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Abstract: In this paper, we report a study of the low-lying states of deformed 2!Ne within the
framework of the quantum-number projected generator coordinate method (PGCM), starting from
a chiral two-nucleon-plus-three-nucleon (NN + 3N) interaction. The wave functions of states are
constructed as a linear combination of a set of axially deformed Hartree-Fock-Bogliubov (HFB) wave
functions with different quadrupole deformations. These HFB wave functions are projected onto
different angular momenta and the correct neutron and proton numbers for 2!Ne. The results of the
calculations based on the effective Hamiltonians derived by normal-ordering the 3N interaction with
respect to three different reference states, including the quantum-number projected HFB wave func-
tions for 2’Ne, 22Ne, and an ensemble of them with equal weights, are compared. This study serves
as a key step towards ab initio calculations of odd-mass deformed nuclei with the in-medium GCM.

Keywords: symmetry restoration; generator coordinate method; nuclear chiral interaction; odd-mass
nuclei; quadrupole deformation

1. Introduction

Studying nuclear low-lying states, including energy spectra and electroweak transition
strengths, is crucial for advancing our understanding of nuclear physics [1,2]. It also
plays a key role in exploring new physics at the high-precision frontier, such as nonzero
electric dipole moments [3,4], single-f decay [5], and neutrinoless double-§ decay [6].
Modeling the low-lying states of light to heavy atomic nuclei directly from the fundamental
interactions between nucleons is of great interest for this purpose. Compared to even-even
nuclei, the low-lying states of odd-mass nuclei contain richer nuclear structure information
because of the interplay of single-particle and collective motions, presenting a considerable
challenge for nuclear theory.

The generator coordinate method (GCM) provides an efficient and flexible framework
to describe the wave function of a quantum many-body system, represented as a superpo-
sition of a set of nonorthogonal basis functions, such as Slater determinants, generated by
continuously changing parameters called generator coordinates [7,8]. In nuclear physics,
the quantum-number projected GCM (PGCM) has been extensively employed in stud-
ies of the energies and transition rates of low-lying states. See, for instance, refs. [9-11].
In the recent decade, the PGCM has been implemented into ab initio methods for atomic
nuclei. This idea has given birth to a new generation of ab initio methods, including the
no-core Monte Carlo shell model [12], the in-medium generator coordinate method (IM-
GCM) [13,14] and perturbative PGCM with second-order perturbation theory, abbreviated
as PGCM-PT(2) [15-17].

In this paper, we extend the PGCM for the low-lying states of an odd-mass deformed
nucleus 2! Ne, starting from a Hamiltonian composed of two-plus-three-nucleon (NN + 3N)
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interaction derived from chiral effective field theory (EFT). The PGCM has been extended
for odd-mass nuclei based on different energy density functionals (EDFs) [18-26]. It is
known that EDF-based PGCM approaches may suffer from spurious divergences and
discontinuities [26-29]. In this work, we examine that this Hamiltonian-based framework
is free of those problems as the same interaction is applied to both the particle-hole and
particle-particle channels when computing the energy overlaps of Hamiltonian kernels.
Additionally, we compare the energy spectra of the low-lying states from the PGCM
calculations using the effective Hamiltonian normal-ordered with respect to the following
three different reference states: 22Ne, 22Ne, and an ensemble with equal weights.

The article is arranged as follows: in Section 2, we present the main formulas of
PGCM for an odd-mass nucleus, including the generation of an effective Hamiltonian in
the normal-ordering two-body (NO2B) approximation, and the construction of nuclear
wave functions in the PGCM. The results of calculations for 2'Ne are presented in Section 3.
A short summary and outlook are provided in Section 4.

2. The PGCM for an Odd-Mass Nucleus
2.1. Nuclear Hamiltonian

We employ an intrinsic nuclear A-body Hamiltonian containing both NN and
3N interactions,

A 2]
Hoz(l—A> “]+AT +Y v+ Y Wiy )

i<j i<j<k

where the kinetic term is composed of one- and two-body terms,

Z H, ()

i<j ™MN

Tl = Z

ZmN

with my being the mass of nucleon and p; the momentum of the i-th nucleon.

The above Hamiltonian is normal-ordered with respect to a symmetry-conserving
reference state |¥), and truncated up to NO2B terms. The resultant Hamiltonian # in the
NO2B approximation can be written as

Ho=EBot LSy AL+ g J LAl ©
pqrs
where the strings of creation and annihilation operators are defined as
r. t ot
AP =g agay .

stu.. - Ay dtas. 4)

The expectation values of the normal-ordered operators, indicated by :Ag,‘: :, with re-
spect to the reference state are zero. The zero-body piece of the H) is just the energy of the
reference state

Eo= (Y| Hy|¥) = ng')fq Z ot vk + 36 ) W Vet )
Pq PW’S pqrstu
where the matrix element of the normal-ordered one-body operator (NO1B) is given by

= 55+Zf75’_37§+ Y. Whea Vi (6)

rs tu

and that of the NO2B operator,

_ t
T = o+ ) Wi (7)
tu
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In the above equations, the symbols hatted with bars are introduced for the sake
of brevity,

= (1 _ D T, o= Lol ve, w=whl, ®)

The last terms in (5)—(7) contributed by the 3N interaction are depicted schematically in
Figure la—c, respectively. Here, we have introduced the density matrices of the (symmetry-
conserving) correlated reference state |¥),

o= (PIALY), (9a)
ro= (YARY), (9b)
’thlg = <‘I’|A§ﬂ; Y) . (9c)

Static correlations within the reference state are encoded in the corresponding irre-
ducible density matrices

Moo= T, (10a)
M = Al = AWAD) =9l = APAL+ ALAT, (10b)
AL = B — AMEAT + ADAIAL), (10c)

where the antisymmetrization operator A generates all possible permutations (each only
once) of upper indices and lower indices. For a single-reference state, the two-body and
three-body irreducible densities ALy and Afﬂ; vanish. The expressions for the one-, two-,
and three-body irreducible density matrices of a particle-number projected spherical HFB

wave function have been given in Ref. [30].

& © &~ X

(a) NOOB (b) NO1B (c) NO2B (d) NO3B

Figure 1. Schematic illustration of the three-nucleon interaction W (red squares), normal-ordered to
(a) zero-body, (b) one-body, (c) two-body, and (d) three-body terms with a reference state. The density
matrices 7y of the reference state are represented with black circles.

The Hamiltonian 7 is subsequently rewritten into the unnormal-ordered form
as follows:

. 1

Ho = &+, FJAF+ 1 Y #EAL, (11)
pq pqrs

where the zero-body term is given by

1
o = r-X(f- T - | Sk
pq rs pqrs

1
= 3 L Y (V5 + 369071 — 1897
pqrsiu

1
= 36 L Wi <6A5’A?AL—9AEM+A§?J>- (12)
pqrstu
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The matrix elements of one-body read

Fi = fy — LTt
rs

I 1 s
= B+ 1 Yy w;@( s ZAW,), (13)
rstu
and those of two-body terms
7 = T =l Wl (14)
tu

In this work, the reference state is chosen as a particle-number projected HFB state
for 2Ne and *’Ne, which are labeled with magic-Ne20 and magic-Ne22, respectively.
The obtained effective Hamiltonians H are labeled as HO. For comparison, we also derive
the Hamiltonian without the 3N interaction term in (1), and this Hamiltonian is labeled
as HO (w/o 3N). The expressions for the one-, two-, and three-body density matrices of
the particle-number projected HFB state have been given in Ref. [30]. Subsequently, these
Hamiltonians are employed into the PGCM calculations.

2.2. Nuclear Wave Functions

The wave functions of low-lying states for an odd-mass nucleus are constructed with
the PGCM as follows:

¥ =Y fITINZ e, (15)

where a distinguishes the states with the same angular momentum |, and the symbol c is a
collective label for the indices (K, «, q). The basis function with correct quantum numbers
(NZ]Jm) is given by

INZ]m;c) = Pl PNPZ |o° (q)), (16)

where lﬁj{AK and PN are projection operators that select components with the angular

momentum |, neutron number N, and proton number Z [2],

o 20 4+1 .
Pl = 50 / dOD (Q)R(Q), (17a)
N 1 27 . -

Ne _ igr(Nt—Nq)
PN = — /O dgre . (17b)

The operator pz{/H( extracts the component of angular momentum along the intrinsic
axis z defined by K. The Wigner D-function is defined as D{VIK(Q) = (JM|R(Q) |JK) =
(M| e?)ze®lvei ]z | TK), where Q = (¢, 6, ) represents the three Euler angles. The N =

Y« afay is particle-number operator. The mean-field configurations |<I>,(<OA) (q)) for odd-
mass nuclei can be constructed as one-quasiparticle excitations on even-even vacua [2],

DO (q)) = af |04 (q)),  ax [P (q)) =0, (18)

where |®(,)(q)) is a HFB state with even-number parity labeled with the collective coordi-

nate q. The quasiparticle operators («, a") are connected to single-particle operators (a,a'")
via the Bogoliubov transformation [2],

oyt
(5)=(5 5)(5)
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where the U,V matrices are determined by the minimization of particle-number
projected energy,

S (@ ()| APNPZ |01V (q))
(@Y (q)] PNPZ [0 (q))

Different from the recent study based on a covariant EDF in Ref. [26], where three
different schemes were employed to construct the configurations for odd-mass nuclei
within the BCS ansatz, in this work we obtain the configurations of one-quasiparticle states
with odd-number parity self-consistently by simply exchanging the k-column of the U and
V matrices in the HFB wave function [2]:

—0. (20)

(Upk, Vi) < (Vo Upg), (21)

where the index p = (tnfjm), = (np,p) is a label for the spherical harmonic oscillator
basis, and k the label for a quasiparticle state. For simplicity, axial symmetry is assumed.
In this case, quasiparticle states are labeled with quantum numbers K™, where K = |m,|
with m, being the projection of angular momentum j, along z-axis, and parity 77 = (—1)%.
The collective coordinate q is replaced with the dimensionless quadrupole deformation S,

47t
2= 3Rz

(@O (q)] Y0 [@°Y (q)) - (22)

The U and V matrices are determined from the HFB calculation within the scheme of
variation after particle-number projection (VAPNP), in which a gradient descent method
is exploited to minimize the expectation value of the Hamiltonian with respect to the
particle-number projected HFB state. For details, see, for instance, Refs. [2,31,32]. We note
that the Kramers’ degeneracy is lifted due to the breaking of time-reversal invariance in the
self-consistent HFB calculation.

The weight function f;"” of the state (15) is determined by the variational principle,
which leads to the following Hill-Wheeler-Griffin (HWG) Equation [2,7]:

flem — o, (23)

“%ec! cc! c

2 [%NZ]H o EiJVNZ]n]

C/

where the Hamiltonian kernel and norm kernel are defined by

o™ = (NZJm;c| ONZ]m; )
2] +1 I 27 e~ INgn /271’ e*iZ(Pp
— dapl (O d d
8712 / ki ( )o o 0 Pron
OA A A i7 iN OA
x (@O (q)| OR(Q)eiZoreNen 0O (), (24)

with the operator O representing # and 1, respectively. The parity 7 is defined by the

- . . (OA)
quasiparticle configurations | P~ (q)).

The HWG Equation (23) for a given set of quantum numbers (NZ]) is solved in the
standard way as discussed in Refs. [2,33]. It is accomplished by diagonalizing the norm
kernel JKZ\,]ZI ™ first. A new set of basis is constructed using the eigenfunctions of the norm
kernel with eigenvalue larger than a pre-chosen cutoff value to remove possible redundancy
in the original basis. The Hamiltonian is diagonalized in this new basis. In this way, one is
able to obtain the energies E} and the mixing weights f*” of nuclear states |‘-I"£7T> Since
the basis functions [NZJ; c) are nonorthogonal to each other, one usually introduces the
collective wave function g,{f(l(, q) as below

gl (K, q) = Y (A1) A, (25)

C/
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which fulfills the normalization condition. The distribution of g,{cn(K, q) over K and q
reflects the contribution of each basis function to the nuclear state |‘I’£n>

2.3. Evaluation of Norm and Hamiltonian Overlaps

The energy overlap is defined as the ratio of Hamiltonian overlap to the norm overlap,

(®f <>| HR(Q)eZoreiNen |00 (g))

E(xq,x'q58) = X
(@7 (q)| R(Q)e 9 eNen |<I><°A><qf>>
_ g+z P(kq,x'q;g) +4 Y 7kl (kq,K'q’5g),  (26)
pqrs

where g stands for the set of parameters {Q), ¢, ¢, }. The matrix elements of the mixed
one-body densities and pairing tensors, hatted with the symbol ~, are defined as

pi(ka,x'q’g) = (@1 (a)| aja, RQ)eZ0reNon 0,77 () 27)
q ’ ’ <q);(<OA) (q)l R(Q)eiZQPeiN(pn |CD,({9A)<C[,)>
7pa Il o) — (@M (q)] abaf R(Q)e29reNon 0O (q)) 28
®P(xq,x'q;g) = (OA) 5 Zow N ©A), (28)
(D (q)| R(QY)e4PretNen |CD;<’ (q))
(dD,((OA) (q)| asarR(Q)e'Z9riNon |q)’((9A) (q))

frs(kq,x'q;g) = — — . (29)
) (@Y (q)| R(Q)eZoreifon |0 O (g1))

The matrix elements of the mixed two-body density are determined by the generalized
Wick theorem [34],
OA 5 70, iR OA
Pxardie = S @ladanaR@erele |90 (q)
A (@ (@) R()erreNon [0 (q))
o1 — pLptl -+ RPRs. (30)

= /p

With the above relation, the energy overlap can be rewritten as below,

E(xq,x'q;8) = &+ Z Tl + 2 < + AP k,gq), (31)

where the matrix elements of the mixed particle-hole field I and particle-particle field A
are defined as

=Y v, A= 5 27/75 K. (32)

pqrs rs
It is efficient to compute the energy overlap directly in the J-coupled scheme.

¢  The contribution of the one-body term is simply given by
2 ivialv 7 (ap)P ap)oo- (33)

where j, = \/2j, + 1. The reduced matrix element is defined as ﬂ’,%, = (q] |-%| |p),
and the one-body density operator with the two angular momenta coupled to zero [13]

+~
[aqap}oo

Papyoo = \/m‘séq?p

(34)
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With @i = (1) "y,
*  The energy by the two-body term consists of pp term
e _ 1 L L—M; ~(01)  _(10)
Epp” = 4 achdL Yiab) ed) A%(_l) "R ()L, K (ed) LMy (35)
and ph term
(8 _ 1 L 5 5t
B’ = 3 bZd;L Y ab(ed) A;P(lm)LMLch)L—zwL (36)
aoca, L
where the J-coupled mixed density and pairing density are defined as,
Pwayim, = Y Sp{jatmajy — my| LML)@j, (37a)
Mahiy
Plaorn, = 3 Saljemcia—mall = Mr)(53)", (37b)
mcemg
(01 Lo .
"Eah;LML = mXﬂ; (jamajpmy| LML )R™, (37¢)
alltp
(10 Lo -
R, = (CUEME L Gomejama LML) (Rea)'. (37)

memy

Here, we introduce the symbol s, = (—1)»~". The symmetry of Clebsch-Gordan
coefficient (jy1mgjj, — my| LML) implies the relation g, pp, = (—1)L’(J“+Jb)+1p"(ab)LML.
The ph-type two-body interaction matrix elements in the J-coupled form are related to

those of pp-type via the Pandya transformation [35],

o oygfdi i Tyt
Y = ; L { i Qi L }”’/(m(kj)/ (38)
where the unnormalized pp-type two-body matrix elements in the J-coupled form are
related to those in M-scheme as follows:

Wow = L Gl IM) Gemegomy [ JM) 7. (39)

mim]-mkml

The norm overlap of the HFB wave functions with odd-number parity is computed
with the Pfaffian formula in Refs. [36,37].

3. Results and Discussion
Effective Hamiltonians

In this work, the NN interaction Vi§‘2) in Equation (1) is chosen as the chiral N3LO
interaction by Entem and Machleidt [38], denoted as “EM”. We utilize the free-space
SRG [39] to evolve the EM interaction to a resolution scale of A = 1.8 fm~!. The 3N
interaction Wl.(].“;’() is directly constructed with a cutoff of A = 2.0 fm~!. The Hamiltonian
is referred to as EMA/ A, i.e., EM1.8/2.0, which was fitted to NN scattering phase shifts,
the binding energy of *H, and the charge radius of *He, see Ref. [40] for details. For the
3N interaction, we discard all matrix elements involving states with e; + ey +e3 > 14,
where e; = 2n; + ¢; denotes the number of oscillator quanta in state i. The maximal
value of ¢; is labeled with emax, and the frequency of the harmonic oscillator basis is
chosen as fiw = 20 MeV. Starting from the chiral NN + 3N interaction, we produce three
sets of effective Hamiltonians labeled as magic-Ne20, magic-Ne22, and magic-ENO/EW,
respectively. These Hamiltonians are generated by normal-ordering the 3N interaction with
respect to the reference states of spherical particle-number projected HFB states for 2’Ne,
22Ne, and their ensemble with equal weights. The residual normal-ordered three-body
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term, c.f. Figure 1d, is neglected. Table 1 lists the expectation value of each term in the three
types of effective Hamiltonians Hy in (11) with respect to the corresponding reference state.
One can see that in the case without the 3N interaction, the unnormal-ordering form of the
Hamiltonian H returns back to the original Hamiltonian Hy.

For the case with enax = 6, the relative contribution of each term in different effective
Hamiltonians to the energy is compared in Table 1. The contribution of the 3N interaction
to energy, c.f. Figure 1a, is given by

3 1

P = L whd; <6A§ AIAL L OAPAT AR ) : (40)
pqrstu

Comparing the Eg value in the third row of Table 1, labeled by Ne20 with the Ej value

in the last row, labeled by Ne20 (w/o0 3N), one finds the contribution of the 3N interaction

to the energy E(()3) = 80.338 MeV. On the other hand, the zero-point energy & in (12) of the
unnormal-ordered Hamiltonian in the first row

1
0w (6)\5/\?)\:‘_%5? )\Z+AfﬁJ> (41)
pqrstu

is 50.093 MeV. Their difference gives
1
pqrstu

pqr

Since the term depending on A,

term out and find the term,

is much smaller than the other terms, we drop this

1
c Y whlALAIAL = 65.215 MeV (43)
pqrstu

depending solely on the one-body density, provides the predominant contribution to
©)

energies E;”’ and &y. Subsequently, we carry out PGCM calculations for low-lying states of
ZINe using the above effective Hamiltonians.

Table 1. The expectation value (in MeV) of each term in the effective Hamiltonians Hg in (11), derived
from the nuclear chiral interaction EM1.8/2.0 on the basis of the spherical particle-number projected
HFB state for 2’Ne, 22 Ne, and their ensemble with equal weights (ENO/EW), respectively, where
emax = 6, and fiw = 20 MeV.

Interactions emax Ey (F) (V) &
Ne20 6 —96.931 211.205 358229 50.093
ENO/EW 6 —101.781 225.067 381555 54.706
Ne22 6 —109.034 242241 —408.614 57.339

NeQBON()"/ ° 6 —177.269 506.122 —683.391 0

Figures 2 and 3 show the change in the effective single-particle energies (ESPEs) with
the quadrupole deformation §; from the PNP+HFB (VAPNP) calculation for the HFB states,
where the ESPE ¢ is obtained from the diagonalization of the single-particle Hamiltonian,

o= DA,
rs
_ _ 1 t t
= ts + ZU,F;;P; + 1 Z w§£u7;1t1 + Z wtr])sru’)’;(p; - ’)/15)/ (44)
rs rstu rstu
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where 7/, is the one-body density of the correlated state, and p’, is the one-body density of
mean-field state |CI>,(COA) (q)) defined by

ol = (@Y (q)| afas [#° (q)) . (45)

It is shown in Figure 2 that the neutron partner states with the same value of |m|,
related by the time-reversal operator, are not degenerate in the HFB states for 2'Ne with
odd-number parity. A comparison is made between the ESPEs obtained by the effective
Hamiltonians magic-Ne20 and magic-Ne22. The lifting of Kramers’ degeneracy in the HFB
states for 2! Ne results in non-degeneracy among time-reversal states with identical values
of |m|. For clarity, only the energy of one of the time-reversal states is depicted in Figure 3. It
is observed that the ESPEs from the two effective Hamiltonians are difficult to distinguish.

Before presenting the projected energy curves with different angular momenta, we
examine the issues of singularity and finite steps found in the MR-EDF [27-29]. Figure 4
displays the energies (normalized to the converged values) of particle-number projected
HFB states for 2'Ne with K™ = 1/2% and quadrupole deformation 8, = 0.0, as a function of
the number N, of meshpoints in the gauge angle ¢. The Fomenko expansion method [41]
is used for the particle-number projection, where the k-th gauge angle ¢y is chosen as
27t(k/Ny). It is observed that the energy remains constant for N, > 5, regardless of
whether N, is an even or odd number. For comparison, we also show the results from
the calculations by artificially multiplying a factor of 1.1 to the two-body interaction
matrix elements for the mixed particle-hole field. In this case, dips are indeed observed
at Ny = 20,40, 60, . .., corresponding to the situation where the gauge angle ¢, = 71/2 is
chosen at the meshpoints with k = 5,10, 15, .. ., respectively. It demonstrates numerically
that one should use the same interaction matrix elements for both the particle-hole and
particle-particle channels, in which case one will be free of the problem of singularity.

T T T T T T T T T
I K™= 3/2*(magic-Ne20)

0= 2517

——
—— e ———

Figure 2. The effective single-particle energies of neutron states with m > 0 (solid lines) and m < 0
(dashed lines) as a function of quadrupole deformation S, from the PNP + HFB (VAPNP) calculation
for the HFB states with K™ = 3/2" using the effective Hamiltonians magic-Ne20. The states with
|m| =1/2, |m = 3/2| and |m = 5/2| are plotted in black, red and green colors, respectively.
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Figure 3. The effective single-particle energies of neutron states (with m > 0) from the PNP+HFB
(VAPNP) calculation for the HFB states with K™ = 3/2% (a) and K™ = 1/2" (b), where the effec-
tive Hamiltonians magic-Ne20 (solid) and magic-Ne22 (dashed lines) are employed, respectively.
The Fermi energies are indicated with dots. The states with |m| =1/2, |m = 3/2| and |m = 5/2| are
plotted in black, red and green colors, respectively.
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Figure 4. The energies of particle-number projected HFB states for 2!Ne with K™ = 1/2% as a
function of quadrupole deformation B,, where the number N, of meshpoints in the gauge angle ¢ is
chosen as 20,30, and 40, respectively. The results from the calculations by multiplying a factor of 1.1
artificially to the two-body interaction matrix elements for the mixed field T are given for comparison.
The inset shows the energy of spherical state normalized to the converged value as a function of Nj.
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Figure 5 displays the energy curves of particle-number projected HFB states for 2! Ne
with K™ = 3/2% and 1/27, respectively. The HFB wave functions are obtained from
the PNP-HFB (VAPNP) calculations using the Hamiltonian %, with the 3N interaction
normal-ordered with respect to the references of 20Ne, 2Ne, and their ensemble with
equal weights, respectively. It can be observed that the global energy minima of all three
curves are located in prolate states with quadrupole deformation B, between 0.4 and
0.5. The configurations with K™ = 3/2" are globally lower than those with K™ = 1/2%.
Furthermore, the configurations based on different Hamiltonians are systematically shifted
from each other in energy by less than one MeV.

I T T T T I T T
—70[ - Kk7=1/2* (magic-Ne20)
. —e— K"=3/2*(magic-Ne20)
[ =¥- K7=1/2*(magic-ENO/EW)
(
(
(

_goL -*- K"=3/2" (magic-ENO/EW)
«¥.- KT=1/2*(magic-Ne22)
[ --@- K"=3/2%(magic-Ne22)

S _oof -
Q |
=
.
—100} i

05 00 05 10
B2

Figure 5. The energies of mean-field states |d>,((OA) (q)) for 2'Ne with K™ = 1/2%,3/2% as a func-
tion of intrinsic quadrupole deformation B, from the PNP-HFB (VAPNP) calculation, where the
three types of Hamiltonians ’}:lo, i.e., magic-Ne20, magic-Ne22, and magic-ENO/EW, are employed.
The harmonic oscillator basis is chosen as emax = 6, fiw = 20 MeV. See the main text for details.

Figure 6 displays the energies of states with projection onto the correct particle num-
bers and | = 3/2%,5/2%,and 7/27" for >!Ne with K™ = 3/2* and K = 1/27, respec-
tively. The effective Hamiltonians used are HO with and without the 3N interaction. It is
shown that the quadrupole deformation parameter 3, of the prolate energy-minimal state
by the HO (w/o 3N) is smaller than the other two cases. Additionally, the energy curve
with the increase in B, is also stiffer than that with the 3N interaction.

Figure 7 shows a comparison of the energy spectra for 2! Ne from configuration-mixing
calculations with different Hamiltonians. The states with the same K™ are grouped into
the same column. The main features of the two bands with K = 3/2" and 1/27 are
reproduced, although the excitation energies of the states belonging to the 1/ 2+ band
are systematically overestimated. The mixing of quasiparticle excitation configurations is
expected to lower the entire K™ = 1/27 band. In Figure 7c, one can observe that the energy
spectra from the magic-Ne20 and magic-Ne22 Hamiltonians are very close to each other.
The high-lying states from magic-Ne22 are slightly lower than those from magic-Ne20.
In Figure 7b, the energy spectra become more stretched when the 3N interaction is turned
off. We note that the ground-state energy from the pure PGCM calculation with the chiral
NN + 3N interaction is systematically underestimated. According to Ref. [14], one may
gain more correlation energy by implementing the multi-reference in-medium similarity
renormalization group (MR-IMSRG) [42] and increasing the value of emax.
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Figure 6. The energies of states with projection onto particle numbers (N = 11, Z = 10) and spin-
parity J* = 3/2%,5/2% and 7/2* for 2!Ne with quantum numbers K™ = 3/2% (left panels) and
K™ =1/2" (right panels) as a function of the quadrupole deformation parameter ;. The results of
calculations without the 3N interaction are given in (a,c), and those with the 3N interaction are given
in (b,d). See the main text for details.

The collective wave functions of the low-lying states with different J”, and K™ = 3/2%
and 1/2%, by the magic-Ne20 effective Hamiltonian, are displayed in Figure 8. It is shown
that in all cases, the wave functions are peaked around B, = 0.4 and do not change
significantly with the increase in angular momentum, implying the stability of the shapes
in the low-lying states.

(21 Ne —— magic-Ne20
12} S magic-Ne22
--------- magic-Ne20 w/o 3NF
o
7 2+ ............ 7 2 +
13/2* B 13 2
8_
mE_ o
1372+ o 1R 3 =
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Figure 7. The energy spectra of low-lying states in 2!Ne with K™ = 3/2% and 1/27. Experimental
data from Ref. [43] are shown in (a). The results by the Hamiltonians HO with and without the 3N
interaction based on the reference state of 2’Ne are displayed in (b). The results by the Hamiltonians
HO based on the reference state of 2’Ne and *’Ne are compared in (c). The total energy of ground
state in each case is also provided. See the main text for details.
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Figure 8. The distribution of collective wave functions | g,{ defined in (25), as a function of
quadrupole deformation B, for the low-lying states of 2'Ne with K™ = 3/2% (left panels) and
K™ =1/2" (right panels), respectively. The energy of the ground-state in each case is also provided.
The results of calculations without the 3N interaction are given in (a,c), and those with the 3N

interaction are given in (b,d). See the main text for details.

4. Conclusions

We have extended PGCM for the low-lying states of *'Ne, starting from a chiral
two-plus-three-nucleon interaction, and compared the results obtained using effective
Hamiltonians derived with the three-nucleon interaction normal-ordered with the following
three different reference states: particle-number projected HFB states for 2’Ne, >*Ne, and an
ensemble with equal weights. The topology of the potential energy surfaces shows no
significant differences among the three effective Hamiltonians, even though they exhibit
a systematic energy shift of less than one MeV. The excitation energies of the low-lying
states of 2!Ne by the effective Hamiltonian based on the reference state of 2’Ne are slightly
larger than those by the effective Hamiltonian of Ne. Furthermore, we demonstrate that
the three-nucleon interaction notably affects the low-lying states, i.e., the energy spectrum
becomes stretched and the quadrupole collectivity is reduced.

Next, we will extend the in-medium GCM [13,14], namely, the combination of PGCM
with the ab initio method of MR-IMSRG, to study the low-lying states of odd-mass nuclei
using the consistently evolved operators. The results of this study will be published
elsewhere, separately.

Author Contributions: Conceptualization and methodology, W.L., ].Y. and H.H.; validation, W.L.
and E.Z.; writing—original draft preparation, W.L. and ].Y.; writing—review and editing, H.H., WL.,
J.Y. and E.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
(Grant Nos. 12375119, 12141501), Guangdong Basic and Applied Basic Research Foundation
(2023A1515010936) and the Fundamental Research Funds for the Central Universities, Sun Yat-
sen University. H.H. was funded by the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics DE-SC0023516 and DE-SC0023175 (SciDAC-5 NUCLEI Collaboration).



Symmetry 2024, 16, 409 14 of 15

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank K. Hebeler for providing the three-nucleon interaction in momen-
tum space.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EFT Effective field theory
IMSRG In-medium similarity renormalization group
PGCM Projected generator coordinate method

IM-GCM  In-medium generator coordinate method
MR-CDFT  Multi-reference covariant density functional theory
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