
)

)

CDF / DOC/ ONLINE/ CDFR/ 1242
Version 1.3

July 19, 1990

Estimation of Event Builder Execution Time
for the 1991 Run

Robert Harris, Jim Patrick, Kurt Schurecht, Theresa Shaw

Abstract

In the 1991 run, the rate out of level 2 will be limited by the rate capability of
the Event Builder. Consequentially, we need a rough estimation of the Event Builder
execution time immediately; a precise projection requires more of the final hardware
and software in place. During the 1989 run the Event Builder rate capability was
about 1 Hz in one engine mode. During the 1991 run, we estimate the rate capability
of a single event builder will be roughly 23 Hz in two engine mode. This rate includes
the effect of redistributing the scanners on four fanout cable segmentsj the proposed
redistribution is presented.

We have also estimated f.CGnfev/., the product of the scanner and event builder
livetime fradions. Using the single event builder execution time of 43 milliseconds and
an event scan time of 3 milliseconds, we estimate from queueing theory that if the
level 2 trigger rate is 23 Hz, then I,con/cub will be only about 0.94 x 0.83 = 0.78. To
obtain CDF's stated goal of 90% totallivetime fraction, it would be wise to maintain
I,con/cub = 0.95, for which a one event builder system could only tolerate a level 2
trigger rate of about 10 Hz.

If we modify the CDF data acquisition system to accommodate two event builders
we can have a larger level 2 trigger rate. For a two event builder system we estimate an
event builder rate capability of 43 Hz. This system has significantly reduced deadtime.
At a level 2 trigger rate of23 Hz the livetime has increased to 1'C4n/C'IJb = 0.94 x 0.96 =
0.90. However, to obtain 1'C4n/cfJb = 0.95, even this system can only tolerate a level
2 output rate of only 14 Hz. For a two event builder system, the dead time at these
level 2 trigger rates is dominated by the 3 millisecond scan time.

1

Contents

1 Introduction

2 Pull Time
2.1 EVB Overhead: Prepare to Pull
2.2 Data Pull Time

2.2.1 Scanner Communication
2.2.2 Data TI&D.sfer .. .

2.3 Pull Completion
2.4 Tota.l Pull Time Summary

3 Reformat Time

4 Push Time
4.1 Initial Push Messages.
4.2 Prep&re to Push . ..
4.3 Pu.h to Level 3
4.4 Final Push Messages .
4.5 Total Push Time Summary

5 One and Two Engine Mode

6 Summary

A Proposed Redistribution of Scanners

B Multiple Interactions

C Livetime

D Two Event Builders

List of Tables

. .

• . . .

..

. .

1
2
3
4
5
6
7
8
9

B&nk., Scanners, and Word. on FANOUT-CABLE.l in 1989
B&nk., Scanners, and Word. on FANOUT.CABLE.2 in 1989
Event Size During DAQ Stages ..
Event Size Breakdown
Extra Words Per Extra Interaction
Extra B&nks, Scanners, and Words in 1991
Sc:&n.ner Redistribution Proposal 1 .
Scanner Redistribution Proposal 2 .
Livetime Fraction

2

. . .

•

4

4
4
4
5
5
5
6

6

6
7
7
7
7
8

8

8

10

11

12

13

14
15
15
16
16
17
18
19
20

)

)

I

) List of Figures

)

)

1
2

Event Builder Flowchart
Event Builder Execution Time.

3

21
22

1 Introduction

The CDF hudware Event Builder[l, 2] pulls data from the front end scanners, reformats
the data into YBOS bank structure, and pushes the data to level 3. The pull and push are
initi&ted by FASTBUS messa.ges sent from the Buffer Manager[l, 31 to the Event Builder 's
crate controller. The single crate controller board communicates with multiple re£ormatter
boards and cable controller boards via a front panel message bus. In 1989 there were two
reformatter boud., corresponding to two cable controller boards controlling two cable seg­
ments (FANOUT_CABLE_l and FANOULCABLE..2). In 1991 a .ingle event builder will
contain one crate controller, four reforma.tters, and four cable controllers connected to four
fanout cable segments.

The hardware Event Builder execution time can be divided into the time required to
perform the three main Event Builder functions: The pull time, the reformat time, and
the push time. These times can be measured on a digital oscilloscope when the event
builder is running in one engine mode: using only one of the two buffers per reformatter. We
meuured these times in May 1988 with the Buffer Manager running on a JlVAX II, and we
repeated the measurement in June 1990 with the Buffer Manager running on a VAX 3200.
The following estimation comes from those me&5urements, personal recollections, and some
educated guesses. For those who don't have time to re80d this estim8ote, the essential results
are displ80yed in figure 2.

2 Pull Time

The time to pull events from the scanners (MXs 80nd SSPs) W&S an execution time bottleneck
during the 1989 run, but will be significantly reduced for the 1991 rUD. The pull time can
be subdivided into a prepare to pull time and an actual data pull time.

2.1 EVB Overhead: Prepare to Pull

The prepare to pull sequence is illustra.ted in figure la. The Event Builder crate controller
receives a FASTBUS message (PULL_EVENT) from the Buffer Manager and sends a front
panel message (PULL-EVENT) to each cable controller. Each cable controller then sends
a. message (PREP-PULL) to its reformatter, which returns a. message when it is prepared
for new data (PREP _COMPLETE); a.llowing the cable controller to begin the pull. The
complete sequence, from receipt of the FASTBUS message (PULL-EVENT) to beginning
the pull, presently takes a.bout 3.5 ms. With additional reformatter boa.rds, this time will
increase to roughly 5 ms in 1991.

2.2 Data Pull Time

The data pull sequence is illustrated in figure lb. The data pull time can be subdivided
into two stages: scanner communication time and data transfer time.

4

)

)

)

/

)

)

)

2.2.1 Scanner Communication

During the 1989 run each scanner received four FASTBUS messages, each within a separate
AS-AK lock[51. These messagcs required approximately 0.55 ms per 8ca.nner. In 1989
FANOUT_CABLE_l had 63 scanners (see table I), which all went to a single reformatter,
a.nd gave & total. scanner communication time of 63 x 0.55 R: 35 ms. This time dominated
the pull time.

Two improvements to the scanner communication time are being made for the 1991 fun.

First , the messages can be sent in a reduced number of AS-AK locks , which should be able to
reduce the scanner communication time to a few hundred ps. These improvements, already
begun, have reduced the MX communication time to 0.33 ms and the SSP communication
time to 0.38 ms. Second, the number of cable segments tha.t the scanners are distributed
over, will be doubled from two to four. With a. more sensible distribution of the 83 sca.nners
anticipa.ted in 1991, we should be a.ble to reduce the maximum number of scanners on
the slowest cable segment to 30 MXs (see a.ppendix A). With these two improvements we
should be a.ble to reduce the scanner communication time on the slowest segment to roughly
30 x 0.33 '" 10 m •.

2.2.2 Data Transfer

During the 1989 run the da.ta. was transferred in Block 'I'ramfer Mode[5]: a handshake was
required for the transmission of a single data. word. First the Event Builder asserted Data
Sync (DS) and Read (RD), then it waited for the SSP to ... ert Data Acknowledge (DK) and
place the da.t& word on the Address/ Data line, before proceeding with another DS and RD.
The Block Transfer Mode required approxima.tely 0.9 J1S per word, and there was roughly
2.2 x 10" words on FANOUT_CABLE_1 (see table 3), resulting in a data transfer time of
about 20 ms during the 1989 run.

The data transfer time per word will be speeded up in the 1991 run by transferring the
da.ta in Pipeline Mode[5], in which no handshake is required. The Event Builder will assert
DS and RD and then almost immedi8.teiy assert another DS a.nd RD, without w&iting for
8. DK response. Pipeline mode hu a.lrea.dy been implemented, and has reduced the data
transfer time to about 0.31 J1S per word. With the introduction of two new cable segments,
and a sensible redistribution of scanners (see a.ppendix A) we should be able to reduce
the number of words being transferred on the slowest cable segment to a.bout 1000 words,
corresponding to a da.ta transfer time of about 2.5 ms in 1991. Other cable segments would
carry more words, but they would ha.ve much fewer scanners, so their pull plus reformat
time would not be the dominant one.

2.3 Pull Completion

The pull completion sequence is illustrated in figure 1c. After scanner data on a single cable
segment has been pulled into a reformatter the cable controller sends a front panel message to
the reformatter (START.PROC) and the crate controller (PULL_EVENT..ACK). The crate
controller updates the scoreboard and wa.its for all cable controllers to return front panel
mess.ge. (PULL..EVENT..ACK) before it .end. a FASTBUS me .. age (PULL_COMPLETE)

5

to the Buffer Manager. Since reformatting begins immediately on receipt of the data, the -,
pull completion sequence time of around 2.5 ms does not affect the total pull time.

2.4 Total Pull Time Summary

Summing the prepare to pull time, the scanner communication time and the data
transfer time gives a total pull time of about 3.5 + 35 + 20 :::::: 59 ms in 1989. With the
addition of two new cable segments, reduced scanner communication time, and reduced data
transfer time, the total pull time should only be about 5 + 10 + 2.5 :::::: 18 ms in 1991. This
is the pull time on the cable segment with the largest total pull plus reformat time (see
appendix A).

3 Reformat Time

The reforma.tting sequence is illustrated in figure Id. The reformatter does not actually
rearrange the data, it merely builds YBOS bank headers and a table of block pointers to
the event data. During the push stage the table of block pointers is used to push the data
in the order prescribed for the given detector component YBOS bank.

Reformatting begins on a segment of the data as soon as a cable controller finishes pulling
data from all its scanners and sends a front panel message to its reformatter (START-PROC).
After all reformatters have finished reformatting the event, and have each sent a front panel
message to the crate controller (PROC_COMPLETE), the crate controller sends a FASTBUS)
me ... ge (PROCESSING_COMPLETE) to the Buffer M.anage, indicating that reformatting
is done.

The reforma.tting time depends mainly on the number of sca.nners read a.nd the number
of bank headers constructed. The reformatting code[4] call. REF_BUILD_DBANKS, which
loops over scanners constructing block pointers, and then calls REF_BUILD_HEADERS,
which loops over banks constructing bank headers. As discussed in appendix A, it appears
that the reformatting time is linearly proportional to the number of banks and also linearly
proportional to the number of scanners. This isn't unreasonable, because there is a. strong
correl&tion between the number of scanners and the number of block pointers constructed.
During the 1989 run, with 63 scanners and 24 banks on the busiest c&ble segment, the re­
form&t time was roughly 30 ms with the most optimized code. In 1991, with the scanners
redistributed &cross four cable segments, the slowest cable segment could have only 30 scan­
ners and 12 banks, which will reduce the reformatting time to roughly 14 ms with the most
optimized code (.ee appendix A).

4 Push Time

The push sequence can be subdivided into four stages: initial push messages between
the Event Builder and the Buffer Manager, the prepare to push in the Event Builder, the
actual push to level 3, and final push messages between the Event Builder, the buffer
ma.nager a.nd level 3.)

6

I

)

)

4.1 Initial Push Messages

After the Event Builder finishes reformatting, it sends 8. message (PROCESSING_COMPLETE)
to the Buffer Manager, which checks that level 3 has a free node to accept the data, and
then returns a message (PUSH...EVENT) to the Event Builder. This sequence took about 8
rns with the Buffer Manager running on a ~VAX II, during the first half of the 1989 rUD,

and takes about 6 ms with the Buffer Manager running on a. VAX 3200, during the second
hal! of the 1989 run and as planned for the 1991 run.

4.2 Prepare to Push

The prepa.re to push sequence is illustrated in figure Ie. After receipt of the PUSH...EVENT
message, the crate controller sends a front panel message (PREP -PUSH) to each reformatter.
The reformatters then copy the table of block pointers to a.n internal Direct Memory Access
(DMA) table, where it is used to push the data to level 3 in the correct YBOS order. In
1991 the pointers will be copied to a DMA table as they are calculated, virtually eliminating
the prepare to push time. The prepa.re to push time was about 15 ms during the 1989 run,
and should be reduced to less than 5 ms in 1991.

4.3 Push to Level 3

The push sequence is illustrated in figure 1£. During the 1989 run the push took about 10
ms, corresponding roughly to the Branch Bus bandwidth of 20 MBytes / sec (200 ns/word)
and about 42,000 words per event (see table 3). Currently the path from the Event Builder
to Level 3 involves a Branch Bus and a VME to Silicon Graphics interface called 102. This
combination has a bandwidth of only 7 MBytes/sec, but the 102 will be replaced with a
device called 103, which should allow use of the full Branch Bus bandwidth of 20 MBytes/ sec.
This should allow the same bandwidth to level 3 as in the 1989 run. Including multiple
interactions (see appendix B and table 5), and extra words from new detector components
(see table 6), we expect about 15,000 extra words pushed to level 3 in 1991. This is roughly
35% more words than in 1989. Assuming we can achieve the same bandwidth to level 3 that
we did in 1989, the push should only take about 35% more time in 1991 than in 1989, so we
estimate about 13 ms for the push to level 3.

4.4 Final Push Messages

After pu.hing the data to Level 3, the Event Builder .end. a me .. age (PUSH_COMPLETE)
to the Buffer Manager, which in turn .end. a message (START-PROCESSING) to Level
3. After sending the START..PROCESSING message, the Buffer Manager completes the
cycle by awakening its internal Event Manager[3] assigned for the new event. The Buffer
Manager then sends a message (PULL....EVENT) to the Event Builder for the new event.
This sequence took about 18 ms on a p,VAX II, during the first half of the 1989 run, and
takes about 10 ms with the Buffer Manager running on a VAX 3200, during the second half
of the 1989 run and as planned for the 1991 run.

7

4.5 Total Push Time Summary

Summing the fout components of the push time gives a. total push time oC about 8 + 15 + 10 +
18 = 51 ma during the first half of the 1989 run. In 1991, initial and final message times will
be about what they were during the second half of the 1989 run, with the Buffer Ma.nager
running on a. VAX 3200. The prcpa.re to push time should he greatly reduced, however the ,
amount of da.h. pushed will probably increase. We estimate the total push time, including
messa.ge overhead, will be roughly 6 + 5 + 13 + 10 = 34 ma in 1991.

5 One and Two Engine Mode

During the 1989 run the Event Builder used only one reforma.tting engine for each reformat·
tel. During the 1991 Iun it will be ncccsslLrY to usc both reformatting engines. A single
event builder's two engines can simultaneously perform any two of the three functions: pull ,
reformat and push. For eX&mple, while the data from one event on a cable segment is
being pushed from one engine's buffer to level 3, the data from the next event on the same
cable segment can be pulled into the second engine's buffer and reformatted. This should
greatly speed up the Event Builder rates, however, a factor of 2 cannot be expected because
at times one engine will have to wait for the other engine to complete. Also, there is only a
single crate controller, so a two engine event builder does not correspond to two independent
servers in queueing theory{6]. We have mea.sured for a single cable segment (with 5 SSPs
and 6 MXs) a rate in two engine mode which is ~ times the rate in one engine mode. The)
ratio of the two engine rate to the one engine rate depends sensitively on how long each of
the individual stages takes, and is likely to be smaller than ~ in the full system. We assume,
somewhat arbitrarily, that the two engine rate will be ~ times the one engine rate.

6 Summary

The Event Builder execution time in one engine mode during the 1989 run is summarized
in figure 2a. Clearly the total pull time was the longest single t ime, however the other
times were not negligible. The total Event Builder execution time w~ roughly 140 ms,
corresponding to a rate capability of 7 Hz.

As described in the text, the following improvements to the data acquisition system will
increase the Event Builder rate capability in 1991:

• Two additional reformatters, cable controllers, and fanout cable segments, coupled
with an optimized redistribution of scanners on the cable segments, will reduce the
pull time and reformat time.

• More efficient scanner communication, and data. transfer in pipeline mode, will reduce
the pull time.

• Directly loading the block pointers as they are calculated will virtually eliminate the
prepare to push time.

8

)

/

)

)

The execution time in one engine mode estimated for the 1991 rUD , summarized in fig­
ure 2b, is roughly 65 ms corresponding to a. rate capability of 15 Hz. Multiplying by a {actor
of ~ we find that the estimated Event Builder rate capability, in two engine mode during the
1991 run, is roughly 23 Hz. The livetime fraction while running at this ratc, and at other
level 2 trigger rates, is discussed in appendix C. For a combined sea.nner and event builder
livetime fraction of f.t:tJnfevl, ;: 0.90, a single event builder can only tolerate a level 2 trigger
rate of 15 Hz.

I{ this rate is unacceptably low, we can consider running with two event builders. An
cstima.te of the rate capability using two event builders is discussed in appendix D and the
livetime is discussed in appendix C. For J.can/""" = 0.90, a two event builder system can
only tolerate a level 2 output rate of 23 Hz. To obtain CDF's stated goal of 90% total
DAQ system livetime fraction, we had better strive for f,ean/n. = 0.95, for which a one
event builder system can only tolerate a level 2 trigger rate of about 10 Hz, and a two event
builder system can only tolerate a level 2 trigger rate of about 14 Hz.

9

,

Appendix

A Proposed Redistribution of Scanners

During the 1989 run the scanners were distributed on FANOUT_CABLE_l and
FANOULCABLE..2 .. indicated in table 1 and table 2 respectively. Table 3 gives the total
number of datawords pulled into the event builder from each cable segment, and table 4
shows the sources of all words within the data acquisition system. The data in all {OUI tables
comes from ea.rly in run 20007, when the luminosity was roughly 1.5 X l030,,-lcm- 2i • This
run used a standard trigger table (2856).

Compared to FANOULCABLE..2, FANOULCABLE_1 carried 6 times the number of
scanners, 30% more banks, and 20% more data words. This resulted in FANOUT_CABLE_l
setting the pull a.nd reformat time.

During the 1991 Iun we will have two additional cable segments which I will call
FANOUT_CABLE..3 and FANOUT_CABLEA. We want to redistribute the existing scanners
over the four cable segments, and assign the new scanners listed in table 6, in a way that
minimizes the event builder execution time. The push time does not playa part in this
minimization, since the event builder waits for e&eh reformatter to complete before pushing
to levd 3. We want to minimize the sum of the pull time and reformat time, and we)
accomplish this by minimizing the sum for the slowest cable segment.

As discussed in section 2, the time to pull data from the scanners into the event builder
on a given cable segment during the 1991 run will be approximately:

T"ull(m.) = 5 + (0.33 x NMX) + (0 .38 x Nssp) + (0.37 X NKW~'.) (1)

where N MX and Nssp and NKWor,u are the number of MXs and SSPs and Kilowords (1000
words) on the cable segment respectively.

As disculSed in section 3, the time to reformat data on a cable segment should depend
mainly on the number of scanners and the number of banks. Meaaurements of the reformat­
ting time in June 1990, using non-optimized code, indicate the reformatting time on a given
cable segment is roughly estima.ted by the simple relation:

(2)

where T""'nJa and T,cannn' are the reformatting time per bank and per scanner respectively, and
N""'nJa and N.cannn' are the number of bub and scanners on the cable segment respectively.
Measurements indica.te tha.t the reformat time for MXs and SSPs are roughly the same and
that

(3)

The reformat time on FANOUT_CABLE_l, using the most optimized code during the 1989
run, was roughly 30 ms for 63 scanners a.nd 24 b&nk.s. Using this information in equa.tions
(2) and (3) we estimate the reformatting time per scanner will be T'CGnne? ~ ,3m" , Using)
this time and equations (I), (2) and (3), we can estimate the pull and reformat time for

10

I

•

)

j

any distribution of scanners. However, we are not free to make a.ny possible distribution,
because the event builder requires that all scanners that contain data. for a. single bank (such
as CEMD) must be on the same cable segment. This immediately determines the indivisible
groups of stanners shown in table 1 and table 2. Note that in order to redistribute some
of the MXs on FANOUT_CABLE_l to another cable, we ha.ve ha.d to violate this rule for
the single bank TMXD (timing information for all MXs), which will have to be split into
two banks: MXID and MX2D. There is one other consideration guiding our redistribution:
it would be convenient, though not a.bsolutely necessa.ry, if we could keep the central, wail,
and plug MXs on the same cable segment in order for us not to have to introduce any new
FASTBUS crates for MEPs. With that consideration in mind we have constructed strawman
proposal 1, shown in table 7, which ha.s a pull plus reformat time of roughly 39 ms. If
we are allowed to split the plug and central MX's over two cable segments we can cut this
down to roughly 32 ms, as shown in table 8, which is strawman proposal 2. Notice also
that if we can split the plug and central MXs we can roughly equalize the sum of the pull
and reformat time over all four segments. I have used strawman proposal 2 for all the 1991
timing estimates in this paper.

B Multiple Interactions

The number of data words in the DAQ pipeline will depend on the average number of extra
minimum bias interactions per hard collision. Using Poisson statistics and a minimum bia.s
cross section of 44 mb, Chris Wendt ha.s calculated that at a luminosity of 1031,,-lcm-1 ,

roughly 22% of our sta.ndard triggers will be single interactions, 33% will be double, 25%
will be triple, 12% will be quadruple, 5% will have quintuple interactions, and 2% will have
more than 5 interactions. Thus on average there will be roughly 0.33 + 2{.25} + 3{.12) +
4(.05) + 5(.02) = 1.5 extra minimum bias interactions in a standard event.

To estimate how many extra data words are produced by an extra minimum bias in·
teradion, we subtract the number of data words per event in a le,;,el 0 query run from the
number of data words per event in a minimum bias run. This subtracts off the detector
noise data words which would already be present in the event, and gives a rough estimate
of the extra words per extra interaction. Using run 20445, which was acquired with a level
o query trigger, we select those events which pass the BBC.lNTIME_YMON level 1 trigger,
and calculate the mean number of datawords per event averaged over the run. We do the
same for run 20445 without any additional trigger requirement, and subtract the two. The
distributions are not gaussia.n, and the RMS deviations are large. The results shown in
table 5, need to be multiplied by 1.5 to get an estimate of the additional number of words
expected in 1991. We need to subtract VTPD data, since the VTX has no pads. During the
1991 run we can expect an extra 15,000 words being pulled by the event builder and pushed
to level 3, and an extra 10,000 words being pulled by the VAX and written to tape.

11

c Livetime

The livetime fraction f of the complete COF da.ta. acquisition system, including the trigger ,
ca.n be factorized into individuallivetime fractions :

In this note we shall only consider two of these. First, the livetime fraction of the scanners
IS

1
f,ean = R T 1 + £:1 ,can

(5)

where RL'J is the rate of level 2 triggers and T,mn is the time required to scan a single event.
Second, the livetime fraction of the event builder depends on whether we are considering
a one or two event builder system. For both cases we define the dimensionless variable
z = ~/T"'n where l4uf = RL:lfu:an is the rate of events Howing into the scanner buffers ,
and Ten is the time required for a single event builder to pull, reformat 8.nd push a single
event in two-engine mode. From queueing theory[6] we can derive the livetime fra.ction of a
system with N event buffers and one server:

(6)

In our case there a.re four buffers per scanner so N = 4.)
With T". = 43 ms, and T.ton = 3 ms, we obtain the first four columns of table 9, which

gives the scanner and event builder livetime fractions &8 a function of Level 2 trigger rate. In
this approximation we have considered a single event builder running in two engine mode as
a single server, which is a reasonable assumption since both engines cannot perform identical
operations at the same time, they can only perform non·identical operations at the same
time and there is considerable waiting time. The level 3 input rate is given from the level 2
output rate times /.ea,,/",, ' We do not achieve level 3 input rate equal to the event builder
capability until the level 2 trigger rate is infinite, and the livetime fraction is 0%. To obtain
/_"/.w = 0.9 we must run the level 2 trigger at RL2 ~ 15 Hz. This will not achieve CDF's
stated goal of 90% totallivetime unles8 every other stage in the DAQ pipeline has a livetime
of 100%, which is unlikely indeed. If we wish to obtain the goal of 90% total livetime, it
would be wise to require Ina,,/"" = 0.95, which allows RL2 ~ 10 Hz.

With two event builders acting &8 independent servers of four buffers the livetime fraction
is given from queueing theory [6]:

(7)

Using equation (1) with T". ~ 46m" &8 discussed in appendix D, gives the last two columns
of table 9. For a system with two event builders, to obtain a combined scanner and event
builder livetime of I.to,,/en = 0.9, the level 2 trigger rate should be RL2 ~ 23 Hz. To
realistically attempt a total livetime fraction of 90%, we should try and obtain /'OlIn/ft. =
0.95, for which RL2 ~ 14 Hz.

12

)

I

)

)

D Two Event Builders

The system throughput can be incrca.scd if we consider using two event builders. Since
ea.ch event builder would be connected separately to half of the level 3 three processors, the
reformat a.nd push could proceed in parallel. An extra. pull time would be incurred during
the £radian of the time when the two event builders collided, which is approxima.tely the
single event builder output rate (15 Hz) times the event builder data pun time on the ca.ble
segment (13 ms), which gives a cable segment duty cycle of 15 X .013 R:: 0.2. Then the time
to proce .. two evenb, using two event builders I would be the single event builder execution
time (43 mo) plus the product of the cable segment duty cycle (0.2) and the data pull time
(13 ms) , which is just 43 + 0.2 x 13 ~ 46 ms. This is the effective server time, Tev601 for a.
single event builder in .. two event builder system. Thus we estimate an execution time of 23
ms per event, or .. rate capability of 43 Hz, for .. system with two event builders. Estimates
of the livetime are discussed in a.ppendix C and ta.bulated in table 9.

It should be noted that a two event builder system does not come for free. To implement
two event builders would require nOD· trivial changes to the Buffer Manager. Also, managing
a total of 18 error and control windows, for 18 event builder boards, might require improving
the existing control and error structure. We have yet to make and debug even a single event
builder in the nine board configuration.

References

[1] E. Barsotti et al., "FASTBUS Data Acquisition for CDF", Nuc!. Instr. and Meth.
A269(1988)82.

[2J A. W. Booth et al., "The CDF Event Builder" , IEEE Trans. on Nucl. Sci. NS-
34(1987)790.

[3J C. Day, "Buffer Manager Software Design", CDF Note 326, July 1985.

[4] A. W. Booth and P. K. Sinervo, "Software Specification for the Hardware Event
Builder", Event Builder Note SI, September 1987.

[5J IEEE standard FASTBUS, ANSI/IEEE Std 960-1986.

[6] Lee Holloway, "An Applica.tion of Queueing Theory to the CDF Data Acquisition Dead·
time Problem" , COF Note 536, August 1987.

13

Group Bank Crate Scanner Blocks Bank Words Data Words RMS
CTCD 3A-3F SSP 00-05 10 6906 6889 2566

CTC CFHD 3A SSP 00 10 385 368 0
CFWD 3A SSP 00 1 16 8 6
CEMD 11-12 MX 00-23 24 185 167 61
CEGD 11-12 MX 00-23 24 426 408 65
CESD 11-12 MX 00-23 24 1188 1170 382

CEN CHAD 11-12 MX 00-23 24 108 90 42
CHTD 11-12 MX 00-23 24 30 12 7
CCRD 11-12 MX 00-23 16 363 349 44
CMUD 11 MX 00-23 24 136 118 271

WALL WHAD 12 MX 24-25 24 103 85 39
WHTD 12 MX 24-25 24 24 6 5
PEMD 11-12 MX 26-37 24 911 893 173
PESD 11-12 MX 26-37 24 247 229 44)

PLUG PHAD 11-12 MX 26-37 24 740 722 118
PEAD 11-12 MX 26-37 8 209 199 40
PHWD 11-12 MX 26-37 24 226 208 38

MX TMXD 11-13 MX 00-59 60 204 168 0
CDT CDTD 13 MX 38-41 6 639 630 205

FEMD 13 MX 42-53 8 900 890 319
FOR FEAD 13 MX 42-53 8 731 721 109

FHXD 13 MX 42-53 8 397 387 103
FHAD 13 MX 42-53 8 526 516 192
FMSD 13 MX 54-55 8 178 168 180

I Suml24 5 I 63 439 I 15789 I 15412 I 3650 I

Extra TDe words before L3 reformatting) 6889 2566
Pulled I 24 I 5 I 63 I 439 I 22678 22302 6112

Table 1: Buu, lC&D.Derl, ud wordl on FANOUT_CABLE_l during the 1989 run.

)

14

)

)

Group Bank Crate Scanner Blocks Bank Words Data Words RMS
VPTC VTWD 21-22 SSP 08-09 8 4846 4831 2162

VTPD 23 SSP 13-14 8 4940 4925 1823
FMCD 29 SSP 19-20 8 31 16 0

FMU FMTD 29 SSP 19-20 2 521 512 0
FMUD 29 SSP 19-20 16 520 497 247
TAGC 07 SSP 24-27 0 964 950 0
TL2D 07 SSP 24 13 234 214 19
TLlD 07 SSP 25 3 82 72 0
TCSD 07 SSP 24 64 878 807 208
TRCD 07 SSP 25 10 369 352 0

TRIG TCMD 07 SSP 27 3 101 91 6
SCLD 07 SSP 26 15 566 544 0
LATD 07 SSP 26 3 19 9 0
BFLD 07 SSP 26 1 16 8 0
BBCD 07 SSP 27 2 145 136 0
BBLD 07 SSP 27 1 10 2 0
TFRD 07 SSP 26 1 13 5 0
TODD 07 SSP 27 1 15 7 0

Sum 18 5 10 159 14272 13980 4030
Extra TDC words (before L3 reformatting) 4831 2162
Pulled I 18 I 5 I 10 I 159 I 19103 18811 6160

Ta.ble 2: Banks, scanners, and word. on FANOUT.CABLE.2 during the 1989 run.

DAQ Stage Longwords RMS
Pulled on FANOUT_CABLE.l 22302 6112
Pulled on FANOUT.CABLE.2 18811 6160
Pushed to L3 41983 11774
Pulled to VAX 31493 7552

Table 3: The mean and Itandard deviation of the number of word. per event during the 1989 run. The
number pushed to level 3 equals the Dumber pulled on the two cables plua block pointers and bani. headers.

15

DAQ Source of words Longwords RMS
Unreformatted TDC bank, from FANOUT_CABLE_1 13777 5132
Other bank. from FANOUT_CABLE_1 8883 1570
Unreformatted TDC bank, from FANOUT_CABLE-2 9740 4365
Other bank. from FANOUT_CABLE-2 9426 1971
Level 3 Reform&tted TDC bank. 11753 4475
L3 Filter Module Output bank. 1275 295
Total Event Record 55011 16423
Recorded on Tape (no unreformatted TOe data) 31493 7552

Table 4: Sources of word. in the event record during the 1989 run. LeCr011879 TDC data i. reformatted
in level 3 (one word out for every two word. in) and only the reformatted data i. written to tape.

DAQ Stage Longwords RMS
Extra Pulled on FANOUT_CABLE_1 6000 5000
Extra Pulled on FANOUT_CABLE-2 6000 5000
Extra Pushed to L3 12000 10000
Extra Pulled to VAX 8000 6000

Bank. Longwords RMS
Extra CTCD 2100 2000
Extra VTWD 1700 1600
Extra VTPD 1600 1600
Extra FEMD 360 250
Extra FMUD 260 220
Extra FHAD 170 120
Extra FEAD 160 110
Extra FHXD 150 90
Extra CDTD 90 130
Extra PEMD 60 70
Extra PEMD 60 70
Extra CESD 50 150
Extra CEMD 30 30

Table 5: Rough estimates of the mean and RMS deviation of the number of extra data word. per extra
minimum bi .. interaction in an event (detector noi.e .ubtracted). To obtain the exha number of word. due
to multiple interaction. in 1991 you need to .ubhact the number of VTPD word. e.nd multiply the rCiult
by 1.6 interaction •. For extra word. pulled, CTCD and VTWD date. need to be multiplied by a factor of 2
to aeeount for llnreCormatted TDC data.

:6

)

)

Group Extra B anks Extra Scanners Extra Words
SVX SVXD 4 SSP, 4800
VTX - 2 SSP, 0

)
CPT CPTD 1 SSP 400
CPR CPRD - 200
CMX CMXD 2 MX. 200

WALL - 2 MX. -
Total 4 11 5600

T&ble 6: Extra bano, Icannen, and word. in 1991 over that in 1989.

)

17

Cable Segment Groups Bank. Scanners Words Pull Ref Sum
FANOUT_CABLE_l CEMD,CEGD

CEN CESD,CHAD 24 MX, 2600
CHTD,CCRD
CPRD,CMUD

WALL WHAD,WHTD 4 MX. 100
PEMD,PEAD

PLUG PESD,PHAD 12 MX. 2400
PHWD

MXl MX1D 100
Total 16 Bank. 40 MX, 5200 20 ms 19 ms 39 ms

FANOUT_CABLE.2 VTX VTWD 6 SSP, 15000
FMU FMCD,FMTD 2 SSP. 1400

FMUD
TAGC,TL2D
TLlD,TCSD

TRIG TRCD,TCMD 4 SSP, 3000
SCLD,LATD
BFLD,BBCD
BBLD,TFRD

TODD
Total 17 Bank, 12 SSP, 19000 17 ms 12 ms 29 ms

FANOULCABLE_3 CTC CTCD,CFHD 7 SSP, 21000
CFWD,CPTD

SVX SVXD 4 SSP, 4800
CMX CMXD 2 SSP, 200
Total 6 Bank, 13 SSP, 26000 20 rns 7 m, 27 IDS

FANOUT_CABLEA FEMD,FEAD
FOR FHAD,FHXD 14 MXs 3900

FMSD
CDT CDTD 4 MX, 700
MX2 MX2D 50
Total 7 Bank, 18 SSP, 4700 14 ms 9 ms 23 ms

Ta.ble 7: Shawman proposall for redistribution o!scanner. Cor the 1991 run. FANOUT_CABLE_l would
mue the lum of the pull and reformat time 39 mao The ettimated Dumber oC words pulled by the event
builder ine1udel multiple interactions and Dew component..

18

•

•

)

)

)

)

)

)

Cable Segment Groups Banks Scanners Words Pull Ref Sum
FANOUT_CABLE_l CEMD,CEGD

CEN CESD,CHAD 24 MX, 2600
CHTD,CCRD
CPRD,CMUD

WALL WHAD,WHTD 4 MX, 100
MXl MXlD 100
Tola.! 11 Bank. 28 MX, 2800 15 ms 13 rns 28 ms

FANOUT_CABLE-2 VTX VTWD 6 SSP, 15000
FMU FMCD,FMTD 2 SSP, 1400

FMUD
TAGC,TL2D
TLlD,TCSD

TRlG TRCD,TCMD 4 SSP, 3000
SCLD,LATD
BFLD,BBCD
BBLD,TFRD
TODD

Tola.! 17 Bank, 12 SSP, 19000 17 ms 12 ms 29 ms

I
FANOUT_CABLE_3 CTC CTCD,CFHD 7 SSP, 21000

CFWD,CPTD
SVX SVXD 4 SSP, 4800
CMX CMXD 2 SSP, 200
Tola.! 6 Bank. 13 SSP. 26000 20 ms 7 m. 27 ros

FANOUT_CABLEA FEMD,FEAD
FOR FHAD,FHXD 14 MX. 3900

FMSD
PLUG PESD,PHAD 12 MXs 2400

PEMD,PEAD
PHWD

CDT CDTD 4 MX, 700
MX2 MX2D 100
Tola.! 12 Banks 30 MX. 7100 18 rns 14 ms 32 ros

Ta.ble 8: Strawman propolal2 for redistribution or.canner. for the 1991 run. FANOUT_CABLEA would
make the lum or the pull and reformat time 31 mi. The ettimated number of word. pulled by the event
builder include. muhiple interactionl and new components.

19

Level 2 Scanner One EVB System Two EVB System
Output Livetime Llvetlme Level 3 Llvetlme Level S

(Hz) Fraction Fraction Input (Hz) Fraction Input (Hz)
10 0.971 0.981 9.5 0.997 9.7
11 0.968 0.975 10.4 0.996 10.6
12 0.965 0.967 11.2 0.994 11.5
13 0.962 0.958 12.0 0.992 12.4
14 0.960 0.948 12.7 0.990 13.3
15 0.957 0.937 13.4 0.988 14.2
16 0.954 0.925 14.1 0.985 15.0
17 0.951 0.912 14.8 0.982 15.9
18 0.949 0.899 15.4 0.979 16.7
19 0.946 0.885 15.9 0.975 17.5
20 0.943 0.871 16.4 0.971 18.3
21 0.941 0.856 16.9 0.967 19.1
22 0.938 0.841 17.4 0.963 19.9
23 0.935 0.826 17.8 0.958 20.6
24 0.933 0.811 18.1 0.953 21.3
25 0.930 0.796 18.5 0.947 22.0
26 0.928 0.781 18.8 0.942 22.7
27 0.925 0.766 19.1 0.936 23.4
28 0.923 0.751 19.4 0.930 24.0
29 0.920 0.737 19.7 0.924 24.6
30 0.917 0.723 19.9 0.918 25.3
31 0.915 0.709

,
20.1 0.911 25.8

32 0.912 0.695 20.3 0.904 26.4
33 0.910 0.682 20.5 0.898 27.0
34 0.907 0.669 20.7 0.891 27.5
35 0.905 0.657 20.8 0.884 28.0
36 0.903 0.645 20.9 0.877 28.5
37 0.900 0.633 21.1 0.870 29.0
38 0.898 0.622 21.2 0.863 29.4
39 0.895 0.610 21.3 0.856 29.9
40 0.893 0.600 21.4 0.849 30.3

Table 9: The eatimated livetime Ua.etiOD of the IcaDDen , and .. ODe (or two) event builder Iyltem in 1991 ,
i. ShOWD U .. function of the level 2 trisser rate. The estimate auumel a lean time of 3 m. ud .. lingle
event builder execution time of 43 1M. For a two eYeDt builder 'Yl tem, the elf'edive single event builder
execution time used wu 46 1M. Alto shown i. the level 3 input rate, equal to the level 2 output rate times
the product or the Icanuer and eYtDt builder livdime CractiOD"

20

•

)

)

)

)

)

)

Q')

EVENT BlJ1LnER PROGRAM FLOWCHART

Byffer Manager Crate Controller

(PULL_EVEN" ----> find free engi~ _
- -- - - - LPULL_EVEN" ---->

setup scoreboard
selup pull Inlo

Cable Controller

Kalready pulling
delay pull lode!.

else
check engine
setup puiliofo
(PREP _PUU]-->

get FP mastership <-­
enable ref to IIslen

6129/90

BefoanaUer

check engine
enable input to engine
(PREP_COMPLETE]

drop FP bus _______ _
- - - - - - - - - - - - loOp oversc8rine"i'S

b)
read status
read word count
clear status
start scanner read
loop until ds-dk-O

- - - - -- -- -- -- -- -- -- --gifFPmastersfilp - - -- -- -- ---

c')

ell

<---

update scoreboard <-­
il all pulled
(PUll_COMPLETE]

disable ret lislen bit
drop FP bus
[START_PROe] --->
[PULL_EVENT _ACK]
do any pending pull

<---

update scoreboard <--------­
il all processed
(PROC_COMPLETE]

update trigger Info
check engine state
setup YBOS headers
check data integrity
reformat event
(PROC_COMPlETE(

--------- ------------ ----
(PUSH_EVEN" ---->

EO)

setup push Info
If already pushing
delay push Indet.

"se
(PREP_PUSH] ------------->

update scoreboard <--------­
II aU prepared

- --- - -- - - - Cheaeagine ---

<----

for each ref
get FP mastership
turn on ref output bit
drop FPbus
start dma transfer
loop uatH ds-dk-O
get FP mastership
tum off ref output bit
drop FP bus
(PUSH_COMPLETE]---------->
(PUSH_COMPLETE(

turn on output enable
setup first dma location
(PREP_COMPLETE]

reset engine state

- - ._._ .- - - - - di:)any pendiiij"""pusti- - - -

Figure 1: Event Builder execution .tage. are illustrated by thia flow chart of Event Builder code.
a) Prepare to pull, b) data pull, e) pull completion, d) reformat, e) prepare to push, t) push to
level 3_ The Event Builder waits for mellages from the Buffer Manager between d) and e), and
between f) and a).

21

S!m Apnrox Time (ms) a) 1989 L3:
EVB·BFM·L3 Messages 18

Push to L3 10

Prepare to Push 15

EVB·BFM Messages 8

Reformat 30

Pull: Data Transfer 20

Pull: Scan. Comm. 35

Pull: EVB Overhead 4

One Engine Time 140ms

One Engine Rate 7Hz

24 Banks 18 Banks

b) 1991 L3:
SiGr

Approx.

S!m Tjme(ms)

EVB·BFM·L3 Mess. 10
Push to L3 13

Prepare to Push 5?

EVB·BFM Messages 6

Reformat 14 ?

Pull: Data Transfer 3

Pull: Scan. Comm. 10

Pull: EVB Overhead 5

One Engine Time 66ms
One Engine Rate 15 Hz
Two Engine Rate 23Hz ?

3K Words 19K Words 26K Words 7K Words L2 (90% Llvetime) 15 Hz

11 Banks 17 Banks 6 Banks 12 Banks L2 (95% Livetime) 10 Hz

{L2 (90% Llvetime) 23Hz
TwoEVB L2 (95% Livetime) 14 Hz

Figure 2: Sources oC event builder execution time, in a) 1989 aDd b) 1991, are listed and totalled.
Data flow i, schematically illUitrated: from the lean.nen, over crate and cable segments, into the

1
J

)

)

event builder (shaded), and on up to level 3.)

22

