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ABSTRACT: We initiate the study of stability and pseudospectra of complex momentum modes
of asymptotically anti-de Sitter black holes. Similar to quasinormal modes, these can be
defined as the poles of the holographic Green’s function, albeit for real frequency and complex
momentum. Their pseudospectra are in stark contrast to the pseudospectra of quasinormal
modes of AdS black holes. Contrary to the case of quasinormal mode pseudospectra, the
resolvent is well-defined, and the numerical approximation shows fast convergence. At zero
frequency, complex momentum modes are stable normal modes of a Hermitian operator. Even
for large frequencies, they show only comparatively mild spectral instability. We also find
that local potential perturbations cannot destabilize the lowest complex momentum mode.
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1 Introduction

Eigenvalue problems for linear operators are fundamental to all of physics, from classical
mechanics to quantum mechanics and general relativity. The eigenvalues are of course
determined by the particular boundary conditions. Closed systems lead to the emblematic
Sturm-Liouville type problems for self-adjoint differential operators. Open systems on the
other hand are characterized by non-self-adjoint and potentially non-normal operators. Non-
normality implies that under a small perturbation to the operator, the eigenvalues might
suffer a displacement much larger than the size of the perturbation. This phenomenon,
labelled spectral instability, is a fundamental feature of non-normal operators. For normal
operators, such as the ones appearing in conservative systems, the spectral theorem ensures
that the eigenvalues cannot be displaced more than the size of the perturbation, and thus
the spectrum is stable.

At a practical level, spectral instability has significant implications. It tells us that if
we use some non-normal operator to model a non-conservative system and assume a small
error in its construction (e.g. disregarding some interactions to simplify computations), we



cannot ensure that the spectrum of the operator should match the actual spectrum of the
real system. In short, the presence of spectral instability warns us that to make predictions
to a given accuracy, we will need to construct a model with a much higher one. For that
reason, when dealing with non-conservative systems, one should complement the standard
eigenvalue analysis with a discussion on the stability of the eigenvalues, which typically is
approached through the study of the pseudospectrum [1-3].

In the context of gravitational physics, non-self-adjoint operators generically appear
when studying quasinormal modes (QNMs) of black holes [4-6]. The non-conservative nature
of black hole geometries, derived from the existence of an event horizon which acts as a
perfectly absorbing membrane, results in the time evolution of linearized fluctuations being
governed by a non-self-adjoint differential operator, whose eigenvalues are the quasinormal
frequencies (QNFs). In asymptotically flat spacetimes, fluctuations are also outgoing at
asymptotic infinity further contributing to the non-self-adjointness.

The study of the spectral stability of quasinormal frequencies using a pseudospectrum
analysis has been recently pioneered in [7]. Further aspects of the pseudospectrum of
quasinormal modes of asymptotically flat black holes have been investigated in [8-13] (see [14]
also for horizonless compact objects and [15] for quantum corrected black holes), as well
as in de Sitter (dS) [16, 17] and anti-de Sitter (AdS) [18-20] geometries. All these studies
found the spectrum of quasinormal frequencies to be unstable due to the non-conservative
nature of the geometry. Further studies have also covered the implications of this spectral
instability on the strong cosmic censorship [21] and on the gravitational waves emitted in
black hole mergers [22, 23].

In the case of asymptotically AdS spacetimes, the observation of spectral instability is of
particular interest in view of gauge/gravity duality [24-28] which postulates that black hole
geometries are dual to thermal states in a strongly coupled quantum field theory [29]. In this
context, black hole quasinormal frequencies are interpreted as poles of retarded propagators
of the thermal field theory [30-32]. Consequently, the study of quasinormal frequencies in
AdS black holes has led to important insights into hydrodynamics and transport theory in the
relativistic regime [33-35], with some remarkable results being the extremely low specific shear
viscosity of holographic models of the quark-gluon plasma [36], phase transitions towards
superconducting states [37—40] and strongly coupled quantum critical phases [41-43]. To
better understand the physical meaning of this spectral instability is therefore clearly of
utmost importance for gauge/gravity duality.

Quasinormal frequencies determine the time evolution of an open system that is slightly
perturbed away from its ground state. Figuratively one hits the system with a “hammer”
and observes the damped oscillations that return the system to its ground state. This is
however not the only way of probing an open or dissipative system. Another way is to couple
it locally to an oscillating source (“antenna”) and observe the wavelength and absorption
length of the forced oscillation. This type of response is also determined by the poles of the
retarded Green’s function, this time however one fixes the frequency to be real and searches
for poles in the complexified momentum plane. In gauge/gravity duality this means that
one solves the same system of equations as for the quasinormal modes but considers now
the frequency as given and solves for the complex eigenvalues of the momentum [44]. These



complex momentum modes are the AdS analogues of the complex angular momentum modes
in asymptotically flat spacetimes [45]. We denote complex momentum modes by CMMs and
their corresponding eigenvalues, the complex (linear) momenta by CLMs.

In this paper, we therefore depart from the study of the stability of QNFs to instead
consider the stability of CLMs of planar AdS black holes. While the former are eigenvalues
of the generator of time translations, the latter correspond to eigenvalues of the generator of
spatial translations along some direction parallel to the brane. QNFs and CLMs are dual
to poles of the retarded Green’s function at fixed momentum (relaxation times) and fixed
frequency (absorption lengths), respectively. CLMs also play an essential role in studying
causality of the boundary field theory [46, 47]. At zero frequency, they are dual to the
glueball masses of a dimensionally compactified toy model for QCD [29, 48-51]. CMMs
have also appeared in the holographic context in [52-55]. It is also worth noting that in
the context of asymptotically flat spacetimes [56-58] studied the stability of Regge poles
(complex angular momenta).

We choose to study the stability of complex momenta for two main reasons

¢ Complex momenta offer a new window to probe the spectral stability of the
theory. Although both CLMs and QNFs are poles of the retarded Green’s function,
they appear in qualitatively very different settings, and thus, their spectral properties
need not be the same. Hence, we could find a theory whose QNFs are stable while the
CLMs are not and vice versa.

e The pseudospectra of complex momenta computed at real frequencies is
convergent. When computing the pseudospectra of QNFs, one finds that it does not
converge for the overtones [20]. This issue seems to be related to the definition of
size for the perturbations and, as we shall see in greater detail, hints at the need to
introduce a cutoff to how localized the perturbations can be. Notably, this prevents us
from making quantitative statements about the stability, although it is believed that
the qualitative picture is correct. On the other hand, working at fixed real frequency
solves these issues and thus allows us to reach quantitative conclusions about the full
pseudospectrum.

We compute the CLM pseudospectrum for a real scalar field in a Schwarzschild AdS4, 1
black brane. Although this setup lacks some interesting phenomenology associated with the
existence of hydrodynamic modes, we favour its simplicity and lack of gauge symmetries,
which would introduce some extra subtleties. We leave a more complete study for fields
with gauge symmetries to a follow-up work.

The paper is structured as follows. In section 2 we offer a short review of pseudospectra
in the context of stability analysis. Here, we follow closely [18] and draw heavily from [1].

In section 3 we discuss the lack of convergence of the pseudospectrum of QNFs. Our
presentation is not in-depth; instead, we try to offer a more qualitative picture. We refer
the interested reader looking for a more detailed discussion to [20].

In section 4, we define CMMs and showcase, from the point of view of the dual field
theory, in what situations they appear. We discuss their differences with respect to QNFs
and conclude by arguing some of the stability properties complex momenta should have.



In particular, in the zero frequency limit, we argue that as CLMs are dual to the glueball
spectrum of the effective theory for the lowest Kaluza-Klein modes of the compactification
on a thermal circle, they should be stable.

In section 5, we introduce the holographic model and construct a well-motivated notion of
size for the CMMs. We follow the usual prescription introduced in [7, 59] and more generally
argued for in [1], and use the energy as a guide to construct a norm in subsection 5.1. In
subsection 5.2, we define the relevant differential operator whose eigenvalues are the CLMs,
and construct its adjoint. We pay special attention to how our norm manages to reproduce
the expected stability properties discussed in section 4.

In section 6 we discuss the numerical implementation based on pseudospectral methods
and introduce the selective pseudospectrum used to test the stability under random local
potential perturbations. We also construct some specific potentials to test the nature of
the (in)stability.

Section 7 is the core of the paper and contains the results of our pseudospectrum
computations. We find that at non-zero frequency, the spectrum becomes rapidly unstable.
Remarkably, we observe that the effect of local potential perturbations seems to be very mild.

In section 8, we summarize our findings and present our conclusions.

In appendix B we present the numerical values of the complex momenta. Relevant figures
are collected in appendix C. A comparison between the stability properties of CLMs and
QNFs can be found in appendix D.

2 Pseudospectra and stability

In this section, we summarize some important definitions and results concerning pseudospectra
and condition numbers and their relevance for the study of the spectral stability of non-
normal operators. We follow closely the exposition of [18] and refer the interested reader
to [1] for further details.

Given a closed linear operator £ acting on a Hilbert space H with domain D(L), its
spectrum o(L) is defined as the set of points A in the complex plane where the resolvent
R(L;\) = (L — X)~! is not defined. An eigenvalue A € o(£) is defined as a solution to
the eigenvalue equation

(L—=XNuy=0, (2.1)

where uy € D(L) is the corresponding eigenvector.

An important property of eigenvalues is that for self-adjoint operators (or, in more
physical terms, conservative systems), the spectral theorem ensures that if we perturb the
system with a bounded operator of size ¢ the eigenvalues of the perturbed operator cannot
suffer a displacement greater than e [60, 61]. This property holds in general for any normal
operator A satisfying [A, AT} = 0, with AT the adjoint of A.

However, in non-conservative systems normality of the relevant operators is not guaranteed
and small perturbations could potentially alter the spectrum in a significant manner. For
that reason, one concludes [1] that in non-conservative systems eigenvalue analysis alone
is insufficient as the spectrum might be unstable.



To characterize the stability of eigenvalues one introduces the notion of e-pseudospectrum,
which can be defined in three mathematically equivalent ways [1]:

Def. 2.1 (Resolvent norm approach) Given a closed linear operator L acting on a Hilbert
space H with domain D(L), and € > 0, the e-pseudospectrum o-(L) is

0:(L) ={z € C: [R(z L)| > 1/e}, (2.2)
with the convention ||R(z; L)|| = oo for z € o(L).

Def. 2.2 (Perturbative approach) Given a closed linear operator L acting on a Hilbert
space H with domain D(L), and € > 0, the e-pseudospectrum o-(L) is

oe(L)y={z€C,AV,||V|<e:z€a(L+V)}. (2.3)

Def. 2.3 (Pseudoeigenvalue approach) Given a closed linear operator L acting on a
Hilbert space H with domain D(L), and € > 0, the e-pseudospectrum oc(L) is

0u(£) = {2 € C,3u € DL) : [|(£ — =)< ]} (2.4)
where u® is a e-pseudoeigenvector with e-pseudoeigenvalue z.

Note that, contrary to the spectrum, the pseudospectrum depends on the operator norm

)
V]| = max 1
ueH ||l

(2.5)

as, in order to quantify stability, it needs a notion of what constitutes a small perturbation.

Remarkably, definition 2.2 corresponds to the physical intuition we were seeking: the
e-pseudospectrum constitutes the maximal region containing all possible displacements of
the eigenvalues under perturbations of size €. It is then quite natural to represent the
pseudospectrum as a contour map indicating the boundaries of these regions for multiple
values of . However, computationally definition 2.2 is very inefficient as one should compute
the spectra for all possible bounded perturbations. For that reason, when studying general
instability properties one instead uses definition 2.1 which, despite lacking such a clear
physical interpretation, is much more manageable to compute in a finite-dimensional setting
such as the ones arising when employing numerical approximations to the operators. When
constructing a selective pseudospectrum where we only analyze the stability under a certain
restricted type of perturbations (e.g. local potentials), we will still use definition 2.2 with
a finite set of randomly generated perturbations.

Another useful tool for studying the stability of eigenvalues is the set of condition
numbers {k;} defined as

[[vil[[[i]

| {vi, i) |

, (2.6)

Ry =

with (-, ) the inner product associated with the norm ||-||, u; the right-eigenvector satisfying
Lu; = \ju; and v; the left-eigenvector satisfying £fv; = \jv;.! Remarkably, condition numbers

!We denote the complex conjugate with a bar and complex conjugate transpose with an asterisk.



manage to quantify the effect of perturbations of size € through only the knowledge of the
orthogonality between the eigenvectors of the unperturbed operator and its adjoint. Explicitly,
for a bounded perturbation V of size ¢ we have:

[Ai(e) = Ai| < ek (2.7)

where {\;(g)} are the eigenvalues of the perturbed operator L(¢) = £+ V and ||V|| = €. For
normal operators all eigenvalues are stable and have condition number 1.

As in this work, we limit ourselves to studying pseudospectra of matrices arising from
the discretization of differential operators, we collect below a relevant theorem specialized
to matrices, which allows to efficiently compute the pseudospectrum numerically. Again
further details can be found on [1].

Thm. 2.1 Given the (X -inner product (-,-),
(v, u)y = v'u’, (2.8)
and generic G-inner product (-,-). such that:
(v,u) o = Gyjv'u? (2.9)
with G = F*F a symmetric positive definite N x N matrix.

o The e-pseudospectrum of a matriz M in the G-norm o& (M) satisfies

£

o¥(M) = ot (FMF) (2.10)

02
with ocN (M) the pseudospectrum in the (%;-norm.

o The condition number of the eigenvalue \; of a matriz M in the G-norm /iiG satisfies:

WG = Hvz‘~H2|~|Ui||2 7 (2.11)
| (i, i), |
where U; and ; fulfill:
FMF ' = Ndig,  (FMF™) 6 = Ay (2.12)

Lastly, we note that throughout this section we have assumed ¢ to be small. Formally
this corresponds to saying that € is much smaller than the minimum distance dpyi, between
disconnected regions of the spectrum, i.e., €/dpin < 1.

3 Convergence of pseudospectrum of quasinormal modes

In this section we offer a short qualitative discussion on the lack of convergence of the
pseudospectrum of quasinormal modes reported in [20].

As pointed out in [62], when defining QNMs in regular coordinates one needs to demand
analyticity on the event horizon. Otherwise, outgoing and ingoing modes would be indistin-
guishable and any frequency would then be a quasinormal frequency. This implies that if



we define QNFs as eigenvalues of a non-normal operator acting on some Hilbert space, we
should ensure that the norm of the said Hilbert space does indeed eliminate all non-analytic
modes, i.e. that their norm is infinite.

To construct the pseudospectrum, we would like to have a physically motivated norm.
For QNMs, as argued in [7, 59], such norm is given by their energy which typically contains
at most two derivatives. However we should check whether such norm does discard all
non-analytic modes. Consider the non-analytic function 9 (z) = 2*2. Then for a norm
containing only two derivatives (such as the energy)

! - > 9 2 2] 9 1

2 _ _ d( 12 32\l 2 1
19 _/0 dx [a@xwﬁxw+b¢d)} = /dﬂ? {a4 (93 ) +b(ﬂf ) ] =gt 4b< o0o. (3.1)
Since ||¢|| < oo our construction fails to remove this non-analytic mode. On the other hand,

if we consider a norm with four derivatives such as
2 ! n " 2027
1o]2 = /0 dx [ad, 0y + b + D202
_ 9 [ 1/2)\2 3/2\? 9 12\ _
_/da: [a4 (x ) —i—b(a: ) —1—01—6 (.CE ) = 00, (3.2)

we see that ||¢|| = oo; and the mode is indeed discarded. Nonetheless a four-derivative
norm will still fail to eliminate other non-analytic modes. To ensure that one properly
removes all non-analytic modes one is forced to consider a Sobolev norm containing an
infinite number of derivatives [62].

In summary, the problem of computing the pseudospectrum of the QNMs seems to
be ill-posed. To define the quasinormal modes we need to consider a Sobolev norm with
infinite derivatives while the physically relevant norm is the energy which contains only
two derivatives [20]. More concretely, the energy norm fails to differentiate between modes
entering and exiting the horizon for large enough —Im(w), i.e. for the overtones (in our
convention exponential decay in time means Im(w) < 0).

This interpretation then sheds light on the apparent reason as to why the pseudospectrum
computed numerically fails to converge. In the numerical approach, the pseudospectrum is
computed for a discretized version of the system using a Chebysev grid. This in turn implies
that only analytic functions enter the computation, since non-analytic functions cannot be
represented to infinite accuracy in the grid. However, as we go to the continuum limit where
the grid is removed, the non-analytic functions can be better and better approximated in the
grid. Hence, we tend to the pseudospectrum expected for the continuum limit where every
point in the complex frequency plane satisfying Im{w} < a, with a a constant dependent
on the number of derivatives in the norm [62], becomes a quasinormal frequency and thus
the norm of the resolvent tends to infinity.

This seems to be indicating a very interesting physical picture. As we allow the pertur-
bations entering in the pseudospectrum to be more and more localized in the radial direction
(by increasing the number of grid points) the size of the perturbation needed to displace a
given QNF to any arbitrary point in the complex plane becomes smaller and smaller (recall
definition 2.2 of e-pseudospectrum). This seems to agree with the results of [20], where the
authors showed that for a fixed perturbation the effect on the spectrum was independent



of the grid size. Consequently, the continuum limit corresponds to allowing more and more
localized perturbations. However, one expects general relativity to break down at small scales.
Thus, in this picture the grid size acts as a cutoff and to go to the continuum limit we expect
to need to include higher derivative corrections to the theory and, consequently, to the energy
norm; thus obtaining a Sobolev norm. A similar conclusion was reached in [63] in terms
of the response of fluctuations to sources localized on the horizon. Further aspects of the
instability of the pseudospectrum were also discussed in [64].

4 Complex momentum modes

Similar to QNMs, complex momentum modes are defined as solutions to the linearized
equations of motion in a fixed black brane background satisfying infalling boundary conditions
on the event horizon and normalizable boundary conditions on the AdS boundary. However,
while QNMs are eigenvalues of the killing vector associated with time translations, complex
CMDMs are eigenvalues of the generator of spatial translations along an arbitrary spatial
direction parallel to the brane which we denote 3.
We consider a Schwarzschild anti-de Sitter black brane background with metric

oy 17 2 2 I? 2 T

ds :ﬁ(—f(r)dt +dx)+r2f('r)dr , f=1—-

rd’
where f is the blackening factor which has a zero at r = rj, and [ the AdS scale. We introduce

(4.1)

regular coordinates [18, 62] by the following coordinate transformation

2 2
t:f—l<1—rh>+ dT(l) . p=1-" (4.2)
Th r (r) \r r

where we also have compactified the radius so that the AdS boundary is at p = 1 and the
horizon at p = 0. Remarkably, on the boundary ¢ = £, which can be identified with the time
in the dual field theory. The metric in regular coordinates takes the form

2
l_p)Q {=F(p)de + (dz®)? + dx? + 2(1 = f(p))zndtdp + (2 = f(p)=hdp®}

" (4.3)
Here 2z, = 12 /7h, the Hawking temperature is given by 7' = (th)_l and x| denotes the spatial
directions perpendicular to 23 and p. We note that regularity of the CMMs is equivalent to
demanding infalling boundary conditions.? Alternatively one could have also used infalling
Eddington-Finkelstein coordinates as in [19].

For a CMM ®(t,23,x, , 2), after Fourier transforming along the time direction ¢ and
the spatial coordinates x|

3 dw d4=2k 3 . .
O(t,z°,x,2) :/(Q)d_ICI)(w,x X, 2)exp{—iwt + ik x }, (4.4)
T

the corresponding CLM £k is defined through the following equation

D3P (w, 2%, %1, 2) = ik®(w,23,x, , 2), (4.5)

2Regular coordinates are the AdS analogue to the hyperboloidal ones used in asymptotically flat space-
times [65—-70].



where note that k is a function of w and k. Henceforth, we always take k|, = 0 as we can use
the rotational invariance of the background (4.3) to align the momentum with the 2 direction.

QNFs and CLMs are just two different real sections of the complex lines that are the
poles of the holographic retarded Green’s function Gr(w, k) in the two dimensional complex
space spanned by (w, k). QNFs are the sections Im(k) = 0 whereas CLMs are the sections
Im(w) = 0. Generically these complex lines intersect in complicated ways. That can make
the properties of the modes very different when viewed as quasinormal modes or as complex
momentum modes (see for example the discussion of the diffusive mode in [44] and its
relevance for causality [46]). It also gives rise to a rich and complex life story [71].

CLMs and QNFs arise naturally in very different physical settings. Let us illustrate this
from the point of view of the dual CFT. We consider a simple example within linear response
theory and follow closely the discussion of [44]. In linear response theory the expectation
value of an operator O is given by

(O(t, ) /dt’dd L Gr(t -t % — X )jo(t o), (4.6)

where G is the retarded propagator and jo the source of the said operator. If we now
take the source to be an antenna of the form jo = x(23) exp(—iwt) with y(2?®) an arbitrary
function with analytic Fourier transform, then we get

i1
(O(t,x) /dt di-? ’/d(;r)dG (y,q)/gfrx Jexp{ik(z®) +ig(z—a') —iwt —iv(t—t'))}

:/_ ;lk (k)G r(w,k, k1 =0)exp(ikz® —iwt)

= —isign(z®)e " > ™1 Res [¥(k)Gr(w, k, k. =0)] , (4.7)
kn:poles
where in the last equality we have used Cauchy’s theorem (see figure 1) and we have denoted
the Fourier transforms with a tilde for clarity. Exponential decay away from the origin of
the perturbation happens as long as

w

sign <Re(k:)) = sign (Im(k)) , (4.8)

which means that for positive frequency the poles are located in the first and third quad-
rant [44].

Alternatively, we could take the source to be a hammer of the form jo = £(t) exp (ik:z:3),
with £(t) a function with analytic Fourier transform. Then

vdi-1g w -
<O(t,x)):—/dt’dd_1x' /%GR(V@)/Z—Wg(w)exp{—iwt’—&—ik(ac?’)'—i—iq(ac—x’)—il/(t—t'))}
:/jo d—wf(w)@R(w,k,kl:O)exp{ik:rgfiwt}

=i0(t) e’ Z e "n'Res [£(w)Gr(w, k. ki =0)], (4.9)

wny:poles

Thus, we conclude that CLMs arise naturally when considering sources that behave as
antennas, while QNFs appear when studying sources that behave as hammers. This has many
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Figure 1. The relevant integration contours for the poles in the complexified momentum-plane.
Figure 1(a) shows the contour for z < 0, and figure 1(b) shows the contour for > 0. In order to
obtain exponentially decaying waves travelling away from the origin of the perturbation, it is necessary
that the poles lie in the 1st and 3rd quadrants for positive frequency (as assumed in the figure).

deep fundamental implications as both setups are qualitatively very different. In particular,
in the former case we always necessarily have a non-conservative system, even in the absence
of thermalization, as the source introduces/extracts energy for any ¢; while in the latter setup
we need not expect such behaviour as sources should vanish for large enough times |¢| > |t.].

It is also worth stressing that when studying CLMs k(w) we are probing the stability of a
sector with a given fixed frequency. This is particularly important in the w = 0 limit. In this
limit the CLMs at w = 0 are dual to the glueball masses of the effective theory of the lowest
lying Kaluza-Klein modes of the theory compactifid on the thermal circle [29, 72]. As this
effective theory is conservative, we expect the spectrum of glueball masses to be spectrally
stable. Hence, the CLMs k(w = 0) should be stable provided we choose the norm adequately.
On the other hand, a QNF w = 0 need not be stable as we work in the fixed k sector instead.

We briefly review the idea behind the interpretation of complex momenta as glueball
masses in a dimensionally reduced theory. In order to do so we go momentarily back to the
coordinate system (4.1) but note that the time like Killing vectors of this metric and of (4.3)
are the same 8% = %.
metric (4.1) we can now do a double Wick rotation ¢ — io and 2 — i The dual field theory
lives then on the geometry S' x Mz with Ms being three dimensional Minkowski space. Zero
modes on the S' are the zero modes of % which coincide with the zero modes of 8%‘ These zero

In particular they have the same zero modes. In the black brane

modes live in three dimensional Minkowski space. The eigenvalues of the three dimensional
momenta k2 can be interpreted as masses of excitation in the dimensionally reduced theory
(glueballs). Note that now k? < 0 simply means that & is timelike in the reduced theory. Thus
in the original theory, v/—k2 is interpreted as an absorption coefficient or inverse screening
length, whereas in the double Wick rotated dimensionally reduced theory v—k2 = M is
interpreted as the mass of a propagating excitation of a (Hermitian) dual quantum field theory.

,10,



Lastly we note that, the behaviour of CMMs near the event horizon depends only on
the frequency w. Hence, following the discussion on the previous section, we expect the
pseudospectrum of CMMs to converge as modes exiting the brane with Im(w) = 0 are discarded
as we see in section 5.2. We also explicitly see in section 7 that our numerics do converge.

5 Holographic model

We want to study the spectral stability of the CLMs of a real scalar field ¢ in a SAdS411
background with metric (4.3). The corresponding action is given by

Sl6) = — [ @ (007 +me?] (5.1)

where m is the mass, which we take to be above the Breitenlohner-Freedman (BF) bound
(m21? > —4). We further assume standard quantization of the scalar, such that the leading
mode in the asymptotic expansion around the AdS boundary p = 1 is always the source term.

Our stability analysis is based on the study of pseudospectra as discussed in section 2. In
subsection 5.1 we construct the energy norm and define the relevant function space. Following
that, in subsection 5.2 we construct the eigenvalue problem and identify the relevant operator
L and its adjoint £ with respect to the energy norm.

5.1 Energy norm and function space

Following [7] we try to define a function space which automatically imposes the adequate
boundary conditions for the CMMs and equip it with a physically-motivated norm based
on the energy, which we label the energy norm.

We begin by first constructing the energy. To do so, recall that the energy momentum
tensor for a real scalar field ¢ with action (5.1) is given by

1
Tun|[¢] = OmdON G — FIMN [(5@2 + mzqﬂ ; (5.2)
and that, consequently, the energy along a constant t-hypersurface (3;) is
E[¢] :/ di 1z ’ygnJgTMNtN:—/dpdxldfv2d:c3\/—gtMTtM (5.3)

—/ d” dxldﬂcgd:n {f(ap¢)2+z,%(aa¢)2+z,%( 50)%+27(2— £)(0r9)* + ( )2 }

where t = 9; is the Kkilling vector associated with time translations, ny is the normal vector
orthogonal to the integration surface and ~s; the induced metric on it.

Now, if we want to promote the expression for the energy above to a norm for the function
space containing the CMMs, we find ourselves facing two main problems. First, we would
like to remove the 23 integral so that the norm would not involve integration over all possible
values of 23, i.e., so that we do not need to know the explicit 23 dependence of all ¢ in our
function space. This is easily solved by considering the energy density along z3

oE[¢] = /dd 23:\/771 MNk Ty pt? (5.4)

m2
z/ (1_pp)3d:c1dx2 {f(8p¢)2+z;i(aa¢>)2+z,%(83¢)2+z,%(2—f)(8t¢)2+ (1_p)2¢2} ,
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where ¥/ is a hypersurface with ¢ and 2 constant, n(sny the corresponding normal two-vector
and k® = (O My, — 9.

Second, we want to add an integral over time to be able to eliminate the dependence
on time derivatives and focus on sectors with fixed frequency w. This can be achieved by
considering a time-averaged energy density op[d]

s 1 2 272
oetel= i [ 50 [T 10,07 + 0,07 + A0 + 20— NO0P + 6]
(5.5)
With all this, we can now Fourier transform in the directions x; and ¢ and rewrite
the expression above as

_ . dwd?k, dp m212
QE[qb]:sli)Holc/Qs(Q B —p)p {f8p¢8p¢+zh( 0)’ 00+ 27030030+ 27, (2 — f)w® ¢¢+( )2¢¢}

(5.6)

where we abuse notation and write ¢ = ¢(w, kq, 23, p) and an integral in w as opposed the

sum corresponding to finite s. We now consider a sector with fixed {w,k } and drop the

integral over {w, k| } as it only contributes with a prefactor which does not affect the operator

norm. We further simplify by using the rotational invariance to set k; = 0. Hence, the final
expression for the time-averaged energy density without numerical prefactors is given by

_ dp -, -, m21?
opld] = /(1_p)3 {fap¢5p¢ + 2030036 + 27, (2 — [l oo + 1= )2 ¢¢>} (5.7)

Now we promote the above expression to a physically-motivated inner product for
studying CMMs. As stated in section 4, these modes are regular (infalling) functions
satisfying normalizable boundary conditions in the boundary of AdS which are solutions
to the following eigenvalue problem

Zh83¢ = izhk¢ = ’lq(f) (58)

where we have defined the dimensionless momentum ¢. Thus, we need to eliminate the
explicit dependence on d3¢ from the inner-product to make it well defined. Mathematically,
this necessity arises from the fact that the function space contains more elements than just
the eigenvectors of 3 (e.g. the sum of two eigenvectors with different eigenvalues is not an
eigenvector). To solve this issue, we introduce an auxiliary field ) = z,03¢, and arrive at the
following expression for the energy norm on the space of doublets ¥ = (¢, 1))

22

H\IfHE:/(lfpp)?,{fap¢ap¢+ww+m2<2—f>¢¢+( l)2<z>¢} (5.9)

where tv = z,w. To ensure convergence at p = 1 we demand that ¢ = (1 — p)2£(p) where £(p)
fulfills a Dirichlet boundary condition £(1) = 0. The second and third terms are obviously
positive definite. Expressing the kinetic and mass terms in the rescaled field we get

/ 1d—pp ((4f +mPP)E +2£0,|6% + (1 - p)*|9,6| =
dp

=1, (+m22 4+ 4(1 = p) Y [E? + (1= p)*0,82] > 0, (5.10)
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where we have done a partial integration and used that f¢? vanishes on the horizon and on

the boundary. The remainder is positive definite as long as m?l> > —4 and so is the norm.

We can further extend the norm to an inner product

d - - - m2l? -
)= [ {f0p¢1ap¢>2 + 1t + w32 = f)oi6a + (l_p)mdm} . (5.11)
In the next section we will show that only the CMMs with infalling boundary conditions
and normalizability at the AdS boundary belong to the Hilbert space defined by (5.11).

5.2 Construction of £ and LT
We now want to use the equation of motion of the scalar field (5.1)
V26 —m2p=0, (5.12)
to rewrite the eigenvalue equation
2,030 = iqU . (5.13)

in terms of a differential operator £ = L, p; 0,, 82]. We achieve this by first explicitly
writing the equation of motion (5.12) as

0,9
(1-p)?

2l2
03¢ = (flp)ﬁ—(l—p)gap(

(1-f)o
(1-p)?

) +10%(=2+ f)p+ir [(1—p)38p ( ) +(1—f)ap¢] )

(5.14)
and then introducing the auxiliary field v = z;,03¢ so that we get

. (g ;) (Z) . 5.15)

where L is a differential operator whose action on ¢ is

f0p9
(1-p)?

m21?

(1—p)?

(1-f)¢
(1-p)?

Lo = o (=920, (205 ) w2z povin (1= %0, (G2002) + 1= oy
(5.16)

and £ = L[w, p; 0p, 63] is the differential operator which we initially wanted to obtain.
We now argue that only the infalling and normalizable solutions belong to the function
space introduced in the previous section. First we note that the differential operator has
regular singular points at p = 0 and p = 1. The coefficients of the derivatives are analytic
in the interior p € (0,1). We can therefore construct two analytic solutions valid in the
interior by a simple power series ansatz. Therefore solutions are certainly locally integrable
except possibly for the boundary points. At the (conformal) boundary of AdS (p = 1) it

is well known that the two local solution behave like
¢(nn) X (1 - p)A7 ’ ¢(n) X (1 - p)A+7 (517)

with Ay = (2 +V4+ m2l2). Integrability of the inner product demands A, + A, > 4 with
a,b € {+,—}. We see that in the range of masses —4 < m?/2 < 0 the inner product (5.11)
indeed rejects the solution ¢(™ as non-normalizable.?

3We restrict ourselves here to standard quantization.
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Now let us proceed to the Horizon at p = 0. There we have to distinguish between the
cases w # 0 and w = 0. For w € R\{0} the two local solutions near the horizon behave as

) o 0 plout) o piw/2 (5.18)

The most singular term is the derivative term in the norm. Since the blackening factor
f o p near the Horizon we find

_ ou 1
o %/dpplapfﬁ( 02 ~/dppp2 — 00, (5.19)

For w = 0 the local solutions behave as ¢{™) o p® and ¢(°1t)

o log(p). Clearly the logarithmic
solution again is rejected by the norm as non-integrable at the horizon. We see therefore that
our choice of norm is such that only solutions to the eigenvalue problem with the correct
boundary conditions (infalling at the horizon and normalizable at the boundary) are elements
of the Hilbert space defined through the inner product (5.11). There is a further subtlety
concerning the asymptotic behavior of ¥. If we only demand that the norm exists then it seems
enough to demand that v vanishes faster than (1 — p) towards the boundary. However we
also want ||L¥|| to be well defined thus 1 has to go faster that (1 — p)? towards the boundary.

The eigenvalues of £ are the CLMs times the imaginary unit ¢. In practice, when
presenting our results in section 7, we find it more convenient to work with differential
operator £ = —iL rather than with £. This choice ensures that the eigenvalues are the
CLMs without any imaginary prefactor and does not alter any of the relevant conclusions
derived throughout this section in terms of £. Regarding the adjoint £, we have the
following expression

(LT, V), — (LT, Ty) =

(1= f)vn

) 0]

- / inp)?,{ [2m2(2 — f)drpa — i (1 — f)d28,1 — ivo(1 — p)°p20, <

+ ¢ [—2iw116(p)] } : (5.20)

Thus for generic r0? # 0 we find that £F # £. Moreover, we cannot rewrite £ as £
plus some boundary terms; we necessarily have contributions to the non-normality arising
from the bulk. This nicely matches the discussion of section 4. We expect that the system is
non-conservative even in the absence of temperature, hence there should be contributions to
the non-normality that arise independently of the existence of an horizon, i.e. contributions
arising from the bulk. In fact, as we see in appendix A, the existence of bulk contributions
for to # 0 is guaranteed even in AdS, further confirming the physical intuition.

Remarkably L is self-adjoint at to = 0 and has a stable spectrum. This is in particularly
good agreement with the arguments presented in section 4. At v = 0 we are studying
the glueball spectrum of the dimensionally reduced theory and, as this theory lacks any
dissipation mechanism, a well-defined norm should predict that £ is Hermitian; which indeed
matches our results.
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6 Numerical method

We follow [7, 18] and perform a numerical stability analysis using pseudospectra & la [1]. For
completeness, here we briefly review the some of the details and subtleties.

Our numerical approach is based on the discretization of the radial coordinate p on
a Chebyshev grid with points:

1 .
pjzz[l—cos<J]\7;>}, ij=0,1,...,N, (6.1)

and the discretization of the differential operators using the corresponding Chebyshev dif-
ferentiation matrices [73].

In order to numerically select the correct function space, we find it convenient work
with the rescaled scalar doublet u defined as

u=(1-p)>T, (6.2)

where we impose Dirichlet boundary conditions for u at p = 1. This boundary condition
can be easily implemented by removing the rows and columns corresponding to the AdS
boundary from all discretized operators, including the discretized energy norm. We use
Wolfram Engine to compute condition numbers and pseudospectra of the resulting matrices
according to the discussion presented in section 2.

To further explore the origin of the (in)stability, we study the selective pseudospectra
associated with local potential perturbations to the original equation of motion (5.12).
Concretely, we consider perturbed equations of motion of the form:

V(p)

~VuVM +m? + o |9=0, (6.3)

where, in order to preserve the asymptotic behavior on the AdS boundary, we choose potentials
with V(1) = 0. The selective pseudospectrum is then computed using randomly generated
potential perturbations constructed as diagonal matrices with random entries and normalized
to a given size. Moreover, we complement this analysis with the computation of the CLMs
for the perturbed system with the following deterministic potentials:

Vi(p) = A1(1 = p) cos(2mp) , (6.4a)
Va(p) = A2(1 — p) cos(90mp) , (6.4b)
Vs(p) = As(1 — p) {1 — tanh [20p]} , (6.4¢)
Vi(p) = A4(1 = p) {1 — tanh [20(1 — p)]} , (6.4d)

which shed light on a few interesting regimes. With V; and V5, we probe the effect of long
and short p-wavelength (wavelength in the p direction) perturbations; while with V3 and Vj,
we analyze the stability under localized perturbations near the horizon (IR of the dual CFT)
and the boundary (UV of the dual CFT). The coefficients A; are normalization constants
that fix the magnitude of the perturbation. We plot these potentials in figure 2.
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Figure 2. Deterministic potentials (6.4) with A; = 1. Recall that the horizon is at p = 0 and the
boundary at p = 1.

7 Results

Here we present the results of the analysis described in the previous sections. Our numerical
simulations are performed in a grid of 100 points with a precision of 5xMachinePrecision.

In appendix B we some the values for the CLMs at different masses m?{? and frequencies
. All pseudospectrum plots are collected in appendix C.

We are mainly interested in the stability of the CLMs lying closest to the real axis as
these dominate the long-distance behaviour of the system.* For this reason our computations
are restricted to the region of the complex g-plane defined by |Im(q)| < 10 and | Re(q)| < 10.
To ensure the convergence of the pseudospectrum in that region, in figure 3 we plot the
value of the inverse of the norm of the resolvent ||(£ — q)~!|| at the edges of the said region
as a function of V. Clearly, we can see that in agreement with the discussion presented in
section 3, the pseudospectrum indeed converges for real 1.

In figures 4 and 5 we plot the full and selective pseudospectra and the corresponding
condition numbers for different values of m?I? and to. As expected from the analytic results
discussed in section 5.2, at zero frequency the spectrum is indeed stable as the operator
becomes normal. We can easily appreciate this in figures 4(a) and 4(c) where the 107}
pseudospectrum around the first CLM is shown to match the circle of radius 10~! around the
said momenta. At non-zero v the full pseudospectrum opens up denoting spectral instability.
Remarkably, at to = 10 we find that in order to drive the background unstable by making
one of complex momenta cross into the second or fourth quadrants of the complex plane [44],
we need to consider perturbations of size 0.7 and 0.5, for masses m?l?> = 0 and m?1?> = —3,
respectively. As such perturbations are of the order of magnitude of the distance between
CLMs, we consider that they are relatively big. Hence we claim that while the spectrum of
CLMs is unstable, this spectral instability cannot drive the background unstable. We refer
the reader to section 3.3 of [18] for a detailed discussion on the difference between spectral

“The system is symmetric under g — —q. Consequently, henceforth when talking about any given CLM we
will be generically referring to the pair {q, —q}.
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and background instability. It is also worth noting that, similarly to what happened for QNFs,
higher CMMs are increasingly unstable as indicated by their condition numbers (see figure 5).

Regarding the selective pseudospectrum of local potential perturbations, we find a
striking decrease in instability compared to the instability found for generic perturbations.
In particular, we have not managed to find any random local potential perturbation capable
of destabilizing the lowest lying CLM (see figure 4). This is in contrast with the observations
for the lowest QNF in [18]. Furthermore, for higher CLMs, we always find that the effect of
these perturbations is much smaller than that of generic perturbations (see figure 6). This
suggests that in order to cause a significant impact on the spectrum, one necessarily has
to consider non-local potentials.

To further explore this surprising spectral stability, in figures 7 and 8 we plot the effect
of the deterministic potentials (6.4) on the lowest lying CLM and on the full region of the
complex plane under consideration, respectively. We see that as indicated by the selective
pseudospectrum, the first CLM is stable under the deterministic potentials (6.4). Moreover,
in figure 8 we find that this stability is shared by all the plotted CLMs; as we observe that
the perturbations do not displace them in a significant manner. This contrasts greatly with
the picture found for the QNFs in [18], thus exemplifying the different stability properties of
complex momenta and quasinormal frequencies in agreement with the discussion of section 4.

To conclude, in figures 9 and 10 we plot the condition numbers for the first three CLMs
as a function of m2I? and ), respectively. As expected at v = 0 the condition numbers are 1,
up to small numerical errors. Remarkably we find that instability increases with mass and
with frequency. From the dual perspective this implies that absorption lengths of operators
with larger conformal dimension at large frequencies are more unstable.

8 Summary and discussion

This work presents complex linear momenta (CLMs) as a new probe to explore the spectral
instability of holographic theories. From the gravitational point of view, these are eigenvalues
of the translation operator along a space-like direction parallel to the AdS boundary at fixed,
real frequency, subject to appropriate boundary conditions. From the holographic perspective,
CLMs are dual to the poles of the retarded Green’s function at fixed real frequency. They
contain information about the causal structure of the dual field theory and, at zero frequency,
precisely describe the masses of the states in the theory compactified on the thermal circle.

The study of Complex Momentum Modes (CMMs), with non-zero frequency ( w # 0),
implies pumping energy into the system; making it non-conservative and thus vulnerable
to spectral instabilities. In particular, we have computed the pseudospectra of CLMs for
a massive, real scalar on a Schwarzschild-AdSs11 background. In order to measure the
displacement of the momenta, we use the (two derivative) energy norm. Remarkably, we
have found that CLMs are unstable at non-zero frequency. Furthermore, we have argued that
the spectral stability observed at zero frequency is a physical feature related to the fact that
in that case CLMs are dual to the glueball spectrum of a conservative theory arising from
dimensional reduction on the thermal circle. At non-zero frequency, the spectral instability
increases with mass and frequency. This suggests that in the dual field theory, the poles of
retarded Green’s functions of scalar operators with large mass dimension at large frequency
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are more unstable. Additionally, the pseudospectrum appears to be particularly resistant to
local potential perturbations, indicating that non-local potentials may need to be considered
to produce a significant displacement of the CLM.

As explained in section 3 the QNF pseudospectrum fails to converge for negative enough
Im(w). One of the paper’s main results is the striking numerical convergence of the CLMs
pseudospectra in our particular setup. We expect this to be a generic property since, for
branes without momenta along the x> direction, the near-horizon behaviour of CMMs is
independent of k. Thus, we claim that the pseudospectrum of CLMs offers a new alternative
to assess the spectral stability of the theory, which allows us to derive quantitative results,
which in turn would facilitate making precise predictions for observables.

The physical significance of these results is as follows. We can imagine a particular
strongly coupled quantum many-body system suspected to be described by a holographic
model. In such a case, it has been suggested to look for response patterns that match a
particular quasinormal frequency spectrum. However, in view of the spectral instability of
quasinormal frequencies in AdS, this might not be a viable strategy. A better approach might
be to look for Complex Momentum Modes and their CLMs. In particular, our results suggest
that to probe a strongly coupled system, one should use localized sources with a fixed (real)
frequency (which we refer to as “antennas”) to excite CMMs, rather than using sources with
a fixed (real) wavelength (“hammers”) that excite QNMs. At small frequencies, CLMs exhibit
only very mild spectral instabilities. This should allow for refining theoretical models in a
consistent manner to match experimental results. Small corrections to the theory will result
in small corrections to the CLMs in the low-frequency regime.

In fact, at zero frequency, we observe that CLMs become spectrally stable. We expect
that absorption lengths in strongly coupled holographic systems are generically spectrally
stable under local potential perturbations. Therefore, they appear to be better observables
for experimental determination than quasinormal frequencies. Even at frequencies where the
CLMs show a certain degree of spectral instability, the convergence of the pseudospectra
implies that we can make qualitative predictions about the range in which we expect the
CLMs to lie. Hence, idealized holographic models can still provide general insights into the
physical system through the study of the pseudospectra of CMMs.

Beyond their applications to strongly coupled quantum many body systems, the con-
vergence of the pseudospectra and the spectral stability at low frequencies will be crucial
if, as proposed in [74, 75], we aim to address the existence of a holographic dual black hole
in a quantum computer. Our results still need to be extended to these cases. Due to the
presence of the SO(9) isometry, we would need to examine the stability of the corresponding
Complex Angular Momentum (CAM) modes.”

Even though QNMs and CMMSs seem very similar in flavour, we have shown that they
probe different regimes of the theory. As such, neither the stability of their pseudospectra
nor their numerical convergence are directly related. It seems odd since both quantities are
holographically dual to the same object, poles in the retarded Green’s functions. We are
looking at two different real sections of the solutions of Gr(k,w)~! = 0. In principle analytic
continuation should allow us to relate both sections. If such an “analytic continuation” of sorts

5See also [76] where quasinormal modes of these systems have been discussed.
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was possible, we could then attempt to reconstruct a numerically convergent pseudospectra
for QNFs; without needing to employ higher derivative Sobolev norms. This, however, is
well beyond the scope of this work.
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A Non-normality in AdS

To better understand the bulk contributions to £ that we found in 5.2, here we repeat the
computations of the preceding sections taking the AdS limit f = 1. As we are interested
only in the bulk contributions, we do not keep track of possible boundary terms in the
computation of L.

In AdS441, the operator £ reads

01
Lo = (Lo 0) ; (A1)

where Lg is a differential operator whose action on ¢ is defined as

m21? 0p®
Lnd = 0= (1= )%, ((l_p)g) %, (A.2)

and the energy norm simplifies to

d - _ . 212 _
(W1, Ug) ;= / ﬁ {ap¢1ap¢2 + 1y + 102 G1ohy + (17”_/))2@@} . (A3)

Hence, a straightforward computation allows us to conclude the following
d _
| _ — d 2 (b
(Lhw1,Ws) — (LoWy, Ws) = / e {22010 — (6 > v)] } - (A4)

which, as anticipated, shows that L’g contains bulk contributions to the non-normality
for o # 0.

Remarkably, the existence of non-normality even in the absence of a black hole matches
the naive physical intuition discussed in section 4. From the CFT perspective, exciting
CMMs corresponds to turning on a source of the form j(t,2%) = x(z3)e=™* for the dual
operator; thus, even without thermal dissipation, the system has an influx/outflow of matter
associated with the time dependent source, which in turn makes the system non-conservative.
Again, in agreement with the naive physical intuition, these bulk contributions also vanish
in the to = 0 limit, signaling that the system becomes conservative as the source is no
longer time-dependent.
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Table 1. CLMs for m2/? = 0 and o = 0.

Re(dqn)

Im(qy,)
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+1.87239874470858
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£6.22376285335282

+24.1914304968759

Table 2. CLMs for m2/?2 = 0 and 1 = 10.

B Numerical values of the complex momenta

In this appendix we provide the numerical values of the first 10 CLMs for the real scalar with
action (5.1). For purposes of presentation we limit the precision to 15 significant figures.
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Table 3. CLMs for m2/? = —3 and v = 0.

Re(dqn) Im(qy,)
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Table 4. CLMs for m2[? = —3 and 1 = 10.
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Figure 3. Norm of the inverse of the resolvent (o.) as a function of the grid size N evaluated on
q = +(10£104) for different values of to and m?2(?. Remarkably, the pseudospectrum converges rapidly
and for N = 100 we can claim that our results should be quantitatively correct up to corrections of
order 1%.

C Pseudospectrum plots

In this appendix we collect the pseudospectrum plots discussed in section 7.
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Figure 4. Close-up of the scalar pseudospectrum in the energy norm around the first CLM for
different values of tv and m?212. The red dot corresponds to the CLM, the white lines represent the
boundaries of various full e-pseudospectra, and the dashed blue circle symbolizes a circle with a radius
of 107! centered on the CLM. The heat map corresponds to the logarithm in base 10 of the inverse
of the norm of the resolvent, while the blue dots indicate selective e-pseudospectra computed with
random local potential perturbations of size 10~!. Remarkably, in (a) and (c) we observe stability as
expected from the compactified theory.
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Figure 5. Scalar pseudospectrum in the energy norm for different values of v and m?2I2. In the lower
panels, we present selective and full pseudospectra. The red dots represent the (unperturbed) CLMs.
The white lines denote the boundaries of different full e-pseudospectra. The heat map corresponds to
the logarithm in base 10 of the inverse of the norm of the resolvent, while the blue dots indicate different
selective e-pseudospectra computed with random local potential perturbations of size 1071. In the
upper panels, we represent the condition numbers. Most notably, at to # 0, for small values of ¢, the
full e-pseudospectra present open regions containing multiple QNFs, which signals spectral instability.
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Figure 6. Close-up of the scalar pseudospectrum in the energy norm around the third and fourth

CLMs for to = 10 and different values of m2/2. The red dots represent the (unperturbed) CLMs.

The white lines denote the boundaries of different full e-pseudospectra. The heat map corresponds
to the logarithm in base 10 of the inverse of the norm of the resolvent, while the blue dots indicate

different selective e-pseudospectra computed with random local potential perturbations of size 10~ 1.

Remarkably the instability under random local potential perturbations probed by the selective
pseudospectrum is orders of magnitude milder than that of generic perturbations probed by the full
pseudospectrum.
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Figure 7. Effect on CLMs of the deterministic perturbations (6.4) with size ||V;||; = 107*. The
unperturbed CLM is shown in red, while the perturbed CLMs are depicted in blue. The dashed blue
line represents the circle of radius 10~! centered in the unperturbed CLM. Remarkably, even for

v # 0 we observe stability under deterministic perturbations.
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Figure 8. Effect on the spectrum of the scalar of the deterministic perturbations (6.4) with size
|Vill z = 1071, In the lower panels we present the spectra and in the upper ones the condition numbers
for the lowest CLMs. The unperturbed CLMs are shown in red, while the perturbed ones are depicted
in blue. In the plotted region of the spectrum is stable under all perturbations even for w # 0.
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(a) QNF v = 0 at q = —3.40407i. (b) CLM q = —3.40407i at 1o = 0.

Figure 11. Comparison of the pseudospectra of a QNF and a CLM. The red dots represent the
eigenvalues. The heat map corresponds to the logarithm in base 10 of the inverse of the norm of
the resolvent. The white lines denote the boundaries e-pseudospectra and the red (yellow) lines
correspond to the boundaries of the 1073/2 (10~7/4) pseudospectra. The dashed red (yellow) circle
represents the circle of radius 1073/2 (1077/4) centered around the eigenvalue. Note that in 11(b)
the spectrum is stable as the dashed red (yellow) circle coincides with the boundary of the 10-3/2
(10~7/4) pseudospectra. On the other hand, in 11(a) the spectrum is unstable as the boundary of the
1073/2 (10~ 7/4) pseudospectra is much larger than the dashed red (yellow) circle.

D Comparison with quasinormal frequencies at complex momentum

In this appendix we explicitly show the differences in the stability properties of QNFs and
CLMs. As we argued in the main text, while related, QNFs and CLMs appear in very different
physical settings. Thus, the stability properties of a mode depend heavily on whether we
consider it a QNM or a CMM.

To explicitly show this we consider the scalar field (5.1) with m = 0. This scalar has a
CLM q = —3.40407i at w = 0 and, correspondingly, a QNF to = 0 at q = —3.40407i. To
analyze the differences in stability we compare the pseudospectra of the CLM and of the
QNF in figure 11. Clearly we can see that the CLM is stable, while the QNF is not. Thus
showcasing their different stability properties.

The CLM pseudospectrum is computed following the procedure discussed throughout
this paper. The differential operator is given by (5.15) and the inner product by (5.11). On
the other hand, to compute the QNF pseudospectrum we consider the following eigenvalue
problem and norm introduced in [18]

0 1
W = v, D.1
' (Ll [agaapaq’p] L2 [8p7q7p]) ( )
(W1, Wa) p = / (lf—pp)g (1% @162 + FOp310,0 + (2 = F)dntn] , (D-2)

— 929 —



where U = (¢, 2,0:¢) = (¢,7) and the differential operators L; and Ly take the form:

Ly [85,@; qvﬂ] =[f- 2]_1 [‘12 - (1-p)? <(1_fp)3)lap - faﬂ ’ (D-3)

M) +2(f - 1)0,,] . (D.4)
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Ly [0p;a,0) = [f—2]7" [(1 —p)® (
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