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Abstract. The energy spectrum of excited bound states of muonic molecules
ptµ, pdµ, and dtµ is calculated on the basis of the stochastic variational method.
The basis wave functions of the muonic molecule are taken in the Gaussian
form. The matrix elements of the Hamiltonian are calculated analytically. For
numerical calculation, a computer code was written in the MATLAB system.
As a result, the numerical values of bound state energies for excited P-states of
muonic molecules ptµ, pdµ and dtµ were obtained.

1 Introduction

In recent years, due to the appearance of the experimental results of the CREMA collab-
oration [1, 2], there has been an increasing interest in the study of the energy spectra of
muonic atoms. In the case of two-particle muonic atoms and ions, there are reliable analyti-
cal methods for calculating the fine and hyperfine structure of the spectrum in the framework
of quantum electrodynamics [3, 4]. In the transition to three-particle muon systems, it is also
possible to carry out analytical calculations of energy levels in the framework of perturbation
theory in a number of cases [5–7]. On the other hand, for many decades, methods have been
developed to study mesomolecules based on the variational approach and adiabatic approach
in the three-body problem [8–11]. Of particular note is the variational method, in which the
problem of bound states for a three-particle system allows one to get ultra-precise numeri-
cal solutions on modern computers [12, 13]. Knowledge of the exact values of the energy
levels of mesomolecules is important when calculating the rates of resonant formation of
mesomolecules in muon catalysis reactions [14–19]. Since the rates of resonance formation
are strongly dependent on the binding energy of weakly bound states of mesomolecules, it is
necessary to improve the accuracy of calculating the binding energies.

Muonic molecules ptµ, pdµ, and dtµ include different hydrogen isotopes which lead to
a different energy structure. The lighter ones ptµ and pdµ have only two bound states: one
S (L = 0) and one P(L = 1), where L is the total orbital angular momentum of a three-particle
system. None of these states are weakly bound. The heavier dtµ has five bound states: two
S (L = 0), two P(L = 1) and one D(L = 2) [9, 10, 14]. Excited P∗(L = 1)-state is weakly
bound. In our work we investigate states with L = 1. Note that there are several different
approaches to classify the bound states in mesomolecular ions. One of them originates from
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the adiabatic approach and involves a pair of two quantum numbers L and ν, where L is a
rotational quantum number and ν is a vibrational quantum number [9, 10]. For example, the
ground state in this approach is designated as (0,0), while the excited P∗(L = 1)-state becomes
(1,1). Aside from the states with "normal" spacial parity (−1)L described above there are
metastable states with L = 1 and "odd" spacial parity (−1)L+1 [14]. In the framework of the
variational method, either an exponential basis [9, 10] or Gaussian one [11] is usually used.
In this work, we apply the Gaussian form for the wave function of the mesomolecule in the
framework of the stochastic variational method and calculate the energy levels of the ground
and excited states for mesomolecules consisting of different particles.

2 General formalism

All variational methods have common properties: the use of any complete set of basis func-
tions with the calculation of representations on these sets of Hamiltonian and overlapping
integrals and the subsequent solution of the generalized eigenvalue problem. In this work to
calculate the energy spectrum of the ground and excited bound states of muonic molecules
ptµ, pdµ, and dtµ we have used the stochastic variational method [11]. The wave function of
the three-particle system with zero angular momentum is expanded as following:

Ψ =

K∑
i=1

ciψS MS (xi, Ai), (1)

where S , MS are spin quantum numbers, K is a number of basis functions. An upper bound
for the ground state energy of the system is given by the lowest eigenvalue of the generalized
eigenvalue problem:

HC = EK BC, Hi j = (ψS MS (xi, Ai,HψS MS (x j, A j), Bi j = (ψS MS (xi, Ai, ψS MS (x j, A j). (2)

The trial wave function ψS MS (xi, Ai) of the muonic molecule in this approach has the Gaussian
form. The Gaussian-type basis function with non-zero angular momentum for nonidentical
particles can be written as follows:

φL(x, A) = e−
1
2 x̃AxθL(x), (3)

where x = (x1, ..., xN−1) are Jacobi coordinates (N is a number of bound particles), A is a
(N−1)×(N−1) positive-defined matrix of variational parameters, x̃Ax =

∑N−1
i=1

∑N−1
j=1 Ai jxi ·x j

θL(x) = [[[Yl1 (x1)Yl2 (x2)]L12Yl3 (x3)]L123 ...]LM , (4)

where Ylm (x) = rlYlm(x). In the case of three nonidentical particles in P-state (L = 1, where L
is the total angular momentum of particles) there are three possible wave functions [10, 20–
22]:

φ10(ρ, λ, A) = e−
1
2 [A11ρ

2+A22λ
2+2A12(ρλ)](ερ), (5)

φ01(ρ, λ, A) = e−
1
2 [A11ρ

2+A22λ
2+2A12(ρλ)](ελ), (6)

φ11(ρ, λ, A) = e−
1
2 [A11ρ

2+A22λ
2+2A12(ρλ)](ε[ρ × λ]), (7)

where we use the tensor representation for the angular part of wave functions with polariza-
tion vector ε, and ρ, λ are the Jacobi coordinates of three particles which are related with the
particle radius vectors:

ρ = r1 − r2, λ =
r1m1 + r2m2

m1 + m2
− r3. (8)
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First two wave functions have "normal" spacial parity (−1)L while the third one has the
"odd" parity (−1)L+1. We investigate both of these cases. To construct basis functions, one
has to take a superposition of (5) and (6) as ψP−state(ρ, λ, A) = c1φ10(ρ, λ, A) + c2φ01(ρ, λ, A)
for the state with (−1)L parity and (7) for the "odd" parity. Knowing the basis functions we
can perform analytical calculations of matrix elements of Hamiltonian, which is an advantage
of Gaussian basis.

Let us calculate the overlap matrix elements first. The integral for the wave function (5)
has the following form:

< φ′|φ >10=

∫ ∫
dρdλe−

1
2 [B11ρ

2+B22λ
2+2B12(ρλ)](ε∗ρ)(ερ), (9)

where the index (10) corresponds to the wave function (5). After the analytical integration
and averaging over polarizations we obtain:

< φ′|φ >10=
1
3

∫ ∫
dρdλe−

1
2 [B11ρ

2+B22λ
2+2B12(ρλ)] 3

4π
δi jρiρ j =

6π2B22

(detB)5/2 . (10)

For other states the integration can be performed in a similar manner with the following
results (the indices (01), (11) correspond to functions (6), (7)):

< φ′|φ >01=
6π2B11

(detB)5/2 , < φ′|φ >11=
12π2

(detB)5/2 . (11)

We also calculate "off-diagonal" matrix elements of the form < φ01|φ10 > (this matrix element
is indicated by the index (01|10)):

< φ′|φ >(01|10)= −
6π2B12

(detB)5/2 . (12)

For the calculation of matrix elements of Hamiltonian we use explicit expressions for poten-
tial and kinetic energy operators. The kinetic energy operator in Jacobi coordinates is

T̂ = −
~2

2µ1
∆ρ −

~2

2µ2
∆λ, (13)

where µ1 = m1m2
m1+m2

, µ2 =
(m1+m2)m3
m1+m2+m3

. After the analytical integration the matrix elements of
kinetic energy operator can be presented as follows (designations are the same as in the above
formulae):

< φ′|T̂ |φ >10,01,11,(01|10)= −
6π2

(detB)7/2

{
~2

2µ1
I10,01,11,(01|10)
ρ +

~2

2µ2
I10,01,11,(01|10)
λ

}
, (14)

I10
ρ = 5A11B22[B2

12 + (A11 − B11)B22] − 2A12B12(B2
12 + 5A11B22 − B11B22)+ (15)

+A2
12(2B2

12 + 3B11B22),

I10
λ = 5A2

12B2
22 + A22B22(−10A12B12 + 3B2

12 − 3B11B22) + A2
22(2B2

12 + 3B11B22),

I01
ρ = 5A2

12B2
11 + A11B11(−10A12B12 + 3B2

12 − 3B22B11) + A2
11(2B2

12 + 3B22B11),

I01
λ = 5A22B11[B2

12 + (A22 − B22)B11] − 2A12B12(B2
12 + 5A22B11 − B22B11)+

+A2
12(2B2

12 + 3B22B11),

I11
ρ = A2

12B11 − 2A11A12B12 + A11[B2
12 + (A11 − B11)B22],
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I11
λ = A2

12B22 − 2A22A12B12 + A22[B2
12 + (A22 − B22)B11],

I(01|10)
ρ = −B12[−2A12B12(4A11 + B11) + 5A11B2

12 + 5A2
12B11]−

−B22(A11 − B11)(5A11B12 − 2A12B11),

I(01|10)
λ = 5A2

12B12B22 − A22(2A12B11B22 + 8A12B2
12 + 3B11B12B22 − 3B3

12) + 5A2
22B11B12.

The potential energy of Coulomb interaction of particles has the form:

V̂ =
e1e2

|r12|
+

e1e3

|r13|
+

e2e3

|r23|
, (16)

where r12 = r1 − r2 = ρ, r13 = r1 − r3 = λ + m2
m12
ρ, r23 = r2 − r3 = λ − m1

m12
ρ, e1, e2, e3 are

charges of particles. To find the matrix elements of second and third terms of potential (16),

we introduce a new variable k13,23 = λ ±
m13,23

2
m12

ρ, m13,23
2,1 coincides with the mass m2 for the

integral I13 or with the mass m1 for the integral I23, m12 = m1 + m2.
After the integration we obtain the following analytical expressions of matrix elements:

< φ′|V̂ |φ >10,01,11,(01|10)= e1e2I10,01,11,(01|10)
12 + e1e3I10,01,11,(01|10)

13 + e2e3I10,01,11,(01|10)
23 , (17)

I10
12 =

4
√

2π3/2 √B22

(detB)2 , I10
13,23 =

2
√

2π3/2(3B22F13,23
1 − (F13,23

2 )2)

(F13,23
1 )3/2[B22F13,23

1 − (F13,23
2 )2]2

, (18)

I01
12 =

2
√

2π3/2(3B11B22 − B2
12)

(B22)3/2(detB)2 , I01
13,23 =

2
√

2π3/2

[B22F13,23
1 − (F13,23

2 )2]2

{
2
√

F13,23
1 +

+
(3B22F13,23

1 − (F13,23
2 )2)

(F13,23
1 )3/2

(m13,23
2,1 )2

m2
12

±
4F13,23

2√
F13,23

1

m13,23
2,1

m12

}
,

I11
12 =

8
√

2π3/2

√
B22(detB)2

, I11
13,23 =

8
√

2π3/2√
F13,23

1 [B22F13,23
1 − (F13,23

2 )2]2
, I(01|10)

12 = −
4
√

2π3/2B12
√

B22(detB)2
,

I(01|10)
13,23 = −

2
√

2π3/2

[B22F13,23
1 − (F13,23

2 )2]2

{
2

F13,23
2√
F13,23

1

∓
m13,23

2,1

m12

(3B22F13,23
1 − (F13,23

2 )2)

(F13,23
1 )3/2

}
.

As it has been previously mentioned we use the stochastic variational method to calculate
energies of muonic molecules ptµ, pdµ and dtµ. The matrix of variational parameters in the
framework of stochastic variational method is generated randomly, which prevents conver-
gence of the result to a local minimum and eliminates the possibility of obtaining an incorrect
result. Moreover, according to the Mini-Max theorem [11] in variational calculations the en-
ergies for excited states can be obtained along with the ground state energies.

For direct numerical calculations a computer code was written in the MATLAB system
to solve the three-body Coulomb problem based on the Schrödinger equation. The program
allows one not only to find the values of energy for the ground and excited states, but also
to perform refinement cycles to improve the accuracy of previously calculated energies. For
variational parameters the stochastic optimization procedure is used. In case of the (−1)L

parity P-state the basis contains both (5) and (6) functions. As a result, the numerical values
for the bound energy of ground and excited states of the muonic molecules ptµ, pdµ and dtµ
are obtained in muon atomic units (see Tab. 1). When writing the program, which helps to
calculate the energy levels of the bound states of mesomolecules tdµ, pdµ and tpµ, the Varga-
Suzuki program [22] written in Fortran is taken as the basis, wherein we have made a number
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Table 1. Energies of the bound states of muonic molecular ions in muon-atomic units. The results are
compared with ones obtaned early by V.I. Korobov [9] and A.M. Frolov [10] using an exponential

basis. The designation of states corresponds to those used in [8, 10, 22]

State Ref. E(tdµ) E(tpµ) E(dpµ)
(0,0) -0.53859497060266 -0.519880084233196 -0.512711790250644
(0,0) [9] -0.53859497088114
(0,0) [10] -0.53859497170948 -0.519880085704058 -0.512711792481703
(0,1) -0.488056287316459 -0.481499142146054 -0.471905802356538
(0,1) [9] -0.488065353400705
(0,1) [10] -0.488065354215765
(1,0) -0.523191450281939 -0.499492022668803 -0.490664161231777
(1,0) [9] -0.523191450934159
(1,0) [10] -0.523191452003593 -0.499492024990190 -0.490664164603504
(1,1) -0.481970439502052 -0.481277698317046 -0.471699625227238
(1,1) [9] -0.481991526590075
(1,1) [10] -0.481991527054489
(1, 1)∗ -0.123867812294438 -0.120749575550362 -0.118989450178991
(1, 1)∗ [9] -0.123867812559127

of changes. The matrix elements of the wave function normalization, kinetic and potential
energies for the ground and excited states have been calculated analytically and introduced
into the program. We have changed the way to set the function of generating random numbers.
In our program, we use a combined version of random number generation, which uses the
standard MATLAB function, as well as a function from the Varga-Suzuki program. The best
value of the parameters is preserved. To calculate the excited states (0, 1) and (1, 1), the
method of solving the eigenvalue problem has been changed by using the standard MATLAB
function. In calculating the energies of the ground and excited states, different values are used
for the intervals of random parameters. The running time of the program has been increased,
but this allows one to find more accurate energy values for states (0, 1) and (1, 1).

Along with total energy E of a particular state of mesomolecular ion presented in Tab. 1
usually, the binding energy εbind = (Emµα

2 + mrα
2

2n2 ) (in eV) is introduced to characterize the
binding energy of the quasi-nucleus, which is formed by the negative muon and the positive
most heavy isotope of hydrogen, and the remaining isotope of hydrogen, where mr is a re-
duced mass of a two-particle bound state (tµ) or (dµ), n is the principle quantum number of
this bound state. For (1,0) and (1,1) states n = 1, while for the "odd" parity metastable P-state
n = 2 [8, 9]. So, for example, in the case of the molecule (tdµ) for the state (1, 1) our binding
energy is equal to -0.541685 eV (we write it to six digits). For comparison, in [10] it is equal
to -0.660330 eV. It is necessary to note that for the bound energy of quasi-nucleus (tµ) we
can use the fine structure formula: E(tµ) = −(Zα)2/2n2 − (Zα)4(1/( j + 1/2) − 3/4n)/2n3.
Then we obtain slightly different values for the binding energy: εbind = −0.505590 eV
(our result) and εbind = −0.624236 eV [10]. For another three-particle molecule (dpµ)
the variational approach also gives a negative value for the energy (dpµ) in the state (1,1)
E(1,1)(dpµ) = −0.471699625227238 in muon-atomic units (-2653.995056 eV). Then the en-
ergy εbind is positive for the state (1,1). On this basis, it is usually concluded that a bound
state of two clusters (dµ) and p is absent.

Comparing the results from Tab. 1 with previous calculations we can say that they are
in good agreement with [9, 10]. The estimated accuracy of our calculations is 10−8 muon-
atomic units based on the convergence of the total energy as the size of the basis increases.
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The noticeable discrepancy for (1,1) states is related with a smaller basis size and the need
for a more careful parameters optimization procedure. The results for the "odd" parity states
coincide with [9]. It is worth mentioning that in our calculations we use double precision
while in [10] quadruple precision is being used. This fact also contributes to the discrepancy
of results.

3 Conclusion

In this work we have performed the investigation of the energy levels of muonic molecules
tdµ, tpµ, dpµ on the basis of stochastic variational method from [11, 22]. Our calculations
have been made with the account of leading order terms in the particle interaction opera-
tor. They include nonrelativistic kinetic energy (13) and the Coulomb potential energy (16).
The results obtained above (see Tab. 1) can be improved by calculating various corrections.
Among them, the most important are corrections for vacuum polarization and relativistic cor-
rections. It should be also taken into account that the formation of hydrogen mesic molecules
occurs in various states of the hyperfine structure. For example, the energy level (1,1) splits
into several sublevels due to the interaction of the spins of the particles and the orbital mo-
ment of the mesomolecule. The rates of formation of mesomolecules in each of the states
of the hyperfine structure have their own values. Therefore, the calculation of the hyperfine
structure of the excited states of mesomolecules is an important task. Work in this direction
is in progress.

The work is supported by the RSF (Grant 18-12-00128).

References

[1] A. Antognini et al., Science 339, 417 (2013)
[2] M. Diepold, B. Franke, J. J. Krauth et al., Ann. Phys. 396, 220 (2018)
[3] A. A. Krutov and A. P. Martynenko, Phys. Rev. A 84, 052514 (2011)
[4] A. P. Martynenko, F. A. Martynenko and R. N. Faustov, JETP 124, 895 (2017)
[5] S. D. Lakdawala and P. Mohr, Phys. Rev. A 24, 2224 (1981)
[6] A. A. Krutov and A. P. Martynenko, Phys. Rev. A 78, 032513 (2008)
[7] A. P. Martynenko and A. A. Ulybin, J. Phys. B 48, 195003 (2015)
[8] V. I. Korobov, I.V. Puzynin and S. I. Vinitsky, Phys. Lett. B 196, 272 (1987)
[9] V. I. Korobov and S. I. Vinitsky, Phys. Lett. B 228, 21 (1989)

[10] A. M. Frolov, Eur. Phys. J D 66, 212 (2012)
[11] K. Varga and Y. Suzuki, Comp. Phys. Comm. 106, 157 (1997)
[12] D. T. Aznabayev et al., Phys. Part. Nucl. Lett., 12, 689 (2015)
[13] A. M. Frolov, Phys. Rev. A 61, 022509 (2000)
[14] S. S. Gershtein, Yu. V. Petrov, and L. I. Ponomarev, Phys. Usp. 33, 591 (1990)
[15] V. V. Filchenkov, Phys. Part. Nucl. 47, 591 (2016)
[16] S. I. Vinitsky et al., Zh. Eksp. Teor. Fiz. 74, 849 (1978)
[17] S. S. Gershtein et al., Zh. Eks. Teor. Fiz. 78, 2099 (1980)
[18] L. I. Menshikov, L. N. Somov and M. P. Faifman, Zh. Eks. Teor. Fiz. 94, 6 (1988)
[19] T. A.Porcelli et al., Phys. Rev. Lett. 86, 3763 (2001)
[20] K. Szalewicz et al., Phys. Rev. A 36, 5494(R) (1987)
[21] Chi-Yu Hu, Phys. Rev. A 32, 1245(R) (1985)
[22] K. Varga and Y. Suzuki, Stochastic Variational Approach to Quantum-Mechanical Few-

Body Problems (Springer, Berlin, 1998)

, 0 (201E Web of Conferences https://doi.org/10.1051/e onf /201920405006PJ pjc9)204
Baldin ISHEPP XXIV

050 6 

6


	Introduction
	General formalism
	Conclusion

