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GENERAL ANALYTIC TECHNIQUES

Rapporteur : K. Symanzik

University of California, Los Angeles, California

My report is on general analytic techniques that
have been reported or submitted in the Session S 2.
The first five papers deal with perturbation theory,
in the sense that they deal with the analytical pro-
perties of each term in the perturbation theoretical
expansion of, say, a scattering amplitude, i.e. of each
contributing Feynman graph. The first four papers
are concerned with the region of analyticity in energy
and/or momentum transfer of these functions or,
what is the same, with the location of their singularities.
The paper by Cutkosky studies these singularities
in a more detailed fashion and in its spirit already leads
beyond perturbation theory. The following papers
discuss the consequences of unitarity for analytical
continuations and special aspects thereof. The papers
by Newton and by Fonda, Radicati, and Regge
discuss analytical and other properties of a non-
relativistic many-channel scattering matrix. The next
two papers deal with more ethereal problems. Nishi-
jima gives a new formulation of local field theory.
Starting from an already well established formulation
of such theories the other paper by Symanzik tries
to work out some of the implications. A still more
fundamental attitude is taken in the final two papers,
since they deal with causality itself in the relativistic
and nonrelativistic case, respectively.

Last year, at the Kiev Conference, Landau reported
a method to locate the singularities of the functions

represented by Feynman graphs. This method was
the stimulus for a number of independent investi-
gations, most of which, however, used an older and,
as a matter of fact, more powerful technique developed
by Eden as early as 1952. This method I shall now
briefly sketch. I realize that this sketch can be
appreciated only with some mathematical training.
I shall, however, be back to more understandable
topics in a few moments.

Consider a Feynman graph with altogether n
internal lines. Its contribution to the scattering
matrix will be the integral (consider scalar particles
only)

F(s, t)~fdk1..,dk,‘]—[(qi2~mi2+ia)_l, 1)
i=1

where ¢; are the momenta carried by the lines, which
are linear combinations of the integration momenta
and the external momenta, p,...p,, Whose squares
will be supposed to be always m?* (Fig. 1). Feyn-
man’s parameterization method gives

n(o)

D, s0f 2

F(s, t)~f..fda1...dan5(1 —2o;)

" where p>0, n(o) is rational in o, and

D (s, 1) = sf(«) +tg(e) — M*K(x) + ie, (3)
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Fig. 1 Four point function.

where f (), g(), K(=), and n(x) are polynomials in .
This integral with e—>--0 defines the so-called physical
branch of the function of real s and ¢. The three
shaded sectors (Fig. 2) are the physical regions.
The problem is : can one define an analytic function
F(z,, z,) such that its values in the three physical
sectors are equal to F(s, ) and if so, where is the
function analytic?

Clearly to answer this question one tries to give s
and ¢z complex values starting from zero imaginary
parts. Common sense and mathematics tell us that
we get an analytic function provided D(z, z,) does not
vanish in the region of integration. An entirely
elementary discussion of the form of the Feynman
denominator reveals that this already establishes
a single dispersion relation in s for ¢ in the range
—4m? to +4m* with a gap between the cuts in the

Fig. 2 Physical regions (hatched) in the real s-f plane.
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Fig. 3 Cuts in the complex s-plane, the hatches showing the
physical domains.

s plane from —1 to +4m? (Fig. 3), and correspondingly
in ¢ for s in the range —4m® to +4m*. But making
both s and ¢ complex seems to encounter difficulties
in that then D can vanish.

However, a vanishing D does not necessarily imply
that the integral acquires a singularity. This is most
easily seen by taking the example of just one integra-
tion of an analytic function of two variables

B

do
f(s) = Jg(a 5 O]

This example is quite analogous to the more realistic
case. f(s) will be analytic in s, since g(«, s5) is analytic
in s on the path of integration, provided g(a, 5) does
not vanish there.

If now s is varied, the necessarily isolated zeros of
g(x,5) as a function of «, at P = a(s), may reach
the contour (Fig. 4). If, however, the contour can
be deformed so that the dangerous point P is avoided,

©) Ve X p(s)

—"pls)

Fig. 4 Endpoint and coincident singularities.
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we are saved. This maneuver breaks down only if
a(s) = P wanders to the endpoint A or B, or if a pair
of zeros P, P’ pinches the contour between them.
The resulting singularities are called endpoint and
coincident singularities, respectively. Applied to the
present problem one finds that there are singularities
of the function in question only if in each integration
there is either an endpoint or a coincident singularity,
or possibly a coincidence at an endpoint.

The endpoint singularities imply that the respective
a’s are equal to 0, therefore the associated lines in
the diagram contribute nothing; speaking graphically
they each reduce to a point. The coincident singular-
ities correspond in the original k integration to having
the respective momentum ¢; on the mass shell. These
are just Landau’s conditions, here generalized to the
complex domain. If all the g; lines are on the mass
shell, one has picked out the “leading singularity ”
of the graph. The other singularities (some of the
o’s equal 0) are leading singularities of the “ reduced
graphs 7 formed by contracting away those lines
with a = 0.

After some manipulations these conditions lead
to the algebraic conditions

0(z,2,)=0, v=1.., (5)
because all our functions are rational. The two
dimensional manifold in the complex four-dimensional
space described by this equation is the locus of
singularities and is the edge of an otherwise movable
three-dimensional hypersurface across which the
function hes a discontinuity, and which thus serves to
separate different branches of the function, much
as a movable branch line starting from a fixed branch
point (“o,(z) = 07) separates the branches of an
analytic function of one complex variable. The
difficult problem is first to discuss such a generally
quite complicated equation, and second, to ascertain
upon which sheet of the complex function the sin-
gularities actually lie. Already, the previous discus-
sion shows that we are dealing with a multi-valued
function. The sheet of F{(z,, z,) that we are interested
in, the so-called “ physical sheet ”, is defined by the
two one-variable dispersion relations mentioned
before (Fig. 5). The two thus defined analytic
functions, as one can show, coincide in the common
region s<4m?, t<4m?, s+t<0 (for any imaginary
parts) and thus can be identified. In order to prove

Fig. 5 Contours for single variable dispersion relations.

the possibility of a Mandelstam representation, one
has to show that there are no singularities in this
physical sheet except for those along the physical
part of the real axes.

The first two papers that we will discuss proceed
in different ways. Polkinghorne and co-workers
study the possible surfaces of singularities in the four-
dimensional complex space of s, t.

They use an induction procedure which enables
then to consider at every stage only the leading
singularity of a graph together with the inevitable
normal thresholds. If one moves on to the algebraic
curve X corresponding to the leading singularity,
then the singularity or non-singularity of X can
only change by passing through an effective inter-
section with a lower order singularity. This is because
the pinch in the o integration can only fall off the
contour at an edge. However, the problem is com-
plicated by the existence of the normal cuts defining
the physical sheet. They must be gotten around
and this may force one to pass through the singularity.
Because normal singularities only have effective
intersection with X asymptotically it becomes possible
to divide X into a number of parts, each of which
is either wholly singular or wholly non-singular.
However, each part has a point in the region where
single variable dispersion relations can be proved
and the singularity of this point would contradict
the known behavior in this region. Thus, it is possible
to conclude that each part, and thus Z itself, is non-
singular.
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Eden’s technique in proving the Mandelstam repre-
sentation is more perspicuous. His trick is to avoid
any discussion of the complex regions in the physical
sheet by a standard method of analytic completion
that was also used by Killén and Wightman in a
similar problem. Let us investigate the singularities
in the complex space of the two variables z; and z,.
If there is a region where we have analyticity in z,
as well as z, then we can write

1 JF(z;,ZZ)dz’l

F(zy,25) = 5~ . (6)

2nif zy—2z4

c

If on the integration contour C we can continue
Hz,, z,) in z,, then in some region D,, the above
integral defines the unique analytic continuation of
F(z,, z,) into the product space D;x D, where D,
is the interior of C. Eden applies this technique
twice, in s and ¢, and thus manages to be able to
restrict himself to a discussion of the immediate
neighborhood of the real axis of s and 7. He proves
directly from the form of the Feynman denominator
the absence of any disturbing singularity, provided
no anomalous thresholds are possible. Due to the
lack of time, I cannot go into these technical points
and merely state Eden’s results. He has proven the
Mandelstam representation for all cases without
anomalous thresholds, the absence of which can be
ascertained from the fourth order graph. [To recall :
an anomalous threshold means that the scattering
amplitude develops in the unphysical region an
absorptive part even below the minimum mass in
the respective channel. If there are anomalous
thresholds, a Mandelstam representation is still
possible for the fourth order, unless a superanomaly ¢*)
exists as for instance in Z-X¥ scattering. With this
case excluded, the Mandelstam representation might
hold even for all orders in perturbation theory.]
The Mandelstam representation implies dispersion
relations for partial wave amplitudes and single
variable dispersion relations for arbitrarily large
momentum transfer. The discussion so far shows
that the Mandelstam representation, from the point
of view of analyticity of the scattering amplitude as

discussed in perturbation theory, is certainly not the
end of the analyticity because one can continue through
all cuts arbitrarily far. In other words, the spectral
function of the representation is itself an analytic
function.

It should perhaps be mentioned that relevant results
in this direction have been obtained before by Cut-
kosky and by Wanders, who both independently
proved the validity of the Mandelstam representation
for the case of certain special classes of graphs.

The paper by Chernikov, Logunov, and Todorov
does not use the powerful techniques explained
before but improves earlier ones. Especially it gives
simple rules to find for any process involving arbitrary
masses a region in the space of all variables, s, f,
and the four external masses themselves, taken real,
in which one can be sure that the Feynman deno-
minator does not vanish and thus the function will
be analytic in a complex neighborhood of that region.
These rules can be very useful in the study of more
general cases especially when masses are made
variable, a procedure that has considerable theoretical
importance.

The paper by Cutkosky is an especially important
one from the point of view of application. Once
the singularities are located, one would like to find
the discontinuity across them explicitly in terms of
other observable quantities because then one can
calculate the original function by a dispersion type
integral.

I said before that the edge of the singularity is
obtained by either putting lines on the mass shell
or shrinking them to points. The discontinuity that
starts there is itself obtained not by shrinking to zero
those lines that are not on the mass shell but by
integrating them out as usual. It is then most
inviting to sum up all graphs that contribute to that
singularity whereby the subgraphs add up to exact
vertices with external lines on the mass shell. The
result is that the integrand of the dispersion integral, or
its appropriate many variable generalization, is
expressed in observable quantities only, together
with some constants like the meson nucleon coupling

(*)  Editors’ note: By anomalous and super-anomalous singularities, Symanzik means singularities which do not and do, respectively,

prevent the Mandelstam representation from being valid.

In Eden’s terminology these are anomalous singularities of type I

and II, respectively. According to the work of Mandelstam and of Eden, in fourth order at least, the merely anomalous singu-
larities are those due to the vertex type (triangular) reduced graphs, whereas the super-anomalous singularities are those proper

to the unreduced (quadrangular or “ box ) scattering graph.
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constant f of yesterday. Actually, this result is the
same as one obtained if in a dispersion integral one
uses unitarity for the absorptive parts and then again
“ disperses ” the now encountered S-matrix elements.
This procedure, used first by Goldberger and Treiman
to obtain integral equations between quantities like
form factors and scattering amplitudes, is here reduced
to one single step : Cutkosky is able immediately to
write down a multiple integral with interior momenta
only on the mass shells, the factors being the mentioned
observable quantities. The only trouble is that these
quantities are mostly needed for unphysical values
of angles, etc. This should not be too surprising.
Here Cutkosky, like Goldberger and Treiman before,
assumes just those analytical properties that hold
in perturbation theory, which, of course, is here
quite consequential. As an example he obtains for
the contribution to the Mandelstam spectral function
from nucleon-nucleon graphs, involving exchange
of two mesons, an integral that involves only the
absorptive part of the meson nucleon scattering
amplitude for unphysical angles. That result was
also derived by Cini and Fubini. As another
example, he proves that the electromagnetic form
factor for the deuteron can be written

Fb(t) = Fd(t)Frx(l)+Fn.a.(t,)~ (7)

F,(1) is the nucleon form factor, F(f) a known function,
called the “ bare ” form factor, and F, , () the * non-
additive ” term which in turn can be expressed by
integrals over other pseudo-observable quantities
involving at most one off mass-shell photon. Thus
it seems that if one is interested in the case of real
momentum transfer one could get along without
knowledge about processes with imaginary mo-
mentum transfer. These techniques may become a
most important source for many physically interesting
integral relations. To me they seem to be the gra-
phical calculus Landau foresaw in Kiev.

The work by Gunson and Taylor generalizes earler
results of Lévy on the properties of the continuation
of scattering amplitudes and related quantities into
unphysical sheets to more complicated cases, assuming
that the functions in question have the desirable
analytic properties. Lévy had shown that unitarity
easily allows for poles in second sheets which would
have the dynamical effects of unstable particles.
Blankenbecler’s work deals with such continuations

in a different fashion. He assumes the existence of
a variable parameter similar to a coupling strength.
If the coupling is made stronger such a pole in a
second sheet may move out into the first sheet, where
it now represents a stable particle. This is discussed
on the basis of the Mandelstam representation for
the nucleon-nucleon scattering amplitude in the
Fermi-Yang model, where the pion is a bound state
of anucleon and an antinucleon. One could thus cal-
culate as well, the pion and deuteron mass if in that
model the dependence of the scattering amplitude
on some coupling parameter were known analytically.
This, of course, is the difficult point here.

Work containing a number of interesting points
on the continuation properties of scattering amplitudes
due to unitarity was submitted by Zimmermann but
could not be reported. He writes the partial ampli-
tude as the sum of two terms

)

s—4m*\?
TL(S)=FL(S)+!'< X >GL(S)a (3)

where F;(s) and G,(s) are analytic across the cut and
real there. This has, among other advantages, that
of making the analytical nature of the cut most
explicit. In the Mandelstam case he obtains as um,
of three such terms

s—4m?

[t—4m*\? [u—4m*\*
+i " F(t,u)+i - F(u,s), 9)

where R(s,t) and F(s, t) are regular in a domain
including the cuts in the elastic region.

A(s, 1) = R(s, I)+i< >“2‘F(s, H+

The articles of Newton and of Fonda, Radicati,
and Regge deal with the non-relativistic many-
channel problems. Newton shows that one can
obtain the full scattering super S-matrix from one
single analytic function of as many variables as there
are channels, which is a generalization of the Jost
function in the one-channel problem. This function
might become a very useful tool in this field. Fonda,
Radicati, and Regge investigate the conditions for
the validity of a Mandelstam representation in a
many-channel problem with all potentials being some
sort of a superposition of Yukawa potentials. They
find the strong condition that the reduced masses in
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all channels must be equal and a stability condition
excluding the occurrence of anomalous thresholds
be fulfilled. This condition involves the decay
rates of the potentials which here play the role of
the masses of intermediate lines in Feynman graphs.
As to unitarity, everything goes as usual.

Now I come to the papers that deal with more
fundamental and correspondingly relatively remote
questions. Nishijima’s paper is concerned with the
formulation of relativistic quantum field theory.
He gives a set of equations for Feynman amplitudes
which is complete at least insofar as the manifold
of perturbation theoretical solutions of that set of
equations obtainable in a certain straightforward
way is precisely a manifold of renormalizable perturba-
tion theoretical solutions permissible for the given
types of particles according to Dyson’s well-known
rules. The problem of bound states (and here for
example the requirement that all particles of spin
larger than 15 except photons must be bound ones)
is dealt with in a manner supported by Blankenbecler’s
considerations mentioned earlier.

The next paper (by Symanzik) whose presentation
used up an especially long time of the Session starts
from an older and already well-established formulation
of local quantum field theory. Local field theory
means : any two field operators ¥,(x) and ¥,(y)
should commute or anticommute, [/,(x), ¥,(»)]. =0,
if (x-y) is space like. In addition, the fields are sup-
posed to obey the standard transformation properties
under the Lorentz group and possibly other groups
and one knows the spectrum of the particles which
the theory should describe. These properties are
most easily combined by postulating certain conditions,
the most interesting of which is an infinite system of
nonlinear integral equations for Green’s functions.
The actual discussion was carried out not for the
Feynman amplitude, but for functions obeying re-
tarded boundary conditions. For the sake of fami-
liarity let me describe what should be the equivalent
to Feynman amplitudes. The nonlinear system then
happens to obey the off-shell unitarity also postulated
by Nishijima, namely that the absorptive part of
any Feynman amplitude is given by a sum of terms
bilinear in the Feynman amplitudes. Roughly,

F—F* = ZJFF*, (10)

where the summation is over intermediate states with
one up to an infinite number of particles.

The author says : as Chew and others are justified
in the assumption that the low-lying singularities of
scattering amplitudes are the most important ones
beforehand, let us try to exhibit these singularities
as explicitly as possible for the Feynman amplitude.
This means that one writes a Bethe-Salpeter (B.S.)
equation (Fig. 6). The first term in Fig. 6 is the

1"
<+

Fig. 6 Bethe-Salpeter equation with two particle irreducible
kernel.

generalization of the single meson exchange diagram
whose substitution would result in the so-called ladder
approximation. Pictorially, this first term is the sum
of all Feynman graphs that do not permit a two-
particle cut between 1,2 and 3,4. This property
automatically insures that the (unique) solution of
the Bethe-Salpeter equation satisfies unitarity in the
elastic region up to the first inelastic threshold.
Since the character of the singularity is almost entirely
governed by unitarity, one can expect that in dealing
with the irreducible graphs, one can be less strict
provided that the Feynman amplitude is obtained
from the B.S. equation. Thus, the author says, the
characteristic features of the Feynman amplitude
in the low-energy region are a consequence of the
form of the B.S. equation, rather than of the precise
form of the irreducible graphs. This irreducibility
expresses itself in the fact that for a “reduced”
nonlinear system, roughly speaking the equation

Fi_Fi*=Zl FiFi* (11)

holds. The summation starts at the three-particle
intermediate states, instead of the two or even one
particle states as before. Although these results
have a definite bearing on the Chew-Mandelstam
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problem of solving the coupled nonlinear unitarity
equations, I would like to stress here a different point
of view of the author even though he was rather
vague about it. It is, of course, not necessary to
stop with the method of structure analysis at the
ordinary B.S. equation. One can go further and
subject the irreducible kernel to a similar integral
equation, but with three particles instead of two or
make a decomposition in the other channel, e.g. ¢
instead of s. What one obtains in this way looks
very much like perturbation theory, with the charac-
teristic difference that whereas in a genuine Feynman
graph, one always encounters a bare vertex, here
such vertices never arise, but instead Feynman am-
plitudes with a high irreducibility condition, i.e.
with really distant singularities only, appear. Thus
for not too large values of the momenta, the vertex
behaves like a constant, i.e. like a bare vertex. This
result, here deduced from the quite general principles
of causality and unitarity, gives a welcome clarification
of the conspicuous fact that perturbation theory and
the so-called rigorous methods have so far always
led to nearly identical results for the analytic pro-
perties of scattering amplitudes. This support for
the perturbation theoretic approach described in the
beginning is desirable, since although the prescription
to read off analytic properties from Feynman graphs
is simple, clear, and unique, it is not necessarily
mathematically consistent with unitarity. In parti-
cular, Landau’s prescription for which the giaphs to
consider might be too narrow.

Finally, there are the papers of Toll and of Lozano
and Moshinsky, which deal with causality in a still
more fundamental manner. Toll wishes to relax
the quite strong commutator condition I mentioned

before and to replace it by a different and perhaps
slightly less artificial postulate. Usually the field is
multiplied by a solution of the free wave equation
and integrated over all space; the resulting operator
is supposed to be a decent creation or annihilation
operator for a particle if the time variable approaches
plus or minus infinity. Toll proposes to integrate
over a finite volume, the boundaries of which are
enlarged with the velocity of light as the time goes to
infinity. The same condition as before now means
that the asymptotic parts of all waves should never
travel outside that increasing volume in the time
limit. It is still an open question whether or not this
possibly relaxed causality leads to consequences for
the scattering amplitude comparable to the celebrated
ones of local field theory. A similar relaxation of the
strict locality condition as described here has also
been considered by Kaschluhn.

The paper by Lozano and Moshinsky formulates a
causality condition for partial waves in nonrelativistic
scattering by potentials that do not vanish exactly
outside some finite radius. Their condition is that
the Green’s function for that problem remains bounded
for all times. This already implies an analytic
property of its Fourier transform, called the dis-
persion function, which becomes the old Tiomno-
Schutzer-van Kampen condition if the potential
vanishes outside a given radius. Whether there
remains, with this method, a restriction on the scat-
taring amplitude if the potential has an infinite tail
has not yet been studied. I would like to take this
opportunity to stress that it is highly desirable to
gain a better understanding of the causality problem
in field theory, formulated not in terms of field opera-
tors but in terms of observable quantities only.

DISCUSSION

J. G. TavLor: I would like to make one brief
remark about the question of replacing ordinary
quantum field theory by analyticity properties. It
has been suggested that one can replace local field
theory by the Mandelstam representation involving
all processes. To do this, however, the super-ano-
malous threshold case must be tackled where the
Mandelstam representation breaks down. It may

be that the partial wave properties of analyticity in
the cut plane will be sufficient. But one also must
have crossing symmetry before one can use the pro-
perty of analyticity of the partial wave amplitudes.
This is a problem which has not been solved yet, so
I think that as yet, one cannot give an answer to the
question of replacing ordinary field theory by the
Mandelstam representation.



682 Session R 2

EpeN : T would like to make one comment on this
last point. The Mandelstam representation itself is
clearly not enough to define the theory. It only
gives the analytic structure of certain scattering
amplitudes beginning with two particles and ending
with two particles. It is of course necessary to have
the analytic structure of scattering amplitudes where
particles are produced. We must understand about
the scattering of many particles and all these are
problems about which we know almost nothing at
the moment. It is almost absurd to talk about the
Mandelstam representation as giving a theory. Al-
though it is an exact statement it represents only
a low energy approximation to a theory.

SymaAnzIK : I agree entirely with Eden. If one
believes that perturbation theory is a guide to the
analytic properties of scattering amplitudes, then it is
clear that Mandelstam is not the end because then one
can continue through the Mandelstam cuts, as has
been reported here, an arbitrary number of times into
an infinite number or possibly a finite number of
different sheets. This will happen possibly for all

amplitudes not only for two particle elastic amplitudes.
Of course, how much analyticity one uses in order
to get an approximation scheme is entirely a question
of the application with which one deals. By the way,
the idea of formulating field theory in terms of repre-
sentations of much the same type as they are discussed
today is originally due to Nambu.

OPPENHEIMER : | do not want to complicate this
report on very difficult matters, but in one respect
Symanzik did not say all that he should have. That
is because of his inability to use his own name. The
long paper which he reported, in which it is shown
that the perturbation theoretic singularities are con-
sistent with the axiomatic requirements, and are neces-
sary for them, for one-particle, two-particle singu-
larities, and so on, was actually a proof that this
ansatz satisfies the necessary and sufficient conditions
for the axioms that he and LLehmann and Zimmerman
derived a few years ago. These embody the spectral
conditions, micro-causality and unitarity. This does
not include the questions of consistency and existence,
which have not been dealt with at all.




