

OVERVIEW OF THE FERMILAB ANTIPOTON SOURCE

Robert E. Shafer

Fermi National Accelerator Laboratory\*, Batavia, Illinois 60510

Fermilab is beginning the construction of an antiproton source for the proton-antiproton collider. The goal of this project is to achieve proton-antiproton collisions at 2 TeV in the center of mass with luminosities exceeding  $10^{30} \text{ cm}^{-2} \text{ sec}^{-1}$ . The Tevatron, reported on elsewhere in this conference, will be the storage ring. The collisions will take place at two experimental halls, located at BØ and DØ straight sections.

A plan view of the antiproton source is shown in Figure 1. The project includes an antiproton production target, beam transport lines, and two new rings, the Debuncher Ring and the Accumulator Ring, to collect and store antiprotons.

Basic parameters of the Antiproton Source are outlined in Table I. Every two seconds a single booster batch of protons (about 80 RF buckets at 53 MHz), containing a total of  $2 \times 10^{12}$  protons, is accelerated by the Main Ring, extracted, and focused onto the antiproton production target. Prior to

Table I Basic Parameters of the Fermilab Antiproton Project

|                                                |                          |
|------------------------------------------------|--------------------------|
| Main Ring Energy                               | 120 GeV                  |
| #protons on target/2 sec cycle                 | $2 \times 10^{12}$       |
| pulse length                                   | 1.5 $\mu$ sec            |
| $\bar{p}$ production momentum                  | 8.9 GeV/c                |
| # $\bar{p}$ 's per cycle                       | $8 \times 10^7$          |
| transverse emittances $\epsilon_x, \epsilon_y$ | $20\pi \text{ mm-mrad}$  |
| momentum spread $\Delta p/p$                   | 3%                       |
| Debuncher Ring                                 |                          |
| transverse acceptance                          | $20\pi \text{ mm-mrad}$  |
| momentum acceptance $\Delta p/p$               | 4%                       |
| $\bar{p}$ $\Delta p/p$ after bunch rotation    | 0.2%                     |
| $\bar{p}$ transverse emittance after 2 sec     | $< 7\pi \text{ mm-mrad}$ |
| Accumulator Ring                               |                          |
| transverse acceptance                          | $10\pi \text{ mm-mrad}$  |
| $\bar{p}$ density at injection                 | 7 per eV                 |
| in core                                        | $> 10^5$ per eV          |
| stacking time                                  | 5 hours                  |
| # $\bar{p}$ 's in stack core                   | $5 \times 10^{11}$       |
| $\Delta p/p$ of stack core                     | 0.1%                     |
| transverse emittance of core                   | $2\pi \text{ mm-mrad}$   |

extraction, RF manipulations reduce the proton bunch widths to less than 1 nsec. Antiprotons are focused by a pulsed lithium lens into the antiproton transport system. The expected yield is about  $8 \times 10^7$  antiprotons at 8.9 GeV/c with transverse emittances of  $20\pi \text{ mm-mrad}$  and momentum spread of  $\Delta p/p = 3\%$ . These 80 buckets of antiprotons (a 1.5  $\mu$ sec pulse) are injected into the Debuncher Ring (revolution period = 1.69  $\mu$ sec), where RF manipulations reduce the momentum spread to  $\Delta p/p = 0.2\%$ . The debunched beam is then cooled from  $20\pi$  to less than  $7\pi \text{ mm-mrad}$  transverse emittance in less than 2 seconds by the Debuncher betatron stochastic cooling systems.

The beam is then transferred to the Accumulator ring (revolution period = 1.59  $\mu$ sec) where antiprotons are stochastically cooled and stacked for periods of many hours. There are 6 stochastic cooling systems, 3 working on the newly injected antiprotons in the stack tail, and 3 working on the stack core. During this stacking process the transverse emittances are further reduced to about  $2\pi \text{ mm-mrad}$ , and the density in momentum space is increased from about 7 per eV at injection to over  $10^5$  per eV in the stack core. The total number of antiprotons in the stack core is expected to reach  $5 \times 10^{11}$  after 5 hours stacking. At regular intervals, of the order of  $1 \times 10^{11}$  antiprotons are removed from the core, transported backwards down the beam transfer line where they are injected into the Main Ring, accelerated, rebunched into a single 53 MHz RF bucket, and transferred into the Tevatron.

A plan view of the Debuncher and Accumulator rings, indicating the position of the stochastic cooling systems, is shown in Figure 2. Basic parameters of the stochastic cooling systems are outlined in Table II. All systems are microwave, operating in either the 1-2 GHz or 2-4 GHz band. All pickups and kickers are loop (quarter wave) couplers, which have a natural octave bandwidth.

Low noise GaAsFet amplifiers are used throughout, and are cooled to liquid nitrogen temperatures (as are the back termination resistors) to reduce thermal noise. In all cases, traveling wave tube amplifiers (TWT's) are used as the source of output power in the microwave bands.

Table II Stochastic Cooling Systems in the Fermilab Antiproton Source

| System                            | Frequency | Gain   | Power | # TWT's | loop coupler pairs |
|-----------------------------------|-----------|--------|-------|---------|--------------------|
|                                   |           |        |       |         | pickups    kickers |
| Debuncher H betatron              | 2-4 GHz   | 135 db | 500 W | 8       | 128    128         |
| Debuncher V betatron              | 2-4       | 135    | 500   | 8       | 128    128         |
| Accumulator stack tail momentum   | 1-2       | 150    | 1600  | 40      | 172    160         |
| Accumulator stack tail H betatron | 1-2       | 125    | 210   | 2       | 32    32           |
| Accumulator stack tail V betatron | 1-2       | 125    | 20    | 1       | 32    32           |
| Accumulator stack core momentum   | 2-4       | 110    | 30    | 1       | 64    32           |
| Accumulator stack core H betatron | 2-4       | 105    | 10    | 1       | 8    8             |
| Accumulator stack core V betatron | 2-4       | 105    | 10    | 1       | 8    8             |

\*Operated by Universities Research Inc., under contract with the U.S. Department of Energy.

The largest system (Accumulator stack tail momentum) uses 40 TWT's, for a total RF power output of 1600 watts. This system is the most complex, and is reported on in a following paper. Two other papers report on the status of R&D efforts related to this system; the development of superconducting notch filters, and the development and evaluation of loop coupler pickup arrays. The paper on page 581 reports on the design of the Debuncher betatron cooling system.

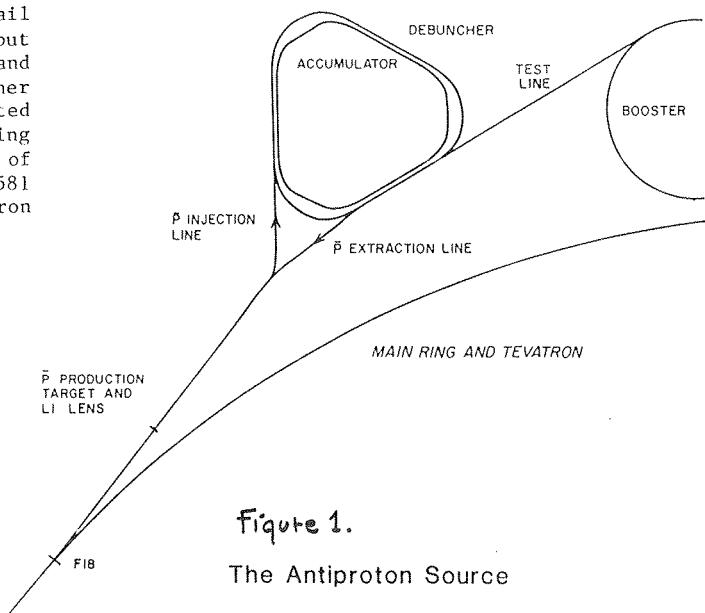



Figure 1.  
The Antiproton Source




Figure 2  
STOCHASTIC  
COOLING SYSTEMS

The largest system (Accumulator stack tail momentum) uses 40 TWT's, for a total RF power output of 1600 watts. This system is the most complex, and is reported on in a following paper. Two other papers report on the status of R&D efforts related to this system; the development of superconducting notch filters, and the development and evaluation of loop coupler pickup arrays. The paper on page 581 reports on the design of the Debuncher betatron cooling system.

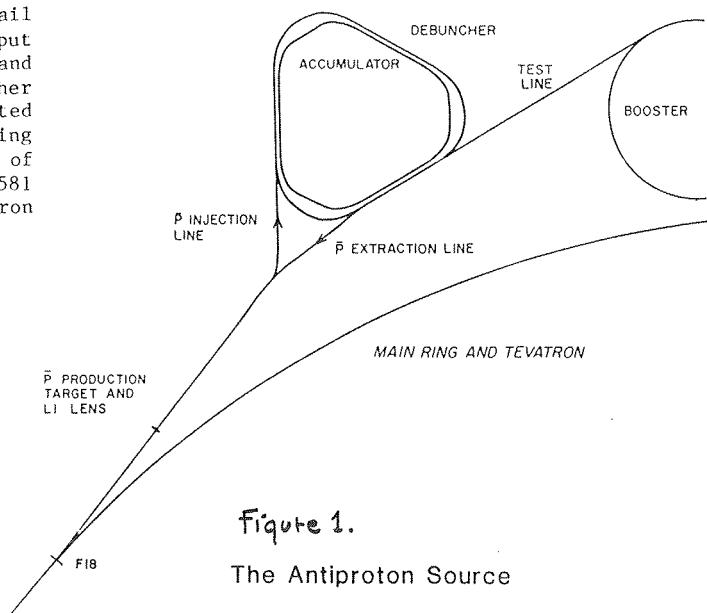



Figure 1.  
The Antiproton Source

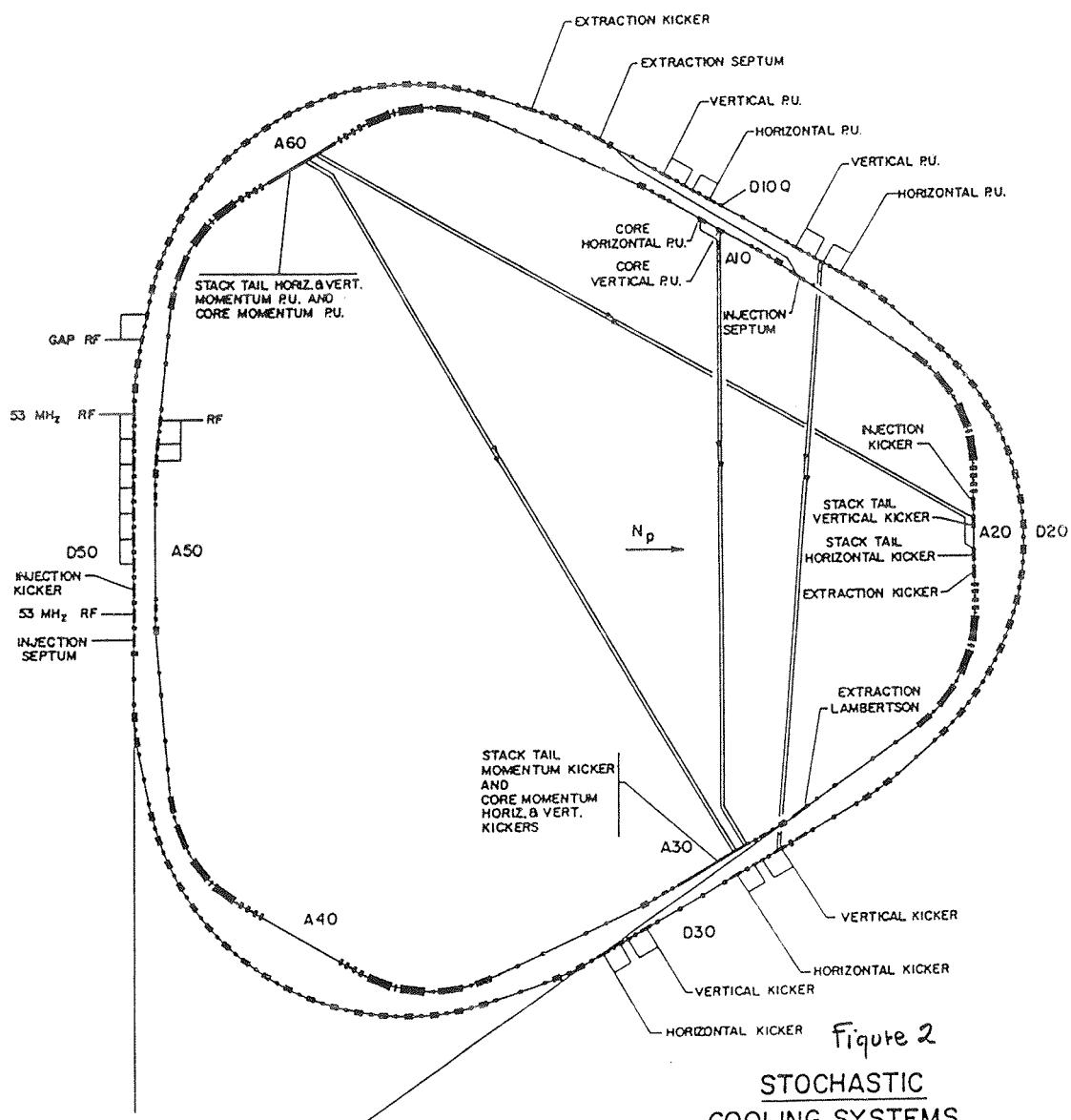



Figure 2  
STOCHASTIC  
COOLING SYSTEMS