physical points
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I.

INTRODUCTION

In this paper we intend to give a rigorous proof of some analytic properties
of the scattering amplitudes for reactions involving two incoming and two outgoing'

particles.

We adopt the point of view of the L.S.Z. or Bogoliubov S matrix theories,
[Thef. 1)'227, and do not set here the problem of connecting their axioms with
those of Wightman's theory 3). Starting from these assumptions, we compute some
analyticity domain for the four-point function in complex four-momentum space by
using purely geometriéal techniques of analytic completion. By doing so, it has
been possible to reach some new results like analyticity in both' variables s and

t on the mass shell. On the other hand, this method allowed us to avoid two

.unpleasant features of most of the classical proofs of dispersion relations,
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namely :

— the manipulations of integral representations whose convergence

properties are not always clear;

—— the restriction of tempered distributions to fixed values of some

mass variables, which is not meaningful in general.

We remind the reader that, in the L.S.Z. formalism ") the § matrix
elements for various processes are extrapolated by Fourier transforms of retarded,
or advanced, or time ordered vacuum expectation values of field operators. These
are assumed to be temperate distributions, and because of their support properties,
their Fourier transforms can be analytically continued. Moreover, these Fourier
transforms coincide in certain real regions. This implies, by the edge-of=-the-

2),4),5)

wedge theorem that all processes involving n+1 particles with momenta

s p1,...,pn, are represented by various boundary values of a unique analytic
function of n independent complex four vectors (or, more symmetrically, an

analytic function on the manifold P teeetp, = 0). The situation for the n point
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function was studied by 0. Steinmann 6), D. Ruelle 7)

9)

N. Burgoyne ~’/. The problem of finding the domain of holomorphy of the n point

function implied by the above properties is usually called the linear problem

because no use is made of the unitarity condition.

‘ Let us sketch the situation for the four-point function and the method
uéed in this paper. The physical scattering amplitudes are certain functions
(actually tempered distributions) =, (po,p1,p2,p3), the arguments being four
vectors related by : po+-p1+p2+p3 = 0. (For brevity, we shall often denote the
set {po,p1,p2,p3 = - po-p1-p2} by p.) Besides the conventional retarded and
advanced functions,: this set contains some other ones which we shall call

Steinmann functions. All the =r

- have the following properties.

Each qx is the Fourier tranéform of a tempered distribution 9;
~o
real x space, the support of which lies in a convex cone Yq . For instance,

the retarded function ro(xo,x1,x2,x3) has its support in

~ + "‘....
- ‘ : T4 = — !

V. = {xo—xjé\/) x—xze\/.,xo—X;CV

where V' "is' the forward light cone. As a consequence, each r_(p) is the
boundary value of a function «r (x)(x = p+iq) analytic in the tube CZ;; with
basis Yx s the dual cone of ' ‘

where @
K

CH avad 8909 g

in
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Besides, thanks to spectrum conditions, all these functions r_ coincide in some

real region of p space, so that, by the edge-of-the-wedge theorem, they possess

a single analytic continuation H(l«:o,k1 ,k2,k3).

larger

The aim of this paper is to prove that H is certainly analytic in a domain

than the "primitive domain" described above, by using the following ideas

among the functions r_ (p), the Steinmann functions appear to be more
useful than the others. They are grouped in 6 quartets Qi,] (Qij = jS;
i#3; i,j=0,1,2,3). TFor each quartet, a "Steinmann identity"

holds. Taking for instance the particular quartet QO 1 ={aO 3 ,a1 0"1‘23’1.32}3
(the significance of this notation will appear later; it is of no impor-
tance in this Section (see Sections II and IV)), the relevant Steinmann

identity rcads

= — Y
OLO/ ” '&/O - )J)?: * 29 (1)

and holds at all real points in p space and, of course, also in x sSpace

Py o~ —~ T
) + O = r +~
o1 /O 23 % (11)

It is then possible (see Section II) to fulfil (1 ") by introducing new

tempered distributions (‘Pi(x) (i =1,2,3,4) verifying

> .7 P
o/ 7 4
~ = ¢ V
Q/o - ‘7??, . SQ?, (2)
P Vs e NS
r -
23 - (%1) * @
> S A
%) - k@ b4
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a4
in such a way that the C;pl(x) have smaller conical supports than the
N
T (x): correspondingly, the Fourier transforms (;Oi(p) are analytic

in tubes larger than the - Z; o

ii) one is then led, in complex p space, to problems of analytic completion
for the ‘Pi(_p), vhich are typical "edge-of-the-wedge" problems; for
instance, L-ﬁ(p) is analytic in a certain tube @1, 9@(1:) is

analytic in another tube @ and they coincide for real p such that

3’
(p1+p2)2< M122. These problems are solved in Section III. The result is
that “701 and 503 have a common continuation to all points of the
convex hull S 01 of @ 1 0@3 except those of the cut

ek (ke k=M e s pp0]

iii) from these conclusions, it follows that the four functions T X of a
given quartet Qij have a common continuation H, analytic in a large
convex tube Eij except at the points of two cuts : for the quartet

mentioned above, these cuts are :

= /:3 = fo" (A/I,;./(Z)z: /'7,22‘/‘ﬂ /‘/020}

A\J
«

1l

o2

- f/(: (h e h)'= 175 407 20 ]

The existence of such domains ":"ij "pierced" by two energy cuts may

be a germ for a possible derivation of the Mandelstam domain.

As far as the physical mass shell is concerned, we shall derive the
following properties of the envelope of holomorphy : around each physical region,

there exists a complex neighbourhood in both variables s, t- in which the
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amplitudes are analytic from both sides of the energy cut occurring in this region.
This result holds without limitation on the threshold masses (providéd, of cdurse,‘
that the stability conditions are fulfilled). It is clear that such a neighbourhood

0)

fixed real energy. It also implies the analyticity of the partial wave amplitudes

implies the existence of Lehmann—type‘eliipses ! in the transfer variable for

in the variable s in a cut neighbourhood of the physical axis.



II. THE LINEAR PROBLEM FOR THE FOUR-POINT FUNCTTON

We start from the following facts which have been proved from axiomatic field
theory in a number of papers Z;ée Refs. 6)’7)’8)’927.

i) The existence of a pfimitive‘domain of analyticity for the four-point function
H(k); here, the argument k = p+iq denotes the set of four complex four
vectors z ki = pi+1qi, i <f3-§ linked by the relation : k +k +k2+k3 0.
The first part of this Section is devoted to the description of thls domain,

with some details concerning the implications of the edge~of-the-wedge theorem.

ii) The so-called "Steinmann identities" which the various boundary values of H(k)
have to satisfy. Some consequences — as far as analyticity is concerned - of

these identities will be studied in the second part of this Section.

*)

The primitive domain

It essentially contains the union of thirty-two disjoint tubes §62§’§,7§?§k;
0<3,k3 3 ;4 k ?( with a certain complex neighbourhood of a real ;'egion of
analyticity <2%aa. Ehis neighbourhood QAVQ(SEQ) may be very small but its exact
size is irrelevant; the main point is that it cnsures the connection between all
the tubes. Indeed, when we enter into details, we shall see that two arbitrary tubes

of the above set are connected by a neighbourhood of analyticity which can be larger

than dw(gﬁa).

Iet us first describe the tubes

szzi&; qé\/}"j‘ ; ‘fk=§k:qe\ﬁk}

) our . o , . = 97
notations are inspired by those of Araki and Burgoyne ZRef. _/.
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Their conical bases V:]f, V:j'k are defined as follows

a’;— {q: ch—: \/t C/m,é’\/+, 7n6V:‘2

<
+
Il
|
<
i

d
- V, = - eV’ s eV g +9g =Vt
\fgk =T Yk = 61‘ Uk ) -Cyk C?”QA / /k /T _
here (j,k,m,n) is a permutatlon of (0,1 ,2,3); V+ denotes the future light cone;
+ 2 _ o)z 2 0
qjeg V' means % ;>O and N > 0.

In order to study in detail the connections between all these tubes, we
shall introduce the various boundary values which H(k) can take when k tends to

a real value p inside any tube.

_ R . = L /4/1/29J
:; /?;;_) - i H(K) Cii/ (p) o
v 7 e*g*

QG
k— p '
- D/G\/.

K (p) = Plam MH(4)
/V——-)/b
§7 <

These boundary values have the following properties of coincidence (in the sense

of distributions)

xplp)= S p) | 1 [, 2 a2
o d npfgak,xmere Qk—j/b/i</\/7(}(3)
ro(p) = T (P

o d
o= Qo (p) it pe T2 here JC, 12(“/3"(’0"“/3"“).‘( }
}k (0_, = /3 i /) ) wnere o o (4)
(zﬁléwwl = Ej%i??ﬁf = ij;A’VL')
here I ? Mjm = Mmj = Mkn are certain threshold masses.
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As a consequence, we see that two arbitrary boundary values of the above
set always coincide in a real region which is the intersection of several element-
ary regions 5]2 and Vﬁ; n In particular, all these boundary values coincide

in the 1ntersect10n :ﬁi of the seven regions QjEik, ;ﬁigm :

2 2 (o Cc M | ¥
:{ﬁ @(ﬁi‘ )(/dj;+/bm)</\11n1/ o5 /T/meg‘?béim}

The exploitation of these coincidences by means of the edge-of-the-wedge
theorem 4):5)
analyticity of H(k).

will lead us to complete our description of the primitive domain of

Let us consider two arbitrary tubes of the above set and cail Eﬁﬁ (this ié
a provisional notation) the real region where the two corresponding boundary values
of H(k) coincide. Then, by the generalized edge-of-the-wedge theorem Z;f. S)m:
H(k) is certainly snalytic in a small complex region A°(R) which is the inter—
section of a complex neighbourhood of fﬁl with the convex hull of the union of
the two given tubes *). In the following we shall always refer to such a real
region fﬁaa as to "the edge-of-the-wedge region" of the tubes under consideration.
It is clear that for any couple of tubes, the "edge-of-the-wedge region" contains

sza’ but it can be larger.
We shall now encounter the following two cases :

a) "Opposite edge-of-the-wedge"

If the two tubes are opposite, then the convex hull of their union is the
whole space, so that H(k) is actually analytic at the points of the
corresponding edge-of-the—wedge region. One can check easily that for any
couple of opposite tubes é e j,‘?a- L or %c23.+ G k.§ the edge-of-the-
‘wedge region is not larger than the above defined region iﬁza +  thus fﬁza

is the real région of snalyticity of the four-point function.

¥* . .
) It is this theorem which actually allows us to speak of a single analytic
function H(k); however, we have already introduced this notion from the
beginning, in order not to bother with superfluous notations; anyhow; we

only intend to give here a descriptive account of the situation.
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b) "Oblique edge-of -the-wedge"

If the two tubes are not opposite, we can check that in the case of our
problem the convex hull of their union is not the whole space; thus, the
points of the corresponding edge-of-the-wedge region which do not belong

to 5%; g, ore only boundary points of the domain.

In order to have a clearer idea of the geometrical situation, it is
customary to consider the points for which only the time components tj of the

qj (= Im kj) are different from zero. Since to+t1+t +t_ = 0, the imaginary

23
parts of the four vectors (kj) are then restricted to a three-dimensional space.
+ +
The traces of the cones VE, ng in that space are cones in three dimensions.

It is easy to check that these cones form the set of all the cells into which the
three-dimensional space is divided by all planes of the form tk =0 or tj+tm = 0.
We can then take a section of this structure by a sphere centred at the origin.

Fig. 1 shows the traces of the various cones on that sphere.

It is easy to derive from this geometrical picture a mnemotechnical recipe
for finding the edge~of-the-wedge regions. If the cells representing two tubes
are separated by a number of planes of the form tk =0, ’cj+tm = 0, then the
edge-of-the-wedge region for these two tubes is the intersection of all regions

fﬁ;k and fﬁi in with indices corresponding to the relevant planes.

In order to complete this description, let us point out the fundamental

role played in the following by the sets

( 2 2
/Tﬂ = Ko !é. = M o+ . >0 , ©0< P R
4 j 4 s //D /%3 \}‘ 4

I = e (kR Miom # /20 o5 Of 054, <3, J7 7
o4 7 &4

It is clear that these seven sets surely remain outside the holomorphy envelope
of the primitive domain of H(k), since they are composed of analytic manifolds

T, Tt ~
which neither intersect the tubes ~a3,CZ?5k, nor the edge—of-the-wedge regions

jﬁgk’ SQBJm'
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‘Indeed the sets /ﬂﬁsm will«éppear in the space of the scalar products as
the so-called "energy (or momentum transfer) cuts". The main effort of this work

is to try and isolate these primitive singularities.

The Steinmann identities

The twenty-four boundary values rjk(p), amn(p) of H(k) can be grouped

into six disjoint sets an of four functions an = th = irjk’rkj’amn'anmjg

which we call "Steinmann quartets".

Now the four functions occurring in each quartet an satisfy the following

"Steinmann identity", for all real arguments p :

A,:an,‘(‘/b:)‘j'f'r.gi-&nz (/‘:)):Ck(/O)v‘"/A; //b) (1)

In the following, we shail also use the denomination of Steinmann quartet Qmﬁ for

(o - - ot i B ,
the set of the four <tubes {_Czjjk’Cz:kj’CCfmn’chnm_§ in which the considered

boundary values of H(k) occur.

Going back to the preceding geometrical picture (Fig. 1), we see that each
quartet of tubes an appears as a:quadrangular cone bounded by the four planes
t =0 (0<k<3), and divided into four pieces by the two diagonal planes

k

t4+t =0 and t.+t = 0. There are six disjoint quartets of tubes an, with
J m J n

Q
an opposed to Ly

In order to study some implications of the Steinmanh identities, we are now

obliged to cescribe to some extent tie situation in x space,

6),7),8),9)

It is - cshown in Refs. that the functions rj, aj, a are

r
Je gk
Fourier transforms of functions, the supports of which in X space are contained
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in the dual cones of the correspondlng V' V:t More precisely, if we define

/;,\:’(X):/e /J/( K 5(2‘ PA’>}/'(/~))G//3 .C//ba

and similarly define a., r K’ ajk’ then the supports of these functions are

described as follows :

support of T. ¢ <. e T, x -x. <V x-x.é'\'f-"
PP ;PRGSO AWTRE T AT ’

’ xn—xj e V  and either xm-xke-v or

<|

Jjk " m 7

(x —x )

support of. Y i x-x. &
&

!

the support of Efj (resp. a;k) being opposed to that of Px\"; (resp. ?;k)
ﬁf course, these functions only depend on the differences xo—x 17 x1-x2, x2-x3,<

as a consequence of translational invariance_.]

Our main results on the snalyticity of the four-point functions will follow

from an investigation of the Steinmann quartets. Consider, for instance, the four

N
functions 2. ’

NS s . . . . .
01 10, r23, r32 which fulfil the Ste?.nmajnn identity

~ ~ NS S
<, * “o T Gfﬁ > GZ (1)

The supports of these functions can be written :

suppo:;'t 2101 = S1 U S4
suppoft ?’23 =3 1U 82
support 'a\f;o = 82U 83
support {I\"Bz = 83 9, S4

where the sets 8 17 2, 83, S 2 are closed convex simplicial cones in the real

twelve-dimensional space of the x, -xk Z_we could take as independent variables

in this space, for instance the differences x =X X~ x1 ’ x3 X5 but we prefer

1
to preserve the symmetry and to consider this space as the quotient space of the
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sixteen-dimensional space of the X modulo the vectors of the form x0=x1=x2=x3.

(c¢ee Ruelle T) in this connection) /.

S =

1

e definitions of the

l-l
s — _— —
ix: xo~x3€\/ ;X=X eV x,m% e Vv~ }
;x X =Xy & \/-"ﬁ’xze\/ SoxT }
o
—_ / - x
S :gx: x,_xzé\/;x eV, 3= j

S = 4x: X*Xse\/‘fx._x.‘,é\/ 'x—-xzc—:\/}

(/
. - -
Clearly, we have, for ik = 1,2,3,4; 1 #k; Siﬂ Sk ={X : XO-XZEV , Xo_XBE v,
- T, - e-—'— = =
x, =%, & V, X -%g V} S1ﬂ82ﬂ83ﬂ84

The relative position of the Si can.be summarized in a symbolic form in

Fig. 2

Sy

L /7
<3l/s"" Z \r@ 3
! 4

S 7 K] 2,09

4 4 2 2
‘19 ) VAN C U

S

E

Fig, 2

We are now going to prove that, because of the Steinmann identities, we can

write ¢ —~ (;\0/ ~
0'0 / = 4 > %
o~ _ -4 . gp‘
a‘/o é 2 (
A ~ ‘ (A" 2)
~ @ g,‘j
- -+
6937 rg 9, - 3 ¥
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~ s
where the 9aifs are functions such that :  support L)piC:'Si.
relations (2) are sufficient for (1') to hold. Actually the Steinmenn relation (1')

Clearly

is just the condition of compatibility for the system (2) to be solvable., Treat-
. NS

ing temporarily the Steinmann functions and the 90 N

find an extremely simple situation;

outside of X ¢

the functions

9,1 —~ ~
(—P1 =gy = r23. Inside K we can take one of the

of them are then determined uniquely.

N

ﬁL;
for instance, in 81(7 C,K the Steinmann identity (1') implies

7,

as ordinary functions, we

are uniquely defined

arbitrarily. The rest

Since the Steinmann functions are not ordinary functions, but are assumed

to be tempered distributions we shall go through the argument again in a more

precise way, taking into account the fact that the

distributions.

Call 2. . -S QCK (i

= ,ooc94)

(‘K = the complementary set of K)

991

must be defined as

and d?(a(K)‘;}(\QL ) the characteristic functions of K and 25

It is clearly possible to define (although in a non-unique way) two tempered

. . . ~/ ~y
distributions /}Cﬁ(:{ﬁ) 2, andu/2ff(s1) 8041

3’1 %(31) @
2)][(24) 2’01 =3

DY A*H
5) X (s,)

=7
01

a outside of S

o1

01

~ Y .
a 1 = g outside of 25

1

4

.

satisfying the following conditions

Z@E an example of how such a decomposition may be achieved when 27, is

tempered, let f be a continuous function of which .

i =
derivative ao1 Df;

operator D to

We now define

one can define ‘;Zr(S ) a a,

;50

V2
4
%
3

(&)
o

o

i

I

01

01
is a finite-order

by applying the differential

o/

o(ox,-2)2) oz ® N ana take] (£,)7%,
v;(‘(’gi ) EzO/
S (E)

= é}61’/{(81 L

°
.
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a4 N ~S
s
By definiti/oy, we have 50 +§po 01, ?+902 = ?"23, “f ;...(/OZ = r32.
equation ¥ 0+(7ﬂo =8, is then a consequence of the Steinmann identity
L4

2;0 = ’I\’/23+’I\'/32 01° Thus the (792 satisfy the system (2). It remains to Zsrify
that their supports are contained 1n the corresponding 5 Clearly supp.‘"f?c S 1
and Supp. 30 C S 4° Moreover supp.% - S U 82 and we Want to show that
actually L)p =0 in S (the complementary set of S ).

In fact CS ={,(S US)UE(S US US) i.e., CS is the union

° O. It suffices to show that

of two open sets, in the flrst of which 5 =

/\/

‘]00 0 in C S US US) But in this domain a10= =0 s that by the

Stelnmann 1dent1ty ao1 = r23 Moreover LP? -%1 in CZ :)C U S, US4),

so that (70 ° =0 in [ (S U/ S (/s ) A similar argument shows that ° - 0

1n[S

Bvidently the general solution of the system (2) is

(]/ﬁo/_/a,/ ‘é):éuvf- A,) Sﬂ&,:.\éo—/l—

/

AR AL

where h is an arbitrary distribution. The general solution satisfying the
~~
conditions supp. Sﬂic Si is obtained by requiring the support of h to be
in 5.1 8,/) 83/7 5, = K.
~s
Note that we have proved nothing about the possibility of finding the Lpi

in a Lorentz invariant way. The idea of a solution of the Steinmann identity (1)
in the form (2) has been mentioned to one of the authors (H.E.) by J. lascoux
as due to F.J. Dyson in 1960. It is related, although not in a very clear way,
to cohomology theory and to the theory of hyperfunctions. It has been used in
another context but in an identical geometrical situation by R.F. Streater 11).

We have succeeded in performing similar solutions of the Steinmann identities
for the five~point function, and are presently working on its extension to the .
n-point function. The system corresponding to (2) can be worked out precisely,
as well as the support condition. The difficulty is purely algebraic and consists
in proving that the Steinmann identities are the only compatibility conditions for

the system,
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The exploitation of the decomposition (2)

Going back to p space we can write

o %%
S = sg i S?
"y = 47 % (21)
e T s? " cfz

3
| (S p X
95£.(p)o°(,éo+/él+/bz+/33): (2r)? e e Tk

or

X CP: () -, ) A x, -y ) d{’(xz — %3 )

Since /0 (X) is a tempered distribution with support in the cone S each
‘70 (p) (1 < 1 4) is the boundary value of a function Lﬁ (k) analytlc in
a certaln tube @ ;3 the basis of @i in q space (q = Imk) is the

Q
interior ’Si of the cone Si dual to Si :
0

@rg‘{ks‘,'b,‘a?; g & 3’(}

4

S,; { ﬁ ?/( p 20 for all x in Si%

(Here, of course, Z qk 0).
1=0

A (7/\0/ ¢
‘, (x)dxo-~~0/x

x )} ¢
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P, and p3 un(;hanged. We shall therefore concentrate on the problem for

17

A straightforward calculation gives the following expressions for @i o
(1€ig4)

@i-s{k: q‘é\/—, c‘ze\/fj g, + 9. =
@3=ik:’>cloe VT, qae VT de T |
oy

k (7*,06\/“/ C{zé\/t Cj’o+ﬁ36\/§

‘{/4 G eV, 9 eV’ ?’*’736V+§

& -
3

@, -
Now from the relations of coincidence (4)
a (p)=r (p) for p ;r'eal and such that (p,+p )2< MZF,
o1 23 1753 13
o (p) = () for (pp,)°< u°
01 “32 : 172 12
a, (p) = r,.(p) for (p,+p )2 <l
S0 23 172 12

N N2 2
a1o(p) = 75(0)  for (py+p5)” My

we deduce
Sz(/o): ﬁ(ﬁ) for (/b/+/b3)2</\7/32
gy < B e (ot

We sre now faced with two "oblique edge-of-the-wedge problems", These two problems

1

are actually identical : the problem for F and LP 3 goes over to that for
. . 2 2
(702 and % 4 by making the transformations : P, - Py P, - Py M 12 ‘—> N113,

2

.énd % 4 These two functions are respectively analytic in the tubes @ 5 and

@4 and coincide on a'real region %1 3 By the edge-of-the-wedge thebrem; they
have a common analytic continuation in a certain open set dﬂi/zi}) which is the
interscction of‘ the convex hull 301 of @ 5 (/ @4 with an open neighbourhood'
of the real points in %13. This situation will be fully investigated in the next

Section.
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A THEOREM OF ANAIYTIC COMPLETION

At the end of Section II, the study of the functions %i led us to the
following problem. Find the holomorphy envelope 76 (4A) of the following

domain /\ in the space of three complex four vectors \__ki = pi+iqi (1 \< i é 33
k = {k1,,k2,k3 } ) e

4 = @ U @/ uc/ﬁfgg“)

where @4 is the tube |k : 0, ev; o€ v q1+q e v } O is the

[
tube §‘k 2q,& V+° q1+q +q§<‘_§ V+° q1+q36 v } 2F
(p1+p3)2< M2_, AT (/\73) is the intersection of some complex neighbourhood of

@13 with the tube L——‘ o1’ convex hull of @ U@

is the real reglon

As we shall see, the solution of this problem is a special case of Theorem 1

which provides an analogous statement in the case of n four vectors.

The reader who is not interested in the technical details of the proof may
skip the rest of this Section, and pass to Section IV, where the results are

described.

The tools which we need to prove tlicorem 1 have been put together in
Lemmas 1, 2, 3, and 4. The proofs of the basic lemmas 1 and 4 will be fully
given in another paper in preparation, but an essential account of them has been
already publlshed by one of the authors 12) Lsee also Ref, 13)/ As far as
lemmas 2 and 3 are concerned, we shall give here some hint of the proofs and refer
the reader to the paper by B.M.S. 14) for completeness. |

Notation v:> in the féliowing, c/f/J (R) will always denote an open coinplex
neighbourhood in (D 0 of a real open set R TRn such that C/VO(R) N 772n = R,
This neighbourhood is to be considered as arbitrarily small, The symbols T, R, D
will always denote regions in the space G:n’ while "%",ge, SD will denote |

analogous regions in the space ([: 4 of n four-vector variables.
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Lemng 1

(Case of an "opposite edge-of-the-wedge" configuration). Let DI1 be
the following domain in the space C n of n complex variables :

z, = x.+iy.: 1< 1< n;
i s Tigcn;

S

D = TIU T UANCT)

-
+ . . - +

where T_ 1is the tube {z. sy, >0, 1 L1 \(n}, =1 U is
n i i n n n

the real interval : a; <Xi< bi; 1€ig .

Then the holomorphy envelope ‘% (Dn) of Dn is described by the following

parametric equations :

a. — 4.8 ¢,
ZF. = < (r\,
L -/
;) - ST
<
with
1<ign
Ims 2 O
m, >0

It is clearly seen that for each fixed velue of s in the upper half-plane,
the section of *the domain is a polycircle characterized by the value of Arg s.
When Arg s varies from O to TC , the polycircles realize a natural "inter-

polation" between the tubes T; and T; and their union constitutes %(Dn).

Corollary

If n-p intervals [ai,bi] (p+1 i gn) are equal to [-—oo, +oo] ,
and the other p are finite, then ’Jr;’(bn) ='W§(Dp)x (Er‘l o where
0: _ is the whole complex space of the variables =z qreeerZy and

D is the analogue of ' DI; in the space CE o of the variables

( Z,l’con,zp >.,
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This is a straightforward consequence of the above description of %(Dn)'

Lemma 2

Let D'YZ'(‘R)i be the following domain in the complex space (E 5
D,(R) = T, U T, UA(R)
where R 1is the region X1X2 < m2.
Then : i) gf (DZ(R)) is the complementary of the "cut" Z, z2 = m2+ /0
(F>O) in space 0:2.

)jf (D (R)) = (/%(D ('\7 ))  where the union Ly/ is taken

2
over the set of all the 1n’cervals 7 (of the form
a, <X < 'bi ; i =1,2) contained in the region R.

Lemma

Let @(%) be the following domain in the space (E of one four-vector
variable k = p+iq ; (k = k(o),ulg') ; D (Rs) e UJ?Q?:) where €7

is the tube {k: qe v+}
g~ = - gt

€K% is the real open region : »pz = p(O) _p2 <m2.
~w

Then : 1) H £)) (9%)) is the complementary of the "cut"

kro)z_kz: 2 s //o>/o)

A

in the space [ n

ii) Let T1 be a two-dimensional complex space of the form

k =a,z, +a.z, +b, where a,,ab are real four vectors

1 272 1772
such that
5) 2 (o) ‘o) ’
o2 fd . = O , Q4 > O y (@3 > (@)
4 2 z 2z )

b arbitrary.
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Then the intersectionf;%?(93(9%))(7 TT is the holomorphy
envelope of L) (F)NTT.

The first part of lemmas 2 and 3 has been proved in detail in Ref. 14);

it essentially results from the description of the final domain by means of a

15))

set of hyperbolae (already called "doubly inadmissible hyperbolae" by F.J. Dyson

—
both branches of which cross the region Vi

The second part of lemma 2 becomes clear by noting that for any interval
‘§72<:.6Z3 the equations (5) exhibit the above mentioned hyperbolae as boundary
curves ; indeed, one only has to fix §:1, §é to real values with opposite signs,

s varying freely in the upper half-plane.

The second part of lemma 3 is a trivial consequence of lemma 2 and of the

geometrical situation.

Lemma 4

(Case of an "oblique edge-of-the-wedge" configuration). Let D be the

following domain in the spéce d:n. of the variables

2, = X .ty (I<is e z=fe,,..,2, 1 )}
D= T, UT,UN(T,)

T1 and T2 are tubes, the bases of which are polyhedral cones with their

vertices at the origin of co-ordinates in the y space ; the essential
assumption about them is that the closure of T1 (resp. T2) includes

the following set G1 (resp. G2) :

G = 221 Y PO I<C <P g(}:o;pw{c]:sn}

I SR
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: . - - o ) ) o [] .
jn is the interval ai<xi<bi,J 141\<’n,ﬂ(7n) is the
intersection of a neighbourhood .fxﬂ \;;) ~with the tube T, convex hull
of T1UT2.

Then the holomorphy envelope FE (D) of D certainly includes the following

Tregion

Fe (o )Nfz: yve; dcisp yjs0, prisisnnT

where gf(pn) is defined as in lemma 1.
We are now in a position to prove our main theorem :

Theorem 1

Let &) be the following domain in the space (E of n fou.r-irector
variables k, = p.+iq; ; (1€ign; k= {k1, ..kn7,)

D= T, Ul

where

c?; :;k 7 é.V’L" jg‘xgr’"}

ik 9, sV 9 %e\/’}gga‘gn}

J{; is the real open region of 7? defined by :

2 (o)2

P, =D, <m Py arbltrary fqr i>1.

,”/I”' (Q?,) is the intersection of an open’ neighbourhood 04/“) ({]%) with the
tube &, the convex hull of & Ve,

Then the holomorphy envelopo FKE@) orf &) is the complementary of the
7 2 7 T
Noyut! / k 1»1 =nm +/o /u in

Hen) = N [/’ﬂ



Proof :

i) we shall first prove the analogous theofem in the space 0: on of the

variables

2;‘ :‘Xc/-. .,c.(_!j{f, ) ch:: Xd+éj; '.fé(an

g ' e, B
2;2211,,,) Zn,} ; 2/ = {21,- J ‘n,zr

Instead of ?1 ,6202,% s, We consider the corresponding regions :

.

.~ - | v so; aei<n]
Ti§{z! 27 J£>O/éf/c'>o/ 2 L

3
1l

Z)’;—Z, 2z’ (_71(0 J é{é<o/’ éfé%;fé'>q}';7£+é7tf>o)'2~<"5m

{ ,. 7 z, y . . .
P:ZX/X ' X4)<1<m/ X(—)XLA arbitrary }Zécg)’?__}

We first notice that the convex hull of T1U T2 is the open tube

7—=32/‘Z"‘ J: >0 PO 4t Y >o;(79 +C7/L.:’>O;:Z§¢‘g n}

T is the union of four tubes :

.

7= LU L v Uy
(6)
where
7 - {zz Y295 4200 4i>0; y/ +5/2>o,~@gggn}

% - Z‘z,z’: Y <0, §1 205 Jar >0yl >0, 2<¢ € n—j
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Thus to get our result, it is sufficient to show that the restriction of
% (D) to each region Ty (¢ =1,2) is the complementary of the cut
¥ = | 7

{z'zz' —m+/0 /O in‘z;(.

We shall only consider the case of T 17 since the arguments are identical

for C” 5 3 our statement is then a direct appllcatlon of lemma 4 ; in fact,
let us put :
/., v % / L g gl LT
ZZ: Z{ ; Zé.—- (Zi"'zi)) < £

and define :

o fz/Z”:Gv,_»o, ;/Z.’>o;ié¢'\<n—f

~

- +
~ on

I

It is clear that G%1 (resp.

tube '.T.‘1 (resp. TZ)’ g0 that the statement of lemma 4 is valid, namely ¢

G 2) lies on the boundary of the polyhedral

gg (D) contains the following region :

B(Ty U T UNIRI 22 50, gf’{O,‘Kﬂff“f/?Tm
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Now, since R only depends of the variables X ,x!y it results from the

) 1
corollary of lemma 1, and from lemma 2 that :

BTV T U tR) = T T Y tR) = s

where %(T U T UAM(R)) is the complementary of the "cutM z z’ =m + /0
( /9 2 0) in the space Gj of the variables z, .5 ’ '

The second region which appears in (7) is nothing else but the closure of
T1. Using the expression (6) of T, the region (7) reduces to the inter-
section of ’Z" with the complementary of the "cut" z, z' =mn + /0

( /0 0) in the whole space C This is the announced result.

ii) in the space of n four vectors ki = pi+iqi (1<Lig n) the proof goes
in three steps. Let us take an arbitrary point k in the presumed holomor-

phy envelope, namely
s
2 2 ) o
/(1 F 7T +/<> for all /O>
)

a) by using a convenient parametrization of the convex tube (&, one can
construct a suitable manifold c372’(]‘:) passing through k whose inter-

section with % contains a domain D of the type considered in i).
b) by applying the result of i), one can compute g@(D)

c) by construction, the point k automatically belongs to F (D), so
- that, by an obvious property of holomorphy envelopes, it also belongs to

HKQ).

We first claim that any point k & (?f can be represented as follows

k, = <, - FC_

z

- - @ g

&

6937
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where the four vectors Kl = Pi+iQi (0gign) are restricted by the

conditions Q.E v,

In fact, as OZf) and ?f have conical bases, cZocan be generated by sums
(1) 5 (2) where k(1) —{k(”,..,k“)}é?, (2 2 {k 2),..,k(2)}c°é’

The basis of og in q space can thus be represented by the equations

qi = q(;_)+ q(i)(’l g;_ < n) with

(1) + 2) 2) _ g+ . . 7 -
9, eV , I, Z/ = V7", 2< €7

Let us now put
(1) 2) ) . '
Ka‘ = é + é # A_,, ; 8471 <L 7

and we 1mmed1ately get the equatlons (4) with the relevant conditions for

Ql In X;. The converse is obvious by puttlng

(2) |
/((1): _//& ; A’ﬁz = —-_.;Co
M) , (1) _
% (/,—‘E)‘ /;/. :‘K;%g}‘?éalén)

where the vector & has a sufficiently small imaginary part in V+.

*
Let us now define for any point k & of represented by (8) ) a manifold

This representation is not unique, but for any k it is chosen once and

for all in an arbitrary way.
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XYL (x) generated by means of four vectors e,e, ¥ (2« 3 ¢n) as follows :

since Qoe V+, Q1C~ZV+, one can find two vectors e,e' in the two dimen-

sional plane defined by QO,Q1 , such that

(o)

A

e/z - 6/(038‘“

For each index J such that 2 J'A_gln, we put

Q .
SJ:§ é\/

Ve

YN(x) is the complex linear manifold defined by the following equations

k= P +z,e » 2]’ (9)
/ / B
é.:ljf+,_?e +§.€ +_§/.€O/. ;z‘éo/én (9')

and it is clear that it contains the point k. Thanks to (9), (9'), any

analytic function of the ki becomes a function of 3n~1 wvariables

Z, = X. # {y. /o / ) 7 . - _
s ¢ OK/(" ) 26. = x( el é;(. 2 4 g‘ < S m

R P , ‘ P & & <
% - )a/ + - ((/ ) < & 01 =
analytic in some domain the image of which lies in D .

(resp. T has its

Now it is easy to see that the following tube T 2)

imageinc?f1 (resp.%OZ) :

1

z

T, =92, 130, gl>0, g0, />0, 2>0 25 isn]

- | _ S
§=23}2)’§.15/1<o ) Ha <o,é/£+é/‘~,>o}g1’¢57c{>o, Z~>O,‘€\<<\<>?J¢
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" AS far as the region UG 1is concerned, its section by the manifold ¥ k)

is a cylindrical region R whose basis is,bounded’“-byrg certain hyperbola,

the section of the hyperboloid.-,kf: m2 by the plane -

‘ _ r e s

Let us call D the domain in gz,z',z) space :

D= T, UT; UMTIR)

We notice that the result of i) can be applied literally to compute F6(p),

up to a trivial change, namely D is the topological product of the domain

considered in i) by the fixed convex tube {q : \zl = Im§‘i> O} . Thus
F@)= (F, < C,, s )T
) & g : ;(o’-v>01 5{; >0, é,//+jd>o/ ;(; +gﬁ;_>ox Z/\>Ov'

o N i gg‘;Sh}&
R=B(TUT )

~
h
A
N
N

and the index 2 refers to the two-dimensional space of the variables
(Z1 ’Z'1 )‘

Now, we deduce from lemma 3 - ii) that dg/ > is the restriction to the

plane (9) of

e TN R, A S V-

which is nothing else but the complementary of the cut
2

/= g/(Z /(4_ -.:):Va(z“f/o ;/020}
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/( -
So we have got that H (D) is the complementary of the restriction of r
to the manifold 7 7(k), in the convex tube T, that is : (T

In order to complete our proof, it remains to show that the point k which
we started from lies necessarily in %)(D). Since by assumption k lies
outside the cut /  , the only thing which we have to verify is thét

k€T ; but this is automatically realized by construction of the manifold
Cf(/((’a(k). In fact, let us write the expressions of the vectors Q’i occurring

in (6) in terms of their co-ordinates T, s

QJ:Y—CD’ A éjéalém
Since Q'o’Q1’Qj are lying in V+, the Yi's are submitted to the conditions

/ -
Y’ | > (2<i<sn)
“o>o/ o >O/X>O./§/i>©/—}§> J

Then, by (8)

IWL/Q = 7,‘,-:@1-@0: (3_/;— X)(f +(—§_/;/_'§/;/)f/
Im /;/ = [70, =C72/""@0=~Y;€ +§2/e’+ }:’ed.

So, if k, sk; are expressed as in (9), (9'), their co-ordinates verify

the inequalities

g o Yomo , gp= >0 . 7p= e
d <

o ~ ey, = Y. >0
g2 J'“S/;>O) Fz Ty =
which are those defining T. Q.E.D.
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EXTENSION OF THi DOMAIN OF THE FOUR-POINT FUNCTION

The construction of the holomorphv envelope of the primitive domain of the
four-point function (described in Section IT) is a very complicated programme which,

in principle, can be decomposed into several steps.

If we look at the geometrical situation (cf., Fig. 1), a natural idea is to
try and compute first of all the holomorphy envelopes of couples of adjacent tubes;
we mean tubes which have a common face, supported by one of the linear manifolds

=0, or q, +qm._ O. In fact, for such couples of tubes, the edge-of-the-wedge
i > 27
region is the simplest possible, namely Sﬁl {h PPy <:Mk j or Eﬂl m =

={p:(p3+p)<M E

The further steps would consist in computing the holomorphy envelopes of
larger and larger groups of tubes, u81ng if possible at each step the partial holo=-
morphv domalnu obtained at the Drecedlng one; of course, these qteps are more
complicated than the first one, because the relevant edge-of-the-wedge regions are

now intersections of geveral elementary regions ‘/§ik? fﬁ%m.

In this Section, we achieve the first step of this programme as a direct
application of the completion theorem ﬁhich we proved in Section III. This means
that we obtain the holomorphy envelope of any couple of adjacent tubes. Indeed we
obtain a little more in the following sense. Let us recall that the four-point
function H(k) has to satisfy special conditions which are the Steinmann identities;
and, of course, one can expect that the holomorphy envelope with respect to this
relevant class of functlons H(k) will be larger than the holomorphy envelope with
respect to the class of all DOSSlble functions H(k). In fact, by using the
auxiliary functions Y introduced in Section II, it is possible te incorporate
some information due to Steimmann identities into our problem. As a result, we
obtain the holomorphy envelope of any Steinmann quartet of tubes for the class of
functions H(k) satisfying the corresponding Steinmann identity. Let us point
out here that the completion theorem of Sectipnllllvjoinod with a suitable use of
the Steinmann identities would yield analogous results for the case of the n point

function, but this is not the purpose of the present paper.
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The couples of adjacent tubes can be divided into two sets according to
whether their common face lies on a manifold O = 0 or on a manifold qj+qm = 0,
In the first case the relevant adjecent tubes are plf :; and ‘7_:;1{ (or ”?_.f;
and ‘?ﬁ;k) where O <J,k <35 k ;éj (ef., Section I1)

+ . o s T p = -+
°@;+:%k: 7/(6\//-//%\"\/, ‘?n 4 §

< + ) - - + g \/+\
Z;k:zk: ?ké\// ‘7;{7'7mé:\// 7/¢+?né ,;

OZ:; and o?f;k have the following common face

[ _ T e V*
ZA/’ "/&_O/ 7"%(:\/1 7”}“‘\/}_

and their edge-of-the-wedge region is %k = gp : pi < Mi ; ;  this means that
they are connected by a small complex region of analyticity NP (5%{) which is the

intersection of a certain complex neighbourhood of S/Ek with the convex hull

+ + i [eyet
/\}jk of OZfJU gjk'

Let us apply Theorem 1 (cf., Section III) with the following specialization
- = . . . LT R. = +,
n 3, 1(1 'f kk, k2 - km’ k3 — kn9 m _> M]C’ L - \/{Jky 1 - ij9

We immediately obtain

Theorem 2

+
o+ ) Gt + Je!

convex hull of ij Uz x’ except at those points of AN * which lie

The. four-point function H(k) is analytic in the whole tube the

on the set

AR RN AR R
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In other words, we have the following holomorphy envelope

AT A R, )= /’\ nlr
o S I

Besides, A 3‘.1( has the following representation

kk K-K
-

)
{
K +KO f where Im Kié—‘; V', Re Ki arbitrary; 0 Lig3 .

li

BPE

kn = K3+I&O

[ . _
An identical result holds obviously for couples i(; 50 mfjk% .

Let us now consider the case of two adjacent tubes CC\;J " and tég:m,

Jk
their common face lies on x,he manifold g, +q_m = k+q = 0, and their edge-of-the-
&> 2
wedge region is B . = : 4D )< M2 .) .
ge reg : i 79 :(pJ )< n

In the same way as before, we should find the holomorphy envelope

ész(‘;CJkJ ‘f / f(i”/—‘g )) to be complementary of the set / 3m =Z H (kj+km)2 =
foet | : -
=1, +/J H /O> 0 j in the convex hull of Cf & e G i but we get a stronger

reuul’c by noticing that the tubes e ;'-k and ”Cf;m belong to the same quartet

Q .« In fact, we are going to prove the following theorem :

Theorem 3

Let us consider the quartet of tubes

. — e — . e -
52;!\' ) ?;/(: Y CZ"O Pl /

H
(3‘5 e v (7/ k Sz b/z,m_.f

and call Smn the convex hull of the union of these four tubes.

Then : i) Eﬂrﬂn has the following parametrization

/;/I - fﬂlzfv"j’f ) A’ - -~ (}\_’__3 + *7/{0)}.

= p 5 J o

Ao FC . pC, ;4 = FT, - PT
2, . ,
el

1

where In K, &V', ReX, arbitrary; 0<ig 3.
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ii) the four-point function H(k) is analytic in the whole tube

=" which lie either on

- except at those points of =
L
=7
/‘7 im or on [/ sk
_ ) )
—— ‘ / e c R > b
A LA N s

Here (j,k,m,n) is any permutation of (0,1,2,3).

In order to prove Theorem 3, we shall specialize to the quartet QO 1‘; it

will make the notations simpler.

(7ﬂl(k) analytic in the tubes @

Let us go back to the functions
We have seen that y(k) and

(0 g1 <3) introduced at the end of Section II.
(f)(k) have a common analytic continuation @(k) which is holomorphic in

@ (/ @ (AN(TS x.h By applying Theorem 1 W:Lth the following specialization

n=3; k1—>k1+k3, k, > k. k3-> k,; o \,O °&° @
g//a - 9813; m —-> M13; 77— 7 1% we :unmed.Lately obtaln that @k) is

analytic in
'

HKOGUD, UN(R, D)= =y,

; Y
Here we have used the fact that the convex hull of @ 5 (J/@ is equal to EO 1"

This can be seen by noticing that @? is the convex hull of ?0+ v & o3

while @4 is the convex hull of U QC , thus the convex hull of

@2 U @4 is the same as that of ﬁ1 U Oé) U c?9025’ (/%0 327 namely L“"‘01

By specializing Eq. (8), we obtain in passing the expected parametrization

for 801 H

— ' ~ - ' - e -

1

- > - . .
7 ‘?{4 =V ) Pe_ _/{; orbitrary CogeL 3 }
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In the same way, the functions (701 (k) and %3(1{) have a common conti-

nuation ‘3;}(k) which is analytic in EE:O1FICE;Y
Let us now consider the sum ~ERKHEZ‘(I{) which is analytic for instance in
the tube 62f°g1 = 652 /7)Q§£; when k tends to any real value p inside this
tube, Eq. (2') yields :
. T AN RS : ,
L L DLl k) j;—//\,)j._ f//b)z" [j(,o): Qo/(p): E e K

b fo /4’———5/3
S #
&= 4 7
7< &, 7€ &

Thus gﬂk)+}§(k) and H(k) are the same snalytic function and the equation
H(k) =.ﬁKk)+€P{k) defines an analytic continuation of H(k) in the intersection
of the domains of .jqk) and ¥ (k), namely : '

A == 0l ur)

c1 12 ’3 | Q.E.D.

of
Remark
This domain 4 01 is actually the holomorphy envelope of the quartet Q01
with respect to the class of functions H(k) satisfying the Steinmann
identity
L = = I “*~
23 3z (1)

Indeed, if we had put together the holomorphy envelopes of the four couples

of adjacent tubes occurring in Q01, we should have found a smaller domain,

namely ‘ '
G VARG YN A
( (:2? L/ <:)1 \;?2 .// xtﬁg :)//7 L /25, L// 3
and it is not excluded that the holomorphy envelope of the latter be still

smaller than gm‘01, since this process does not take the Steinmann

identity into account.
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At the end of this Section we shall study the boundary points of the initial

+ +
tubes c2f> 5 ?ngk , and prove :

Theorem 4

6937

+ +
H(k) is analytic at all the boundary points of the tubes G 3 ) T

(O <, kL35 ] % k) which do not belong to the union of the seven sets

Io (0grgs) e [ (0<d m<3 5 A,

There are three kinds of boundary points of the tubes

oéoi et
3

i) points which lie only on one face, i.e., points which satisfy one of the

following sets of conditions

— = Y — — %“
7 =° ., 7, V) 7/mc:\/

v ;o ~
or 9;(:0/ %,e\/ fimé\/

= — ) +
or Z/+7m o, ?c/e\//v(/‘o/f'w/ke\/

_ o . eV - = Vv~
oF 70/4-«7%“0/ 7JC ’ 74 7RC\/

These are the points which lie on the boundary of only two tubes;

ii) points which belong to the intersection of two faces, which we call an edge,
i.e., which satisfy

o - o | =+
Dt T T Ty D= O 7(/§\/

[
or

(Z/,zo‘, D = O 7/\,6‘/1

iii) the real points.

The case of real points has already been considered, and the region of

analyticity EZEa described in Section IT coincides with the announced result.
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_ As far as the points mentioned in i) are concerned, they are included in the
domains provided by Theorems 2 and 3; in fact, any point of one given face belongs
to the boundary of two adjacent tubes, so that it lies inside the convex hull of
their union. Thus, if it does not lie on any of the sets 7—71{’ /_tj’m’ it auto-
matically belongs to a certain domain of analyticity given either by Theorem 2

(if the relévant face is = O) or by Theorem 3 (if the relevant face is

e
qj+qm = O) .

We now have to deal with the case of points lying on the edges; these

edges are represented in Fig. 1 by the vertices of the spherical triangulation, and

we have to distinguish the two types of edges (or vertices).

a) The edge {k : qJ.+qm = 0, qj-}-qk = 0, qje V+} is common to the boundaries
- - + + . . -
of the four tubes szjk’ %kj’ C’Z"omn’_ oé)nm which constitute the quartet Qe
Clearly, all the points of this set which do not lie on any set /7 1! /‘j,m certainly
— —
belong to L mnn [ (/ X ./ /_,,jm)’ so that they are points of analyticity as a

consequence of Theorem 3,

b) The edge {k : qj = 0, q, = 0, qke V+} is common to the boundaries of

. - - - + + +
six tubes, namely c?:km’ "é"k, og’kj’ ?nm’ c’-ucnj,fn; of course, the result
which we expect should come out from the knowledge of the holomorphy envelope of this
"sextet" Skn' However, we do not need to know the global solution of this problem

and a purely local procedure will yield the points which we are interested in.

*
We shall use the following theorem [s?pecial continuity theorem )‘, proved in

particular by H.J. Bremermann 16_)7 :

Theorem

. . - . ¢ 7
Let us consider in Q’n a continuous path z = z(t) (z = 121""’Zn§ )
lying on a one-dimensional linear manifold

Ze) = @+ b (e)
here a, b & (En and u(t) is a complex valued continuous function for

o<t 1.

For an outline of the proof of this theorem, see also Ref. 12).

*)
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Let D be a domain in d: - which, for 0 <t 1, contains the disc
{z = z(t) = Cn; !Zl<a}. Then, if D also contains the point

M= { z = z(0); T = OJZ , 2 (D) contains the whole disc {z = z(0);

4

1 1<a].

This property extends inimediately to the case where the disc IZ‘ | < a is

replaced by any domain 4\ in the ; plane, and M is any point inside A,

Let us now come back to our problem. We have to prove that any given point
K such that
-+ —
Q.20, Qu=0,Q, <V ~a& U /U
d / OgKS3 © 5 4ms 3
j_# .
<

lies in the holomorphy envelope of the primitive domain of H(k).

We first notice that the point P = Re K  satisfies the inequalities

2 2 2 2 2 <
I M I ,

d

it means that P lies in the edge-of-the-wedge recgion which is common to the six

tubes of the "sextet" S

2

ICL’]_.

In order to apply the above theorem, we consider the family of one~dimensional

linear manifolds 02/0 ( t) defined as follows :

Lee)=f kb ), SeC,}

t fixed such that ¢ 0 <t <1 y with

/;l(é/§):}? # (&L
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in these formulae, & 1is a fixed four vector in V+; The point X which we want

to reach is obtained by putting t =0 and G = i.

For 0<%t 1 and Im& > 0, we see that kj'é‘ &r, kme???*,
e’ +, so that k(t, §')<—EC?§; When t =0, there exists a small semi-circle
X ={ < IC{< 1; Im?;/\/ O} , the image of which lies in the primitive domain.
This can be seen as follows ¢ first of all, since the point k(t = o, é’ =0) =P
belongs to the edge-of-the-wedge region of the sextet Skn’ there exists a small
region of analyticity AN (P) which is the intersection of a complex neighbourhood

of P with the convex hull of the sextet S now all the points k(t =0, < :

kn;
Im i’ > 0) 1lie obviously in this convex hull since they belong to the common edge
of the six tubes; thus the section of y[’o(P) by the linear manifold %\74, (t =0)

contains a small semi~circle § =; < /C/ < r; Im § > O‘ﬁ‘.

~—

It is clear that all the conditions of the (extended) above theorem are
- ,
fulfilled by putting u(t) = t, A =i g': Ima: > O} and choosing for M any

point inside the semi-circle & .

As a result, all the points k(t =0, & : Im { > 0) 1lie in the holomorphy
envelope, and in particular the expected point K = k(t =0, < =1i). Q.E.D.



V.

6937

39.

FURTHER USE OF THE STEINMANN QUARTETS

After what has been done in Section IV, the next step might be to try and
find the envelope of holomorphy of two opposite Steinmamn quartets. This is not
known at present, although one knows, by quite general arguments, that it is in-

variant under complex transformations [s_ee Ref. 12].

In this Section, by using a variant of the local edge-of-the-wedge theorem,
it is proved that this holomorphy envelope contains cut neighbourhoods of all the

real "physical" points on the mass shell. Aocording to Theorem 3, the holomorphy

envelope of the quartet | 9’01 = { = 01! __,3 10, f C?’g i. is
k= ko vty )2 F ST+ % ?3 2, 47
Abl Z(}( ( + ) = e, /0/(/#%3‘);‘/7/34./)
™
for every /o /o S O S,
4 =
The domain A corresponding to the quartet Q { Dép"' , 2; + _ ’ oy z,
23 23 O1 © 10
is obtained by changing k to =k in the above condltlons, since %3 = = 1_55 1

We are interested in the shape of these domains in the neighbourhood of all

real points P satisfying the conditions
2 2
P < 7 o< AL /Z +_"ZD)</‘72‘
e A O/

we have to distinguish three situations, since P may belong either to zero, or to

one, or to the two cuts A 12?7 F which cross the domains A 01,423.

i) If Pe 98a, that is

y 2 2 ) .
Plem® ock<z; (B DV</] ocim<3, j#Fm,

then there exists obviously a complex spherical neighbourhood W(P) centred at P

such that :
NWIP) = =_ NWIP)

o1
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In other words, the domein A is locally a tube at P. Similarly,

01
A, NTWI(P) = (-~ & ) WIP)

[

Indeed this is not very informative, since we already knew (cf. Section II) that

any point P = éi%a is a point of analyticity for H(k).

o
ii) ILet P belong, for instance, to / 10? but not to 7":3, that is

Pt jockes (RA )< M2 | (ReR )</}

(

(e R >, 2D eV (10)

(The other case : P1+P265 v would be similar.) One can always find a complex
sphericél neighbourhood W(P) centred at P, having no point in common with the
cut 7—713,

region (10).

and such that all points in W(P) have their real parts in the

Clearly the section of A 01 by W(P) is @
S
wer) NE, NLT,

so that it is composed of the two following disjoint sets
— JA 2.
v/‘(P)/hm/?Z koo T Chyw b >0 (11)
- = nNnJ 2 .
WP D ks Do Chovok, <O} (12)

e 2 2 2 . o
By writing (k,+k,)" = (p,4p,)" = (q,49,)" + 21(p1+p2)-(q1+q2), and: \p,+p,) EV,
we see that the condition gq.+q,& V (respectively, V) implies Im(k1+k2)2 >0
(respectively, < 0).



A1

This shows that region (11) contains the intersections of W(P) with the
initial tubes & o °Z¢ (of., Sections IT and IV) and their convex hull
(:)1, while region (12) contalns

—_ + Sy — o y”
WP)N (T O, ) e WP /T @),

In the same way, the domain A o3 restricted to W(P) is composed of the two

following disjoint sets :
Py (-& /7J/<: I (k4 K, )‘9’>o} (13)

_\/\/(-Z:,)/7(_~ )/);lr Ion (A'+4)2<O % (14)

Bq. (13) contains W(R)( 1 (%7, U ‘?;";2), Bq. (14) contains W(R)/) (& U‘Z’ZB).
Let us note that in view of the regularity of the hypersurface /—712 at P, one
can choose W(P) small enough so that the regions (11), (12), (13) and (14) ve
domains. Besides, we see from (10) that P 1lies in the edge-of-the-wedge region
which is common to the four tubes c2572h, ct? ;3, izf ;b, ey ;2. This shows
that, inside W(P), the domains (11) and (13) are connected together by a small
complex open set cﬂVO(P) where E(k) is analytic; mére precisely, A°(P) is
the intersection of a complex neighbourhood of P with the convex hull of
35’31‘ Jcro \J 0774' A similar result holds for the connection between
the domains (12) and (14) Flg. % shows symbolically how the situation looks as

plotted in the imaginary parts of the vectors, when P is taken in the region (10).

We are going to improve this result by showing that the domains (11) and (13)
are actually connected by a region of the form : V(P)f} {‘k : Im(k1+k2)2j> Og

where H(k) is wnalytic; here V(P) denotes a new complex neighbourhood of

p(v(p) c w(p)).
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—
wrr e = ..vi_“\..ﬂ. v

Fig. 2
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The tool which we need is a variant of the oblique edge-of-the-wedge
theorem 5) and could be called the local tube theorem; its proof will be fully

given in a further paper by the same authors, already mentioned in Section III;

let us ljust state it here as an auxiliary lemma.

Lemma

Tet A be the following domain in the space Q:‘ 0 of n complex

variables 2Z,,eee42 (z, = x,+iy.) :
1? 12 3 3 VJ)

A = W T

where W is the spherical domain g z s lz1l2+...+ i Zn‘2< R2} : T8 is

a tube with conical basis in the y space, such that 3

L= T, (a7

‘2&1 and & , are two disjoint convex tubes, and - another convex
tube which connects 2; ’ and [ 5 and lies inside the convex hull
of %€ 1 4 o(\302; (a1l these tubes have conical basis in the ¥y s;pace).

Then there exists another spherical domain VC W,

Vo= fe st +/zm/z<zzJZ L k< R

such that the convex hull of V(7] {‘?f v OZ’Z § is inside the holomorphy
envelope of 4 .

In order to be able to apply Lemma 5, we may consider new analytic co-

ordinates zJI REEEL I such that :

2

b) +the mapping k <> z is biholomorphic (i.e., analytic and invertible)
in W(P);

(ad
c) the Z,j (j = 1,...,12) are real when all km/u)are real. In other words
Z ., k) = Z% k* .
J( ) J( )
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Such co—ordinates can always be found, provided W(P) has been chosen small

enough. In fact we can take for instance equal tQ independent com-

Z2,o-o'Z12
ponents of the vectors km, with z1 = (k1+k2)2 replacing a certain component k;v)

of k1. This fulfils the above conditions a), b), and c¢) provided 29(kﬂ+k2)2/
(¢

K0 at k=P, that is Fr4PJ# 0. Since P +P

2
(10), ﬁ?@Péa)is always # 0 for some 2 (=0,1,2,3).

cannot be zero in region

It is then a simple, if somewhat tedious, exercise in infinitesimal geometry
to prove that the image of the union of domains (11) and (13) and c/VO(P) in the

new variables (z1,...,z ) contains a domain of the form :

12

W, N 3T UE U ]

where W1 is a complex sphere centred at the image of P, Z§1 is a convex tube

with conical basis of the form :
" y)
= N {z; I 2> Of

where (—. is a convex tube with conical basis. 5 is the convex tube

(/-— :221)//) grz? o Lo qu >0 i

L/fAj is another convex tube with conical basis which connects 3

1 1 and c7§32.

[
(0f course, ZEE: is a close approximation to the image of L. o1 in the neighbour-

hood of P, and C/47j, an approximation to the image of <" (P). W, is

contained in the image of W(P), and chosen sufficiently small.) Applyihg Lemma 5

we find that, considered as a function of z1,...,z H(k) is analytic in a

127
domain of the form V1{7 ;‘z ¢ Im z1j>()}- where V1

sphere centred at the image of P. Going back to the original variables, we find

(— W1) is a complex open

p
the announced result : H(k) is analytic in a set of the form V(P) /] il{:
Im(k1+k2)2;> 0 } . We can obviously apply a similar treatment to domains (12) and

(14), and since this éan be done for any P in region (10), we obtain ¢



6937

45,

Lemma 6

There exists a complex open neighbourhood V of the real’poin"cé: of région

(10) such that H(k) is analytic in V except at the points of the cut

f-,a‘z'

iii) Consider now a real point P satisfying the conditions :

=2 2 ‘ 2 % [4 z .
P </%{ , oL k<3 (Z:O>+_7‘1>) </“Z,,._/ (7?+?)>/L’//3)

2
(‘72‘)*72;)1>/%z2 - (15)

then there exists a sphere W(P) centred at P such that .
o — B . ~ .
A, NW(P)= WP, /)f/(_. Lo (4, + 4, )% 0, T (h + 4, )z;w}

A23/7TA//]D): WP (‘an‘)n{k' Lo (& +/§)Q# o, Im (4 + /«5)%& o%

so that each of these domains is divided into 4 disjoint pieces., Each of the four
pieces of ,ﬂ o1 is connected to a corresponding piece of A 231 by a small

P,E v oand P Py S v, the domain

domain of analyticity. For instance, if P 1

1

WRINE, Ak P (4eh 32 >0, Ton (h+ 407> 0f
contains W(P)[) c?f&, while
W(P)/)FEZ/)/)!A/: Lom (41‘+A'z)2>0/ Lo (4 « /\'3)2>O?X

contains W(P)n?;o. Since P is in the edge-of-the-wedge région for - bé& '1-0
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and % 81’ this implies that H(k) is analytic in a domain A (P) which is

the intersection of some complex neighbourhood of P with the convex closure of

ZoF )
nUE L

We can again adopt new co-ordinates z1, z2,...,z12 satisfying conditions
analogous to a). b), c), in the neighbourhood ¢° P, with z, = (k. +k

2
1 12)’
z2 = (k1+k3
A

)2. This is possible because P, +P, £0, P +P3 # 0. Applying Lemma 5
to the four pairs of pieces of Ay, and pa)

1
o3 (which are connected by a small
"bridge" of analyticity in the neighbourhood of P), and going back to the original
variables, we find that H(k) is analytic in a certain complex open neighbourhood

of P, except at the points such that Im(k1+k2)2 =0 or Im(k,+k

2
=0, Si
1 5) 0 ince

this can be done for any P satisfying (15), we obtain :

Lemma 7

There exists a complex open neighbourhood V! of the real points of region
(15) such that H(k) is analytic in V' excert at the points of VA

and /_7

12
13"

Making suitable permutations of the variables ko’ k,, k and putting

1 2’ k3?
together the results, we finally obtain

Theorem 5

Let SEZBk be the set of all real points p such that
2 2 : - 2 2
. = O
/6( </‘7L /(— 1,8 5)) and (/i)/?‘-/DA‘) </V£//,\.

Then there is a complex neighbourhood c/¢<YSE3k) of Sﬁgék such that the
four-point function H(k) is analytic at all points of C/¢”(EE%k) except

those satisfying
. ‘ 2 3
(k. o+ k) = M5 »
J £ J& //O
for some positive real | and some 1? # Jyke In othér words, the holo-

morphy domain of H(k) contains the set (/W(Q?,Sk)/? f (f';n U ,7'5 m),

where (j,k,m,n) is any permutation of (0,1,2,3).

-
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Specialization to the mass shell

"
We now want to apply Theorem 5 to the case when k; = m?, in the neighbour-

hood of real physical points satisfying

*8__ 2 - -+ E. -
Lo = osisi, pE VT peVip e VT peV T (6)

<

Here m1, me, m3, mo are the masses of the four particles with momenta p.. We
first remark that such points automatically satisfy p§<( Mi, (po+p1)%<j M§1,

2 2 2 2 .
(p1+p3) < M13, (p1+p2) ;2.M12, In fact, Mi is the lower bound of the masses of
all states having the same quantun rumbers as the particle with momentum Pi»

except the one-particle states. This is due to the fact that the reduction formula,

involves Klein-Gordon operators (with masses mi) acting on the retarded, or
advanced functions. These have the effect of removing the contributions of one-

particle states to the spectral conditions. Furthermore MO1 is the lower bound

of the masses of all states having the quantum numbers of the system of particles

0 and 1. We have, under conditions (16)
.2 )
(oo + L, 05K (e — e, Dad

s0 (po+p1)2 is automatically < MS1 provided

) 2 2
Supnose we had
M&/ ( )720-—- mi

S iee. e > fﬁ;/ # 172,

this would imply an instability of the particle O. We therefore make the assumption
' < 2
—e / . .

The conditions (16) then imply

e, + 5, )% < (’zrgs.—— e 0% < /“Z:?

Cﬁ% * /éé )2 < {,nn, - }723 )?L < /Aﬁcz
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Finally, (p1+p2) P (m1+m2) ;; M12,

As has been already remarked, the final domain of holomorphy is invariant
under complex Lorentz transformations. This leads us to examine the images of the
analyticity points we have just obtained in the space of the invariant variables.

More specifically we adopt *“he usual variables
7 ; Z

S = (k/ - k<2>

, z

- 2

w = (kg + k)
C = k% (o<j<3

> d <4 <3) 5

These variables are not independent but satisfy s+i+u = QE: Z;.. Let p b2 a

J._
real point on the mass shell, satisfying conditions (16). The domain of analytici 4y

contains a set of the form
0 Nk kg T,

where j:)_p is a complex neighbourhood of p., Let I denote the mapping fivm the
space of the vectors to the space of the invariants. If the mapping I is open at
the point p (i.e., if it maps a neighbourhocod of p onto a neighbourhood of
I(p)) then the image of our domain in the invariants will contain a set of the

form :
’ * _ 2 “ ol
.S’E_FD /~7 { é;J , S ) Z%/ L{, - S ;ﬁ /%32 7L/A? for any //D%;(;lf

where J;),é is an open neignbourhood of I(p) in all complex invariants, We can

now make use of Lemmas 2 and 3 of Hall and Wightman 17). From these we deduce that
if m?, Sy to; u, are real and have physical values, there exists a real poiat p

2_ o 2 2 _ 2 _ N
such that Py =ms (p1+p2) =5, (po+p2) =t (po+p1) =u_, end that the
mapping I is open at p. (the that when p is real and on the edge of the

physical region, i.e., for instance p? = m? (j =0,1,2,3) and
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7720 /Oowp’l /Do'pz

/t% '%51 792;? /5a ’ /;é =0

/o /53 /2 ) 74%@;

I does not map a real neighbourhood of p onto a full real neighbourhood of I(p),
The mapping, however, is open in the complex domain. The situation is quite similar
for the mapping z — z2 in one complex variable, in the neighbourhood of zero,

and questions of single-valuedness would arise if the functions under consideration

were not Lorentz invariant. )

Making suitable permutations of the variables, we find that if Sy to, U,
are given real values in one of the physical regions, then there is a complex
neighbourhood 2 of (so,to,uo) in the variables s, t, u such that the
scattering amplitude is analytic in ) except at points such that

&
S:M + O

) /
or = ,MO‘Z' +- /O
or L = /szi ~

/O

(p>0).
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VI. ADDITTONAT REMARKS

The results of Section V are obviously incomplete and preliminary. However,
they indicate what can be expected from a more thorough investigation. In this

Section we shall describe two applications,

a) Analyticity of partial wave amplitudes

If S, is any real physical value of the square of the total energy for
particles 1 and 2 and if F(s,t) is the scattering amplitude, the upshot of

. Section V is that F is analytic in a small domain of the form
{S, i /S=S,/<&, lon § #O, CosB & E(so)}
where .

2 2 s,

cos & = 85( mi ~m3) +/54+mf-m2‘)(s+m§-m;)
c— 274 074 . L Tee bt - R4
/S [)72/4—)?22) ]z[s.. (mz—)p‘%)]é/g-(mfu?z‘)]zfs (mj n%)]z

E(so) is some ellipse with foci at * 1 (such an ellipse can always be inscribed

in any open neighbourhood of the segment [-1,f] - in the complex cos® plane).
It follows that

Frs) =
4

+/

é[ /;D(@Sﬁ) Fs &) oAccosE)

is a well-defined function of s, analytic in a cut neighbourhood of the real

physical values of s.

b) A step in the proof of forward dispersion relations

Proofs of the forward dispersion relations have been given by several

authors 2)’18). We shall briefly review the main steps of the proof from the

point of view of the present paper. We use the lecture notes by Froissart 19)
which give a particularly clear critical discussion. To obtain forward dispersion

relations one must, of course, assume that (for instance) the particles O and 1

6937
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17 m3 = m . One then fixes
k1 = -k = p1 where p1 is a real four vector in V+ with p12 = m12. This

defines a four-dimensional linear analytic mdnlfoldof , Where k3 = —kz. We

(respectively 2 and %) are identical, so that : m, =M

choose kg}) as the co-ordinates on this manifold. It has been proved that H(k)

is analytic on Ozf
. . st -
i) at points such that k2é ) /see Theorem 4/

ii) at real points k_ = P, such that

2
/o;<M22/ (/b ﬁ’z /2‘;/ (/b /C~7 3

(these points liec in @ a)

This poses an opposite edge—of-—the~wedge problem, the solution of which is given by
14),15)

the Jost-Lehmann-Dyson formula . The result, under certain restrictions on
the masses and thresholds (M12 = M13 = m1+m2), is that the domain of analyticity
contains, for all real values of § satisfying the strict inequality E < mgy

aset A (C) defined by :

A=k kel AT, 5= (pr ke c@Hi

where ¢ (C’ ) is the complex plane cut along the real axis from (m1+1312)2 to

2 - -2 .
221111111) For C:--mz, A(C) is on the

boundary of the J.L.D. domain, as is emphasized in Ref. 19) However, Theorem 5

+o and from =-® to (2C+m -m

implies that A(mz) contains points of analyticity of H(k). This allows us
to apply Bremermann's theorem and to prove that all points of A (mg) are
actually inside the domain of analyticity of (k). We have thus put a final
touch to the proof of the analyticity of the scattering amplitude in a cut plane
in s for t =0, in the cases when there can be no unphysical parts of the s
cut. This shows, of course, that the forward dispersion relations would come out

as a result of "putting together" two opposite Steinmann quartets.
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CONCLUSION

In this paper only a very small part of the programme defined in Section IV
has been carried out. Several possibilities for future progress are presently
being explored, in particular the holomorphy envelope of two opposite Steinmann
quartets, and the problem of extracting more information of the Steinmann identities,

as suggested by well-known proofs of dispersion relations.
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