Eur. Phys. J. C (2022) 82:1016
https://doi.org/10.1140/epjc/s10052-022-10996-5

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Fundamental photon orbits in the double Schwarzschild

space-time

Zeyu Fan, Edward Teo?

Department of Physics, National University of Singapore, Singapore, Singapore

Received: 27 September 2022 / Accepted: 2 November 2022
© The Author(s) 2022

Abstract We consider photon orbits in the space-time con-
sisting of two identical Schwarzschild black holes in static
equilibrium. In particular, we focus on fundamental photon
orbits — bound photon orbits that do not fall into either black
hole or go to infinity. It is known that there could exist up
to two circular photon orbits lying in the plane of symme-
try between the black holes. In this paper, we present more
examples of fundamental photon orbits in this space-time.
This includes non-circular orbits lying in the plane of sym-
metry, circular orbits that lie off the plane of symmetry, polar
orbits, and non-planar orbits that orbit around one or both of
the black holes. These orbits are all unstable. Finally, in an
appendix, we present a class of circular time-like orbits that
lie off the plane of symmetry.

1 Introduction

Itis well known that photons can orbit around a Schwarzschild
black hole in a circle with radius equal to 3M, where M is
the mass of the black hole in geometric units. Although this
orbit is unstable, it plays an important role in the appearance
of the black hole to a distant observer. In general, the black
hole will appear as a shadow — a region of the observer’s sky
devoid of light. The boundary of this shadow is formed by
photons which approach the unstable circular photon orbit
when traced back asymptotically to the past.

For the rotating Kerr black hole, two circular photon orbits
are known to exist in the equatorial plane — one prograde
and one retrograde. More interestingly, other bound photon
orbits are allowed [1]. These orbits have a constant coordinate
radius, but are not necessarily confined to a plane; for this
reason, they are known as spherical photon orbits. These
orbits play an important role in the imaging of the Kerr black
hole, in particular in the reconstruction of its shadow.
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In general, a bound photon orbit that does not fall into the
black hole or go to infinity is known as a fundamental photon
orbit (FPO) [2]. A special but important case of an FPO is
a circular photon orbit, also known as a light ring (LR). For
the Kerr black hole, it can be shown that the only FPOs are
the spherical photon orbits, with the two equatorial LRs as
special cases.

For other examples of FPOs, one has to turn to other black
hole space-times. It is natural to consider space-times with
more than one black hole. In [3], a space-time consisting
of two identical extremally charged black holes — known as
the double Majumdar—Papapetrou space-time — was consid-
ered, and several interesting classes of FPOs were discovered.
Amongst them are closed orbits that lie in a plane containing
the symmetry axis of the space-time. These orbits can orbit
around either one or both of the black holes. One particularly
interesting example is an orbit that orbits around both black
holes in the shape of a figure 8. The non-planar counterparts
of these orbits were also discussed.

The extremal charge of the black holes considered in [3]
is necessary to maintain a static equilibrium between them.
It might be physically more relevant to consider uncharged
black holes, such as Schwarzschild or Kerr black holes. In
this paper, we shall consider the double Schwarzschild space-
time. This space-time contains two identical Schwarzschild
black holes, held in static equilibrium by a conical singularity
stretching between them along the axis of symmetry. This
exact solution has been used as a model for the more realistic
case of a dynamical binary black hole system in [4,5].

An early study of null geodesics in the double
Schwarzschild space-time was made by Coelho and Herdeiro
[6]. They showed that there exist two LRs lying in the plane
of symmetry between the black holes, when the separation of
the black holes is below a certain critical value. Most remark-
ably, this critical value was found to involve the reciprocal of
the golden ratio ¢ = (+/5 + 1)/2, also known as the golden
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ratio conjugate. The two LRs merge into one at this critical
value, and cease to exist altogether above this critical value.

In this paper, we will find a number of new classes of FPOs
in this space-time, and study their properties. We begin in
Sect. 2 with a brief review of the double Schwarzschild space-
time and the relevant geodesic equations. In Sect. 3, we show
that when the separation of the black holes is below the above-
mentioned critical value, there exists a class of non-circular
FPOs lying in the plane of symmetry between the black holes.
In Sect. 4, we show that when the separation is above the
critical value, there exist two LRs lying symmetrically off
the plane of symmetry. Thus the LRs found in [6] do not
actually cease to exist, but rather they just move off the plane
of symmetry.

In Sect. 5, we find a class of closed FPOs lying in a plane
containing the symmetry axis of the space-time. We then turn
to the existence of non-planar FPOs in Sect. 6, and show that
there exists a class of such FPOs which orbit around both
black holes, and another class which only orbit around one
of the black holes. In Sect. 7, we show how the effective
potential method provides an alternative way to visualise the
FPOs. The paper concludes in Sect. 8 with some open ques-
tions and future directions. Although it is not the main focus
of this paper to consider time-like geodesics, we present in
the appendix a class of circular time-like orbits that lie off
the plane of symmetry between the black holes.

2 Geodesic equations

Itis well known that the general static axisymmetric solution
of the vacuum Einstein equations has a metric which can be
written in Weyl-Papapetrou coordinates as [7]

dsZ — _eZUdt2 + e2k—2U (d,02 + dZQ) + ,026_2Ud¢2,
2.1)

where U = U(p, z) and k = k(p, z) are functions of p and
z only. In particular, U satisfies the Laplace equation

VAU =0;U + 02U + p'9,U =0 (2.2)

for three-dimensional flat space in cylindrical polar coordi-
nates, with the metric
ds(23) = dp® 4 dz® + p’de’. 2.3)

Once U is specified, k can be derived by solving the set of
equations

ok = p((8,U)* — (3:U)?),
3k =2pd,Ud.U .

(2.4a)
(2.4b)
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The standard Schwarzschild solution is obtained if U is
taken to be the Newtonian potential of an infinitesimally thin
rod of mass M and length 2M, placed somewhere along the
z-axis [7]. The rod itself corresponds to the horizon of the
black hole. To obtain the double Schwarzschild solution, we
can take U to be the potential of two such rods, placed along
the z-axis in the intervals a; < z < ap and a3 < z < ay,
for some ay, ..., a4 satisfying a; < ay < a3 < as [8].
The two black holes then have masses M| = (az — ay)/2
and M> = (a4 — a3)/2, and are separated by a coordinate
distance 2L = a3 — ap. For this solution, the functions U
and k are explicitly given by [9]

2w (R —81)(R3 — 3)

= , (2.5a)
(Ry — ) (Rg — &a)
2% _ Yy3Y21Y41 Y32 (2.5b)
4Y1Y31RIRyR3Rs .
where we have defined
ti=z—ai, Ri=\p>+¢7,
Yij = RiRj + Gigj + p. (2.6)

Assuming that the azimuthal coordinate ¢ has the standard
periodicity, there is a conical singularity along the z-axis
between the two rods, for ap < z < a3z. In this case, it
corresponds to an excess angle given by

M M;
b1 .
LM+ M+ L)

§=2m(e ¥ —1) =2 2.7)

The existence of this conical singularity is necessary to coun-
terbalance the gravitational attraction of the two black holes,
thus maintaining the system in static equilibrium.

In the rest of this paper, we shall assume that the two black
holes have the same mass, i.e., M| = M, = M. Without loss
of generality, we can then choose a; = —L —2M,ay = —L,
a3=Landay =L +2M.

The geodesic equations can be derived in the standard way
using either the Lagrangian or Hamiltonian formalism; we
shall use the former here. For the metric (2.1), the geodesic
equations are obtained by extremising the Lagrangian

1 . . . U ;
= E(_ert2 +ezk—2U(p2 +Zz) +p2 2U¢2)’ (2.8)

where the dot denotes derivative with respect to an affine
parameter along the geodesic. For the # and ¢ geodesic equa-
tions, we obtain the first-integrals:

i =Ee 2V,

b = dp2eV,

(2.9a)
(2.9b)
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where E and @ are constants of motion, interpreted as the
energy and angular momentum of the particle respectively.
The p and z geodesic equations are second-order differential
equations, given by

p=—E**,U —8,(k — U)(p?> — 2% — 20,(k — U)pz

+ &2 p 321 — pa,U), (2.10a)
F=—E% .U +0,(k—U)(p* — 2P
—20,(k — U)pz — d*p2e*V 2y U . (2.10b)

The partial derivatives of k can be calculated from those of U
using (2.4). For the double Schwarzschild solution, the latter
are explicitly

o,U =2 < : - : T
2\Ri(R1 —¢1) Ra(Ry—1082)  R3(R3—03)

1
—_ ), 2.11
R4(R4 — §4)) (1)

8U—1 1+1 1+1
T2 Ry Ry, R3 R4/’

For null geodesics, we also have the condition that the
Lagrangian (2.8) vanishes. In this case, we can effectively
set E = 1 through a rescaling of the affine parameter and ®;
this is what we will assume from now on. Substituting (2.9)
into (2.8), we then have

2.11b)

e (p? + %) = p e (H(p, 2)* - @), (2.12)
where H (p, z) is given by
H(p,z) = pe Y. (2.13)

Since the left-hand side of (2.12) is non-negative, we must
have |®| < H(p, z) for physical motion. This result forms
the basis of the effective potential method, with H (p, z)
being the effective potential [3,6].! This method will prove
to be very useful for studying certain qualitative properties of
FPOs in the space-time. However, we will also need explicit
examples of these orbits to understand their properties more
fully. They are obtained by numerically integrating the four
geodesic equations (2.9) and (2.10).

In this work, the geodesic equations were integrated
numerically using the standard fourth-order Runge—Kutta
method. The desired orbit was found by treating it as an initial
value problem, and using the shooting method. The condi-
tion £ = 0 was imposed at the initial point, and then used as
a consistency check of the subsequent numerical integration.

! Here, we follow the approach of [3]. The effective potential used in
[6] is related to the one used here by V (p, z) = H(p, 272,

In our simulations, it was found to be always satisfied to an
accuracy of at least 1071,

In searching for FPOs, we do not consider photon orbits
that fall into either black hole. Thus, they should not approach
the two rods along the z-axis. However, they are allowed to
approach the remaining parts of the z-axis, which together
make up the axis of symmetry of the space-time. In particular,
they are allowed to approach arbitrarily close to the conical
singularity that lies on the part of the z-axis between the
two rods, even though we assume the photons cannot pass
through the conical singularity itself.

We remark that the numerical integration might encounter
problems near or on the axis of symmetry. This is because
R; — ¢; vanishes on the part of the axis where z > q;, leading
to potential issues in the computation of ¢V and 9,U in
(2.5a) and (2.11a), respectively. To address this problem, we
can replace the exact expressions for e*V and 0o, U by their
corresponding Taylor series expansions in p when ay < z <
az and z > a4. This will ensure the stability and accuracy of
the numerical integration if the orbit approaches these parts
of the symmetry axis.

Once the orbits have been obtained, we will plot them
out in the three-dimensional flat space (2.3). Examples of
such plots can be found in Figs. 2, 5, 8, 9, 11 and 12 below.
In these plots, the x and y axes refer to the usual Cartesian
coordinates defined by x = pcos¢ and y = psin¢. The
rods representing the black hole horizons are indicated in
red in these plots (except for Fig. 2). However, we have not
indicated the conical singularity between them, to reduce
clutter in the figures.

3 Equatorial FPOs

Since the plane of symmetry between the two black holes is
a totally geodesic sub-manifold of the space-time [6], it is
natural to begin by looking for photon orbits in this plane.
It was found in [6] that there exist two LRs lying in this
plane when L/M is less than the golden ratio conjugate?
1/¢ = (v/5 — 1)/2. The two LRs coincide when L/M is
equal to this value. In this section, we investigate if there
exists any other FPOs in the plane of symmetry. For brevity,
we will henceforth refer to this plane as the equatorial plane
[3], and orbits lying in it as equatorial FPOs.

The existence of the two LRs was derived using the effec-
tive potential method in [6]. In this case, we have to set
z =z =0in(2.12) and (2.13). When L < M/, the gen-
eral form of H(p, 0) is shown in Fig. 1. As can be seen, it
has two stationary points. Each stationary point corresponds

2 The golden ratio conjugate is sometimes denoted by ®, but we do
not use this notation here as & is already used to denote the angular
momentum of the photon.
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inner LR
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equatorial FPO

H(p,0)

outer LR

Pmin Pmax

p

Fig. 1 General form of the effective potential H(p,0) when L <
M /¢. The stationary points correspond to LRs. The blue line corre-
sponds to a non-circular equatorial FPO

to an LR, with angular momentum & equal to the value
of =H (p, 0) at the point. The two stationary points coin-
cide when L = M /g, and cease to exist altogether when
L>M/gp.

Note that the general form of H (p, 0) in Fig. 1 also allows
for the existence of a family of non-circular equatorial FPOs,
whose angular momentum @ ranges between that of the inner
and outer LRs. An example is indicated by the horizontal
blue line, which describes an orbit whose radius p takes the
finite range Pmin < P < Pmax- The angular momentum & of
this orbit is then given by the value of £ H (p, 0) at either the
minimum radius ppi, or the maximum radius pmay. Itis clear
from Fig. 1 that ppax always lies between the two LRs, while
Pmin always lies below the inner LR. The smallest value that
Pmin can take occurs when pmax is equal to the radius of the
outer LR.

For a fixed value of L in the range 0 < L < M /¢, this
family of non-circular equatorial FPOs can be conveniently
parameterised by the value of ppyax. Two examples of such
FPOs are plotted in Fig. 2, for the case L = M /2. As can
be seen, these FPOs precess by a certain amount after every
complete oscillation in radius. We note that analogues of
these orbits have also been found in the double Majumdar—
Papapetrou space-time [10], as well as in other black hole
space-times [11,12].

4 Off-equatorial LRs

Since we know that LRs exist in the equatorial plane of the
double Schwarzschild space-time, the next question is if LRs
can exist off this plane of symmetry. In this section, we show
the existence of LRs that lie in a plane of constant z 7 0.

@ Springer

To do so, we use the effective potential method again. In
this case, we just have to set z = 0in (2.12). Stationary points
of the potential H(p, z) in (2.13) then correspond to LRs,
with angular momentum & equal to the value of +=H (p, z) at
the point. The conditions for a stationary point, 0, H (0, z) =
0 and 9, H (p, z) = 0, are equivalent to

(4.12)
(4.1b)

1-2p3,U(p,2) =0,
aZU(p’ Z) = 07

respectively. The set of all points (p, z) satisfying each of
these conditions can be found numerically, using the expres-
sions in (2.11). It turns out that the solution of (4.1a) gen-
erally consists of two curves in the (p, z)-plane. Similarly,
the solution of (4.1b) generally consists of two curves in the
(p, z)-plane, with one of them being the z = O line. The
qualitative behaviour of these curves will depend on whether
L is below, equal to, or above the critical value M /¢.

We begin by considering the case L < M /¢. As an exam-
ple, the set of points satisfying the conditions in (4.1) is plot-
ted in Fig. 3afor L = M /2. The two orange curves are points
at which 9, H (p, z) = 0, while the two blue curves are points
at which 9, H(p, z) = 0. It can be seen that there are only
two points — indicated by the black dots — at which one of
the orange curves meets one of the blue ones, and they both
lie along the z = 0 line. These are precisely the locations of
the two equatorial LRs found in [6]. It is clear that there are
no off-equatorial LRs in this case.

We next consider the critical case L = M /¢ in Fig. 3b. In
this case, the two orange curves and the two blue curves all
meet at a single point. This, of course, describes the case in
which the two equatorial LRs have merged into one. Again,
it is clear that there are no off-equatorial LRs in this case.

Finally, we consider the case L > M /¢. As an example,
the set of points satisfying (4.1) is plotted in Fig. 3c for L =
M. The qualitative behaviour of the orange curves is now
different. While there are still two points at which one of the
orange curves meets one of the blue ones, they now both lie
symmetrically off the z = 0 line, with the same value of p.
This shows that there are two off-equatorial LRs with the
same radius in this case.

Although we have only illustrated this for one specific
value of L > M /¢, we have checked that it holds for other
values of L in this range. Figure 4 shows how the radius
p of the LRs and their separation Az depends on L. Note
that p monotonically decreases as L is increased from the
critical value, and that it approaches the value \/§M in the
limit L — oo. By contrast, Az monotonically increases as L
is increased, and in fact asymptotically approaches the line
2(M + L). These limiting values arise when the two black
holes can be regarded as separate Schwarzschild black holes
with no interactions between them. The radius ~/3M is that
of the circular photon orbit around a Schwarzschild black
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0
@M ! 2

(@) Pmax >~ 2.20458 M (ppmin ~
0.705424 M, ® ~9.84331M)

Fig. 2 Examples of non-circular equatorial FPOs for the case L =
M /2, with parameters as indicated. The choice of parameter for a is
explained at the end of Sect. 6.2; the parameter for b was chosen to

hole in Weyl-Papapetrou coordinates.> On the other hand,
2(M + L) is the separation between the centres of mass of
the two black holes. This is also the separation between the
photon orbits around each of the black holes, if the interac-
tions between them are neglected.

We remark that the stability of these orbits can be
checked in the usual way by calculating the Hessian

. 32H(p.z) 9,0.H(p.
matrix ( o H(P.2) B ,, (0.2) ) It turns out that all the LRs
0:0pH(p,2) 9;H(p,2)

described in this section — including the equatorial ones —
have a negative Hessian determinant, showing that these
orbits are unstable. This is consistent with the general result
found in [13].

To summarise, we have shown that the two LRs found
in [6] for the case L < M /¢, continue to exist in the case
L > M/gp, except that they no longer lie in the equatorial
plane. Instead, they lie symmetrically off the equatorial plane,
with the same radius. The transition between these two cases
occurs at the critical value L = M /¢ involving the golden
ratio, when the two LRs merge into one.

5 Polar FPOs

The next class of orbits that we shall consider are closed
FPOs that lie in a plane containing the z-axis. Since there is a

3 The relation between Weyl—Papapetrou coordinates and the usual
spherical polar coordinates is given by p = /r(r —2M)sin6é and
z=(r—M)cos6[14]. Thus p = V3M corresponds to r = 3M, when
6 =m/2.

0
@/M ! P

() Pmax = 1.79116M (pnin =
07610330, & =10M)

make ® equal to 10M exactly. The orbits actually start at ppi, in both
plots, and terminate after the interval A¢ = 6 and 127, respectively

conical singularity along the z-axis between the black holes,
we shall assume that the orbits cannot pass through the inner
part of the axis. They can only pass through the outer parts of
the axis, where z < aj orz > au, as they orbit the black holes.
Because of this, we shall refer to such FPOs as polar FPOs.
These orbits necessarily have vanishing angular momentum
D,

Two examples of such FPOs are illustrated in Fig. 5, for the
cases L = 2M and 5M. For sufficiently small L, these FPOs
resemble ellipses (although we have checked that they are
not true ellipses). These orbits become more elongated as L
is increased. Two useful characteristics of these orbits are its
radius p when it passes through the equatorial plane, and the
maximum z coordinate reached by the orbit. We denote them
by p;=0 and zmax, respectively. In Fig. 6, we have plotted p,—o
and zmax — L against L for this class of polar FPOs.

We note that p,—¢p monotonically increases as L is
increased, and that it approaches a constant value in the limit
L — o00. On the other hand, zmax monotonically increases
as L is increased, and in fact increases linearly with L in the
asymptotic limit. The latter can be seen from the fact that
Zmax — L tends to a constant value as L — oo.

It is, in fact, possible to derive these asymptotic values,
using the fact that the two black holes can be regarded as sepa-
rate Schwarzschild black holes in this limit. The correspond-
ing orbit in this limit is one that approaches a Schwarzschild
black hole from infinity, and is deflected by an angle of 180°
before receding back to infinity. The asymptotic value of p,—¢
is just the impact parameter b of this orbit. The value of b
can be calculated to be approximately 5.35696M; see, e.g.,

@ Springer
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Fig. 3 Plots showing the points (p, z) at which 9, H (p, z) = 0 (orange
curves) and 9, H (p, z) = 0 (blue curves), for three different values of
L as indicated. The intersection points (black dots) correspond to LRs.

[15,16]. On the other hand, the asymptotic value of zp,x 1S
the closest point of this orbit to the black hole. This value can
be calculated to be approximately 3.52062M, using Eq. (5)
of [16].

It is also possible to derive the values of p,—g and Zmax
when L = 0. This limit corresponds to the two black holes
merging into a single Schwarzschild black hole with mass
2M. In this case, the polar orbit is just the circular pho-
ton orbit around the Schwarzschild black hole with radius
r = 6M in spherical polar coordinates. In Weyl-Papapetrou
coordinates (c.f. Footnote 3), this corresponds to the values
p—0 = 24/3M and zmax = 4M.

@ Springer

The yellow regions denote the points at which 9, H(p, z) < 0 (equiv-
alently, 1 —2pd,U(p, z) < 0); this information will be needed in the
appendix when we consider time-like orbits

6 Non-planar FPOs

We have so far focussed on FPOs that lie in a plane in the
three-dimensional space (2.3). In this section, we turn our
attention to the existence of non-planar FPOs. We have found
a few such classes of FPOs, which we now discuss in turn.

6.1 Class A non-planar FPOs

The first class of non-planar FPOs, which we call Class A,
contains the polar FPOs described in Sect. 5 as a special case.
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Fig. 4 Plot of a p against L, and b Az against L, for the off-equatorial LRs. These plots asymptotically approach the dashed lines shown. The
dashed line in a corresponds to the value p = +/3M, while that in b corresponds to Az = 2(M + L)

—4 ) 0 . —4
x/M

@ L=2M (p,—o~3.91902M)

Fig. 5 Examples of polar FPOs, for two different values of L as indicated

A common feature of this class of orbits is that they all pass
through the equatorial plane z = 0, with the property that
Plz=0 = 0. It turns out that a possible choice of parameter
for these orbits is the radius p of the orbit when it passes
through the equatorial plane. As usual, we denote this by
Pz=0-

Two useful characteristics of these orbits are the inclina-
tion angle that the orbit makes with respect to the equatorial
plane in the three-dimensional space (2.3), and the maximum
z coordinate reached by the orbit. We denote them by 8, and
Zmax, respectively. In particular, 6;,. is given by the general
formula:

/M

. +
) 6 =
x/M 8

() L=5M (p.—o~4.37025M)

Oinc = arctan ( 6.1)

Z
Without loss of generality, we can assume z|,—o > 0, so the
allowed range of 6. is from 0° (equatorial orbits) to 90°
(polar orbits). In Fig. 7, we show how 6, and zmax — as well
as & — depend on p,—¢, for several values of L.

It is clear from Fig. 7 that the qualitative behaviour of the
orbits is different, depending on whether L is more or less
than the critical value M/¢. We begin by considering the
range L < M /. In this range, the lower and upper bounds

@ Springer
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Fig. 6 Plot of a p,—o against L, and b zmax — L against L, for the class of polar FPOs. These plots asymptotically approach the dashed lines
shown. The dashed line in a corresponds to the value p,—g >~ 5.35696 M, while that in b corresponds to zmax =~ L + 3.52062M
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Fig. 7 Plots of a 6. against p;—o, b Zmax against p,—¢, and ¢ ® against p,—, for the Class A FPOs, for various values of L as indicated
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Table 1 The lower and upper

bowis o g v LB it e
values of L plotted in Fig. 7. Pz=0 Pz=0
Non-zero values are listed toan 4 /5 3.24140 Outer equat. LR 3.50836 Polar
accuracy of six significant
figures. The orbit types 1/2 2.66168 3.57880
corresponding to the /@ 1.90211 " 3.60711 "
lower/upper bounds are also 1 0 Non-planar fig.-8 3.69845 "
listed
0 " 3.91902 "

5 0 " 437025 "
of p,—o are finite non-zero values, as listed in Table 1. As p,—q given by
is decreased from the upper bound, both 6, and zmax will

. : : 1

mpnotomcally decrease: Two example orbits are plotted in Ap =7 (1 _ ok, Z)) — . 6.3)
Fig. 8aand b for the specific value L = M /2. As p,—q reaches aQ+L/M)

the lower bound, both 6i,c and zmax Will vanish. Thus, we
recover a circular orbit lying in the equatorial plane. Indeed,
it can be checked that it is just the outer LR discovered in
[6].

Next, we consider the range L > M /. In this range, the
lower bound of p,— is zero while the upper bound is a finite
non-zero value, as listed in Table 1. As p,— is decreased from
the upper bound, both 6ipc and zmax Will initially decrease,
but may increase again. Two example orbits are plotted in
Fig. 8c and d for the specific value L = M. As p,—o0 — O,
both 6 and zmax Will tend to finite non-zero values. Thus,
we do not recover an equatorial orbit in this limit. In Fig. 9a,
we have illustrated an orbit with a very small value of p,—.
As can be seen, it resembles a figure-8 or lemniscate type
of orbit. However, unlike the figure-8 orbit that is known to
exist in the double Majumdar—Papapetrou space-time [3], the
orbit in Fig. 9a does not lie in a single plane. This is due to the
presence of the conical singularity on the z-axis between the
black holes. It is known that when a geodesic passes close to
a conical singularity, it will undergo a deflection by a certain
angle [4].

This angle can be approximately derived as follows. Con-
sider a constant z plane cutting through the conical singularity
(so that a» < z < a3). The metric of this two-dimensional
plane, in the neighbourhood of the conical singularity itself,
is given by

dstyy ~ dp” + pZe 2 02dg?, 6.2)

up to an irrelevant conformal factor. This metric describes a
two-dimensional flat space in polar coordinates, with polar
angle given by ¢’ = e ¥(-9¢%. Now consider a geodesic
which passes through p = 0; its ¢’ coordinate will undergo
the usual shift ¢’ — ¢’ + 7. However, in terms of the coor-
dinate ¢, this will correspond to the shift ¢ — ¢ + we¥©:2),
Thus, the angle by which the geodesic will be deflected is

This formula remains approximately valid for geodesics
passing close to the conical singularity; a fact we have ver-
ified numerically for our examples. Since we do not allow
light to pass through the conical singularity, the exact angle
(6.3) will not be reached in practice.

6.2 Class B non-planar FPOs

The Class A FPOs that we discussed in the previous subsec-
tion have the property that they cross the equatorial plane
z = 0 repeatedly. As such, they can be regarded as orbiting
around both black holes. We now turn to a second class of
orbits, which we call Class B, that are confined to either the
region z > O orz < 0. Thus, they can be regarded as orbiting
around only one of the black holes. Without loss of general-
ity, we can take it to be the upper black hole. Because these
orbits do not pass through the equatorial plane, we need to
use a different parameter from the Class A FPOs. A possible
choice of parameter is the maximum z coordinate reached by
the orbit, denoted by zmax-

Two useful characteristics of these orbits are its radius p
at 7 = Zmax, and the difference between the maximum and
minimum z coordinates reached by the orbit. We denote them
by oz, and Az, respectively. In Fig. 10, we show how these
two quantities — as well as @ — depend on zp,x, for several
values of L.

Again, itis clear that the qualitative behaviour of the orbits
is different, depending on whether L is more or less than
the critical value M /¢. We begin by considering the range
L > M/p. In this range, the lower and upper bounds of
Zmax are finite non-zero values, as listed in Table 2. We note
from Fig. 10b that Az = 0 at the lower bound. This in fact
corresponds to an off-equatorial LR, of the type described in
Sect. 4. As zmax 1S increased, Az will monotonically increase
and the orbit will start tilting with respect to the z-axis. Two
example orbits are plotted in Fig. 11a and b for the specific
value L = M. As zmax approaches the upper bound, the orbit
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x/M

(@ L=M/2, p,—o~2.98877TM
(finec = 30.0176°, & =8.8M)

/M

(© L=M, p._g=2.5M (fipc~
35.8347°, &~ 7.44222M)

2 .
a/M 3

(b) L= M/Q, Pz=0= 2.TM (Hinc ~
8.41589°, & ~9.71288M)

z/M

(d) L=M, p,_o~1.10259M
(Bine ~ 22.8839°, & =6.5M)

Fig. 8 Examples of Class A FPOs for four different values of L and p,—¢ as indicated. The orbits start at the equatorial plane in all four plots, and

terminate after the interval A¢ = 8z for a and b, and 47 for ¢ and d

will become almost vertical. However, as the lowest point of
the orbit nears the conical singularity between the two rods,
a deflection of the type described at the end of Sect. 6.1 will
occur. In Fig. 9b, we have illustrated an orbit with a value of
Zmax Vvery close to the upper bound. In analogy with the non-

@ Springer

planar figure-8 orbit in Fig. 9a, we shall call such an orbit a
“non-planar figure-0 orbit”.

Next, we consider the range L < M /¢. In this range, the
lower bound of zpax 1S zero while the upper bound is a finite
non-zero value, as listed in Table 2. The upper bound again
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/M

(@) P2=00.0329584M (Oinc ~
24.8998°)

Fig. 9 a Non-planar figure-8 orbit arising from the Class A FPOs; b
non-planar figure-0 orbit arising from the Class B FPOs. Both orbits are
for the case L = M and ® = 0.28M. The orbit starts at the equatorial

corresponds to a non-planar figure-0 orbit, when the orbit is
most vertical. As zmax 1S decreased, the orbit will become less
inclined. Two example orbits are plotted in Fig. 11c¢ and d for
the specific value L = M /2. When 7y, = 0, we have Az =
0 while p,, .. remains non-vanishing. This corresponds to an
equatorial FPO, of the type described in Sect. 3. For L =
M /2, we actually obtain the orbit shown in Fig. 2a; indeed,
it can be seen that Fig. 2a is like a “flattened” version of
Fig. 11d.

6.3 Higher-order non-planar FPOs

It turns out that there exist non-planar FPOs that are hybrids
of the Class A and Class B FPOs when L > M /¢. Like the
Class A FPOs, they all pass through the equatorial plane. Two
such FPOs are plotted in Fig. 12, for the same specific values
of L = M and ® = 6.5M as the Class A orbit in Fig. 8d;
indeed, they can be regarded as higher-order generalisations
of the latter orbit.

In Fig. 12a, the orbit starts at the equatorial plane z = 0
and initially heads upwards like the Class A orbit in Fig. 8d.
However, at the maximum value of z, it then orbits once
around the upper black hole like the Class B orbit in Fig. 11b.
After returning to the maximum value, it continues the rest

@/M

(b) Zmax ~4.07003M (pz,,.. ~
0.0700519M)

plane for a, and at zpin for b. To aid in tracing the path of each orbit, we
have divided it into four parts: coloured blue, green, orange and pink,
in order

of its orbit like the Class A orbit. In Fig. 12b, the first half
of the orbit is similar to the previous one. However, at the
minimum value of z, it orbits once around the lower black
hole, before returning to the equatorial plane.

Itis natural to label each of these orbits by a pair of integers
(m, n), where m is the number of times it orbits around the
upper black hole like a Class B orbit, and » is the number
of times it orbits around the lower black hole like a Class
B orbit subsequently. The lowest-order case (m, n) = (0, 0)
corresponds to the orbit in Fig. 8d. The orbits in Fig. 12a
and b have (m,n) = (1,0) and (1, 1), respectively. One
may wonder if there exist generalisations of these orbits to
even higher order. Indeed, we have found examples of orbits
with (m, n) as high as (2, 2). Not surprisingly, the numerical
integration has to be carried out to a very high precision to
obtain them.

These higher-order (m, n)-orbits can be parameterised by
the initial position and direction of the orbit in the equato-
rial plane. The initial position is, as usual, specified by the
radius p;—¢. On the other hand, the initial direction is speci-
fied by the inclination angle 6, defined in (6.1), as well as
an azimuthal-type angle 6,,; defined by

Oazi = arctan (—i) (6.4)

o

z=0 '
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2.5

L=5M
L=5M

&/M

L=5M

Zmax/M
(©)

Fig. 10 Plots of a p, . against zmax, b Az against zyax, and ¢ ® against zp,x, for the Class B FPOs, for various values of L as indicated

Table 2 The lower and upper
bounds of zpax, for the various
values of L plotted in Fig. 10.

Lower bound Type Upper bound Type
L/M of Zmax/M of orbit of Zmax/M of orbit

Non-zero valges .arehlisted to an 1/5 0 Equat. FPO 3.30993 Non-planar fig.-0
accuracy of six significant
figures. The orbit types 1/2 0 3.59261
corresponding to the 1/¢ 0 " 3.70501 "
lower/upper bounds are also 1 1.40499 Off-equat. LR 4.07149 "
listed
e 2.77243 " 5.04429 "
5 5.94484 " 8.01520 "

Note that 6,,; is non-zero only for (m, n)-orbits with m #* 7 Effective potential method for FPOs

n; by symmetry, it vanishes for orbits with m = n. The

corresponding parameters for the two higher-order orbits in ~ The effective potential method is an important and useful

Fig. 12 are indicated in their respective captions. tool when analysing geodesics. Indeed, we have so far used
it to deduce the existence of the equatorial FPOs in Sect. 3,
and the existence and stability properties of the off-equatorial
LRs in Sect. 4. In this section, we will expand on this method

@ Springer



Eur. Phys. J. C (2022) 82:1016 Page 13 0f 20 1016

-2 1 0

/M ! 2 g 8 /M 2 3
@) L=M, zmax=16M (p,,. ~ () L=DM, zyay ~3.10326 M
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Fig. 11 Examples of Class B FPOs for four different values of L and zmax as indicated. The orbits start at zy;, in all four plots, and terminate after

the interval A¢ = 67
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@/M 3

(a) Pz=0= 1.10306M, Ginc ~
22.9256°, 0,51 ~ 0.114643°

/M 3

(b) p2=0==1.10353M, Oinc ~
22.9676°, 0,5 = 0°

Fig. 12 Examples of higher-order non-planar FPOs, for the case L = M and ® = 6.5M. The orbits start at the equatorial plane in both plots, and

terminate after the interval A¢ = 67 and 87, respectively

following [3], and show how it can be applied to understand
the general behaviour of the FPOs found in this paper. In par-
ticular, it provides an alternative way to visualise the motion
of the geodesics in the (p, z) plane. This is especially useful
for the non-planar FPOs found in Sect. 6.

Recall that the effective potential for the null geodesics
considered here is given by H(p, z) in (2.13), and that the
angular momentum & of the photon must satisfy |®| <
H (p, z) for physical motion. Equality occurs if and only if
p = z = 0, as can be seen from (2.12). Note that, without
loss of generality, we can assume ® > 0; the case & < 0
can then be obtained by a reflection ¢ — —¢.

Now, for fixed values of M, L and ®, one can consider
the set of points (p, z) satisfying the equation
®=H(p,2), (7.1)
known as level curves of H(p, z). They delineate the bound-
ary between the allowed and forbidden regions of the (p, z)
plane for a null geodesic. Since p = z = 0 along the level
curves, a null geodesic will turn around when it reaches such
a curve.

Asan example, considerthecase L = M /2and ® = 10M
in Fig. 13a. The shaded regions indicate the parts of the (p, z)
plane for which ® < H(p, z), where null geodesics are
allowed to exist. In this case, there are two allowed regions,
one connected to the black holes and the other to infinity.

As the values of the parameters are varied, the level curves
will change. The rest of the plots in Fig. 13 illustrate this.

@ Springer

Figure 13b shows the situation when @ is decreased below
a certain critical value — approximately equal to 9.78603 M
in this case. At the critical value itself, the right-most two
curves in Fig. 13a will meet up at a single point; this point
corresponds to the outer LR in the equatorial plane. Below the
critical value, the two curves will intercommute, as shown in
Fig. 13b for the case ® = 8.8 M. As aresult, the two allowed
regions in Fig. 13a will join up to become a single region,
connected to both black holes and to infinity.

On the other hand, Fig. 13c shows the situation when ® is
increased above a certain critical value — approximately equal
to 10.3154 M in this case. At the critical value itself, the left-
most two curves in Fig. 13a will meet up at a single point;
this point corresponds to the inner LR in the equatorial plane.
Above the critical value, the two curves will intercommute, as
shown in Fig. 13c for the case ® = 10.5M. As aresult, there
are now three allowed regions: two of which are connected
to either black hole, and one to infinity.

Figure 13d and e illustrate examples of level curves when
the black holes are separated by an intermediate and far dis-
tance, respectively. There are still three allowed regions in
these cases, although the shapes of the level curves are differ-
ent. In particular, it is clear from Fig. 13e that the two black
holes are beginning to behave like separate Schwarzschild
black holes. In such cases, there is a critical value of ® for
which the two left curves will meet up with the right curve.
The two points at which they meet up correspond to the two
off-equatorial LRs. If ® is decreased below the critical value,
we have the situation shown in Fig. 13f. The three allowed
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Fig. 13 Level curves of H(p, z) for various choices of parameters. The grey regions indicate the regions of the (p, z) plane where null geodesics
are allowed to exist. In a and b, we have also plotted out three actual FPOs (blue curves), labelled by (i), (ii) and (iii)
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Fig. 14 The three different parts, a—c, of the L—® parameter space,
whose level curves exhibit the three topologically distinct types of
behaviour as shown in Fig. 13a, b and c, respectively. The three bound-
ary curves all meet at the critical point (black dot), where L = M /¢ =~
0.618034M and ® ~ 9.51057M

regions in Fig. 13e will join up to become a single region,
connected to both black holes and to infinity.

‘We note that in the limit ® = 0, the three level curves in
Fig. 13f will approach the z-axis itself. The allowed region
therefore becomes the whole (p, z) plane, consistent with the
fact that the null geodesics are now allowed to reach the z-
axis. This is in fact a general result that applies for any value
of L.

The six sets of level curves shown in Fig. 13 can be
divided into three topologically distinct types, represented
by Figs. 13a, b and c. We call them type (a), (b) and (c),
respectively. Note that Fig. 13d and e belong to type (c),
while Fig. 13f belongs to type (b). There are no other topo-
logically distinct types. Indeed, it can be checked that the
L—® parameter space is divided into three parts as shown in
Fig. 14, corresponding to types (a), (b) and (c).

As we have already seen, in all three cases, the allowed
regions of the (p, z) plane are connected to the black holes
and/or to infinity. This shows that it is kinematically possible
for a null geodesic to reach the black holes or go to infinity.
For all the FPOs found in this paper, we have checked that
a small perturbation in the appropriate direction will cause
them to fall into one of the black holes or move off to infinity.
They are thus unstable.*

Despite being inherently unstable, an FPO will in general
trace out a trajectory in the allowed region of the (p, z) plane
— that neither falls into a black hole nor moves off to infinity.

4 It is also possible to study the stability of these orbits using Poincaré
maps [2,13].

@ Springer

Moreover, it can be shown that these trajectories will touch
the level curves atright angles [3], provided one uses the same
scale for the p and z axes. As examples, we have plotted out
three actual FPOs in Fig. 13a and b: (i) the equatorial FPO
shown in Fig. 2b; (ii) the Class A FPO shown in Fig. 8a; and
(iii) the Class B FPO shown in Fig. 11c.

These examples highlight an immediate advantage of
visualising the FPOs in this way: they trace out closed tra-
jectories in the (p, z) plane, even though they are in general
open trajectories in the three-dimensional (p, z, ¢) space.
This greatly simplifies the search for non-planar FPOs, as
the shooting method can be carried out in the (p, z) plane
instead of the (p, z, ¢) space. It also provides a way to clas-
sify the different types of non-planar FPOs. Note that the
two blue curves (ii) and (iii) touch different level curves in
Fig. 13b, at least at one end. This suggests an alternative
way to distinguish between Class A and Class B FPOs in
this topological class by the behaviour of the curves: Class
A orbits trace out curves that stretch symmetrically between
the two long level curves, whereas Class B orbits trace out
curves that stretch between the short level curve and one of
the long level curves (without crossing the z = 0 line).

Appropriate generalisations to the higher-order FPOs can
also be made. In Fig. 15, we have illustrated the situation
corresponding to the two higher-order orbits in Fig. 12. Note
that the (1,0)-orbit traces out a curve in the (p, z) plane that
stretches between the short level curve and the lower long
level curve. It also very closely approaches the upper long
level curve, although they do not actually touch. On the other
hand, the (1,1)-orbit traces out a curve in the (p, z) plane that
touches the short level curve symmetrically at both ends,
while very closely approaching both the upper and lower
long level curves.

8 Conclusion

It has been our main purpose in this paper to investigate the
existence of FPOs in the double Schwarzschild space-time.
To this end, we have found a number of new classes of FPOs,
extending on the two equatorial LRs discovered in [6]. These
FPOs are summarised in Table 3, together with two impor-
tant properties: the corresponding range of the black hole
separation L, and the topological type of the level curves
(7.1). It can be seen that the critical separation M /¢ found in
[6] continues to be an important determinant of the existence
and properties of the FPOs. The results we have found under-
score the rich behaviour of null geodesics in space-times with
more than one black hole. We now conclude with a few open
questions and directions for future work.

Since the geodesic equations for this space-time cannot be
solved analytically, much of our work has been numerical.
Although we have tried to be exhaustive in our search for new
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Fig. 15 The higher-order FPOs in Fig. 12, plotted in the (p, z) plane. The insets show that the orbits (blue curves) do not actually touch the level
curves (dark grey curves) at the highest point — and by symmetry, the lowest point in b as well

Table 3 Summary of the known

FPOs in the double Range of L Type of level curves Examples
Schwarzschild space-time. The  goya10rial LRs L<M/g (ab),(ac) Fig. 4 of [6]
notation (ab) refers to the
boundary between the regions Off-equatorial LRs L>M/e (be)
(a) and (b) in Fig. 14, etc Equatorial FPOs L<M/p (a) Fig.2a,b
Polar FPOs 0<L <o (b) Fig. 5a,b
Class A FPOs L<M/yp (b) Fig. 8a,b
L> M/ (b) Fig. 8c, d
Class B FPOs L<M/p (a),(b) Fig. llc,d
L> M/ (b) Fig. 11a,b
Higher-order FPOs L>M/p (b) Fig. 12a,b

classes of FPOs, it is possible that there remains undiscovered
classes of FPOs. Also, many of the properties of the FPOs
discovered in this paper were studied numerically. It might
be worth exploring if it is possible to rederive some of these
results analytically.

One assumption made in this work is that the two black
holes have equal mass. It is possible to relax this assumption,
for example, by varying the mass of one of the black holes
while keeping the distance L between them fixed. For small
variations, the FPOs discussed in this paper should continue
to exist. Indeed, we have verified that the two LRs will con-
tinue to exist, although their positions will shift about as the
mass of the black hole is increased. The behaviour of the
other classes of FPOs remains to be investigated.

Another possible extension of this work is to investigate
the nature of time-like orbits in the double Schwarzschild
space-time. It is expected that these orbits will exhibit a rich
behaviour, similar to their null counterparts. For a start, we
have found a class of circular time-like orbits that lie off
the plane of symmetry, extending the circular null orbits of
Sect. 4. These orbits are described in the appendix. The inves-

tigation of other classes of time-like orbits will be left for the
future.

It should also be possible to extend this work to the case
of more than two black holes, and even to charged black
holes. We mention that the existence of equatorial LRs and
time-like geodesics in these more general space-times were
already considered in the pioneering work of Coelho and
Herdeiro [6].

More recently, the authors of [17-19] have uncovered a
certain topological charge (TC) of a given space-time, equal
to the number of stable LRs minus the number of unstable
LRs. It is invariant under smooth deformations of the space-
time obeying fixed boundary conditions. So far, most of the
work on the TC has been for space-times containing no or
one black hole horizon. Thus, it is timely to investigate the
TC in space-times with more than one horizon present. We
note that TC = —2 for the double Schwarzschild space-time.

Itis our hope that the FPOs discovered in this paper would
eventually lead to a better understanding of aspects of the
double Schwarzschild space-time, such as its shadow. In par-
ticular, the existence of the higher-order non-planar FPOs
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suggests that the shadow might exhibit fractal behaviour [3],
and it would be interesting to study this and other chaotic
features of the space-time in more detail.
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Appendix: Circular time-like orbits

In this appendix, we shall discuss the existence of circular
time-like orbits in the double Schwarzschild space-time. In
the case L < M /¢, it was found in [6] that such orbits could
exist anywhere in the equatorial plane outside the annular
region bounded by the two equatorial LRs. When L = M /¢,
this annular region becomes a circle, but the above result still
holds. Here, we shall focus on the case L > M /¢p.

We shall consider time-like orbits in a constant z plane.
Substituting (2.9) into (2.8), and using the fact that z = 0
and that £ can always be rescaled to —% for such orbits, we
obtain

X p? =E* = V(p,2), (A1)
where the effective potential V (p, z) is given by [6]
Vip,2) =p eV @ + &Y. (A2)

Stationary points of this potential then correspond to cir-
cular time-like orbits, with energy E equal to the value of
A/V(p, z) at the point. It can be checked that the conditions
for a stationary point, 9,V (p,z) =0and 9,V (p, z) = 0, are
equivalent to

1
T 1 42p7 22092
9.U =0,

1 —208,U (A3a)

(A.3b)

respectively. Note that the condition (A.3b) is identical to that
for the null case in (4.1b). This means that the set of points
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(p, z) satisfying this condition is given by the same two blue
curves described in Sect. 4 (c.f. Fig. 3). The condition (A.3a)
is however different from the null case; it only reduces to
(4.1a) if the right-hand side vanishes, i.e., when & — oo.
Since the right-hand side of (A.3a) is in general a positive
quantity, points in the (p, z) plane satisfying this condition
are bounded by the orange curves described in Sect. 4.

In Fig. 3, we have indicated the set of points for which
1 —2p0d,U < 0 by the yellow regions. The parts of the blue
curves which lie outside the closure of the yellow regions
then indicate the allowed positions of the circular time-like
orbits. For the case L < M /¢, it agrees with the results found
in [6]. For the case L > M /¢, it shows that these orbits could
lie in the equatorial plane, and also possibly on the curve that
stretches between the two off-equatorial LRs.

To find the actual positions of these orbits, one has to
solve for the condition (A.3a) for different values of ®. It
turns out that its solution generally consists of three curves in
the (p, z)-plane. For definiteness, consider the case L = M
other cases will be similar. In Fig. 16, we have illustrated
the set of points (p, z) satisfying the two conditions (A.3),
for four qualitatively different cases. The orange curves are
points at which 9,V (p, z) = 0, while the blue curves are
points at which 9,V (p, z) = 0.

When @ is below a certain critical value — approximately
equal to 6.53321 M in this case, there will exist a single circu-
lar time-like orbit in the equatorial plane. This is illustrated
in Fig. 16a for the case ® = 6.3M; it can be seen that the
short orange curve intersects the blue curves at one point,
with z = 0. When & is equal to this critical value, the orange
curve in question will meet the blue curves at the point where
the latter two curves intersect. When & is increased above
this critical value, the short orange curve will intersect the
blue curves at three distinct points, one with z = 0 and the
other two with z # 0. This is illustrated in Fig. 16b for the
case ® = 6.56M. Thus, we have one circular orbit in the
equatorial plane and two circular orbits that are lifted off the
equatorial plane. The latter orbits are the time-like analogues
of the off-equatorial LRs described in Sect. 4.

It turns out that the time-like case exhibits additional fea-
tures that are not present in the null case. If we increase ® to
the approximate value 6.56860M , the two long orange curves
will meet along the z = 0 line, giving rise to an additional
circular orbit in the equatorial plane. Above this value, the
two curves will intercommute, as shown in Fig. 16¢ for the
case @ = 6.8 M. There are now a total of three circular orbits
in the equatorial plane, in addition to the two off-equatorial
ones.

If we continue increasing @ to the approximate value
7.07266 M, the left-most two orange curves in Fig. 16¢ will
meet along the z = 0 line, causing the inner-most two circular
orbits in the equatorial plane to merge. Beyond this value, the
two curves will intercommute, as shown in Fig. 16d for the
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(@ »=63M

p/M
() ®=6.8M

Fig. 16 Plots showing the points (p,z) at which 9,V (p,z) = 0
(orange curves) and 9;V(p,z) = O (blue curves) for time-like
geodesics, for L = M and four different values of ® as indicated. The
intersection points correspond to circular time-like orbits; the black dots

case ® = 7.3M. There now remains just one circular orbit
in the equatorial plane, in addition to the two off-equatorial
ones.

The stability of these circular time-like orbits
can be checked by calculating the Hessian matrix
( %V (0.2 3?35‘/(‘)’1)). The black dots in Fig. 16 indicate

0:0,V (p,2) d; V(p,2)
orbits that have a negative Hessian determinant, and so are
unstable. In particular, this includes all the off-equatorial
orbits. On the other hand, the grey dots in Fig. 16 indicate
orbits that have a positive-definite Hessian matrix, and so
are stable. We conclude that there can exist up to two sta-
ble circular time-like orbits in the equatorial plane of this
space-time.

z/M
[es)

(b) d=6.56M

p/M
d) &=7.3M

indicate unstable orbits, while the grey dots indicate stable ones. The
yellow regions are as in Fig. 3c; the orange curves will always lie outside
these regions
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