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Abstract

We present a derivation of the Schwinger parametrization and the Feynman parametrization in detail and their elementary
applications. Although the parametrizations are essential to computing the loop integral arising in relativistic quantum field
theory, their detailed derivations are not presented in usual textbooks. Beginning with an integral representation of the unity,
we derive the Schwinger parametrization by performing multiple partial derivatives and utilizing the analyticity of the gamma
function. The Feynman parametrization is derived by the partial-fraction decomposition and the change of variables intro-
ducing an additional delta function. Through the extensive employment of the analyticity of a complex function, we show
the equivalence of those parametrizations. As applications of the parametrizations, we consider the combinatorial factor
arising in the Feynman parametrization integral and the multivariate beta function. The combinatorial factor corresponds to
an elementary integral embedded in the time-ordered product of the Dyson series in the time-dependent perturbation theory.
We believe that the derivation presented here can be a good pedagogical example that students enhance their understanding

of complex variables and train the use of the Dirac delta function in coordinate transformation.

Keywords Feynman parametrization - Complex analysis - Loop integral - Propagator - Quantum field theory

1 Introduction

Understanding nature with a minimal number of guiding
principles is one of the goals of science. Among innumer-
able theories in science, quantum electrodynamics [1] has
achieved the most accurately tested physics theory con-
structed ever in human history. The eight-digit agreements
between the theory and experiment regarding the anomalous
magnetic dipole moment of the electron first computed by
Schwinger [2] and the Rydberg constant (see Aoyama et al.
[3] for a review) rely only on a single parameter called the
fine-structure constant @. Such an unprecedented success
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of quantum field theory was achieved due to the develop-
ment of a rigorous quantitative approximation formalism
called perturbation theory, which expands a physical meas-
urable in a power series in a small perturbative param-
eter a = e*/(4xeyhc). Here, the coupling constant e is the
elementary electric charge representing the strength of the
electron—photon interaction, g, is the vacuum permittivity,
h is the reduced Planck constant, and c is the speed of light
in vacuum.

In the perturbative expansion of a physical amplitude involv-
ing relativistic particles, an external state, which is directly
observable, is on its own mass shell in that the squared four-
momentum p? satisfies p*> = (E/c)? — p* = m?>c?, where E
and p are the energy and three-momentum of the particle of
rest mass m. In that amplitude, a virtual state of a field may
also arise as the propagator. Here, a virtual state is off its mass
shell: p? = (E/c)* — p* # m>c?. The wave propagation of the
virtual state of a field is described by the Feynman propagator
[4] that is Green’s function [5] of the equation of motion for the
field. The Feynman propagator can be compactly expressed as
a Fourier transform in the momentum space. This is a linear
combination of free-field waves with the multiplicative factor
i/(d + ig), where d = p* — m?c?. Note that we have suppressed
the numerator factor that depends on the spin of the particle.
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Here, +i¢ is a pure imaginary number with an infinitesimally
small positive number € — 0*. This additional piece in the
propagator denominator respects the causality boundary con-
dition of Green’s function which is required by Huygens’ prin-
ciple of propagating wave for a relativistic particle. A formal
description of the propagator theory can be found, for example,
in chapter 6 of Bjorken and Drell [6].

The Feynman diagram is a convenient representation for
the perturbative series of an amplitude involving quantum
fields. As the order of the perturbative parameter increases,
the number of vertices and the number of propagators increase
simultaneously. Each vertex has a suppression factor of the
coupling such as e. Keeping the external particles unchanged,
this leads to a new topological Feynman diagram called
the loop. As an example, we consider the magnetic dipole
moment of the electron. At leading order in «, the Dirac equa-
tion [7, 8], which is the relativistic equation of motion for the
electron, gives the gyromagnetic ratio g of the electron exact
g = 2. (See, for example, p 13 of Bjorken and Drell [6].) The
anomalous magnetic moment a, = (g — 2)/2 represents the
relative shift from the exact 2 that must come from the per-
turbative corrections. At the next-to-leading order in «, the
Feynman diagram acquires a triangular loop diagram being
called the vertex correction as shown in Fig. 1.

This is the leading contribution to a, = (g — 2)/2. This
amplitude involves the loop integral with the loop momen-
tum k* whose every component is free to vary from —oo to
oo. In that amplitude, there are three propagators of the form
1/(a,a,a3), where a, and a, are the propagator denomina-
tors for the electron adjacent to the electron-photon vertex
and a; is the denominator of the photon propagator that is
exchanged by the initial and the final electron states. Read-
ers are referred to chapter 17 of Schwartz [9] or chapter 6 of
Peskin and Schroeder [10] for further reading.

In fact, any loop integral can be at first evaluated by inte-
grating over the energy component k° of the loop momentum

Fig.1 The Feynman diagram of the triangular loop involving the
quantum electrodynamics vertex correction. Here, the bold line and
the wavy line represent an electron and a photon, respectively
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k" by making use of the calculus of residues that derives
from the Cauchy integral theorem for an analytic function
[11-13]. Then we are left with an integral over the three-
dimensional Euclidean space. Although the integral must
be a Lorentz-covariant quantity, in principle, the Euclidean
integral is naturally expressed in terms of non-covariant
terms, unfortunately. Furthermore, as the number of denomi-
nator factors increases, the number of terms contributing
to the residue piles up formidably. Thus, this method is not
practically useful. A convenient way to avoid such a messy
computation is the Feynman parametrization, which com-
bines all of the denominator factors emerging in the inte-
grand of a loop integral into a single power. An explicit form
can be found, for example, in equation (6.42) on p 190 of
Peskin and Schroeder [10]. The method is an intricate appli-
cation of the partial-fraction decomposition for a rational
function in combination with integration and differentiation
techniques. If the Schwinger parametrization [14] is applied
together, then the derivation of the Feynman parametrization
becomes particularly straightforward.

In this paper, we focus on the derivation of the Schwinger
parametrization and the Feynman parametrization rather
than applying the parametrization to compute loop integrals.
The fundamental form of the Schwinger parametrization is
nothing but the Laplace transform of the Heaviside step
function that can be analytically continued to the Fourier-
transform representation. The Fourier-transform represen-
tation is more effective in physics because the real part of
a propagator denominator can hit O, which is not allowed
in the Laplace transform representation. The more general
form of the Schwinger parametrization can be derived by
performing multiple partial derivatives and utilizing the ana-
lyticity of the gamma function. An elementary derivation
of the Feynman parametrization involves only the algebra
of partial-fraction decomposition and elementary calculus
with an additional application of the Dirac delta function
for changing variables. If we have a closer look into the
derivation in terms of the Schwinger parametrization, then
the derivation of the parametrization involves an extensive
use of the analytic properties of complex functions. In addi-
tion, the combinatorial factor arising in the integration of
the Feynman parameters is an elementary integral embed-
ded in the time-ordered product of the Dyson series in the
time-dependent perturbation theory. Furthermore, the mul-
tivariate beta function can be derived as a byproduct of the
parametrization.

The formulation is indeed closely related to the analytic
continuation of quantum-mechanical amplitude. Thus, the
target reader of this paper is mainly upper-level physics major
undergraduate students who have studied quantum mechanics.
Graduate students of particle-physics major may have a nice
chance to investigate in detail about the derivation because the
Feynman parametrization is usually introduced in the appendix
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of a quantum field theory textbook briefly without a detailed
proof. We believe that the derivation presented in this paper
is pedagogically useful in that students can train themselves
with various mathematical tools widely employed in physics
in a single problem.

This paper is organized as follows. In Sect. 2, we investi-
gate the analytic structure of the Feynman propagator and the
generic form of loop integrals. In Sect. 3, we review the ana-
lytic properties of the Schwinger parametrization that stems
from the Laplace transform of the Heaviside step function and
derive the most general form of the Schwinger parametrization.
Section 4 contains the derivation of the Feynman parametri-
zation with partial-fraction decomposition and the derivation
of its general form applicable to parametrizing denominators
with arbitrary powers. A set of elementary applications of the
Schwinger parametrization and the Feynman parametrization
is illustrated in Sect. 5. The applications include a Feynman-
parameter integral involving combinatorial factor embedded
in the time-ordering operation of the time-dependent perturba-
tion theory and a derivation of the multivariate beta function.
The conclusion follows in Sect. 6. An explicit evaluation of
the contour integral for the Feynman propagator is given in
Appendix A to demonstrate the causality boundary condition
for Green’s function that corresponds to the relativistic propa-
gator. The calculation detail of the derivation of the general
form of the Feynman parameterization from the Schwinger
parametrization is provided in Appendix B.

2 Analytic structure of loop integrals

In this section, we review the analytic properties of the propa-
gator—denominator factors appearing in a loop integral that
emerges in the perturbative series of an amplitude in relativis-
tic quantum field theory. Because the propagator—denominator
factor is independent of the spin, we simplify our review by
considering a scalar field ¢(x) representing a spin-0 particle
of rest mass m.

2.1 Feynman propagator

The relativistic equation of motion for the scalar field ¢(x) of
rest mass m is the Klein—Gordon equation [see equation (8)
of Gordon [15]]:

[-0% = m?é) =0, (M

where we have taken the natural unit system in which the
speed of light ¢ = 1 and the reduced Planck constant 2 = 1.
Here, the operator 0 is defined by

0° 0° 0? 0?

2 — — -—
d 002 a2 I(2)? 5(x3)2. @

Note that x* = (2%, x', x2, x3) = (¢, x) is the space-time coor-
dinate defined in the Minkowski space. The general solution
¢y (x) for Eq. (1) is given by

$o(x) = ke + K6 P,

where p and x are the four-momentum and the space-time
coordinate of the field, respectively, and k; are arbitrary con-
stants that are determined by initial conditions. If there is an
interaction of ¢(x) with a current J(x), then the equation is
not given as a homogeneous equation like Eq. (1) but given
as a nonhomogeneous equation

[-0% — m*|p(x) = J(x). 3)

In that case, a particular solution of ¢p(x) can be obtained by
convolving with Green’s function Ag(x — y) as

Pp(x) = / d'y Ap(x — ) J (), )

where Green’s function Ag(x — y) satisfies the following
equation

0% + m?] Ap(x = y) = =6@x - y). )

Here, 6 (x — y) is the four-dimensional Dirac delta function.
Such a partial differential equation for Green’s function can
be solved conveniently by performing the Fourier transform
[16-18] into the momentum space. The Fourier-transform
representations of ¢(x) and 6 (x — y) are expanded in linear
combinations of the free-particle wavefunction ¢p (x) = e P
in the configuration space, where p* = (p°,p) is the four-
momentum and p - x = p%x° —p - x,

[ dp
$(x) = / S,

dp _
s@(x —v) = / ~ip-(=y)
(x=y) 2

Here, each of the four components of the momentum p* is
integrated over the interval (—oo, c0) and the oscillating fac-
tor e =PV = ¢, (x)$ () behaves as the projection operator
that projects out the free-particle state of three-momentum
p. d(p) is the momentum-space wavefunction.

The Feynman propagator iAg(x —y) is nothing but
Green’s function up to a complex phase as

(6)

d'p . ,
iAp(x—y) = / (2”1;4 iAF(p)e—lP'(x—y), @)

where p* is the four-momentum of the propagating sca-
lar field and the integration for every component is over
(—00, 00). Here, the factor iﬁp(p) is called the momentum-
space representation of the propagator with four-momentum

,,,,,,,,,,,,,,,,,,,,,,
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p* that can be obtained by substituting the expression (7) for
that in Eq. (5) as

. i

iA ==\
WD) = ®)
Here, ¢ is an infinitesimally small positive number that is
introduced to avoid the singularity at p?> = m?. The choice of
the sign +ie corresponds to the causality boundary condition
for Green’s function that can be shown by carrying out the
integration of Green’s function over p° as

0_ .0 dp ip-(x—y)
. _ —ip(r—
IAp(x—y)=0(x" -y )/me iy
e ©
+0(° —x% / —pe—in(y—x)’
(27r)32Ep

where p° = E, = 4/p*> + m*> > 0. The derivation of the result
in Eq. (9) is presented in Appendix A. Such a use of +i¢ to
impose a causality boundary condition also can be found in
the integral representation of the Heaviside step function,
which is well discussed in reference [19]. More detailed
explanations on the expression in Egs. (7) and (8) can be
found, for example, on pp 186—188 of Bjorken and Drell [6]
and in equation (7.69) of Schwartz [9].

The Fourier-transform representation of the Feynman
propagator iAp(x — y) in the position space given in Eq. (7)
represents the propagation of the scalar field from a space-
time coordinate y* to x* expanded in a linear combination
of free-particle waves e~ =),

The expression in Eq. (7) is the consequence of the
Wick theorem [20] for quick rewriting the time-ordered
field operator product in perturbation theory that is
explained well in Box 7.3 on p 102 of Schwartz [9]. The
Wick theorem respects the causality boundary condition
of Green’s function which is the fundamental background
of the two equivalent formalisms of describing the time
evolution of the quantum system: the Feynman propagator
[4, 21] and the Dyson series expansion for the S matrix
[22, 23].

Under the Lorenz condition dMA” =0, Maxwell’s
equation d, F** = 0 in free space collapses to d,0"A” = 0.
Hence, every component of the four-vector potential A"
satisfies the Klein—-Gordon equation (1) in the massless
limit, m — 0. As a result, the retarded and advanced
Green’s functions of classical electrodynamics satisfy-
ing the Lorenz gage condition are closely related to the
positive-energy contribution [(x* — y°) term] and the neg-
ative-energy contribution [§(y° — x°) term], respectively, in
the massless limit of the Feynman propagator in Eq. (7),
except that the pole structure in Eq. (8) should be modified
with the standard prescription in classical electrodynam-
ics as

O springer KES Y3

4 .
iA x-y = d'p ! e~iP-(=y)
retarded y = (27[)4 (po n ig)z _p2 ,
(10)
d* ; ,
iAadvanced(x - y) = P ! e—lﬁ'(x—y)'

Qx) (0 —iey —p
(11)
Readers are referred to Section 12.11 of Jackson [24] for
more details including the contour shown in Figure 12.7 of
that reference.

2.2 Loop integrals

The perturbative expansion of the momentum-space repre-
sentation of the amplitude for a process involving N exter-
nal particles with four-momenta p, ..., py is expressed as a
series in powers of a perturbative coupling. In quantum elec-
trodynamics, the fine-structure constant a = e? /(4r), is the
perturbative expansion parameter. At the leading order in a,
the scattering amplitude has propagators whose momenta are
completely fixed in linear combinations of the four-momenta
for the external particles. At the next-to-leading order in a,
the corresponding Feynman diagram acquires a loop whose
loop momentum k* ranges from —oo to oo for any of the
four components. Suppose that the loop involves n (< N)
propagators. As is given in ’t Hooft and Veltman [25], the
next-to-leading-order amplitude contains a loop integral as
a multiplicative factor whose generic form is
d*k 1

I= Qr)* (d, + i)™ - (d, + ie)% 12)

Here, a; = 1 for an ordinary case but we may allow q; to be
any positive integer since such a power may arise in a spe-
cific effective field theory. The integral (12) is over the loop
momentum k* whose four components are integrated over
(—o0, o0) independently. In fact, we should also consider the
numerator that contains the loop momentum. However, we
have not specified it explicitly in Eq. (12). One can employ
the tensor-integral reduction to remove such a factor in the
numerator. The standard method of tensor-integral reduction
is the Passarino—Veltman reduction given in Passarino and
Veltman [26]. An elementary treatment of the tensor-integral
reduction can be found in Ee et al. [27].

There are n vertices and n propagators that are described
by the loop integral in Eq. (12). We employ the convention
that any one of the external legs has the momentum coming
into a vertex as is shown in Fig. 2. The energy—momentum
conservation requires that the sum of the external momenta
coming into the loop must be the same as the sum of the
external momenta going out of the loop. Then, the sum of
all of the external momenta always vanishes:
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\p 1

Fig.2 A Feynman diagram of a loop involving n propagators corre-
sponding to the integral in Eq. (12). Here, the bold line and the wavy
line represent a fermion of momentum ¢; and a photon of momentum
p;» respectively

p1+p2+'”+pn=0' (13)

The first propagator has the momentum k + p,, where k is
the loop momentum and p, is the momentum of the external
particle that couples to the first vertex. The second propa-
gator carries the momentum k + p; + p,, where p, is the
momentum of the external particle that couples to the second
vertex. In this manner, the ith propagator has the momentum
k+p, + -+ p,. As aresult, the real part d; of the denomi-
nator d; + ie of the ith Feynman propagator of mass m; in
Eq. (12) can be defined as

_ 2 2 .
di—qi —-m;, Vie{l,2,...,n},
q, =k+py,

=k+p,+p,,
9 . 1 2 (14)
dn-1 =k+p1+"'+pn—l’

4y =k+p+-+p,_1+p, =k

Substituting the momenta in Eq. (14) into the loop integral
(12), we find that

I / d*k 1
(277,')4 [(k +p1)2 — m% + iS]a] [k2 — mz + iE]a,, .

15)
The k¥ integral can be evaluated by making use of the calcu-
lus of residues. Then the remaining integral over k is defined
in the three-dimensional Euclidean space. Evidently in
Eq. (15), the integral must be a Lorentz-covariant quantity.
However, the Euclidean integral is naturally expressed in
terms of non-covariant terms and the number of terms con-
tributing to the residue piles up formidably as the number

of denominator factors increases. Thus, this method is
not practically useful. The parametrizations of Schwinger
and of Feynman were developed to combine the propaga-
tor—denominator factors into a single power and allow one to
compute the four-dimensional loop integral in a convenient
way. This approach introduces additional multiple integral
over a set of new parameters though. Particle-physics major
graduate students are referred to three books [28-30] by
Smirnov that contain comprehensive guides to advanced
loop-integral techniques.

3 Schwinger parameterization

In this section, we present a kind derivation of the Schwinger
parameterization. We first identify that the Schwinger para-
metrization for the Feynman propagator of a scalar field is
equivalent to the Laplace transform [31, 32] of the Heaviside
step function. By investigating the analytic properties of the
transform, we obtain stringent conditions for the applica-
bility particularly involved with +ie term in the propaga-
tor denominator and derive the Fourier-transform version
of the parametrization. After that, we derive the most gen-
eral form of the Schwinger parametrization applicable to
the parametrization involving multiple denominators with
arbitrary positive powers.

3.1 Representations of the unity

We begin with two integral representations of the unity

1=/ dse™,
0

o (16)
1 =/ dzo(z—2z9), 79> 0,
0

where the former representation is in terms of a convergent
definite integral of an exponential function and the latter is
expressed as an integral of the Dirac delta function [33]. As
a distribution [34], the Dirac delta function 6(x) is defined
only through integration:

/ dv () () = £(0), (17)

for any continuous integrable function f(x). According to
Eq. (17), 6(x) must vanish except at x = 0. Apparently, 6(x)
does have a singularity and discontinuity at x = 0. We have
restricted the integration limits for the Dirac delta function
in Eq. (16) that are identical to those of the first integral to
make the two relations consistent with each other. Thus, z,
in the second line of Eq. (16) must be a positive number.
Multiplication of unities involving the Dirac delta function
is quite useful in changing variables. Pedagogical examples

@ Springer KCJS?_'_EEEIQQI
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of applying the Dirac delta function to purely algebraic com-
putations can be found in Ee et al. [35] for an alternative
proof of the Cramer’s rule to find the inverse matrix and in
Kim et al. for an algebraic derivation of the Jacobian for a
multi-variable integral [36].

3.2 Schwinger parametrization of Feynman
propagator

If we introduce a positive dimensionless number « as an auxil-
iary scaling parameter to the integrand, then the first identity in
Eq. (16) acquires an additional degree of freedom. The number
a can be extended to any complex number provided that the
real part Re[a] is positive to guarantee the convergence:

1_ / dse™, Rela] > 0. (18)
a

0

Apparently, the expression in Eq. (18) has an intrinsic sin-
gularity at a = 0. This identity can also be understood as the
bilateral Laplace transform [31, 32] of the Heaviside step
function 6(r), which is defined by

0(f) = { (1)’

While the parametrization in Eq. (18) is convenient for any
complex number with positive real part, it is not suitable for
parametrizing the momentum-space representation for the
Feynman propagator:

fort <0,

fort > 0. (19)

x i
iA =—————  &£-0%

) i (20)
where p and m are the four-momentum and mass of the
propagating field. Here, we have suppressed the numerator
factor that depends on the spin of the corresponding particle.
The € is an infinitesimal positive number and p? — m? is real.

The condition
Re[p? —m? +ig] > 0

required in Eq. (18) is not guaranteed because the sign of the
real part p> — m? can vary depending on the explicit values
for the four-momentum components. Only the sign of the
imaginary part is positive definite.

Julian Schwinger generalized the integral (18) to repara-
metrize the Feynman propagator in Eq. (20) in equation (2.24)
of Schwinger [14] as
L / dse, Jmla] > 0. Q1
a 0
This corresponds to the Fourier transform [17, 18] of the
Heaviside step function that can be derived from the bilateral

O springer KES Y3

Laplace transform (18) by replacing the parameter @ with
—ia. The requirement of the convergence Re[a] > 0 in
Eq. (18) is correspondingly modified as Sm[a] > 0 in the
Fourier-transform version in Eq. (21). We call the integra-
tion variable s a Schwinger parameter. The relation (21) is
applicable to the Feynman propagator in Eq. (20) because

Smla] = Sm[p> —m* +ie]l =€ >0

regardless of the value for the real part p> — m?. Advanced
reviews on the Schwinger parametrization that cover a
matrix or a differential operator O can be found, for example,
in Peres [37], Gonzalez and Schmidt [38], or [39].

3.3 Parametrization of a denominator
with exponenta =1

In the previous section, we considered the parametrization
of a single power denominator. In general, the power of a
denominator may be given as a positive real number in the
parametrization. Let us first consider the case in which the
power a of a denominator factor a is a positive integer. In that
case, the parametrization can be derived from the expression
in Eq. (18) by taking multiple partial derivatives on both sides
of the equation:

1__1 <_i)"“1
a® (a—D!'\ oa a

1
" (a-1)!

® (22)
/ dss® e,  Re[a] > 0.
0

The parametrization in Eq. (22) can be transformed into Eul-
er’s definition of a gamma function by multiplying a*(a@ — 1)!
to both sides of the equation and changing variables as — ¢
in the integral as

(@—1)! =Tla] = /m e e, 23)
0

Euler’s definition of the gamma function in Eq. (23) is valid
even for a complex number a with Re[a] > 0 because the
gamma function is analytic in the region Re[a] > 0. In other
words, the Schwinger parametrization can be applied for
any complex numbers a and «a satisfying Re[a] > 0 and
Re[a] > O as

i_ 1 / dss®'e™,  Re[a] > 0 and Re[a] > 0.
I'la] Jo

a(l

(24)
The Fourier-transform version of the parametrization corre-
sponding to the expression (24) can be obtained by replacing
a with —ia:
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r_ L/ ds s* et Smla] > 0 and Re[a] > 0.
I'la] Jy

all
(25)

3.4 Product of a sequence

In this subsection, we consider the process to combine
multiple denominator factors into a single power. For each
denominator factor a; = d; + ie, we need a single independ-
ent Schwinger parameter s; to perform a single Fourier
transform in Eq. (25). We may think of the product of a
finite sequence (', ..., a,") satisfying Sm[q;] = £ > 0 for
all j = 1 through n. By applying the identity in Eq. (25) for
a; from j = 1 through n, we can parametrize the product of
these factors as

n

n i 11/ 1 a1
-] = d’s s el
H <‘lj> /[(),co) H [la;]

J=1 j=1

a;—1

s (26)
= / ds e"”H L,
[0.00) =1 Tl

Smla;] >0 and Re[e;] >0,

where a bold-italic letter X denotes an n-dimensional Euclid-
ean vector whose components are X; for i = 1 through n and
X - Y is the scalar product of X and Y:

X=X, ....X,),
Y =(Y,.....Y,),
n 227)
X-Y=) XY,

Jj=1

Here, the symbol /[0 ) d"s in Eq. (26) represents the definite
multidimensional integral over the Schwinger parameters
s;’s as

/ d's =
[0,00)

Readers who want to study the practical use of the param-
eterization (26) are recommended to refer to the contents
involving the alpha representation given in references
[28-30].

n

I1 /0 ds;. (28)

J=1

4 Feynman parametrization

In this section, we derive the Feynman parametrization with
an arbitrary number of denominator factors and with arbi-
trary powers in two independent ways: the partial-fraction

decomposition and change of variables in the Schwinger
parametrization. In those derivations, we employ change
of variables by introducing additional delta function as is
given in references [35, 36]. The derived parametrization
formula coincides with the elementary form of the Feyn-
man parametrization that can be found, for example, in equa-
tion (A.39) on p 806 of Peskin and Schroeder [10].

4.1 Partial-fraction decomposition

Feynman parametrization was first introduced in volume 76
of Physical Review in 1949 in equations (14a) and (15a)
of Feynman [4] and equation (2.82) of Schwinger [40]. As
Feynman wrote ‘suggested by some work of Schwinger’s
involving Gaussian integrals’ right after equation (14a) in
reference [4], Schwinger introduced the parametrization
ahead of Feynman. These early computations involving
Feynman parametrization exploited the partial-fraction
decomposition,

1 _ 1 [l_l]
ab  a-blb al’

a,b#0 and a#b, 29)

which is an elementary algebraic method of breaking a
rational function apart. One can think of the right-hand side
of Eq. (29) as the result of a definite integral:

L1 1 [_1’=”]
a-blb al a-b| 1|
1 [“dt
a-bJ, 2

(30)

Note that the integral representation in Eq. (30) is valid only
when 0 is not included in the integral domain. Changing
variables with

t=b+x(a->b),

where x runs from 0 to 1, we have df = (a — b)dx and obtain
the Feynman parametrization of a rational function 1/(ab):

1 / b
ab o [xa+ (1 —x)b)?
1 1
o(l —x; —x
=/ dx1/dx2—( L 23,
0 0 (@) +xay)
where a; = a, a, = b, and x; = x. In principle, a and b can
be any non-vanishing numbers or functions if 0 does not
exist on the line connecting a and b in a complex plane.

As the denominator factors coming from Feynman propa-
gators, a and b are of the form

€29

qqqqqqqqqqqqqqqqqqqqqq



1030

U-R.Kim et al.

a=d, +ie, b=d,+ie, e— 0" (32)

d, = Re(a) and d, = Re(b) may vanish as we have stated
earlier. However, the presence of the tiny imaginary part +ie
forces neither a nor b to be equal to 0. Hence, the combined
denominator in Eq. (31) never hits O because both ¢, and
d, are real and the imaginary part Sm[xa + (1 —x)b] = ¢
remains positive definite,

xa+ (1 —x)b=xd, + (1 —x)d, + ie. (33)

We continue to construct the identity for more denominator
factors. By making use of the expression in Eq. (31), we
combine the first two denominator factors in 1/(a;a,a;):

/ / @ 5(1—x1 )
a4y (34)

z = xlal + xZaz,

a1a2a3

where we have made use of the identity 0(1/+)/0~= —1/ 2.
We combine the denominator factors in Eq. (34) by making
use of the formula (31) once again:

/dxl/ dx, 8(1 — x, — xy)
/[yﬂ+(1—y)az]

—2/ dxl/ dx, 6(1 —x; —xy)

/ dyy
y(xa; +xa,) + (1 = y)a; P ’

a1a2a3

(33)

The variables of the multiple integral in Eq. (35) are not
appropriate for the Feynman parametrization because the
sum of the parameters is not equal to 1.

A convenient way to change the variables into the Feyn-
man parameters for the three denominator factors is to insert
the unity. A set of Feynman parameters can be y, = yx,
Y2 = ¥X,, and y; = 1 —y whose sum is 1. This unity is the
product of the integrals over a new set of Feynman param-
eters whose integrands are all Dirac delta functions:

1 1
1= / dy, 50y —vx) | dvy 60, — y1)
0 0 (36)

1
X/ dy; 6(1 =y =y, = y3).
0

By multiplying the integrand in Eq. (35) by the unity in
Eq. (36) and integrating over x;, x,, and y, as is shown in
[35, 36], we obtain

@ Springer KCJS 'E E]§|l§_]

1 1 1 1 1
1
=2/ dyl/ dyz/ dy3/ dy/ dx; 6(y; — yx;)
a axay 0 0 0 0 0

1
X/ dx,6(y, — yx,)
0

y6(l —x; —x,)
(xa; +xa5) + (1 = y)as PP

= /d)l/d}z/ dys/ dy/ il (y—'—xl)
X/ %6<&—x2>
o ¥ \»
yo(l = x; —x;)
v(xya; +xa,) + (1 = y)az PP

+)'z)
=2 o flon [on [0 ’
o & s ia; +YZaz + (1 =ya;]?

X6(1 =y, =y, —y3)

oo o o[

X 6(1 =y, —y; = ¥3)
y3)
=2 d d
/ o / }2/ V3 ar +yam + e D’]al +)2‘12 +yz“3
(37)

where we have made use of the property of the Dirac delta
function

5 [f(z:)] = z]: lf’(;f;)lé(g -&). 38)

01—y, =y, —y3)

o(l=y; =y, —y3)

Yo +32)8(y =y =)
Ulal +¥0, + (1 = y)as P

Here, &;’s are simple zeros of f(£).

In this way, we can combine an arbitrary number of
denominator factors. By inspection, we find that over-
all factor 2 and the denominator power 3 in Eq. (37) are
correlated. As the number of factors increases by unity,
the denominator power also increases by unity. Thus,
the denominator power is n and the overall factor is
(n — 1)! =T'[n] when we combine n denominator factors.
Mathematical induction can be applied to verify that for
any n, the propagator denominator can be combined as

+x,a,)"

1 1
n [ [ e,
0 0
(39)

Note that the parametrization in Eq. (39) holds only if

Z? , X;a; # 0 for all x;. In our case, that condition is always

satlsﬁed because Im(a;) > 0.

6(1 —x; —
(xya; +xay + -+

. __x”)

4.2 General rule

In a similar way illustrated in Sect. 3.3, we derive a more
general form of the Feynman parameterization by taking
the partial derivatives of the expression in Eq. (39) with
respect to a;’s as
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n a;—1
1 _ 1 9\ 1
a'eay Tlag] Tl [H( aa,-> ] a;--a,
B I'[n]
T Tley] - Tla,]

n a—1 n
n _ 0\ 8[1- X, x]
<[ [H< <) ] war (40)

Tl + - +a,]
" Tlay]-Ta,]

5[1 _ ZZ:I xk] x?l_l ...xZn—'
></ d"x .
[0,11

(a . x)(xl +-tay,

Here, Sm(a;) > 0 and q; are positive integers. The form of
the Feynman parametrization in Eq. (40) is consistent with
equation (6.42) on p 190 of Peskin and Schroeder [10]. We
will show that the parameterization in Eq. (40) is the most
general form of the Feynman parametrization applicable to
any complex numbers q; satisfying Re(a;) > 0.

4.3 Derivation of Feynman parametrization
from Schwinger’s

The product of a sequence 1/ []; af’ can be expressed by the
Schwinger parameterization given in Eq. (26) as

1 1 as 1T 5
—_—F == d'se“’ | | =— 41
adr W Jow H . (41)

where a = (a,, a,, ...

N= Zn: a;.
i=1

Note that the parametrization is valid only if Sm[a;] > 0 and
%e[aj] > Oforall j € {1,...,n}. The n independent param-
eters s; in Eq. (41) can be scaled with a single dimensionless
parameter s as

,a,), 8 =(51,58,...,5,), and

s = Z 5;. 42)
j=t

We define an n-dimensional Euclidean vector x representing
the coordinates of s in units of s as

s=8x, X=(X,X...,X,). (43)

According to Egs. (42) and (43), every element x; ranges
from O to 1 and the sum of the components of x must be 1:

n

vVie{l,...,n}, ij=l. (44)

J=1

% € [0,1]

Following the way of changing variables with the Dirac delta
function described in references [35, 36], one can implement

the requirement (42) into Eq. (26) by multiplying the follow-
ing integral representation of the unity,

1=/Ooods5ls_§sj] =/000d55ls<1_”2xj>](;15)

Multiplying the integrand on the right-hand side of Eq. (41)
by the unity in Eq. (45) and changing the variables as pre-
sented in Eq. (44), we find that

ﬁ = lN ds SN
al ...an" I 0
n n -1
/ 2o )l Tl
X dxé|s[ 1= ) x; ||e* :
[0,1] Jj=1 / j=1 F[aj]
: n (46)
= — d"x oll— X

a,—1
nox’ )
% H FJ / ds sN—le—s(e—uLx)7
j=1 L1 Jo

substituted N= Zjaj
a=d+ig(1,...,1). Here, the symbol fm 1 d"x represents

noool
d'x = / dx.. 47
/[0 ., 111 | 47

In the second line of Eq. (46), we have pulled out the factor
of s from the argument of the Dirac delta function as 1/s by
making use of the identity given in Eq. (38). We notice that
the integral over s in Eq. (46) is convergent because of the
infinitesimally positive real parameter € that comes from
the tiny imaginary part of the denominator of the Feynman
propagator. Were it not for this e — 0%, the s integral would
have been divergent.

In order to pull out the complex factor € — id - x from the
exponential function in Eq. (46), we consider the following
complex integral

where we have and

I = lim
R—o0 c

dz Ve, (48)

where the contour C shown in Fig. 3 is defined by

C, = {z = r|rruns from O to R}, (49Db)
C, = _ i} _ d-x
» = 12 = Re'?|¢pruns from 0 to ¢, = arctan 5
(49c¢)

,,,,,,,,,,,,,,,,,,,,,,
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Fig.3 A diagram of the contour
C=CyuC,UCggivenin
Eq. (49)

Cyr = {z = re'®|r runs from R to 0}. (49d)

Here, we restrict ¢, to the region (—x /2, 7 /2) to make the
arctangent uniquely defined. Note that |¢y| < 7 /2 because
e#0andd - -x € (—o0, ).

For each contour in Eq. (49), we define

dZ ZN—le—z(s —id<x)’

Iy = I%un
— 00 CX

X € {0,¢.R}. (50)

Because the integrand of I in Eq. (48) is an analytic inside
the closed contour C, I becomes 0 according to the Cauchy
integral theorem:

I=0=1+1,+I. (51)
As is shown in Appendix B,
1, =0.
Substituting 0 for 1, in Eq. (51), we get
Iy=—1
_/°° dr PN-TeiNdog—rVe+dx)?
0

=—eiN¢0 / " dr’ PN-le
e+ @0 Jo

_ I'[N] (52)
(e70\/e2 + (d - x)?)N

_ [[N]

T (—id -x + )V

MV

T d-x+ie)N

where I'[N] is the gamma function defined in Eq. (23).
By substituting the result in Eq. (52) for the integral in
Eq. (46), we finally obtain the general form of the Feynman
parameterization

@ Springer KCJS?T'E%EIQWJ
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a.—1
. _ n 1 n xj/
d”ll ;xf] @ gy
J= J=
(53)

Note that the expression in Eq. (53) holds for any ¢; and «;
satisfying Sm[aj] > 0 and ERe[aj] > (. Therefore, the same
expression in Eq. (40) with the one in Eq. (53) also holds for
any complex numbers q; satisfying Re(a;) > 0.

As we stated earlier in Sect. 4.2, the derivation of the para-
metrization in Eq. (40) based on partial derivatives is defined
only for positive integers ;’s because non-integer powers can-
not be generated by partial derivatives in a usual way. There-
fore, our derivation of the master formula (53) corresponds to
the analytic continuation of the Feynman parametrization in
Eq. (40) from positive integers @;’s to any complex «;’s satisfy-
ing Re(e;) > 0.

[0.1]

5 Elementary applications

In this section, we consider elementary applications of our
results. The master relation (53) for the product of a sequence
contains an integral over the Feynman parameters x;’s whose
sum is 1. If there is no other x; dependence in the integrand,
then the integral over the Feynman parameters reduces into
a trivial integral involving a combinatorial factor. This is an
elementary integral arising in the Dyson series expansion
of the time-dependent perturbation theory. In Sect. 5.1, we
demonstrate that this integral is expressed as a combinatorial
factor 1/(n — 1)!if the sequence is the identity sequence of n
elements. The derivation of the multivariate beta function from
the master relation (53) is presented in Sect. 5.2.

5.1 Combinatorial factor in Feynman-parameter
integral

Let us consider the master relation (53) for the product
of a sequence with a trivial case of the identity sequence
a = (1,...,1)of nelements with unit powers a; = 1 for all i.
In that case, the left-hand side of Eq. (53) becomes 1" = 1.
By substituting the sequence a = (1, ..., 1) into the integral
on the right-hand side of Eq. (53), we have

5[1 - Z?:lxi]

I'(n) d"x
[0,1] [a - x]"
s1-X0,x
=I'(n) d'x —[ = ]n (54)
o1 XA 4]

1 1 n
=FM)/mdﬁ"-/”d%5ll—}5Ml
0 0 i=1
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Therefore, the master relation for that trivial case results in n
the following integral table / - Z X;
i=1
1 1 n A
1 2
_=/ dxl"'/ dx, 5 1_2xi , (55) =/ dx/ dxz---/ dx,_,
nJo 0 i=1 0
An—k=1 59)

We first check the integral table (55) by computing the inte-
gral with an elementary brute-force method without using
any advanced techniques. The x,, integral in Eq. (55) is trivial
because of the Dirac delta function. After the x,, integration,
the lower limit of every integral can be fixed to 0. However,
the sum of the remaining n — 1 Feynman parameters must
be 1 because of the Dirac delta function. The upper limit of
the x, integral can be fixed to 1 at which all of the remaining
parameters vanish. Then the upper limit of the x, integral is
fixed to 1 — x;. In a similar manner, the upper limit of the x;
integral is fixed as1 — x; -+ —x,;_, foralli = 1throughn — 1.
As aresult, the integral in Eq. (55) can be evaluated as

[ o [ ans]1- 2
1-x, L=xyee—x, 5
=/ dx, dx, - / dx,_;.
0 0 0
Because the integrand is 1, the x,_, integral is trivial
[ o [ ans1- 2
1—x,
_ / a, [ dy, (57)
0 0

I=x - =x,_3
. / dxn—Z(l —
0

The integration over x, can be carried out as

/ dxn ZAn 2 _/ d‘xn Z(An 3 )
(58)

_ 2
_EAn 3’

(56)

Xyt =Xy ):

A recursive evaluation of the integrals leads to

Al Akl
dx/dx dx

_ _ n—2
—/0 dx, —(n—2)!(1 xy)
1

BRCEEk

)"‘

which confirms that the integral table (55) is valid.

An alternative expression of the integral table (55) can
be derived by performing a change of variables. If we
change variables in Eq. (56) as

k

W= x, ke{l,...n-1}, (60)

i=1

then the integral becomes
[ o [ [ _ ]

0(Xy, Xy, .v s X,

:/ dul/ duz.../ dun_ljliw ,
0 I U, a(ul’ Ups ooy un—l)
(61)
where J [s((x‘xz—x")] is the Jacobian for n — 1 variables. The
Uy, ...l

Jacobian matrix of that transformation is always expressed
in an upper triangular matrix

n—1

0x; 0x; 0x;

Oou; Ou, Ouy
0x) 0xy

,xn_l)] % 0 =2 =2 ..
= | Y u, Ous 62
Sy q) 0 0 & . 62)

duty

0(xy, %, ...
J (xy, %,
o(uy, u,, ...

due to the following identity
% _[L
ou; | 0,
The Jacobian can be evaluated straightforwardly because the

determinant of an upper triangular matrix is the product of
its diagonal components:

7 00X, Xy, v, X,_1) _ﬁ% _
o(uy, Uy, ... Uy_y) =1 ou

fori >j

otherwise. (63)

1"=1. (64)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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By inserting the Jacobian in Eq. (64) into the one in Eq. (61),
we obtain an alternative expression of the integral table (55)

1 1 1
T = / dul / du2 oo / dun_l . (65)
0 Uy Up_o

Additionally, let us perform another change of variables in
Eq. (70) as

t=1-uw, kel{l,...,n—1} (66)

The transformation yields

[ [ 3]

1 n—2
=/ dII/ dt2-~~/ dr,_;.
0 0 0

Then we can express the integral (67) by making use of the
Heaviside step function 8(¢) defined in Eq. (19) as

1 I )
/ dtl / dtz b / d[n—l
0 0 0

=/ A0 = )00t = 13) = 01, = 1,_)  (68)
[0,1]

1
T =DV

(67)

which can be computed by substituting ¢; = 1 and a; = 1 in
the Feynman parameterization (40). Remarkably, the integral
(68) appears in various fields of physics. The time-ordered
product appearing in the Dyson series representation for the
Schwinger—Dyson equation for the time-dependent pertur-
bation theory [22, 23, 41, 42] indeed has the same integral
in Eq. (68). Equation (32) of Dyson [22] and equation (4)
of Dyson [23] are the earliest examples. The path-ordered
exponential of quantum field theory has the same mathe-
matical structure. Readers are referred to p 85 of Peskin and
Schroeder [10] for more detail.

It is worthwhile to mention that the integral (55) can be
straightforwardly computed if we apply a combinatorial
argument. First of all, the (n — 1)-fold multiple integral
is the unity if we set all of the limits to x; integral as
x; € [0, 1]. In fact, all of the variables x;’s can be treated
distinctly because any set of variables of equal value does
not contribute to the integral since the corresponding
integral measure converges to 0. Thus, there are (n — 1)!
permutations in ordering (n — 1) distinct numbers. The
product of the Heaviside step functions in the last line of
Eq. (55) reflects the fact that only a fraction of 1/(n — 1)!
of unity contributes to the integral.

@ Springer KCJS 'E E]§|l§_]

5.2 Multivariate beta function

Let us consider a more general case of the master relation
(53) for the product of a sequence with an identity sequence

a =(1,...,1)of n elements with non-trivial o;:
- , e
1 1 J
— =I'(NV) dxs|1= Y x| ——
1N 0.1] i Z '_ (@-x)N -1 ']
- N - n xn/71
1 i
=I'(N) dxs|1= Y x| — — 69
[0.1] | z’ '_ [x) + - +x, 1V Il:][ Ila;] (69)
r P B o
=tv) | axs|1-Yx i
0,11 | g{ | et Tyl

where N = Zi ;. In that case, we obtain the following inte-
gral table

/ dx, - / dx, 6[1— ] a‘_lxgz_l e !
0 ;

_ Toy]0ay] - I'a,]
- F[al + (12 + -+ an]’

(70)

which is the multivariate beta function. When n = 2, the
integral becomes the beta function

I'lay T[]

1
Blaja) = [ dua( T (1 —x)et =
@, a) /o vy (1=x) Tla, + a,]

When n = 3, the integral is identical to the one appearing in
the parametrization of the surface integral on a triangle in
the barycentric coordinate system as is shown in references
[43, 44]

1 1 1
a—1_oy—1_a3—1
/ dxl/ dxz/ dx; 5[1—xl—x2—x3]xl X, Xy
0 0 0

_ Tyl a, T[]

T Tey sl
(71)
For example, the integral table given in equation (26) in
Ref. [43] corresponding to the surface integral over a tri-

angle in the barycentric coordinate is nothing but the case
n=3and(a;,a,,a;) = (2,1, 1) of the integral table (70)

/dK/de/ dx.6(k, + k;, + k. — Dk;
(72)

_ TRjrgrefy _ 1

T[4 6

for i = a, b, c. The integral table given in appendix A in
Ref. [43] can also be derived from the integral table in
Eq. (70) by applying the binomial expansion
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1 1 1
/ dKa/ de/ di,6(x, + K, + K, — (K, — EY(x;, — n)?
0 0

4 q
(=1y*plg!
=ZZJ'(P —)klg — k>'/ dK/de

j=0 k=0

1
X / dx.o6(k, + k), + k. — 1)KZ_'jKZ_kfjl’]k
0

o v (—1)*plg!
;onj!(p—j)!k!(q—k)!
Ilp—j+1g —k+1]
INp+qg—j—k+3]
_i - (=1y*plg!
LK (p+q—)—k+2)!

&nt

ént.
(73)

Here, the integral over k; in the second line is the case which
n=3and(a,a,a;) =@ —j+1,g—k+1,1).

6 Conclusion

We have investigated detailed nature of analytic proper-
ties hidden in the derivation of Schwinger and Feynman
parametrizations. Although they are originally developed
for combining the Feynman propagator factors in loop inte-
grals in perturbative quantum field theory, the formulation
is pedagogically useful far beyond the specific applications
to quantum field theoretical computations. The extensive
employment of the analyticity of a complex function for the
derivation provides a wide variety of exemplary problems
with which students can deepen their understanding of com-
plex variables.

The tiny imaginary part +ie appearing in the Feynman
propagator has a crucial role of restricting the formulation of
the amplitude to respect Huygens’ principle of propagating
wave of fields. This is not a mere ad hoc prescription but a
rigorous use of mathematical identity based on the Cauchy
integral theorem. The significance of the presence of the
infinitesimally small positive number has been investigated
through our evaluations of contour integrals. Mathemati-
cally, the parameter provides a stringent condition of our
analytic expression strictly convergent to a physical value.

An application of n-dimensional Fourier transform of
multiple Heaviside step functions has led to the Schwinger
parametrization of the product of numbers. By multiplying
a unity that is parametrized by a convolution of the Dirac
delta function, we have demonstrated a straightforward
way of changing variables, which leads to the gateway to
the Feynman parametrization. Such a living example of
the Dirac delta function in coordinate transformation does
not have to be known exclusively to particle physicists but

undergraduate student can enjoy the tool in various practical
computations.

‘We have made use of the master formula of the Schwinger
parameterization of the product of a sequence to compute
elementary expressions that are pedagogically useful. We
have shown that the combinatorial factor is closely related to
the time-ordered product by a brutal-force evaluation of an
n-dimensional integral of Feynman parameters whose inte-
gral is unity. The multivariate beta function derived from
the parametrization is particularly useful in carrying out a
surface integral in barycentric coordinate system. In conclu-
sion, we have demonstrated through an explicit derivation
of the Schwinger and Feynman parametrizations that the
formulation contains rich spectrum of analytic techniques
as a state of the art.
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Appendix A: Feynman propagator

In this appendix, we provide the detail of the integration of
the Feynman propagator given in Eq. (7) over p, to obtain
the result in Eq. (9). The Feynman propagator for a scalar
field of four-momentum p* given in Eq. (7) is

d*p i
Qr)* pt —m? +ie

iAp(x —y) = e, (74)

where the integration for every component is over (—oo, c0)

and ¢ is an infinitesimally small positive real number. We
first factorize p-dependent contribution in the integral as

. _ _ d3p ip-(x—y) ® 0 0
inge=y) = [ e 4" 1), (75)

where
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1 - —ip"(:9—y0) . o
0= 5- = - L= / e
T (PO + /m? +p* — ie)(p® — \/m? + p* + i€) 2z Je. ?—p*—m? +ie
(76) R T omil{RGO=y®) cos 9-+0)—iR( ) sin 6]
= — do -
Here, we have used the identity 2x _/0 R2e=20 —p2 —m?2 + je
pz —m? +ie = (po)z —p2 —m? +ie _ £ /,, ” e~ ROO=0)sin 0 o—i{R(x—y") cos 6+0+¢)
2z 2 — 12 — 22 — R2i 2
= O+ VIR 1P —ie)(p° — ViR P +ie). 0 /(R*c0s26 —p* — m?)? + (e — R 5in20)
) ) R T e—ZR(x‘)—y(’)H/zr
In order to evaluate the integration of the propagator over p°, < e / do ,
we introduce the following complex integrals over z T|/0 V(R? c0s 20 — p* — m2)? + (€ — R 5in 20)?
(81
Iy = / dzf(z), X e€{0,+,-}, (77) where
CX
o _ € — R*sin 20
where the contours C,, C,, and C_ shown in Fig. 4 are ¢ = arctan (82)

defined by

Cy ={z = r|rruns from — R to R}, (78a)

C, ={z = Re*"|0 runs from 0 to r}. (78b)

If x° > y9, then the p, integral in Eq. (75) can be evaluated
by the following complex integral /.00 along the closed con-
tour Cron0 = CoU CLt

Loy = I%an}o j{CXO)}O dzf(z) = I%an}o(lo +1)). (79)

As is shown in Fig. 4, the closed contour Cy., 0 encloses the
simple pole at z = \/m? + p? — ie in the lower half-plane.

By applying Cauchy’s residue theorem, we compute /0

in Eq. (79) as

Losyo = ,%E‘;,(Io +1) = =2xiRes[f(I] _ i

e—i(\/m2_+pz—tg)(x0—y°) (80)
W ipi—ie |

Here, the negative sign in the second equality originates
from the orientation of the contour Co., 0 that is clockwise.
An upper bound of |/_| can be found as

Fig.4 The contours C,
and C, defined in Eq. (78).
The function f{(z) given in

(76) has two simple poles
atz = \/m? + p? — ie and
z=—v/m? + p? + ie displayed

as X-shaped marks in the figure

@ Springer KCJS?T'E%EIQQI

Korsan Physical Sacisty

R2cos20 —p? —m?’

Here, we have made use of the inequality

sin0 > 20 (83)
z 0.

In the limit R — oo, the denominator of the upper bound in
Eq. (84) can be expanded in powers of 1/R as

lim |7_|
R—>o0
z —2R(:"—y"0 /7
<1im 2|/ a0 e
ko271 )0 \/(R2cos20 — p> — m2)? + (¢ — R2 sin 20)?

L [
R—o0 21| Jg R?

_l_(p2 + m?) cos 20 + £ sin 20
R4

< Jim -— / " o 2R

R—o0 27T 0

+03 /R6)]

1— e—2R(x”—y”)

Ro%0 ARG — y0)

= 0,
(84)
which implies that
=0 (85)
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Consequently, the Eq. (80) reduces to

Lo.o = lim [,
K0>y0 R—o0 0

/oo e—i(\/m2+p2—i£)(x0—y0) (86)
= drf(r) = .
—e0 2y/m? +p? — i€

By substituting the result in Eq. (86) for p° integral in
Eq. (75), we obtain the expression of the propagator for
20 >0 as

IAp(x —y)

d3p .
P . B
o x=y) 2Ep(2ﬂ')3 87

=+/m2 +p2
whereEp.:. m* + p*. . .
In a similar manner, we introduce the complex integral
L0 along the closed contour C,o 0 = Cy U C, to evaluate

the p, integral in Eq. (75) for x < y% as

I)ﬂo<y0 = hm
R—o0 c

04,0

de(Z) = I%LD;IO(IO + I+) (88)

As is shown in Fig. 4, the closed contour Cy, 0 encloses the
simple pole at z = —y/m?2 + p? + ie in the upper half-plane.
According to Cauchy’s residue theorem, /0,0 in Eq. (88)
can be computed as

Ix°<y0 = I;Lr{.lo(lo +1,)=2rxi ReS[f(Z)]Zz_\/WHS
B ei(\/m2+p2—i£)(x0—y0) (89)
24/m? +p? —ie

As we did in Eq. (84), we evaluate an upper bound of |1, |

i dz 00
I =5, —_—FFFF ¢ iz(x"=y")
11 =5 /C e
R z e—i[(R(xO_yO)cos 0+0}+R(:O—y") sin 4]
== / do : .
27| Jo R —p? —m? +ie
_ﬁ /” 40 e_R()yU_XO) sin He—i{R(XO_yo) cos 040+ |
27| Jo \/(R2 0520 —p2 — ) + (¢ + Resin 20)°
' —2R(0-x")0/x
5£ / do e |
2z | Jo V/(R? cos 20 — p* — m2)? + (¢ + R? sin 260)?
(90)
where
2 .
¢ = arctan —= + R?sin 260 o

R2cos260 —p? —m?’

In the limit R — oo, we have

1037
lim |1, |
z —2R(0—x")0/x
<1im &/ a0 ¢
koo 271Jo  \/(R2cos20 — p2 — m2)? + (¢ + R2sin 20)?

= lim & / "0 e—2R<y°—X°>9/”[i
0 R

(p* + m?) cos 20 — e sin 26
+ R

b3
< lim - / dg e 2R0"=x"0/x
0

~ R 27[

+ 031 /RG)]

1 — e~2R0"=x")
im ——
R 4RGP —x0)

=0.

92)

Hence,

lim 1+ = 0, (93)

R—oc0

and the Eq. (89) becomes

Loy = fim 1y = [ —arf

—00

e—i(\/mz_ﬁ-pz—k)(vo—xo) (94)
24/m2 +p? — e '

By substituting the result in Eq. (94) for p® integral in
Eq. (75), we obtain the expression of the propagator for
10 <yas

IAp(x —y)

=00° - x% / _dp e PO (95)
X<y ZEP(Zﬂ)3 '

Finally, we obtain the expression in Eq. (9) by combining
the results in Eqs. (87) and (95),

lA (-x - y) = 9(x0 - yo)/ &e—ip-(x—y)
' 2E,(27)}

d’p (96)

000 — x° /— =ip-(y=)
+007 =) 2,027y

Here, the zeroth component of the four-momentum p* is

now fixed as p° = E, = \/p? + m?.
Appendix B: Proof of /, = 0 defined in Eq. (50)

In this appendix, we compute the integral /, defined in
Eq. (50):

Iy=1lim [ dggV~lememid®
R—-o0 C¢
" | 97
=lim [ d(iRe) (RePyV~ e e,
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In o.rder to evaluate an upper bound of |/, |, we first factorize I, =0. (103)
the integrand as
%o v ”
I, = lim dg iR" exp [IN¢p — Re'P(e — id - x)
= ¢ p[iNe | References
b0 .
= I%molo d¢ iR exp [iN ¢—R\Ve2+(- x)ze’(""d’“)] 1. S. Schweber, QED and the Men Who Made It: Dyson, Feynman,
=% Jo

= lim

R—-o0

X exp [i{NqS — RVer+(d - x)*sin(¢p — ¢0)}],

3.
98)
where 4
¢, = arctan dx 99)
€ 5.
Then, an upper bound of |1,| can be determined as 6.
b0
11 =| Jim / dgpiRY exp [—R 2 1 (d-x)? cos(¢p — ¢0)] 7.
- /o
8.
X exp [i{Nqs — RVEX + d - x)sin(e — o) }] ’
b 9
<Jim | dgp|RY exp [—R 2+ (d-x)? cos(dp — ¢0)] :
" 10.
< pim 0 do 11.
1-—
x |RN exp [—R £2+(d-x)2<ﬂ¢+cos¢o>” 12.
0
. bo 13.
= lim
R= (1 — cos o) Ve + d - x)?
x RN (exp [—R €2+ (d - x)? cos qﬁo] 14.
—exp [—R 2 + (d'x)Z] ) 15.
(100) 16
In deriving the second inequality in Eq. (100), we have used
the following inequality
17.
1 —cos ¢
cos(¢p — ¢g) > ————¢ + cos ¢, 18
bo (101)
when ¢ € [0, g, ¢y > 0. 19.

Note that the inequality in Eq. (101) also holds for negative

¢, when ¢ € [¢, 0]. Because |¢,| < %, R-dependent part of ~ 20.

the upper bound in Eq. (100) always vanishes

21.

lim RV™! (exp [—R €2 +(d - x)? cos (,bo] 2.
—exp [—R\/sz +- x)z]) =0.

23.

Consequently, 24
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