
Strong Interactions of Pions and Nucléons II 675 

LIST OF REFERENCES A N D NOTES 

1. Blokhintsev, D. , Barashenkov, V. and Barbashov, B. Proceedings of the International Conference on High Energy Physics at 
Kiev (1959). L. Schiff's report (to be published). 

2. Blokhintsev, D . and Wang Yun, Dubna preprint J INR N-576 (1960). 
3. Petrzilka, V. Report to this conference. (See Session SI.) 
4. Veksler, V. Report to this Conference (Session SI). See also G. Salzman's remarks. 

GENERAL ANALYTIC TECHNIQUES 

Rapporteur : K. Symanzik 
University of California, Los Angeles, California 

My report is on general analytic techniques that 
have been reported or submitted in the Session S 2. 
The first five papers deal with per turbat ion theory, 
in the sense that they deal with the analytical pro­
perties of each term in the per turbat ion theoretical 
expansion of, say, a scattering ampli tude, i.e. of each 
contributing Feynman graph. The first four papers 
are concerned with the region of analyticity in energy 
and/or momen tum transfer of these functions or, 
what is the same, with the location of their singularities. 
The paper by Cutkosky studies these singularities 
in a more detailed fashion and in its spirit already leads 
beyond perturbat ion theory. The following papers 
discuss the consequences of unitarity for analytical 
continuations and special aspects thereof. The papers 
by Newton and by Fonda , Radicati , and Regge 
discuss analytical and other properties of a non-
relativistic many-channel scattering matrix. The next 
two papers deal with more ethereal problems. Nishi-
j ima gives a new formulat ion of local field theory. 
Starting from an already well established formulation 
of such theories the other paper by Symanzik tries 
to work out some of the implications. A still more 
fundamental att i tude is taken in the final two papers, 
since they deal with causality itself in the relativistic 
and nonrelativistic case, respectively. 

Last year, at the Kiev Conference, Landau reported 
a method to locate the singularities of the functions 

represented by Feynman graphs. This method was 
the stimulus for a number of independent investi­
gations, most of which, however, used an older and, 
as a matter of fact, more powerful technique developed 
by Eden as early as 1952. This method I shall now 
briefly sketch. I realize that this sketch can be 
appreciated only with some mathematical training. 
I shall, however, be back to more understandable 
topics in a few moments . 

Consider a Feynman graph with altogether n 
internal lines. Its contr ibution to the scattering 
matrix will be the integral (consider scalar particles 
only) 

where qt are the momenta carried by the lines, which 
are linear combinations of the integration momenta 
and the external momenta , pv..pi, whose squares 
will be supposed to be always m2 (Fig. 1). Feyn-
man ' s parameterization method gives 
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Fig. 3 Cuts in the complex s-plane, the hatches showing the 
physical domains. 

Fig. 1 Four point function. 

where / ( a ) , g ( a ) , K(a)9 and 7 2 ( a ) are polynomials in a. 
This integral with 8 - > + 0 defines the so-called physical 
branch of the function of real s and /. The three 
shaded sectors (Fig. 2) are the physical regions. 
The problem is : can one define an analytic function 
F(zi9 z2) such that its values in the three physical 
sectors are equal to F(s, t) and if so, where is the 
function analytic? 

Clearly to answer this question one tries to give s 
and t complex values starting from zero imaginary 
parts . C o m m o n sense and mathematics tell us that 
we get an analytic function provided D(z1 z2) does not 
vanish in the region of integration. An entirely 
elementary discussion of the form of the Feynman 
denominator reveals that this already establishes 
a single dispersion relation in s for t in the range 
—4m 2 to + 4 m 2 with a gap between the cuts in the 

s plane from — t to + 4 m 2 (Fig. 3), and correspondingly 
in t for s in the range —4m 2 to + 4 m 2 . But making 
both s and t complex seems to encounter difficulties 
in that then D can vanish. 

However, a vanishing D does not necessarily imply 
that the integral acquires a singularity. This is most 
easily seen by taking the example of just one integra­
tion of an analytic function of two variables 

This example is quite analogous to the more realistic 
case. / ( s ) will be analytic in s9 since g(<x9 s) is analytic 
in s on the pa th of integration, provided g(a, s) does 
no t vanish there. 

If now s is varied, the necessarily isolated zeros of 
g(a, s) as a function of a, at P = ol(s), may reach 
the contour (Fig. 4). If, however, the contour can 
be deformed so that the dangerous point P is avoided, 

Fig. 2 Physical regions (hatched) in the real s-t plane. Fig. 4 Endpoint and coincident singularities. 
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we are saved. This maneuver breaks down only if 
a(s) = P wanders to the endpoint A or B, or if a pair 
of zeros P, P' pinches the contour between them. 
The resulting singularities are called endpoint and 
coincident singularities, respectively. Applied to the 
present problem one finds that there are singularities 
of the function in question only if in each integration 
there is either an endpoint or a coincident singularity, 
or possibly a coincidence a t an endpoint . 

The endpoint singularities imply that the respective 
a 's are equal to 0, therefore the associated lines in 
the diagram contribute no th ing ; speaking graphically 
they each reduce to a point . The coincident singular­
ities correspond in the original k integration to having 
the respective m o m e n t u m q{ on the mass shell. These 
are just Landau ' s condit ions, here generalized to the 
complex domain. If all the qt lines are on the mass 
shell, one has picked out the " leading singularity " 
of the graph. The other singularities (some of the 
a 's equal 0) are leading singularities of the " reduced 
graphs " formed by contract ing away those lines 
with a — 0. 

After some manipula t ions these conditions lead 
to the algebraic condit ions 

because all our functions are rat ional . The two 
dimensional manifold in the complex four-dimensional 
space described by this equat ion is the locus of 
singularities and is the edge of an otherwise movable 
three-dimensional hypersurface across which the 
function has a discontinuity, and which thus serves to 
separate different branches of the function, much 
as a movable branch line starting from a fixed branch 
point (" G V { Z ) = 0 ") separates the branches of an 
analytic function of one complex variable. The 
difficult problem is first to discuss such a generally 
quite complicated equation, and second, to ascertain 
upon which sheet of the complex function the sin­
gularities actually lie. Already, the previous discus­
sion shows that we are dealing with a multi-valued 
function. The sheet of F(z2, tha t we are interested 
in, the so-called " physical sheet ", is defined by the 
two one-variable dispersion relations mentioned 
before (Fig. 5). The two thus defined analytic 
functions, as one can show, coincide in the common 
region s<4rn2, t<4m2, s+t<0 (for any imaginary 
parts) and thus can be identified. In order to prove 

Fig. 5 Contours for single variable dispersion relations. 

the possibility of a Mandels tam representation, one 
has to show that there are no singularities in this 
physical sheet except for those along the physical 
par t of the real axes. 

The first two papers that we will discuss proceed 
in different ways. Polkinghorne and co-workers 
study the possible surfaces of singularities in the four-
dimensional complex space of s9 t. 

They use an induction procedure which enables 
then to consider at every stage only the leading 
singularity of a graph together with the inevitable 
normal thresholds. If one moves on to the algebraic 
curve Z corresponding to the leading singularity, 
then the singularity or non-singularity of Z can 
only change by passing th rough an effective inter­
section with a lower order singularity. This is because 
the pinch in the a integration can only fall off the 
contour at an edge. However, the problem is com­
plicated by the existence of the normal cuts defining 
the physical sheet. They must be gotten a round 
and this may force one to pass th rough the singularity. 
Because normal singularities only have effective 
intersection with Z asymptotically it becomes possible 
to divide Z into a number of par ts , each of which 
is either wholly singular or wholly non-singular. 
However, each par t has a point in the region where 
single variable dispersion relations can be proved 
and the singularity of this point would contradict 
the known behavior in this region. Thus , it is possible 
to conclude that each part , and thus Z itself, is non-
singular. 



678 Session R 2 

Eden 's technique in proving the Mandels tam repre­
sentation is more perspicuous. His trick is to avoid 
any discussion of the complex regions in the physical 
sheet by a s tandard method of analytic completion 
that was also used by Kâllén and Wightman in a 
similar problem. Let us investigate the singularities 
in the complex space of the two variables z x and z 2 . 
If there is a region where we have analyticity in z1 

as well as z2 then we can write 

If on the integration contour C we can continue 
F(zl9 z2) in zl9 then in some region Z) 2 , the above 
integral defines the unique analytic cont inuat ion of 
F(zuz2) into the product space D1xD2 where DY 

is the interior of C. Eden applies this technique 
twice, in s and t, and thus manages to be able to 
restrict himself to a discussion of the immediate 
neighborhood of the real axis of s and t. He proves 
directly from the form of the Feynman denominator 
the absence of any disturbing singularity, provided 
no anomalous thresholds are possible. Due to the 
lack of time, I cannot go into these technical points 
and merely state Eden ' s results. He has proven the 
Mandels tam representation for all cases without 
anomalous thresholds, the absence of which can be 
ascertained from the fourth order graph. [To recall : 
an anomalous threshold means that the scattering 
ampli tude develops in the unphysical region an 
absorptive par t even below the minimum mass in 
the respective channel. If there are anomalous 
thresholds, a Mandels tam representation is still 
possible for the fourth order, unless a superanomaly { * ] 

exists as for instance in I-X scattering. With this 
case excluded, the Mandels tam representation might 
hold even for all orders in per turbat ion theory.] 
The Mandels tam representation implies dispersion 
relations for part ial wave amplitudes and single 
variable dispersion relations for arbitrarily large 
momen tum transfer. The discussion so far shows 
that the Mandels tam representation, from the point 
of view of analyticity of the scattering ampli tude as 

discussed in per turbat ion theory, is certainly no t the 
end of the analyticity because one can continue through 
all cuts arbitrarily far. In other words, the spectral 
function of the representation is itself an analytic 
function. 

It should perhaps be mentioned that relevant results 
in this direction have been obtained before by Cut-
kosky and by Wanders , who both independently 
proved the validity of the Mandels tam representation 
for the case of certain special classes of graphs. 

The paper by Chernikov, Logunov, and Todorov 
does no t use the powerful techniques explained 
before bu t improves earlier ones. Especially it gives 
simple rules to find for any process involving arbitrary 
masses a region in the space of all variables, s, t, 
and the four external masses themselves, taken real, 
in which one can be sure that the Feynman deno­
minator does not vanish and thus the function will 
be analytic in a complex neighborhood of that region. 
These rules can be very useful in the study of more 
general cases especially when masses are made 
variable, a procedure that has considerable theoretical 
importance. 

The paper by Cutkosky is an especially impor tant 
one from the point of view of application. Once 
the singularities are located, one would like to find 
the discontinuity across them explicitly in terms of 
other observable quantities because then one can 
calculate the original function by a dispersion type 
integral. 

I said before that the edge of the singularity is 
obtained by either put t ing lines on the mass shell 
or shrinking them to points. The discontinuity that 
starts there is itself obtained not by shrinking to zero 
those lines that are not on the mass shell but by 
integrating them out as usual. It is then most 
inviting to sum u p all graphs that contribute to that 
singularity whereby the subgraphs add up to exact 
vertices with external lines on the mass shell. The 
result is tha t the integrand of the dispersion integral, or 
its appropria te many variable generalization, is 
expressed in observable quantities only, together 
with some constants like the meson nucléon coupling 

(*) Editors' note: By anomalous and super-anomalous singularities, Symanzik means singularities which do not and do, respectively, 
prevent the Mandelstam representation from being valid. In Eden's terminology these are anomalous singularities of type I 
and II, respectively. According to the work of Mandelstam and of Eden, in fourth order at least, the merely anomalous singu­
larities are those due to the vertex type (triangular) reduced graphs, whereas the super-anomalous singularities are those proper 
to the unreduced (quadrangular or " box ") scattering graph. 
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constant / of yesterday. Actually, this result is the 
same as one obtained if in a dispersion integral one 
uses unitarity for the absorptive parts and then again 
" disperses " the now encountered S-matrix elements. 
This procedure, used first by Goldberger and Treiman 
to obtain integral equations between quantities like 
form factors and scattering amplitudes, is here reduced 
to one single step : Cutkosky is able immediately to 
write down a multiple integral with interior momenta 
only on the mass shells, the factors being the mentioned 
observable quantities. The only trouble is that these 
quantities are mostly needed for unphysical values 
of angles, etc. This should not be too surprising. 
Here Cutkosky, like Goldberger and Treiman before, 
assumes just those analytical properties that hold 
in perturbat ion theory, which, of course, is here 
quite consequential. As an example he obtains for 
the contribution to the Mandels tam spectral function 
from nucleon-nucleon graphs, involving exchange 
of two mesons, an integral that involves only the 
absorptive part of the meson nucléon scattering 
amplitude for unphysical angles. That result was 
also derived by Cini and Fubini . As another 
example, he proves that the electromagnetic form 
factor for the deuteron can be written 

Fn(t) is the nucléon form factor, Fb(t) a known function, 
called the " bare " form factor, and Fna(t) the " non-
additive " term which in turn can be expressed by 
integrals over other pseudo-observable quantities 
involving at most one off mass-shell photon. Thus 
it seems that if one is interested in the case of real 
momentum transfer one could get along without 
knowledge about processes with imaginary mo­
mentum transfer. These techniques may become a 
most important source for many physically interesting 
integral relations. To me they seem to be the gra­
phical calculus Landau foresaw in Kiev. 

The work by Gunson and Taylor generalizes earler 
results of Levy on the properties of the continuation 
of scattering amplitudes and related quantities into 
unphysical sheets to more complicated cases, assuming 
that the functions in question have the desirable 
analytic properties. Levy had shown that unitarity 
easily allows for poles in second sheets which would 
have the dynamical effects of unstable particles. 
Blankenbecler 's work deals with such continuations 

in a different fashion. He assumes the existence of 
a variable parameter similar to a coupling strength. 
If the coupling is made stronger such a pole in a 
second sheet may move out into the first sheet, where 
it now represents a stable particle. This is discussed 
on the basis of the Mandels tam representation for 
the nucleon-nucleon scattering ampli tude in the 
Fermi-Yang model, where the pion is a bound state 
of a nucléon and an antinucleon. One could thus cal­
culate as well, the pion and deuteron mass if in that 
model the dependence of the scattering amplitude 
on some coupling parameter were known analytically. 
This, of course, is the difficult point here. 

Work containing a number of interesting points 
on the continuation properties of scattering amplitudes 
due to unitarity was submitted by Zimmermann but 
could not be reported. He writes the partial ampli­
tude as the sum of two terms 

) 

where FL(s) and GL(s) are analytic across the cut and 
real there. This has, among other advantages, that 
of making the analytical na ture of the cut most 
explicit. In the Mandels tam case he obtains as urn, 
of three such terms 

where R(s9 t) and F(s, t) are regular in a domain 
including the cuts in the elastic region. 

The articles of Newton and of Fonda , Radicati , 
and Regge deal with the non-relativistic many-
channel problems. Newton shows that one can 
obtain the full scattering super ^-matr ix from one 
single analytic function of as many variables as there 
are channels, which is a generalization of the Jost 
function in the one-channel problem. This function 
might become a very useful tool in this field. Fonda , 
Radicati , and Regge investigate the conditions for 
the validity of a Mandels tam representation in a 
many-channel problem with all potentials being some 
sort of a superposition of Y u k aw a potentials. They 
find the strong condition that the reduced masses in 
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all channels must be equal and a stability condit ion 
excluding the occurrence of anomalous thresholds 
be fulfilled. This condit ion involves the decay 
rates of the potentials which here play the role of 
the masses of intermediate lines in Feynman graphs. 
As to unitarity, everything goes as usual. 

Now I come to the papers that deal with more 
fundamental and correspondingly relatively remote 
questions. Nishijima's paper is concerned with the 
formulation of relativistic quan tum field theory. 
He gives a set of equations for Feynman amplitudes 
which is complete at least insofar as the manifold 
of per turbat ion theoretical solutions of that set of 
equations obtainable in a certain straightforward 
way is precisely a manifold of renormalizable perturba­
tion theoretical solutions permissible for the given 
types of particles according to Dyson ' s well-known 
rules. The problem of bound states (and here for 
example the requirement that all particles of spin 
larger than l / 2 except photons must be bound ones) 
is dealt with in a manner supported by Blankenbecler 's 
considerations mentioned earlier. 

The next paper (by Symanzik) whose presentation 
used up an especially long time of the Session starts 
from an older and already well-established formulation 
of local quan tum field theory. Local field theory 
means : any two field operators ij/^x) and il/2(y) 
should commute or ant icommute, [ ^ ( x ) , ^2{y)]± = 0, 
if (x-y) is space like. In addition, the fields are sup­
posed to obey the s tandard transformation properties 
under the Lorentz group and possibly other groups 
and one knows the spectrum of the particles which 
the theory should describe. These properties are 
most easily combined by postulating certain conditions, 
the most interesting of which is an infinite system of 
nonlinear integral equations for Green 's functions. 
The actual discussion was carried out not for the 
Feynman amplitude, but for functions obeying re­
tarded boundary conditions. For the sake of fami­
liarity let me describe what should be the equivalent 
to Feynman amplitudes. The nonlinear system then 
happens to obey the off-shell unitarity also postulated 
by Nishijima, namely that the absorptive par t of 
any Feynman ampli tude is given by a sum of terms 
bilinear in the Feynman amplitudes. Roughly, 

where the summation is over intermediate states with 
one up to an infinite number of particles. 

The author says : as Chew and others are justified 
in the assumption that the low-lying singularities of 
scattering amplitudes are the most impor tant ones 
beforehand, let us try to exhibit these singularities 
as explicitly as possible for the Feynman ampli tude. 
This means that one writes a Bethe-Salpeter (B.S.) 
equat ion (Fig. 6). The first term in Fig. 6 is the 

Fig. 6 Bethe-Salpeter equation with two particle irreducible 
kernel. 

generalization of the single meson exchange diagram 
whose substitution would result in the so-called ladder 
approximation. Pictorially, this first term is the sum 
of all Feynman graphs that do not permit a two-
particle cut between 1,2 and 3,4. This property 
automatically insures that the (unique) solution of 
the Bethe-Salpeter equation satisfies unitarity in the 
elastic region up to the first inelastic threshold. 
Since the character of the singularity is almost entirely 
governed by unitarity, one can expect that in dealing 
with the irreducible graphs, one can be less strict 
provided that the Feynman ampli tude is obtained 
from the B.S. equation. Thus, the au thor says, the 
characteristic features of the Feynman ampli tude 
in the low-energy region are a consequence of the 
form of the B.S. equation, rather than of the precise 
form of the irreducible graphs. This irreducibility 
expresses itself in the fact that for a " reduced " 
nonlinear system, roughly speaking the equation 

holds. The summation starts at the three-particle 
intermediate states, instead of the two or even one 
particle states as before. Al though these results 
have a definite bearing on the Chew-Mandels tam 
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problem of solving the coupled nonlinear unitarity 
equations, I would like to stress here a different point 
of view of the au thor even though he was rather 
vague about it. It is, of course, not necessary to 
stop with the method of structure analysis at the 
ordinary B.S. equation. One can go further and 
subject the irreducible kernel to a similar integral 
equation, but with three particles instead of two or 
make a decomposit ion in the other channel, e.g. t 
instead of s. Wha t one obtains in this way looks 
very much like per turbat ion theory, with the charac­
teristic difference that whereas in a genuine Feynman 
graph, one always encounters a bare vertex, here 
such vertices never arise, but instead Feynman am­
plitudes with a high irreducibility condition, i.e. 
with really distant singularities only, appear. Thus 
for not too large values of the momenta , the vertex 
behaves like a constant, i.e. like a bare vertex. This 
result, here deduced from the quite general principles 
of causality and unitarity, gives a welcome clarification 
of the conspicuous fact that per turbat ion theory and 
the so-called rigorous methods have so far always 
led to nearly identical results for the analytic pro­
perties of scattering ampli tudes. This support for 
the perturbat ion theoretic approach described in the 
beginning is desirable, since al though the prescription 
to read off analytic properties from Feynman graphs 
is simple, clear, and unique, it is not necessarily 
mathematically consistent with unitarity. In parti­
cular, Landau ' s prescription for which the giaphs to 
consider might be too narrow. 

Finally, there are the papers of Toll and of Lozano 
and Moshinsky, which deal with causality in a still 
more fundamental manner . Toll wishes to relax 
the quite strong commuta tor condition I mentioned 

before and to replace it by a different and perhaps 
slightly less artificial postulate. Usually the field is 
multiplied by a solution of the free wave equation 
and integrated over all space; the resulting operator 
is supposed to be a decent creation or annihilation 
operator for a particle if the time variable approaches 
plus or minus infinity. Toll proposes to integrate 
over a finite volume, the boundaries of which are 
enlarged with the velocity of light as the time goes to 
infinity. The same condition as before now means 
that the asymptotic parts of all waves should never 
travel outside that increasing volume in the time 
limit. It is still an open question whether or not this 
possibly relaxed causality leads to consequences for 
the scattering amplitude comparable to the celebrated 
ones of local field theory. A similar relaxation of the 
strict locality condition as described here has also 
been considered by Kaschluhn. 

The paper by Lozano and Moshinsky formulates a 
causality condition for partial waves in nonrelativistic 
scattering by potentials that do not vanish exactly 
outside some finite radius. Their condition is that 
the Green 's function for that problem remains bounded 
for all times. This already implies an analytic 
property of its Fourier t ransfoim, called the dis­
persion function, which becomes the old Tiomno-
Schutzer-van Kampen condit ion if the potential 
vanishes outside a given radius. Whether there 
remains, with this method, a restriction on the scat-
taring amplitude if the potential has an infinite tail 
has not yet been studied. I would like to take this 
opportunity to stress that it is highly desirable to 
gain a better understanding of the causality problem 
in field theory, formulated not in terms of field opera­
tors but in terms of observable quantities only. 

DISCUSS ION 

J. G. TAYLOR : I would like to make one brief 
remark about the question of replacing ordinary 
quan tum field theory by analyticity properties. It 
has been suggested that one can replace local field 
theory by the Mandels tam representation involving 
all processes. To do this, however, the super-ano­
malous threshold case must be tackled where the 
Mandels tam representation breaks down. It may 

be that the part ial wave properties of analyticity in 
the cut plane will be sufficient. But one also must 
have crossing symmetry before one can use the pro­
perty of analyticity of the part ial wave amplitudes. 
This is a problem which has no t been solved yet, so 
I think tha t as yet, one cannot give an answer to the 
question of replacing ordinary field theory by the 
Mandels tam representation. 
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E D E N : I would like to make one comment on this 
last point . The Mandels tam representation itself is 
clearly not enough to define the theory. It only 
gives the analytic structure of certain scattering 
amplitudes beginning with two particles and ending 
with two particles. It is of course necessary to have 
the analytic structure of scattering amplitudes where 
particles are produced. We must unders tand about 
the scattering of many particles and all these are 
problems about which we know almost nothing at 
the moment . It is almost absurd to talk about the 
Mandels tam representation as giving a theory. Al­
though it is an exact statement it represents only 
a low energy approximat ion to a theory. 

SYMANZIK : I agree entirely with Eden. If one 
believes that per turbat ion theory is a guide to the 
analytic properties of scattering amplitudes, then it is 
clear that Mandels tam is not the end because then one 
can continue through the Mandels tam cuts, as has 
been reported here, an arbitrary number of times into 
an infinite number or possibly a finite number of 
different sheets. This will happen possibly for all 

amplitudes not only for two particle elastic amplitudes. 
Of course, how much analyticity one uses in order 
to get an approximat ion scheme is entirely a question 
of the application with which one deals. By the way, 
the idea of formulating field theory in terms of repre­
sentations of much the same type as they are discussed 
today is originally due to N a m b u . 

OPPENHEIMER : I do not want to complicate this 
report on very difficult matters , but in one respect 
Symanzik did not say all that he should have. Tha t 
is because of his inability to use his own name. The 
long paper which he reported, in which it is shown 
that the per turbat ion theoretic singularities are con­
sistent with the axiomatic requirements, and are neces­
sary for them, for one-particle, two-particle singu­
larities, and so on, was actually a proof that this 
ansatz satisfies the necessary and sufficient conditions 
for the axioms that he and Lehmann and Z immerman 
derived a few years ago. These embody the spectral 
conditions, micro-causality and unitarity. This does 
not include the questions of consistency and existence, 
which have not been dealt with at all. 


