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Abstract 

In the 1991 run, the rate out of level 2 will be limited by the rate capability of 
the Event Builder. Consequentially, we need a rough estimation of the Event Builder 
execution time immediately; a precise projection requires more of the final hardware 
and software in place. During the 1989 run the Event Builder rate capability was 
about 1 Hz in one engine mode. During the 1991 run, we estimate the rate capability 
of a single event builder will be roughly 23 Hz in two engine mode. This rate includes 
the effect of redistributing the scanners on four fanout cable segmentsj the proposed 
redistribution is presented. 

We have also estimated f.CGnfev/., the product of the scanner and event builder 
livetime fradions. Using the single event builder execution time of 43 milliseconds and 
an event scan time of 3 milliseconds, we estimate from queueing theory that if the 
level 2 trigger rate is 23 Hz, then I,con/cub will be only about 0.94 x 0.83 = 0.78. To 
obtain CDF's stated goal of 90% totallivetime fraction, it would be wise to maintain 
I,con/cub = 0.95, for which a one event builder system could only tolerate a level 2 
trigger rate of about 10 Hz. 

If we modify the CDF data acquisition system to accommodate two event builders 
we can have a larger level 2 trigger rate. For a two event builder system we estimate an 
event builder rate capability of 43 Hz. This system has significantly reduced deadtime. 
At a level 2 trigger rate of23 Hz the livetime has increased to 1'C4n/C'IJb = 0.94 x 0.96 = 
0.90. However, to obtain 1'C4n/cfJb = 0.95, even this system can only tolerate a level 
2 output rate of only 14 Hz. For a two event builder system, the dead time at these 
level 2 trigger rates is dominated by the 3 millisecond scan time. 
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1 Introduction 

The CDF hudware Event Builder[l, 2] pulls data from the front end scanners, reformats 
the data into YBOS bank structure, and pushes the data to level 3. The pull and push are 
initi&ted by FASTBUS messa.ges sent from the Buffer Manager[l, 31 to the Event Builder 's 
crate controller. The single crate controller board communicates with multiple re£ormatter 
boards and cable controller boards via a front panel message bus. In 1989 there were two 
reformatter boud., corresponding to two cable controller boards controlling two cable seg­
ments (FANOUT_CABLE_l and FANOULCABLE..2). In 1991 a .ingle event builder will 
contain one crate controller, four reforma.tters, and four cable controllers connected to four 
fanout cable segments. 

The hardware Event Builder execution time can be divided into the time required to 
perform the three main Event Builder functions: The pull time, the reformat time, and 
the push time. These times can be measured on a digital oscilloscope when the event 
builder is running in one engine mode: using only one of the two buffers per reformatter. We 
meuured these times in May 1988 with the Buffer Manager running on a JlVAX II, and we 
repeated the measurement in June 1990 with the Buffer Manager running on a VAX 3200. 
The following estimation comes from those me&5urements, personal recollections, and some 
educated guesses. For those who don't have time to re80d this estim8ote, the essential results 
are displ80yed in figure 2. 

2 Pull Time 

The time to pull events from the scanners (MXs 80nd SSPs) W&S an execution time bottleneck 
during the 1989 run, but will be significantly reduced for the 1991 rUD. The pull time can 
be subdivided into a prepare to pull time and an actual data pull time. 

2.1 EVB Overhead: Prepare to Pull 

The prepare to pull sequence is illustra.ted in figure la. The Event Builder crate controller 
receives a FASTBUS message (PULL_EVENT) from the Buffer Manager and sends a front 
panel message (PULL-EVENT) to each cable controller. Each cable controller then sends 
a. message (PREP-PULL) to its reformatter, which returns a. message when it is prepared 
for new data (PREP _COMPLETE); a.llowing the cable controller to begin the pull. The 
complete sequence, from receipt of the FASTBUS message (PULL-EVENT) to beginning 
the pull, presently takes a.bout 3.5 ms. With additional reformatter boa.rds, this time will 
increase to roughly 5 ms in 1991. 

2.2 Data Pull Time 

The data pull sequence is illustrated in figure lb. The data pull time can be subdivided 
into two stages: scanner communication time and data transfer time. 
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2.2.1 Scanner Communication 

During the 1989 run each scanner received four FASTBUS messages, each within a separate 
AS-AK lock[51. These messagcs required approximately 0.55 ms per 8ca.nner. In 1989 
FANOUT_CABLE_l had 63 scanners (see table I), which all went to a single reformatter, 
a.nd gave & total. scanner communication time of 63 x 0.55 R: 35 ms. This time dominated 
the pull time. 

Two improvements to the scanner communication time are being made for the 1991 fun. 

First , the messages can be sent in a reduced number of AS-AK locks , which should be able to 
reduce the scanner communication time to a few hundred ps. These improvements, already 
begun, have reduced the MX communication time to 0.33 ms and the SSP communication 
time to 0.38 ms. Second, the number of cable segments tha.t the scanners are distributed 
over, will be doubled from two to four. With a. more sensible distribution of the 83 sca.nners 
anticipa.ted in 1991, we should be a.ble to reduce the maximum number of scanners on 
the slowest cable segment to 30 MXs (see a.ppendix A). With these two improvements we 
should be a.ble to reduce the scanner communication time on the slowest segment to roughly 
30 x 0.33 '" 10 m •. 

2.2.2 Data Transfer 

During the 1989 run the da.ta. was transferred in Block 'I'ramfer Mode[5]: a handshake was 
required for the transmission of a single data. word. First the Event Builder asserted Data 
Sync (DS) and Read (RD), then it waited for the SSP to ... ert Data Acknowledge (DK) and 
place the da.t& word on the Address/ Data line, before proceeding with another DS and RD. 
The Block Transfer Mode required approxima.tely 0.9 J1S per word, and there was roughly 
2.2 x 10" words on FANOUT_CABLE_1 (see table 3), resulting in a data transfer time of 
about 20 ms during the 1989 run. 

The data transfer time per word will be speeded up in the 1991 run by transferring the 
da.ta in Pipeline Mode[5], in which no handshake is required. The Event Builder will assert 
DS and RD and then almost immedi8.teiy assert another DS a.nd RD, without w&iting for 
8. DK response. Pipeline mode hu a.lrea.dy been implemented, and has reduced the data 
transfer time to about 0.31 J1S per word. With the introduction of two new cable segments, 
and a sensible redistribution of scanners (see a.ppendix A) we should be able to reduce 
the number of words being transferred on the slowest cable segment to a.bout 1000 words, 
corresponding to a da.ta transfer time of about 2.5 ms in 1991. Other cable segments would 
carry more words, but they would ha.ve much fewer scanners, so their pull plus reformat 
time would not be the dominant one. 

2.3 Pull Completion 

The pull completion sequence is illustrated in figure 1c. After scanner data on a single cable 
segment has been pulled into a reformatter the cable controller sends a front panel message to 
the reformatter (START.PROC) and the crate controller (PULL_EVENT..ACK). The crate 
controller updates the scoreboard and wa.its for all cable controllers to return front panel 
mess.ge. (PULL..EVENT..ACK) before it .end. a FASTBUS me .. age (PULL_COMPLETE) 
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to the Buffer Manager. Since reformatting begins immediately on receipt of the data, the -, 
pull completion sequence time of around 2.5 ms does not affect the total pull time. 

2.4 Total Pull Time Summary 

Summing the prepare to pull time, the scanner communication time and the data 
transfer time gives a total pull time of about 3.5 + 35 + 20 :::::: 59 ms in 1989. With the 
addition of two new cable segments, reduced scanner communication time, and reduced data 
transfer time, the total pull time should only be about 5 + 10 + 2.5 :::::: 18 ms in 1991. This 
is the pull time on the cable segment with the largest total pull plus reformat time (see 
appendix A). 

3 Reformat Time 

The reforma.tting sequence is illustrated in figure Id. The reformatter does not actually 
rearrange the data, it merely builds YBOS bank headers and a table of block pointers to 
the event data. During the push stage the table of block pointers is used to push the data 
in the order prescribed for the given detector component YBOS bank. 

Reformatting begins on a segment of the data as soon as a cable controller finishes pulling 
data from all its scanners and sends a front panel message to its reformatter (START-PROC). 
After all reformatters have finished reformatting the event, and have each sent a front panel 
message to the crate controller (PROC_COMPLETE), the crate controller sends a FASTBUS ) 
me ... ge (PROCESSING_COMPLETE) to the Buffer M.anage, indicating that reformatting 
is done. 

The reforma.tting time depends mainly on the number of sca.nners read a.nd the number 
of bank headers constructed. The reformatting code[4] call. REF_BUILD_DBANKS, which 
loops over scanners constructing block pointers, and then calls REF_BUILD_HEADERS, 
which loops over banks constructing bank headers. As discussed in appendix A, it appears 
that the reformatting time is linearly proportional to the number of banks and also linearly 
proportional to the number of scanners. This isn't unreasonable, because there is a. strong 
correl&tion between the number of scanners and the number of block pointers constructed. 
During the 1989 run, with 63 scanners and 24 banks on the busiest c&ble segment, the re­
form&t time was roughly 30 ms with the most optimized code. In 1991, with the scanners 
redistributed &cross four cable segments, the slowest cable segment could have only 30 scan­
ners and 12 banks, which will reduce the reformatting time to roughly 14 ms with the most 
optimized code (.ee appendix A). 

4 Push Time 

The push sequence can be subdivided into four stages: initial push messages between 
the Event Builder and the Buffer Manager, the prepare to push in the Event Builder, the 
actual push to level 3, and final push messages between the Event Builder, the buffer 
ma.nager a.nd level 3. ) 
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4.1 Initial Push Messages 

After the Event Builder finishes reformatting, it sends 8. message (PROCESSING_COMPLETE) 
to the Buffer Manager, which checks that level 3 has a free node to accept the data, and 
then returns a message (PUSH...EVENT) to the Event Builder. This sequence took about 8 
rns with the Buffer Manager running on a ~VAX II, during the first half of the 1989 rUD, 

and takes about 6 ms with the Buffer Manager running on a. VAX 3200, during the second 
hal! of the 1989 run and as planned for the 1991 run. 

4.2 Prepare to Push 

The prepa.re to push sequence is illustrated in figure Ie. After receipt of the PUSH...EVENT 
message, the crate controller sends a front panel message (PREP -PUSH) to each reformatter. 
The reformatters then copy the table of block pointers to a.n internal Direct Memory Access 
(DMA) table, where it is used to push the data to level 3 in the correct YBOS order. In 
1991 the pointers will be copied to a DMA table as they are calculated, virtually eliminating 
the prepare to push time. The prepa.re to push time was about 15 ms during the 1989 run, 
and should be reduced to less than 5 ms in 1991. 

4.3 Push to Level 3 

The push sequence is illustrated in figure 1£. During the 1989 run the push took about 10 
ms, corresponding roughly to the Branch Bus bandwidth of 20 MBytes / sec (200 ns/word) 
and about 42,000 words per event (see table 3). Currently the path from the Event Builder 
to Level 3 involves a Branch Bus and a VME to Silicon Graphics interface called 102. This 
combination has a bandwidth of only 7 MBytes/sec, but the 102 will be replaced with a 
device called 103, which should allow use of the full Branch Bus bandwidth of 20 MBytes/ sec. 
This should allow the same bandwidth to level 3 as in the 1989 run. Including multiple 
interactions (see appendix B and table 5), and extra words from new detector components 
(see table 6), we expect about 15,000 extra words pushed to level 3 in 1991. This is roughly 
35% more words than in 1989. Assuming we can achieve the same bandwidth to level 3 that 
we did in 1989, the push should only take about 35% more time in 1991 than in 1989, so we 
estimate about 13 ms for the push to level 3. 

4.4 Final Push Messages 

After pu.hing the data to Level 3, the Event Builder .end. a me .. age (PUSH_COMPLETE) 
to the Buffer Manager, which in turn .end. a message (START-PROCESSING) to Level 
3. After sending the START..PROCESSING message, the Buffer Manager completes the 
cycle by awakening its internal Event Manager[3] assigned for the new event. The Buffer 
Manager then sends a message (PULL....EVENT) to the Event Builder for the new event. 
This sequence took about 18 ms on a p,VAX II, during the first half of the 1989 run, and 
takes about 10 ms with the Buffer Manager running on a VAX 3200, during the second half 
of the 1989 run and as planned for the 1991 run. 
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4.5 Total Push Time Summary 

Summing the fout components of the push time gives a. total push time oC about 8 + 15 + 10 + 
18 = 51 ma during the first half of the 1989 run. In 1991, initial and final message times will 
be about what they were during the second half of the 1989 run, with the Buffer Ma.nager 
running on a. VAX 3200. The prcpa.re to push time should he greatly reduced, however the , 
amount of da.h. pushed will probably increase. We estimate the total push time, including 
messa.ge overhead, will be roughly 6 + 5 + 13 + 10 = 34 ma in 1991. 

5 One and Two Engine Mode 

During the 1989 run the Event Builder used only one reforma.tting engine for each reformat· 
tel. During the 1991 Iun it will be ncccsslLrY to usc both reformatting engines. A single 
event builder's two engines can simultaneously perform any two of the three functions: pull , 
reformat and push. For eX&mple, while the data from one event on a cable segment is 
being pushed from one engine's buffer to level 3, the data from the next event on the same 
cable segment can be pulled into the second engine's buffer and reformatted. This should 
greatly speed up the Event Builder rates, however, a factor of 2 cannot be expected because 
at times one engine will have to wait for the other engine to complete. Also, there is only a 
single crate controller, so a two engine event builder does not correspond to two independent 
servers in queueing theory{6]. We have mea.sured for a single cable segment (with 5 SSPs 
and 6 MXs) a rate in two engine mode which is ~ times the rate in one engine mode. The ) 
ratio of the two engine rate to the one engine rate depends sensitively on how long each of 
the individual stages takes, and is likely to be smaller than ~ in the full system. We assume, 
somewhat arbitrarily, that the two engine rate will be ~ times the one engine rate. 

6 Summary 

The Event Builder execution time in one engine mode during the 1989 run is summarized 
in figure 2a. Clearly the total pull time was the longest single t ime, however the other 
times were not negligible. The total Event Builder execution time w~ roughly 140 ms, 
corresponding to a rate capability of 7 Hz. 

As described in the text, the following improvements to the data acquisition system will 
increase the Event Builder rate capability in 1991: 

• Two additional reformatters, cable controllers, and fanout cable segments, coupled 
with an optimized redistribution of scanners on the cable segments, will reduce the 
pull time and reformat time. 

• More efficient scanner communication, and data. transfer in pipeline mode, will reduce 
the pull time. 

• Directly loading the block pointers as they are calculated will virtually eliminate the 
prepare to push time. 

8 

) 



/ 

) 

) 

The execution time in one engine mode estimated for the 1991 rUD , summarized in fig­
ure 2b, is roughly 65 ms corresponding to a. rate capability of 15 Hz. Multiplying by a {actor 
of ~ we find that the estimated Event Builder rate capability, in two engine mode during the 
1991 run, is roughly 23 Hz. The livetime fraction while running at this ratc, and at other 
level 2 trigger rates, is discussed in appendix C. For a combined sea.nner and event builder 
livetime fraction of f.t:tJnfevl, ;: 0.90, a single event builder can only tolerate a level 2 trigger 
rate of 15 Hz. 

I{ this rate is unacceptably low, we can consider running with two event builders. An 
cstima.te of the rate capability using two event builders is discussed in appendix D and the 
livetime is discussed in appendix C. For J.can/""" = 0.90, a two event builder system can 
only tolerate a level 2 output rate of 23 Hz. To obtain CDF's stated goal of 90% total 
DAQ system livetime fraction, we had better strive for f,ean/n. = 0.95, for which a one 
event builder system can only tolerate a level 2 trigger rate of about 10 Hz, and a two event 
builder system can only tolerate a level 2 trigger rate of about 14 Hz. 
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Appendix 

A Proposed Redistribution of Scanners 

During the 1989 run the scanners were distributed on FANOUT_CABLE_l and 
FANOULCABLE..2 .. indicated in table 1 and table 2 respectively. Table 3 gives the total 
number of datawords pulled into the event builder from each cable segment, and table 4 
shows the sources of all words within the data acquisition system. The data in all {OUI tables 
comes from ea.rly in run 20007, when the luminosity was roughly 1.5 X l030,,-lcm- 2i • This 
run used a standard trigger table (2856). 

Compared to FANOULCABLE..2, FANOULCABLE_1 carried 6 times the number of 
scanners, 30% more banks, and 20% more data words. This resulted in FANOUT_CABLE_l 
setting the pull a.nd reformat time. 

During the 1991 Iun we will have two additional cable segments which I will call 
FANOUT_CABLE..3 and FANOUT_CABLEA. We want to redistribute the existing scanners 
over the four cable segments, and assign the new scanners listed in table 6, in a way that 
minimizes the event builder execution time. The push time does not playa part in this 
minimization, since the event builder waits for e&eh reformatter to complete before pushing 
to levd 3. We want to minimize the sum of the pull time and reformat time, and we ) 
accomplish this by minimizing the sum for the slowest cable segment. 

As discussed in section 2, the time to pull data from the scanners into the event builder 
on a given cable segment during the 1991 run will be approximately: 

T"ull(m.) = 5 + (0.33 x NMX ) + (0 .38 x Nssp ) + (0.37 X NKW~'. ) (1) 

where N MX and Nssp and NKWor,u are the number of MXs and SSPs and Kilowords (1000 
words) on the cable segment respectively. 

As disculSed in section 3, the time to reformat data on a cable segment should depend 
mainly on the number of scanners and the number of banks. Meaaurements of the reformat­
ting time in June 1990, using non-optimized code, indicate the reformatting time on a given 
cable segment is roughly estima.ted by the simple relation: 

(2) 

where T""'nJa and T,cannn' are the reformatting time per bank and per scanner respectively, and 
N""'nJa and N.cannn' are the number of bub and scanners on the cable segment respectively. 
Measurements indica.te tha.t the reformat time for MXs and SSPs are roughly the same and 
that 

(3) 

The reformat time on FANOUT_CABLE_l, using the most optimized code during the 1989 
run, was roughly 30 ms for 63 scanners a.nd 24 b&nk.s. Using this information in equa.tions 
(2) and (3) we estimate the reformatting time per scanner will be T'CGnne? ~ ,3m" , Using ) 
this time and equations (I), (2) and (3), we can estimate the pull and reformat time for 
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any distribution of scanners. However, we are not free to make a.ny possible distribution, 
because the event builder requires that all scanners that contain data. for a. single bank (such 
as CEMD) must be on the same cable segment. This immediately determines the indivisible 
groups of stanners shown in table 1 and table 2. Note that in order to redistribute some 
of the MXs on FANOUT_CABLE_l to another cable, we ha.ve ha.d to violate this rule for 
the single bank TMXD (timing information for all MXs), which will have to be split into 
two banks: MXID and MX2D. There is one other consideration guiding our redistribution: 
it would be convenient, though not a.bsolutely necessa.ry, if we could keep the central, wail, 
and plug MXs on the same cable segment in order for us not to have to introduce any new 
FASTBUS crates for MEPs. With that consideration in mind we have constructed strawman 
proposal 1, shown in table 7, which ha.s a pull plus reformat time of roughly 39 ms. If 
we are allowed to split the plug and central MX's over two cable segments we can cut this 
down to roughly 32 ms, as shown in table 8, which is strawman proposal 2. Notice also 
that if we can split the plug and central MXs we can roughly equalize the sum of the pull 
and reformat time over all four segments. I have used strawman proposal 2 for all the 1991 
timing estimates in this paper. 

B Multiple Interactions 

The number of data words in the DAQ pipeline will depend on the average number of extra 
minimum bias interactions per hard collision. Using Poisson statistics and a minimum bia.s 
cross section of 44 mb, Chris Wendt ha.s calculated that at a luminosity of 1031,,-lcm-1 , 

roughly 22% of our sta.ndard triggers will be single interactions, 33% will be double, 25% 
will be triple, 12% will be quadruple, 5% will have quintuple interactions, and 2% will have 
more than 5 interactions. Thus on average there will be roughly 0.33 + 2{.25} + 3{.12) + 
4(.05) + 5( .02) = 1.5 extra minimum bias interactions in a standard event. 

To estimate how many extra data words are produced by an extra minimum bias in· 
teradion, we subtract the number of data words per event in a le,;,el 0 query run from the 
number of data words per event in a minimum bias run. This subtracts off the detector 
noise data words which would already be present in the event, and gives a rough estimate 
of the extra words per extra interaction. Using run 20445, which was acquired with a level 
o query trigger, we select those events which pass the BBC.lNTIME_YMON level 1 trigger, 
and calculate the mean number of datawords per event averaged over the run. We do the 
same for run 20445 without any additional trigger requirement, and subtract the two. The 
distributions are not gaussia.n, and the RMS deviations are large. The results shown in 
table 5, need to be multiplied by 1.5 to get an estimate of the additional number of words 
expected in 1991. We need to subtract VTPD data, since the VTX has no pads. During the 
1991 run we can expect an extra 15,000 words being pulled by the event builder and pushed 
to level 3, and an extra 10,000 words being pulled by the VAX and written to tape. 
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c Livetime 

The livetime fraction f of the complete COF da.ta. acquisition system, including the trigger , 
ca.n be factorized into individuallivetime fractions : 

In this note we shall only consider two of these. First, the livetime fraction of the scanners 
IS 

1 
f,ean = R T 1 + £:1 ,can 

(5) 

where RL'J is the rate of level 2 triggers and T,mn is the time required to scan a single event. 
Second, the livetime fraction of the event builder depends on whether we are considering 
a one or two event builder system. For both cases we define the dimensionless variable 
z = ~/T"'n where l4uf = RL:lfu:an is the rate of events Howing into the scanner buffers , 
and Ten is the time required for a single event builder to pull, reformat 8.nd push a single 
event in two-engine mode. From queueing theory[6] we can derive the livetime fra.ction of a 
system with N event buffers and one server: 

(6) 

In our case there a.re four buffers per scanner so N = 4. ) 
With T". = 43 ms, and T.ton = 3 ms, we obtain the first four columns of table 9, which 

gives the scanner and event builder livetime fractions &8 a function of Level 2 trigger rate. In 
this approximation we have considered a single event builder running in two engine mode as 
a single server, which is a reasonable assumption since both engines cannot perform identical 
operations at the same time, they can only perform non·identical operations at the same 
time and there is considerable waiting time. The level 3 input rate is given from the level 2 
output rate times /.ea,,/",, ' We do not achieve level 3 input rate equal to the event builder 
capability until the level 2 trigger rate is infinite, and the livetime fraction is 0%. To obtain 
/_"/.w = 0.9 we must run the level 2 trigger at RL2 ~ 15 Hz. This will not achieve CDF's 
stated goal of 90% totallivetime unles8 every other stage in the DAQ pipeline has a livetime 
of 100%, which is unlikely indeed. If we wish to obtain the goal of 90% total livetime, it 
would be wise to require Ina,,/"" = 0.95, which allows RL2 ~ 10 Hz. 

With two event builders acting &8 independent servers of four buffers the livetime fraction 
is given from queueing theory [6]: 

(7) 

Using equation (1) with T". ~ 46m" &8 discussed in appendix D, gives the last two columns 
of table 9. For a system with two event builders, to obtain a combined scanner and event 
builder livetime of I.to,,/en = 0.9, the level 2 trigger rate should be RL2 ~ 23 Hz. To 
realistically attempt a total livetime fraction of 90%, we should try and obtain /'OlIn/ft. = 
0.95, for which RL2 ~ 14 Hz. 
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D Two Event Builders 

The system throughput can be incrca.scd if we consider using two event builders. Since 
ea.ch event builder would be connected separately to half of the level 3 three processors, the 
reformat a.nd push could proceed in parallel. An extra. pull time would be incurred during 
the £radian of the time when the two event builders collided, which is approxima.tely the 
single event builder output rate (15 Hz) times the event builder data pun time on the ca.ble 
segment (13 ms), which gives a cable segment duty cycle of 15 X .013 R:: 0.2. Then the time 
to proce .. two evenb, using two event builders I would be the single event builder execution 
time (43 mo) plus the product of the cable segment duty cycle (0.2) and the data pull time 
(13 ms) , which is just 43 + 0.2 x 13 ~ 46 ms. This is the effective server time, Tev601 for a. 
single event builder in .. two event builder system. Thus we estimate an execution time of 23 
ms per event, or .. rate capability of 43 Hz, for .. system with two event builders. Estimates 
of the livetime are discussed in a.ppendix C and ta.bulated in table 9. 

It should be noted that a two event builder system does not come for free. To implement 
two event builders would require nOD· trivial changes to the Buffer Manager. Also, managing 
a total of 18 error and control windows, for 18 event builder boards, might require improving 
the existing control and error structure. We have yet to make and debug even a single event 
builder in the nine board configuration. 
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Group Bank Crate Scanner Blocks Bank Words Data Words RMS 
CTCD 3A-3F SSP 00-05 10 6906 6889 2566 

CTC CFHD 3A SSP 00 10 385 368 0 
CFWD 3A SSP 00 1 16 8 6 
CEMD 11-12 MX 00-23 24 185 167 61 
CEGD 11-12 MX 00-23 24 426 408 65 
CESD 11-12 MX 00-23 24 1188 1170 382 

CEN CHAD 11-12 MX 00-23 24 108 90 42 
CHTD 11-12 MX 00-23 24 30 12 7 
CCRD 11-12 MX 00-23 16 363 349 44 
CMUD 11 MX 00-23 24 136 118 271 

WALL WHAD 12 MX 24-25 24 103 85 39 
WHTD 12 MX 24-25 24 24 6 5 
PEMD 11-12 MX 26-37 24 911 893 173 
PESD 11-12 MX 26-37 24 247 229 44 ) 

PLUG PHAD 11-12 MX 26-37 24 740 722 118 
PEAD 11-12 MX 26-37 8 209 199 40 
PHWD 11-12 MX 26-37 24 226 208 38 

MX TMXD 11-13 MX 00-59 60 204 168 0 
CDT CDTD 13 MX 38-41 6 639 630 205 

FEMD 13 MX 42-53 8 900 890 319 
FOR FEAD 13 MX 42-53 8 731 721 109 

FHXD 13 MX 42-53 8 397 387 103 
FHAD 13 MX 42-53 8 526 516 192 
FMSD 13 MX 54-55 8 178 168 180 

I Suml24 5 I 63 439 I 15789 I 15412 I 3650 I 

Extra TDe words before L3 reformatting) 6889 2566 
Pulled I 24 I 5 I 63 I 439 I 22678 22302 6112 

Table 1: Buu, lC&D.Derl, ud wordl on FANOUT_CABLE_l during the 1989 run. 

) 
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Group Bank Crate Scanner Blocks Bank Words Data Words RMS 
VPTC VTWD 21-22 SSP 08-09 8 4846 4831 2162 

VTPD 23 SSP 13-14 8 4940 4925 1823 
FMCD 29 SSP 19-20 8 31 16 0 

FMU FMTD 29 SSP 19-20 2 521 512 0 
FMUD 29 SSP 19-20 16 520 497 247 
TAGC 07 SSP 24-27 0 964 950 0 
TL2D 07 SSP 24 13 234 214 19 
TLlD 07 SSP 25 3 82 72 0 
TCSD 07 SSP 24 64 878 807 208 
TRCD 07 SSP 25 10 369 352 0 

TRIG TCMD 07 SSP 27 3 101 91 6 
SCLD 07 SSP 26 15 566 544 0 
LATD 07 SSP 26 3 19 9 0 
BFLD 07 SSP 26 1 16 8 0 
BBCD 07 SSP 27 2 145 136 0 
BBLD 07 SSP 27 1 10 2 0 
TFRD 07 SSP 26 1 13 5 0 
TODD 07 SSP 27 1 15 7 0 

Sum 18 5 10 159 14272 13980 4030 
Extra TDC words (before L3 reformatting) 4831 2162 
Pulled I 18 I 5 I 10 I 159 I 19103 18811 6160 

Ta.ble 2: Banks, scanners, and word. on FANOUT.CABLE.2 during the 1989 run. 

DAQ Stage Longwords RMS 
Pulled on FANOUT_CABLE.l 22302 6112 
Pulled on FANOUT.CABLE.2 18811 6160 
Pushed to L3 41983 11774 
Pulled to VAX 31493 7552 

Table 3: The mean and Itandard deviation of the number of word. per event during the 1989 run. The 
number pushed to level 3 equals the Dumber pulled on the two cables plua block pointers and bani. headers. 
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DAQ Source of words Longwords RMS 
Unreformatted TDC bank, from FANOUT_CABLE_1 13777 5132 
Other bank. from FANOUT_CABLE_1 8883 1570 
Unreformatted TDC bank, from FANOUT_CABLE-2 9740 4365 
Other bank. from FANOUT_CABLE-2 9426 1971 
Level 3 Reform&tted TDC bank. 11753 4475 
L3 Filter Module Output bank. 1275 295 
Total Event Record 55011 16423 
Recorded on Tape (no unreformatted TOe data) 31493 7552 

Table 4: Sources of word. in the event record during the 1989 run. LeCr011879 TDC data i. reformatted 
in level 3 (one word out for every two word. in) and only the reformatted data i. written to tape. 

DAQ Stage Longwords RMS 
Extra Pulled on FANOUT_CABLE_1 6000 5000 
Extra Pulled on FANOUT_CABLE-2 6000 5000 
Extra Pushed to L3 12000 10000 
Extra Pulled to VAX 8000 6000 

Bank. Longwords RMS 
Extra CTCD 2100 2000 
Extra VTWD 1700 1600 
Extra VTPD 1600 1600 
Extra FEMD 360 250 
Extra FMUD 260 220 
Extra FHAD 170 120 
Extra FEAD 160 110 
Extra FHXD 150 90 
Extra CDTD 90 130 
Extra PEMD 60 70 
Extra PEMD 60 70 
Extra CESD 50 150 
Extra CEMD 30 30 

Table 5: Rough estimates of the mean and RMS deviation of the number of extra data word. per extra 
minimum bi .. interaction in an event (detector noi.e .ubtracted). To obtain the exha number of word. due 
to multiple interaction. in 1991 you need to .ubhact the number of VTPD word. e.nd multiply the rCiult 
by 1.6 interaction •. For extra word. pulled, CTCD and VTWD date. need to be multiplied by a factor of 2 
to aeeount for llnreCormatted TDC data. 
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Group Extra B anks Extra Scanners Extra Words 
SVX SVXD 4 SSP, 4800 
VTX - 2 SSP, 0 

) 
CPT CPTD 1 SSP 400 
CPR CPRD - 200 
CMX CMXD 2 MX. 200 

WALL - 2 MX. -
Total 4 11 5600 

T&ble 6: Extra bano, Icannen, and word. in 1991 over that in 1989. 

) 
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Cable Segment Groups Bank. Scanners Words Pull Ref Sum 
FANOUT_CABLE_l CEMD,CEGD 

CEN CESD,CHAD 24 MX, 2600 
CHTD,CCRD 
CPRD,CMUD 

WALL WHAD,WHTD 4 MX. 100 
PEMD,PEAD 

PLUG PESD,PHAD 12 MX. 2400 
PHWD 

MXl MX1D 100 
Total 16 Bank. 40 MX, 5200 20 ms 19 ms 39 ms 

FANOUT_CABLE.2 VTX VTWD 6 SSP, 15000 
FMU FMCD,FMTD 2 SSP. 1400 

FMUD 
TAGC,TL2D 
TLlD,TCSD 

TRIG TRCD,TCMD 4 SSP, 3000 
SCLD,LATD 
BFLD,BBCD 
BBLD,TFRD 

TODD 
Total 17 Bank, 12 SSP, 19000 17 ms 12 ms 29 ms 

FANOULCABLE_3 CTC CTCD,CFHD 7 SSP, 21000 
CFWD,CPTD 

SVX SVXD 4 SSP, 4800 
CMX CMXD 2 SSP, 200 
Total 6 Bank, 13 SSP, 26000 20 rns 7 m, 27 IDS 

FANOUT_CABLEA FEMD,FEAD 
FOR FHAD,FHXD 14 MXs 3900 

FMSD 
CDT CDTD 4 MX, 700 
MX2 MX2D 50 
Total 7 Bank, 18 SSP, 4700 14 ms 9 ms 23 ms 

Ta.ble 7: Shawman proposall for redistribution o!scanner. Cor the 1991 run. FANOUT_CABLE_l would 
mue the lum of the pull and reformat time 39 mao The ettimated Dumber oC words pulled by the event 
builder ine1udel multiple interactions and Dew component.. 
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Cable Segment Groups Banks Scanners Words Pull Ref Sum 
FANOUT_CABLE_l CEMD,CEGD 

CEN CESD,CHAD 24 MX, 2600 
CHTD,CCRD 
CPRD,CMUD 

WALL WHAD,WHTD 4 MX, 100 
MXl MXlD 100 
Tola.! 11 Bank. 28 MX, 2800 15 ms 13 rns 28 ms 

FANOUT_CABLE-2 VTX VTWD 6 SSP, 15000 
FMU FMCD,FMTD 2 SSP, 1400 

FMUD 
TAGC,TL2D 
TLlD,TCSD 

TRlG TRCD,TCMD 4 SSP, 3000 
SCLD,LATD 
BFLD,BBCD 
BBLD,TFRD 
TODD 

Tola.! 17 Bank, 12 SSP, 19000 17 ms 12 ms 29 ms 

I 
FANOUT_CABLE_3 CTC CTCD,CFHD 7 SSP, 21000 

CFWD,CPTD 
SVX SVXD 4 SSP, 4800 
CMX CMXD 2 SSP, 200 
Tola.! 6 Bank. 13 SSP. 26000 20 ms 7 m. 27 ros 

FANOUT_CABLEA FEMD,FEAD 
FOR FHAD,FHXD 14 MX. 3900 

FMSD 
PLUG PESD,PHAD 12 MXs 2400 

PEMD,PEAD 
PHWD 

CDT CDTD 4 MX, 700 
MX2 MX2D 100 
Tola.! 12 Banks 30 MX. 7100 18 rns 14 ms 32 ros 

Ta.ble 8: Strawman propolal2 for redistribution or.canner. for the 1991 run. FANOUT_CABLEA would 
make the lum or the pull and reformat time 31 mi. The ettimated number of word. pulled by the event 
builder include. muhiple interactionl and new components. 
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Level 2 Scanner One EVB System Two EVB System 
Output Livetime Llvetlme Level 3 Llvetlme Level S 

(Hz) Fraction Fraction Input (Hz) Fraction Input (Hz) 
10 0.971 0.981 9.5 0.997 9.7 
11 0.968 0.975 10.4 0.996 10.6 
12 0.965 0.967 11.2 0.994 11.5 
13 0.962 0.958 12.0 0.992 12.4 
14 0.960 0.948 12.7 0.990 13.3 
15 0.957 0.937 13.4 0.988 14.2 
16 0.954 0.925 14.1 0.985 15.0 
17 0.951 0.912 14.8 0.982 15.9 
18 0.949 0.899 15.4 0.979 16.7 
19 0.946 0.885 15.9 0.975 17.5 
20 0.943 0.871 16.4 0.971 18.3 
21 0.941 0.856 16.9 0.967 19.1 
22 0.938 0.841 17.4 0.963 19.9 
23 0.935 0.826 17.8 0.958 20.6 
24 0.933 0.811 18.1 0.953 21.3 
25 0.930 0.796 18.5 0.947 22.0 
26 0.928 0.781 18.8 0.942 22.7 
27 0.925 0.766 19.1 0.936 23.4 
28 0.923 0.751 19.4 0.930 24.0 
29 0.920 0.737 19.7 0.924 24.6 
30 0.917 0.723 19.9 0.918 25.3 
31 0.915 0.709 

, 
20.1 0.911 25.8 

32 0.912 0.695 20.3 0.904 26.4 
33 0.910 0.682 20.5 0.898 27.0 
34 0.907 0.669 20.7 0.891 27.5 
35 0.905 0.657 20.8 0.884 28.0 
36 0.903 0.645 20.9 0.877 28.5 
37 0.900 0.633 21.1 0.870 29.0 
38 0.898 0.622 21.2 0.863 29.4 
39 0.895 0.610 21.3 0.856 29.9 
40 0.893 0.600 21.4 0.849 30.3 

Table 9: The eatimated livetime Ua.etiOD of the IcaDDen , and .. ODe (or two) event builder Iyltem in 1991 , 
i. ShOWD U .. function of the level 2 trisser rate. The estimate auumel a lean time of 3 m. ud .. lingle 
event builder execution time of 43 1M. For a two eYeDt builder 'Yl tem, the elf'edive single event builder 
execution time used wu 46 1M. Alto shown i. the level 3 input rate, equal to the level 2 output rate times 
the product or the Icanuer and eYtDt builder livdime CractiOD" 
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EVENT BlJ1LnER PROGRAM FLOWCHART 

Byffer Manager Crate Controller 

(PULL_EVEN" ----> find free engi~ _ 
- -- - - - LPULL_EVEN" ----> 

setup scoreboard 
selup pull Inlo 

Cable Controller 

Kalready pulling 
delay pull lode!. 

else 
check engine 
setup puiliofo 
(PREP _PUU]--> 

get FP mastership <-­
enable ref to IIslen 

6129/90 

BefoanaUer 

check engine 
enable input to engine 
(PREP_COMPLETE] 

drop FP bus _______ _ 
- - - - - - - - - - - - loOp oversc8rine"i'S 

b) 
read status 
read word count 
clear status 
start scanner read 
loop until ds-dk-O 

- - - - -- -- -- -- -- -- -- --gifFPmastersfilp - - -- -- -- ---

c') 

ell 

<---

update scoreboard <-­
il all pulled 
(PUll_COMPLETE] 

disable ret lislen bit 
drop FP bus 
[START_PROe] ---> 
[PULL_EVENT _ACK] 
do any pending pull 

----------

<---

update scoreboard <--------­
il all processed 
(PROC_COMPLETE] 

update trigger Info 
check engine state 
setup YBOS headers 
check data integrity 
reformat event 
(PROC_COMPlETE( 

--------- ------------ ----
(PUSH_EVEN" ----> 

EO) 

setup push Info 
If already pushing 
delay push Indet. 

"se 
(PREP_PUSH] -------------> 

update scoreboard <--------­
II aU prepared 

- --- - -- - - - Cheaeagine ---

<----

for each ref 
get FP mastership 
turn on ref output bit 
drop FPbus 
start dma transfer 
loop uatH ds-dk-O 
get FP mastership 
tum off ref output bit 
drop FP bus 
(PUSH_COMPLETE]----------> 
(PUSH_COMPLETE( 

turn on output enable 
setup first dma location 
(PREP_COMPLETE] 

----------

reset engine state 

- - ._._ .- - - - - di:)any pendiiij"""pusti- - - -

Figure 1: Event Builder execution .tage. are illustrated by thia flow chart of Event Builder code. 
a) Prepare to pull, b) data pull, e) pull completion, d) reformat, e) prepare to push, t) push to 
level 3_ The Event Builder waits for mellages from the Buffer Manager between d) and e), and 
between f) and a). 
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S!m Apnrox Time (ms) a) 1989 L3: 
EVB·BFM·L3 Messages 18 

Push to L3 10 

Prepare to Push 15 

EVB·BFM Messages 8 

Reformat 30 

Pull: Data Transfer 20 

Pull: Scan. Comm. 35 

Pull: EVB Overhead 4 

One Engine Time 140ms 

One Engine Rate 7Hz 

24 Banks 18 Banks 

b) 1991 L3: 
SiGr 

Approx. 

S!m Tjme(ms) 

EVB·BFM·L3 Mess. 10 
Push to L3 13 

Prepare to Push 5? 

EVB·BFM Messages 6 

Reformat 14 ? 

Pull: Data Transfer 3 

Pull: Scan. Comm. 10 

Pull: EVB Overhead 5 

One Engine Time 66ms 
One Engine Rate 15 Hz 
Two Engine Rate 23Hz ? 

3K Words 19K Words 26K Words 7K Words L2 (90% Llvetime) 15 Hz 

11 Banks 17 Banks 6 Banks 12 Banks L2 (95% Livetime) 10 Hz 

{L2 (90% Llvetime) 23Hz 
TwoEVB L2 (95% Livetime) 14 Hz 

Figure 2: Sources oC event builder execution time, in a) 1989 aDd b) 1991, are listed and totalled. 
Data flow i, schematically illUitrated: from the lean.nen, over crate and cable segments, into the 

1 
J 

) 

) 

event builder (shaded), and on up to level 3. ) 
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