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Astrophysical neutral particles, such as neutrons, can point directly to their sources since they
are not affected by magnetic fields. We expect neutron production in the immediate vicinity of
the acceleration sites due to cosmic ray interactions. Hence, a high-energy neutron flux could
help to identify sources of cosmic rays in the EeV range. Free neutrons, although unstable, can
travel a mean distance of 9.2 kpc times their energy in EeV. Due to the neutron instability, we
limit the searches to Galactic candidate sources. Since air showers initiated by a neutron are
indistinguishable from those generated by a proton, we would recognize a neutron flux as an
excess of events from the direction of its source. Previous searches using events with a zenith
angle up to 60◦ and energies above 1 EeV found no surplus of events that would indicate a neutron
flux. We present the results of the search for evidence of high-energy neutron fluxes using a
data set about three times larger than the previous work. We investigate the sky in the field of
view of the Pierre Auger Observatory, narrowing down to specific directions of candidate sources.
With respect to previous works, we extend the angular range up to zenith angles of 80◦, reaching
declinations from −90◦ to +45◦, and the energy range going as low as 0.1 EeV. The extension in
the field of view provides exposure to the Crab Nebula for the first time.
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1. Introduction

One central open question regarding ultra-high-energy cosmic rays is the identification of their
sources. Since charged particles are deflected by interstellar magnetic fields, the identification of
the sources based only on their arrival directions can be challenging, although some breakthroughs
have been obtained in the past decade [1]. On the other hand, the arrival directions of neutral
particles point directly to their sources, making neutral particles a powerful tool in the investigation
of cosmic ray sources. Even though free neutrons undergo 𝛽-decay with a mean lifetime of around
879 s [2], they travel a distance around 9.2 kpc(𝐸/EeV) in the ultra-relativistic regime. Therefore,
considering the possible traveled distance, we can investigate neutron fluxes in the EeV range from
Galactic sources.

The production of ultra-high-energy protons from a source is expected to be accompanied by the
generation of neutrons. These neutrons can be generated through photopion production processes
or other nuclear interactions nearby the source. A possible mechanism to produce neutrons is
ultra-high-energy proton collisions with ambient protons or photons [3]. Since neutron production
mechanisms can be associated with 𝛾-rays, we can explore 𝛾-ray sources as potential candidates for
EeV neutron sources.

In previous publications in which the Pierre Auger Collaboration searched for neutron fluxes
[4, 5], no statistically significant results were obtained. In this work, we include nine more years
of observation with respect to [5]. Additionally, we include events with a zenith angle between
60◦ and 80◦, expanding the field of view from a maximum declination of +25◦ to +45◦. The total
exposure increased from 36,000 km2 sr yr to 110,000 km2 sr yr, considering the part of the array in
which the detectors are spaced 1,500 m from each other. In this analysis, we also consider events
with energies down to 0.1 EeV, recorded using the surface detector array with a 750 m spacing, with
a total exposure of 408 km2 sr yr.

2. Data sets

The Pierre Auger Observatory [6] is located in Argentina, near the city of Malargüe. The
water-Cherenkov stations form an array, called the Surface Detector (SD), covering an area of about
3,000 km2 arranged in a triangular grid with 1,500 m spacing. We use events recorded with the
SD from 2004 January 1 to 2022 December 31. We consider those recorded by the 1,500 m SD
array with zenith angles up to 80◦, resulting in declination values between −90◦ and +45◦. This
data set contains 2,661,606 events, and we split them into the same four energy ranges used in the
previous neutron searches: 1 EeV ≤ 𝐸 < 2 EeV (2,011,357 events), 2 EeV ≤ 𝐸 < 3 EeV (382,809
events), 𝐸 ≥ 3 EeV (267,440 events), and the cumulative data set 𝐸 ≥ 1 EeV. We also use a data
set recorded with the portion of the array in which the detectors are placed 750 m from each one,
covering an area of approximately 24 km2 [7]. These events were recorded from 2008 August 1 to
2022 December 21. The events in this data set, referred to as the “750 m data set”, have a lower
energy, starting at 0.1 EeV. For the 750 m data set, the energy ranges are: 0.1 EeV ≤ 𝐸 < 0.2 EeV
(1,088,012 events), 0.2 EeV ≤ 𝐸 < 0.3 EeV (249,642 events), 𝐸 ≥ 0.3 EeV (167,758 events), and
the cumulative data set 𝐸 ≥ 0.1 EeV (1,505,412 events). Events recorded with the 750 m array
have a zenith angle less than 55◦, resulting in a declination less than 20◦. For all the data sets used
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in this analysis, we use the most stringent selection criteria, keeping only events in which all six
neighboring stations of the one with the highest signal are active.

3. Target sets

The catalogs previously used in [5] were updated. The total number of point sources considered
in our analysis increased from 358 to 888. Since we expand the field of view of the analysis to
declinations up to 45◦, we are able to include an interesting target: the Crab Nebula. The catalogs
used in this work include the millisecond pulsars [8], 𝛾-ray pulsars [9], low-mass X-ray binaries
[10], high-mass X-ray binaries [11], H.E.S.S. Pulsar Wind Nebulae, the other identified H.E.S.S.
sources, the H.E.S.S. unidentified sources, microquasars1, magnetars2 [12], and sources detected by
the LHAASO Observatory as PeVatrons [13]. Two other single-element target sets are considered:
the Galactic center and the Crab. The 750 m data set has events in a lower energy range between
0.1 EeV and 1 EeV. In this energy range, neutrons are expected to travel shorter lengths. Moreover,
the accessible field of view using the 750 m data set is more limited when compared to the 1,500 m
one. Therefore, we perform the analysis of the former data set with a reduced number of candidate
sources. We keep candidate sources within a distance of 0.1 kpc and with a declination of less than
20◦.

4. Method and results

Since an air shower initiated by a proton and one initiated by a neutron are indistinguishable,
we can only identify a neutron flux through event excesses around the direction of the candidate
source. While charged particles are deflected during their propagation, neutrons travel in straight
lines producing a surplus pointing to their sources. We compare the observed cosmic ray density at
the position of the target with the density obtained using isotropic data sets. We estimate the cosmic
ray density from the probability density of each event in the data set coming from the direction
of the target. We define a weight that represents the probability density of the 𝑖-th event to be
associated with the 𝑗-th target as

𝑤𝑖 𝑗 =
1

2𝜋𝜎2
𝑖

exp

(
−

𝜉2
𝑖 𝑗

2𝜎2
𝑖

)
. (1)

This weight is based on a two-dimensional Gaussian distribution taking into account the angular
distance between the 𝑖-th event and the 𝑗-th target 𝜉𝑖 𝑗 . The parameter 𝜎𝑖 is estimated from the
angular uncertainties measured at the Observatory. We parameterize 𝜎 in multiplicity (number of
triggered stations in the air shower event) and zenith angle to avoid statistical fluctuations caused
by individual events. Figure 1 shows the result of this parameterization for both data sets.

By summing the weights of all the 𝑁 events in the data set, we estimate the cosmic ray density
at the position of the target:

1http://www.aim.univ-paris7.fr/CHATY

2http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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Figure 1: Parameterization of 𝜎 as a function of the zenith angle. On the left (right), we show the result
obtained with the data set recorded by the 1,500 m (750 m) array. The continuous lines are the result of a
linear interpolation. The multiplicity (number of triggered stations in the air shower event) is represented by
𝑚.

𝜌obs
𝑗 =

𝑁∑︁
𝑖

𝑤𝑖 𝑗 . (2)

Then, we can compare the observed density 𝜌obs
𝑗

with the value obtained with data sets in which
local anisotropies are smoothed. We use a scrambling method to erase small-scale anisotropies
while preserving the large-scale structure. To simulate an arrival direction, we randomly sample
two events from the observed data set, extracting from one of those the arrival time information and
from the other the zenith angle and its associated 𝜎 parameter. We also sample an azimuth angle
from a uniform distribution between 0 and 2𝜋. By taking the zenith angle and the 𝜎 parameter from
the same event, we ensure we are sampling a 𝜎 distribution similar to the real one. Each simulated
data set has the same number of events as the observed one. For each target, we estimate the density
obtained with a scrambled data set 𝜌scr

𝑗
. The 𝑝-value is then defined as the fraction of simulated

data sets resulting in a 𝜌scr
𝑗

larger than 𝜌obs
𝑗

. We generate 10,000 simulated data sets to estimate the
𝑝-value. The penalized 𝑝-value, 𝑝∗ = 1 − (1 − 𝑝)𝑀 , takes into account the fact that in each target
set, we are testing 𝑀 targets. It represents the probability of getting a 𝑝-value equal to or less than
𝑝 if all the 𝑀 𝑝-values were sampled from a uniform distribution between 0 and 1.

We determine an upper limit on the flux of neutrons from each target direction. First, we find
the upper limit on the number of excess events from that direction. The upper limit on the flux is the
upper limit on the number of recorded neutrons divided by the directional exposure. The directional
exposure is obtained by dividing the expected cosmic ray density 𝜌

exp
𝑗

, defined as the mean of the
𝜌scr
𝑗

obtained with the 10,000 simulated data sets, by the cosmic ray intensity. We estimate the
cosmic ray intensity by integrating the energy spectrum [14] in the energy range of interest. We
use simulated events to estimate the upper limit on the number of neutrons. A simulated event is
generated by randomly sampling a 𝜎 value from the observed distribution and using it to sample
an angular distance from a two-dimensional Gaussian distribution. Using the simulated angular
distance and the sampled 𝜎, we estimate the associated weight (Equation 1). We use the 10,000
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simulated data sets as background and add simulated events in each data set with a step of one.
Then, the upper limit on the number of neutrons is the smallest value of 𝑛 added events that satisfy
the condition 𝑓𝑛 < (1−CL) 𝑓0, where 𝑓0 is the fraction of data sets in which the cosmic ray density
at the position of the target is less than the observed one, 𝑓𝑛 is this fraction after adding 𝑛 events, and
CL is the confidence level. For this analysis, we use a confidence level of 95%. We also estimate
the energy flux upper limit, assuming an 𝐸−2 spectrum. In Tables 1 and 2, we present the results
for the cumulative data sets obtained with events recorded by the 1,500 m and the 750 m arrays,
respectively. For each class, we report the most significant target, i.e., the one with the smallest
individual 𝑝-value, showing its position, the upper limit on the flux and on the energy flux, the
𝑝-value3 and the penalized 𝑝-value.

Table 1: Results for the most significant target in each target set using events recorded by the 1,500 m array
with energies 𝐸 ≥ 1 EeV.

Class R.A [deg] Dec. [deg] Flux U.L. E-Flux U.L. 𝑝-value 𝑝∗

[km−2 yr−1] [eV cm−2 s−1]
msec PSRs 286.2 2.1 0.026 0.19 0.0075 0.88
𝛾-ray PSRs 296.6 −54.1 0.023 0.17 5.0 × 10−5 0.013
LMXB 237.0 −62.6 0.017 0.12 0.0069 0.51
HMXB 308.1 41.0 0.13 0.97 0.014 0.57
H.E.S.S. PWN 128.8 −45.6 0.016 0.12 0.0070 0.18
H.E.S.S. other 128.8 −45.2 0.014 0.11 0.022 0.63
H.E.S.S. UNID 305.0 40.8 0.15 1.1 0.0066 0.31
Microquasars 308.1 41.0 0.13 0.95 0.014 0.19
Magnetars 249.0 −47.6 0.011 0.079 0.15 0.99
LHAASO 292.3 17.8 0.038 0.28 0.024 0.20
Crab 83.6 22.0 0.020 0.15 0.71 0.71
Gal. Center 266.4 −29.0 0.0053 0.039 0.86 0.86

Table 2: Results for the most significant target in each target set using events recorded by the 750 m array
with energies 𝐸 ≥ 0.1 EeV.

Class R.A [deg] Dec. [deg] Flux U.L. E-Flux U.L. 𝑝-value 𝑝∗

[km−2 yr−1] [eV cm−2 s−1]
msec PSRs 140.5 −52.0 1.7 12.5 0.043 0.66
𝛾-ray PSRs 288.4 10.3 5.3 38.9 0.0056 0.47
HMXB 116.9 −53.3 2.1 15.1 0.0092 0.071
H.E.S.S. PWN 277.9 −9.9 1.8 13.4 0.12 0.48
H.E.S.S. other 288.2 10.2 5.5 40.2 0.0033 0.036
Magnetars 274.7 −16.0 1.6 11.8 0.13 0.44

3For the specific case of the 𝛾-ray pulsar located at (296.6◦, −54.1◦), we simulated 200,000 data sets to estimate the
𝑝-value.
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Table 3: Results for the combined analysis for events recorded by the 1,500 m array.

Class No. Unweighted combined 𝑝-value 𝑃

≥ 1 EeV 1 − 2 EeV 2 − 3 EeV ≥ 3 EeV
msec PSRs 283 0.90 0.79 0.20 1.0
𝛾-ray PSRs 261 0.16 0.12 0.50 0.86
LMXB 102 0.62 0.89 0.11 0.55
HMXB 60 0.49 0.46 0.28 0.85
H.E.S.S. PWN 28 0.24 0.52 0.072 0.49
H.E.S.S. other 45 0.52 0.81 0.15 0.34
H.E.S.S. UNID 56 0.61 0.85 0.57 0.40
Microquasars 15 0.39 0.49 0.50 0.68
Magnetars 27 0.99 0.99 0.85 0.67
LHAASO 9 0.22 0.31 0.54 0.31
Crab 1 0.71 0.54 0.30 0.93
Gal. Center 1 0.86 0.78 0.72 0.67

Table 4: Results for the combined analysis including statistical weights for events recorded by the 1,500 m
array.

Class No. Weighted combined 𝑝-value 𝑃𝜔

≥ 1 EeV 1 − 2 EeV 2 − 3 EeV ≥ 3 EeV
msec PSRs 283 0.50 0.82 0.0093 0.81
𝛾-ray PSRs 261 0.020 0.0068 0.31 0.61
LMXB 102 0.25 0.79 0.44 0.067
HMXB 60 0.34 0.25 0.66 0.42
H.E.S.S. PWN 28 0.0052 0.0072 0.035 0.51
H.E.S.S. other 45 0.22 0.55 0.30 0.15
H.E.S.S. UNID 56 0.75 0.94 0.67 0.23
Microquasars 15 0.81 0.85 0.75 0.38
Magnetars 27 0.98 0.95 0.78 0.90
LHAASO 9 0.42 0.60 0.43 0.35
Crab 1 · · · · · · · · · · · ·
Gal. Center 1 · · · · · · · · · · · ·

We also tested each class of candidate sources as a target. If one class of these target sets is
emitting neutrons, it would be more significant when combining all the individual sources than when
looking at the individual objects. The chance probability of a product of 𝑀 𝑝-values sampled from
a uniform distribution (Π) not to be greater than the actual product of the 𝑀 individual 𝑝-values
(Π0) is given by

P(Π ≤ Π0) = Π0

𝑀−1∑︁
𝑘=0

(− lnΠ0)𝑘
𝑘!

= 1 − Poisson(𝑀, lnΠ0), (3)
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Table 5: Results for the combined analysis for events recorded by the 750 m array.

Class No. Unweighted combined 𝑝-value 𝑃

≥ 0.1 EeV 0.1 − 0.2 EeV 0.2 − 0.3 EeV ≥ 0.3 EeV
msec PSRs 25 0.82 0.41 0.90 0.67
𝛾-ray PSRs 113 0.53 0.70 0.29 0.38
HMXB 8 0.33 0.68 0.069 0.28
H.E.S.S. PWN 5 0.43 0.72 0.12 0.36
H.E.S.S. other 11 0.074 0.55 0.070 0.16
Magnetars 4 0.31 0.48 0.26 0.21

Table 6: Results for the combined analysis including statistical weights for events recorded by the 750 m
array.

Class No. Weighted combined 𝑝-value 𝑃𝜔

≥ 0.1 EeV 0.1 − 0.2 EeV 0.2 − 0.3 EeV ≥ 0.3 EeV
msec PSRs 25 0.58 0.48 0.95 0.15
𝛾-ray PSRs 113 0.93 0.94 0.85 0.14
HMXB 8 0.23 0.79 0.22 0.029
H.E.S.S. PWN 5 0.83 0.96 0.73 0.11
H.E.S.S. other 11 0.58 0.82 0.22 0.44
Magnetars 4 0.14 0.35 0.046 0.40

where Poisson(𝑀, lnΠ0) represents the probability of getting 𝑀 or more targets in the presence
of a background following a Poisson distribution with mean lnΠ0. We also can include statistical
weights for each one of the targets. Each statistical weight is proportional to the exposure of the
Observatory in that location, to the electromagnetic flux of the target, and to its expected flux
attenuation factor due to neutron decay, considering the traveled distance4. After evaluating the
statistical weight for each target, we normalize the weights so that their sum is equal to 1 in each
target set. The weighted product Π𝜔

0 is the product obtained using all the individual 𝑝-values
raised to the power of its correspondent statistical weight. We used simulated sets of 𝑀 individual
𝑝-values sampled from a uniform distribution between 0 and 1 and raised to their correspondent
statistical weight to obtain the product Π𝜔 . The weighted combined 𝑝-value is the fraction of
simulated Π𝜔 that are less than Π𝜔

0 . Tables 3 and 4 (5 and 6) show the results for the combined
analysis without and including the statistical weights for events recorded by the 1,500 m (750 m)
array for all energy ranges.

5. Conclusions

We did not find clear evidence for a neutron flux coming from any of the tested candidate sources
in any of the energy ranges, strengthening results previously published by the Auger Collaboration.

4If we do not have information about the distance, the statistical weight is evaluated based on the other two pieces of
information.
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The results do not exclude the existence of EeV neutrons from some of these Galactic sources with
flux levels at Earth that are below our upper limits. Moreover, our time-averaged upper limits
pertain to steady sources and do not constrain short outbursts. In the future, we plan to search for
correlations with transient emissions of high-energy photons from Galactic sources recorded by
other observatories. We also plan to perform an updated blind search for a neutron flux from any
direction of the sky in a forthcoming work.
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