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INTRODUCTION

Le synchrotron & protons d'une énergie de TO GeV
a €té réalisé et mis en marche & 1'Institut de Physique des

hautes Energies.

Du fait du caractére unique de l'équipement créé
- longueur de la chambre & vide voisine de 1,5 km, poids de

3

l1taimant environ 21.10° t+ - on a effectué en 1964 des calculs

multiples sur certaines parties du projet.

Le présent travail contient les résultats des calculs
des céractéristiques dynamiques du synchrotron a protons. La
majeure partie des calculs a été efféctuée &4 J'aide de la machine
a4 calculer du centre de calcul de 1'IURN. On trouvera aussi une
bréve analyse des résultats obtenus. L'analyse théorique ainsi
que les formules de calcul pour les effets €tudiés ne sont

pas données en régle générale.



Structure du champ magnétique de l'accélérateur et équation
du mouvement

L'aimant de l'accélérateur est une structure de
12 périodes de 10 unités magnétiques chacune. Pour structure
initiale de calcul, on a pris les longueurs de champ efficace

des aimants et des sections.

TABLEAU 1
N° des unités
et des sections 1 2 3 4 5
Longueur (m)
T elo 10,6123 | 10,6123 |10,6123 | 9,4924 | 9,4924
Longueur (m)
de la section 1,076 2,426 1,076 4,67 1,076
6 7 8 9 10
9,4924 9,4924 |10,6123 | 10,6123 | 10,6123
4,67 1,076 2,426 1,076 2,426

Pour vérification, on a utilisé les longueurs correspondantes de

gradient,




TABLEAU 2
N° des unités 1 2 3 } 4 5
Longueur
du bloc 10,4928 | 10,4928 | 10,4928 9,3708 9,3708
Longueur (m)
de la section 1,1956 2,5456 | 1,1956 | 4,7937 | 1,1956
6 7 8 9 10
9,3708 9,3708 | 10,4928 | 10,4928 |10,4928
4,7937 1,1956 2,2456 1,1956 2,5456

Les dimensions géométriques de champ citées doivent corres-

pondre aux dimensions suivantes de construction de l'accélérateur

(Tableau 3).

TABLEAU 3
N° des unités 1 2 3. 4 5
Longueur (m)
15 Bloo 10,4166 | 10,4166 | 10,4166 9,2966 9,2966
Longueur (m)
de 1a section 1,272 2,622 1,272 4,866 1,272
6 7 8 9 10
9,2966 9,2966 | 10,4166 | 10,4166 |10,4166
4,866 1,272 2,622 1,272 2,622




Comme les données relatives aux longueurs de champ et de
gradient efficaces des unités sont susceptibles d'étre précisées

ultérieurement lors des calibrages, les longueurs de gradient étaient

R

comptées en valeur efficace n, = H arlr=R

Les demi-longueurs des unités suivant le champ étaient

prises égales a :

YRR BN VA %’%" (1)

ol ‘[K - demi-longueur constructive suivant le fer d'une unité,

H,(r) - intensité du champ au centre de 1'unité.

La demi-longueur des unités suivant le gradient est égale 5:

0

) oam  AEE
= + = 2
g K g dHy(r) (2)
dr
ol gﬂﬂizl - valeur du gradient au centre de l'unité. Les intégrales

dr
dans (1) et (2)vsont prises le long de la trajectoire r = const.

Les additifs efficaces correspondants du champ et du

gradient s'éerivent sous la forme :
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La conversion des longueurs selon le champ et le gradient
en valeurs efficaces du champ et du gradient dans l'approximation

considérée peut &tre effectuée selon les formules :

Ad, - AH
Lk Ho(r)

(4)
JaNC

A PIE
2. G,
Avec les paramétres domnés de la chambre & vide, les
tolérances sur les systémes en relation avec la dynamique du mouve-
ment sont déterminées par la grandeur de l'enveloppe des oscillations
des particules pendant 1l'accélération. La structure périodique du
champ mag&étique permet de trouver }es solutions périodiques corres-
pondant a l'orbite.fermée, ainsi que les solutions stables des
équations dy mouvement qui sont caractérisées par les plans de phase
(r*, r), (2", z) et qui sont considérées comme des oscillations
libres au voisinage de 1'orbite fermée. Elles déterminent la valeur

de 1l'impulsion de courant des particules accélérées pour un injecteur

donné.



Dans. 1e champ magnétique homogéne azimutalement d'une
unité ayant un plan d'asymétrie Hz(r, -z) = H, (ry, z), Hy = 0,

les équations du mouvement sont de la forme :

or!? e, 2 a2 a2\ p#2 z'r!
™ - -r=-=(r"+1r"+32°) (r+—)H ->~—=H /[,
T pe T Z r Z
. 1 /2 (5)
1,1 2 1t
T pL r r r z

Dans le plan de symétrie, il existe une orbite fermée

composée d'arcs de cercle et de droites. La condition de fermeture

de cette orbite
Lotd .S 2 2
~ — 5 = ZH = 77 (6)
¢ g P ‘21 R '

permet de déterminer le rayon de courbure pour la construction des

unités & partir de la condition :

‘efy_&z: f (7)
chax R

Les auteurs du projet ont fixé ce rayon & :
R = 19412,5 cm (8)
Les longueurs de champ des unités, correspondant & 1l'orbite fermée

idéale de ce rayon, sont données au tableau 1. Les sections droites

trarsforment les conditions initiales suivant les formules :



KP”,, = ¥
b
r.
rl+4 = FI * 7%' lf
)
q'+4 = T, (') - aérivée par (9)
) rapport 4 l'angle
2 2, ¢ _EJ. /(;
i+ 1 i
2y
) - H
zi+4 - Zl

oll 4 correspond & l'entrée d'une section droite, i+l & sa sortie;
le systéme de coordonnées correspond au centre de courbure de
1'orbite idéale de chaque unité (Fig. 1). Les composantes du champ

magnétique dans le volume de la chambre & vide :

HB =H(z) 1+n = _,_%g_d(i’_)& Hwb( )3
[ B, g Hews 2 ]z ] (10)

Ri%

P H o, Ay N ,zetmf
Hz~£ 2P A&

sont tirées de la solution du Laplacien bidimensionnel.

Ici, A - distance du bord de la chambre & son axe'(A=8,5 cm);

Hgd Hiub - écarts correspondants de 1l'intensité du champ magnétique
H ? H

dus aux non-linéarités quadratique et cubique au bord de la chambre.



Déplacement dans le plan de symétrie du champ magnétique linéaire

Pour analyser le déplacement des particules dans
1'accélérateur, qui est déterminé par les équations (5) dans le
champ magnétique (10), il est avantageux de séparer les effets liés
aux différentes composantes de la structure du champ. Ainsi, pour
le mouvement 2z = O, Hr = 0, si les non-linéarités du champ sont

& d -3 H'cub -3
petites (I %—,»’Y— 10 et ’—H—-— ~ 10 ), le rapport
0L R
n/—I%g I > 100, c'est-a-dire qu'il y a lieu d'étudier le mouve-

ment dans un champ magnétique linéaire :

%

201 1 [olrep)?] y |
y“ - _.?__ - R- D e — 1£TL —_ ) 1
R+p £ R, R+ p ( R) (11)
\
ou % = %ﬂ sy le signe de la grandeur "n" alternant d'une
1

unité a 1l'autre.

Pour Rl = R et des conditions initiales nulles, la solution

de (11) correspond & l'orbite fermée idéale de rayon R .

Pour des conditions initiales non nulles, les plans des
phases (j?', J ) pour une phase quelconque ( {¢,) ont une forme
voisine de l'ellipse (Fig. 2); pour ces plans, les fréquences propres

des oscillations sont tirdes de:

NI R Q . 2m
“’95},; v (12)



Les plans des phases ont été calculés sur un ordinateurr
avec un pas pour l'argument Y égal & 0,0002 %Z, les résultats
étaient donnés avec une période structurelle (%)*>. L'existence de
zérosde la fonction ,P'(P) rend plus difficile la détermination de
la fréquence & partir de (12). La méthode des points coincidants
s'avére plus simple. Si 1'on désigne par m le nombre de périodes
des oscillations (1a période des oscillations correspond & 1l'accom-
plissement de la courbe du plan des phases) jusqufaw point coInci-
dant , et par V le nombre de périodes de la structure correspondant

au nombre m , on aura :

0. X
A\p = 6 ’
m
 am (13)
ro- v

Les corrections lors d'une colncidence inexacte des points
sont imtroduites, dans 1'hypothése que le plan des phases est une
ellipse décalée d'un angle correspondant par rapport aux axes initiaux.
Dans ce cas, le nombre d'oscillations libres varie d'une valeur

Ay + As

- ) 14
! imn L/o}'(os]‘fo + 6% st to ( )

*)

La diminution du pas d'intégration est sans influence sur les

résultats dounés par la machine.



_10.-

5o .
cos{° =T fo - coordonnées du point correspondant au demi-axe
"p", As - distance suivant 1'zpc de 1'ellipse entre les points

"coincidants", a, b - longueurs des demi-axes de 1l'ellipse.

Pour déterminer la fréquence Qr avec trois chiffres
significatifs, 10 révolutions du proton sont généralement suffisantes.
Le "centre" du plan des phases correcspond aux conditions initiales

de 1l'orbite fermée pour Y, donné .

On distingue deux sortes d'effets dans les déformations
de l'orbite fermée : les effets résonants et les effets non résonants.
I1 n'y a pas de différence de principe entre ces effets, puisqu'’ils
sont tous contenus dans les solutions de (11), mais dette distine-
tion est commode dans 1'étude des tolérances du champ magnétique et

de l'impulsion.

Les effets non résonants de distorsion de l'orbite fermée

dans le champ magnétique idéal sont provoqués par les oscillations
et

des phases des particules dans le processus d’accélération[pai~1'écart
de 1'impulsion qui en résulte par rapport & la valeur correspondant
4 la phase synchrome. Pour l'accélérateur considéré, la dispersion

maximale des impulsions représente une valeur voisine de‘%f- =

t 41070,
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L'effetjﬁ'écart de 1'impulsion entralne une modificafion
du rayon moyen (R1> et 1'apparition d'oscillations forcées
d'amplitude maximale a, . La figure 7 représente les résultats de
la détermination du rayon moyen, ainsi que les amplitudes a, pour
les parametres de l'accélérateur. Dans les limites de 1l'intervalle
d'impulsions donné, les effets sont linéaires et caractérisés par

les dérivées

aR
—_— = 280 cm
d &p ’
P (15)
dag
= 6 3
T

Les conditions initiales de l'orbite fermée sont déterminées d'aprés
le centre du plan des phases des oscillations libres. Pour %? = 4.1O~3,

)
ces conditions correspondent a ‘Po = 1,25 cn, Po= 14,3 cm/rad.

Un effet analogue apparait lors d'une détermination erronde
de la longueur de champ efficace des unités (erreur sur 1l'effet de
bord). Si l'on désigne l'erreur sur la longueur efficace par Zxé;
et 1'on suppose gu'elle est identique pour toutes les unités, il
résulte de la condition de fermeture de l'orbite (6) qu'il faut que

le rayon R varie d'une longueur

1
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Ainsi, 1'une des variantes possibles d'estimation de cet effet
revient & le rapporter 4 la valeur initiale de 1l'impulsion suivant

la formule :
AR NP (17)

Par suite de l'action effective des résonances lindaires
dans l'accélérateur, les fréquences propres des oscillations trans-

versales doivent &tre comprises dans les intervalles N - 0,5 <’Qr

z<<N

’

ou N < Qr ” <N+ 0,5, ok XN est un nombre entier.
b

Pour l'accélérateur considéré, le premier intervalle et

la valeur N = 10 sont choisis.

La figure 2 représente un plan desphases typique de
1'équation (11) pour les conditions initiales Po = 1 cm, “pg =0 et
les valeurs suivantes des paramétres : Rl = R, n, = 440,8. TLa
figure 3 représente Qr en fonction de ne),dont résulte la linéarité

de la fonction dans le domaine de fréquences qui nous intéresse,

avec une pente
—= = 0,024 (18)

Ainsi, pour l'accélérateur considéré, une variation de la
R a . .
grandeur n (ou a = E) de 1 % entraine un déplacement de la fréquence

propre de O,1. Il convient de remarquer que pour un champ magnétique
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linéaire, l'amplitude des oscillations libres dans les limites de
1'ouverture de la chambre est sans influence sur la valeur de la
fréquence propre, a 0,1 % prés. Le plan des phases est donné pour
1'azimut correspondant & la fin de la période (Fig. 1). Les longueurs
des sections droites sont tirées du Tableau 1. Pour déterminer les
écarts de la fréquence 1liés a la variation de la longueur des sections
droites, on a effectué le calcul suivant 1'équation (11) pour la lon-
gueur des unités des Tableaux 1 et 2. Les résultats de ces calculs
sont donnés sur la Figure 10. L'augmentation correspondante de la
fréquence des oscillations propres avec l'augmentation de la longueur
des sections droites est caractérisée, pour l'accélérateur considéré,

par la dérivée:
. 10 = (19)
dans l'approximation linéaire.

Pour une particule dont 1'impulsion ne correspond pas a
1'équilibre (Rl # R), la fréquence des oscillations libres varie :

elle diminue avec l'augmentation de 1l'impulsion.

La figure 4 donne les valeurs - des fréquences
propres pour deux écarts de 1'impulsion de la valeur d'équilibre,

égaux a
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Le point de travail de l'accélérateur dans ce calcul
correspond a QZ = 9,702, Qr = 9,771. La linéarité de l'effet

permet d'écrire la dérivée caractéristique correspondante :

dQZ er (20)
= = - 10,3 20
dAE dAR ’
p P

Les systémes, voisins de la linéarité/é fréquences propres

]
choisies sont le plus sensibles aux excitations résonantes. Les
harmoniques de résonance fondamentalec du champ magnétique de l'accé-

lérateur sont

1) 1la neuviéme, la dixiéme et la onziéme harmoniquesdans la

structure du champ;

2) la dix-neuvieme harmonique dans la structure du gradient.

Les premieéres harmoniques provoguent une résonance simple,
la derniére harmonique une résonance paramétrique. Avec le schéma de
calcul utilisé, l'introduction de ces harmoniques dans la structure
du champ magnétique de l&uation (11) ne présente pas de difficultés.
La tolérance la plus sévére est lide & la dixiéme harmonique du
champ, qui a été introduite sous la forme 610 sin 10y . La figure 5

. . : Ap
représente le plan des phases de la résonance simple pour D = 0,

4

n, = 4425 & = 4.10 7. Les résultats du calcul pour les deux cas

10

les plis défavorables sont donnés sur la figure 6.



_15_

442 (Q 9,79)

e r

1l
O
[a]
I

It

= -4.1077, =n_ =442 (Q_ = 9,83).

r
I1 résulte des courbes de la figure 6 que l'augmentation

de l'amplitude avec 1l'augmentation de la perturbation est linéaire

jusqulaux amplitudes égales & la demi-ouverture de la chambre.

Comme le calcul est fait pour une section arbitraire et que c'est

piriode de

l'enveloppe des oscillations pour unegstructure gui nous intéresse,

on a trouvé le coefficient de conversion au maximum de l'enveloppe.

La conversion a été effectuée par deux procédés : a) détermination

du plan des phases dans une section voisine du maximum de 1'enveloppe;

b) déduction de la solution pour un azimut décalé de g% .

Les deux procédés ont abouti & des rapports trés voisins
des amplitudes au maximum de l'enveloppe (a°r> & 1'amplitude pour

1'azimut considéré. Ce rapport se réveéle égal a :

~ 1,25 (21)

max

Ainsi, les dérivdies correspondantes sont numériquement

égales a :

da,
3 L = 1,60 . 104 cm pour A%R = 0
10 (22)
da,
I - 2.10% em pour Bp | _4.107.
a€ P
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T1 résulte directement de (22) qu'il faut prévoir des
enroulements de correction de la dixiéme harmonique au cours du

processus d'accélération.

On a calculé de facon analogue les dérivées pour 1la 9éme

et Ja llime harmoniques pour Q_ = 9,697 (ne = 438) et %R = 0.

dag v
a€
3 (23)
da,? 3
- 2,5 e 10 Cll.
d
£y

Pour un écart quadratique moyen du champ de 1l'ordre de

4

5.107 ', ces harmoniques ne seront pas dangereuses.

Comme la fréquence choisie des oscillations libres est
voisine de 9,5 (Qr = 9,5 + 8), il faut exclure pour le point de
travail la possibilité de passer dans la bande de résonance paramé-

trique, qui est &crite par une équation de la forme :
2 \
L - o] — K
FAR (Qr An cos 19¢ Ip = 0 (24)
Pour que le point de travail se trouve & 1l'extérieur de

la bande de résonance de 1'équation (24), il faut que 1l'indgalité

suivante soit respectée :
An < 384 (25)

L'inégalité (25) introduit des conditions qui ne sont pas
trés sévéres pour l'amplitude de la 19éme harmonique du gradient

(An) pour é‘= 0,2; An = 7,6; toutefois l'approche de la bande de
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résonance entraine aussi une augmentation de l'amplitude des
oscillations, calculée selon l'équation (11) avec l'introduction

de 1'harmonique sous la forme An sin 19¢ . La courbe d'augmenta-
tion de l'enveloppe des amplitudes pour différents An gvec § = 0,2
est représentée sur la figure 8; il en résulte que l'amplitude de

la 19éme harmonique du gradient dans la structure du champ ne doit

pas dépasser la grandeur

An = 5 (26)

Stabilité axiale dans l'accélérateur

L'étude de la stabilité axiale dans l'accélérateur améne
4 la nécessité de la résolution simultanée de 1'équation (5). Pour
un champ linéaire dans le plan 2z = O, les composantes s'écrivent

sous la forme :

= L. 2
He =HO [1+n 2= - Rﬂ,(ﬂ) J

(27)
H, =HR) [27 + In —“—)’]

En substituant (27) dans (5), nous obtenons le systéme

suivant, dont l'analyse numérique est effectuée sur ordinateur :
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‘p - :f: -R- ID [1" 24}’) (e;ﬁ)zj-l

ffeont-$llint (3]

_[fz *1"'("")'3]3/’ } ) (28)
L

gn 198" —-—[l+(“},)z (R4f)7z{ﬁk*f)‘*i"d]*

RAP

[___&+1n(,i)] [14;1_ _.-n( ).2]

La figure 9 représente les plans typiques des phases
(Z'Z,_yy) du systéme (28). On a calculé les différences des
fréquences des oscillations propres dans le diapason des valeurs de

travail de n (Fig. 10).

La dérivée caractéristique des oscillations axiales

coincide avec la dérivée pour les oscillations radiales (17)

—£ - 0,024 (29)

. Influence des termes non linéaires dans la structure du champ

sur les fréquences des oscillations propres

La présence de termes non linéaires dans la structure du
champ provoque une modification de 1l'orbite fermée (pour les protons
non résonants) et une variation des fréquences des osciilations libres .

Le premier effet pour les valeurs des non linéarités gqui nous
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intéressent / (1-2) . 10—3_7 est négligeable dans l'accélérateur

considéré.

Le deuxiéme effet peut avoir une influence sensible sur
le régime de travail de 1l'accélérateur, en particulier pour les
champs d'injection (courant tourbillonnaire et champsrésiduels)
et pour les inductions maximales, lorsque la saturation de l'aimant

se manifeste.

Le systéme d'équations de base pour 1'étude des effets
non linéaires s'obtient en substituant le champ magnétique sous la

forme (10) dans 1'équation (5)

,"'{E/‘:;'”"P:" 4[’ rpwa (2»}‘3"‘] [[m Prp[tens +

e
+M._%+ch;,._f_3__ na gd_g‘ 3__"5,-':3_13_;*‘5 -
H 4 H 4% * 2r* M T H S

—~f(n _’i?d_f Heup P o?.t
(2+’2 Wt 3 )&(éf)*'—"}"‘f’}

X3
'_dl”gf: %[ Mﬁ)a (R"sz] {[;uf)auguj[(

H ub P /’/Cub X f d f:?. H‘-“bf’z
*3G ﬁ)g “H #3](4 %

(30)

z* .44 H AT

g2 Fedge g Had Pely a0,
YL H 42 374 #z)f%f’ )
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ou A= 8,5 cm - distance radiale de l'orbite fermée idéale, a

laguelle sont définies les valeurs des non-lindarités.

4.1 Non-linéarité quadratique

Les effets 1liés & la non-linéarité quadratique ont été
H
étudiés en résolvant le systéme (30) pour sub _ 0 et une

H
valeur n, = 440,8 (QZ = 9,7026, Qr = 9,771 - théorie linéaire).
Les paramétres étudiés étaient : a - amplitude des oscillations
libres radiales, b -~ amplitude des oscillations libres axiales et

4%2 - écart de 1'impulsion de la valeur résonante ( R, dens le

systéme (30) ).

Les résultats du calcul pour les particules résonantes
(A%R = 0) sont rassemblés au tableau 4 (ot h - P4s d'intégration

du systéme (30)).

TABLEAU 4
H ,

No ,ﬁul a(em) | b(cm) Q. Q, h
1 |-1072 2,36 | 0(107) | 9,771 | 9,702 | 0,0002 %
> |-4.1072 | 2,36 | o 9,767 | 9,702 n
5 |-4.107 | 9,6 | o0 9,714 | 9,777 n
4 [=2.1072 | 7,25 | o0 9,763 | 9,702 n

-3 *) "
5 |-2.10 0 4,6 - 9,699

*
) L'amplitude des oscillations axiales est déterminée par le
méthode décrite plus haut pour les oscillations radiales.
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I1 résulte du tableau 4 que la valeur du déplacement de

la fréquence correspondante est Ecrite avec une assez bonne précision

/.

par la formule

A L (e )’ Ea (
Q:_2Q3 H A )

Dans l'ensemble, l'effet considéré pour 1'accélérateur en

H
question est négligeable si q < 2,5 cm; b <£2,5 cm et —€¥L.S 2.10_3.

Pour les particules dont l1l'impulsion ne correspond pas &
1'équilibre, l'effet 1ié & la non-linédarité quadratique augmente
sensiblement. On donne dans le tableau 5 le résultat de la résolution

du systéme (30) pour 1l'écart maximal de 1'impulsion é%B = + 4.10-3.

L'analyse des résultats du tableau 5 aboutit aux conclusions

suivantes :

a) Oscillations radiales

d
Lorsque é%R et —%— sont de méme signe, la fréquence augmente

a4 cause de¢ la présence de la non-linéarité quadratique. Lorsque

H
les signes de A%B et —%i sont opposés, la fréquence diminue.

La variation de la frégquence dépend linéairement de la
grandeur de la non-lindarité quadratique. Le coefficient de pente

est approximativement le méme dans les deux cas et égal & :

= = = (32)



TABLEAU 5

oP

Hob

N | - - fo f:, Z, £ e, Rs |Qunpus. £ @2 aput.
.| 4103 | 41007 | 01| o | 01| o | 678 |se623 | 9,817 | 2.10% | 9,662
2.0-4.10° | 11072 | 01| o | 01| o] ess7]|0708 | sg18 | - 8,867
8. 0-4.10 | 110 |12 |-16] 01| o | 98570708 | 0818 | _-_ 9,867
a.| 4107 | 1107 | 12| 1.2] 01| o |eee2 0702 | 9131 | - 8,741
5.]-4.107 | 1,107 o1 | o] 01| o |o767]8783 | 8728 | - 9,744
6. 410 | 1102 |01 | o | 01| o]e6e2le02 | 8731 | —-- 8,741
7. 410 | 2102 o1 | o] o1 | os627|e738 | 0,688 | o 8,771
8.] 410 | 215102 | 01| 0 | 01| o |ees7|8720 | 8708 | —-- 8,759

- 7C -



b)
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A cette approximation preés, le résultat ne dépend pas de-
la valeur de l'amplitude des oscillations radiales (dans les
limites d'ouverture de la chambre) par rapport & l'orbite fermée

(condition initiale Po=t 12 cm  pl=+ 13,4 cm/rad).

Oscillations axiales

H
Lorsque A%R et —%i sont de méme signe, la fréquence

diminue & cause de la présence de la non-linéarité quadratique.

se
L'augmentation de la fréquence/produit lorsque

Ap 4
p

H
—%Q sont de signes contraires.

La pente est voisine de celle qui est indiguée pour les

fréquences des oscillations radiales et égale a :

er
—_— (33)

a (H.qd/H)

Ainsi, la non-linéarité quadratique dans la structure du
champ magnétique en présence d'oscillations synchrotroniques
étend la valeur des fréquences propres d'une grandeur considé-
rable. Indépendamment des sigres de la non-linéarité quadratique,
pour ﬁ%i = ]_O_3 cette grandeur atteint 0,08, Comme 1l'étendue
structurelle des fréquences est égale & 0,07, la différence

totale des fréquences pour cette valeur de la non-linéarité

quadratique atteindra :

Q. - Q, = 0,15 (34).



4,2 Non-linéarité cubique

effets 1iés 4 la non-lindarité

du systéme (30) avec

Yqa -

B

- 24 -

Par analogie avec la non-linéarité quadratique, les

cubique ont été étudiés par résolution

et une valeur n, = 440,8.

Le signe

de la non-linéarité cubique va en alternant d'une unité magnétique a

1'gutre. Les résultats du calcul sont rassemblés au tableau 6.

T ABLEAU 6
, ;

No A%R- —%;b §, (em) (g:) (i&) (Zg) a(em) | b(cem) Qr Q,

1 0 1077 1 0 10720 |25/ 1072]9,776 | 9,702
2 0 1072 3 0 102 0 |6,5 | 1072]9,815]9,702
3 0 2.1072 3 0 1020 [6,5 | 102}9,846 9,702
4 0 1072 | 1072 0 2 o |07 4,2 9,771 | 9,684
5 0 2,107° 1 0 102 0 |2,15| 1072]9,78 | 9,702
6 |4.1077 1072 | 1072 0 102 o [107% | 1072 | 9,739 | 9,662
7 |4.107° 107> | 1072 0 102 o [107% | 1072 | 9,818 | 9,743

fréquences propres sont approximativement proportionnelles au carré de

l'amplitude des oscillations libress:

AQ
T

AQ, ~=1,0 .l

~ 1,0 .'

H

Zeub

Hedb

I1 ressort de 1l'examen du tableau 6 que les variations des

(35)
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La non-linéarité cubique dans la structure du champ,
comme cela résulte de 1l'expression (35), étend encore les fré-
pour les amplitudes des oscillations

/
H 3

libres a <2,5 cm, b <£2,5 cm et des valeurs Eub <2.10°7,

quences propres; toutefois

cet effet est petit.

Les oscillations synchrotroniques,en présence de non-
linéarités cubiques, ont aussi une faible influence sur la variation

des fréquences propres.

Energie critique

La période de révolution d'une particule d'équilibre
diminue de facgon monotone au cours du processus d'accélération

(de 11,5 a 4,95 Psec), puisque

2
ars 4 Lo ) = to Po ’ (36)
dP, =~ dPs - T2
s A Fire  ®
ot L, - longueur de l'orbite fermée d'équilibre (L, = const),
R ]% ~ valeurs d'dquilibre de l'impulsion et de l'énefgie.

Pour les particules non en équilibre ( P £ Pq ), la
longueur de l'orbite fermée dépend de 1l'énergie; alors, la variation

de la période de révolution des particules est différente de (36)

& L R L
dP‘,sPC I @ 22

) . (37)
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La grandeur « = %- %% y, coefficient d'élargissement de
Jtorbite - est déterminéde par la structure du champ magnétique
adoptée et constitue une grandeur constante pour l'accélérateur
donné, lorsque l'impulsion s'écarte peu de la valeur d'équilibre

(dans les limites des oscillations de phase).

Pour les structures & focalisation forte du champ

magnétique, ol << 1, ce qui entraine avec une 4nergie

Bor < T (38)
4 1'indépendance entre la période de révolution des particules non
en équilibre et 1'impulsion (g%-: 0) et, donc, & 1l'altération de

la stabilité des phases,qui est décrite par 1l'équation

. L
i_ EkPL - 2 nC ’é\/o(cos\?_ cos 4’5>) (39)
dT\ - Eo” L®

[ °
ol eV, - valeur de l'amplitude de 1l'augmentation d'énergie par tour,

Y - phase du passage de la particule dans les résonateurs,

42 - valeur d'équilibre de la phase

I:H_’“. 2 nRH
COSLP = _Q.___._°___ = __’71___
N ImC- eV, eV, (40)

*
) Dans les équations (39), (40), le point désigne la différentiation

par rapport au temps.
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Pour déterminer le coefficient « , on a effectué les -

calculs numériques de 1'équation (11) conjointement avec

. 120 $ieq 5 ! 4 d‘o 2 ! ( )
+{R+ de +4. 1+ _ 41
go é ‘6 ( j’) o (R+9);,, ("“P) i+ 1

Les résultats de ces calculs sont représentés sur la

courbe de la figure 11. Il résulte de la figure 11 que l'énergie

critique, correspondant & la transition de la phase d'équilibre

WS

s, est égale a :

E_. = 8,52 GeV (42)

et ne dépend pratiquement pas de l'amplitude des oscillations libres.

CONCLUSIONS

ILa rrise en considération de la ncn-linéarité des termes dans
les é€quations du mouvement modifie de facon insignifiante les

résultats deg calculs du .processus dynamique.

THmportante extension des fréquences propres par la non-linéarité

quadratique entraine la nécesgsité d'une tolérance sévere pour
H =

gd < "',/) 1 . . - 1 s . T
7 S 10 ou l'utilisation d'une méthode de compensation. Une

correction particuliérement minutieuse de la non-linéarité
quadratique doit &8tre effectuée dans e Jomaine des inductions

ou 1l'on
d'injection (76-100) oe,[ peut slattendre & des différences
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entre des cycles, par suite de la non-reproductibilité du

champ résiduel.

3. Pour faciliter les travaux de mise au point, il est indiqué

de déplacer le point de travail dans la zone Q_ = 9,6.

&

Les auteurs sont reconnaissants a A.A. Logunov pour la
solution de la question relative & la nécessité de poser le probléme
dans l'approximation non linéaire de la théorie, ainsi qu'a Yu.M. Ado,

D.G.Koshkarev et T.K. Tarasov pour l'examen des différents résultats

du présent travail.
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Fig. 4
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Fig. 9
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(longueur selon le champ)

(longueur selon le gradient)

(longueur selon le champ)

(longueur selon le gradient)
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