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Chapter 1

Introduction

Here we are going to briefly explain the structure of the puzzle shown
on Fig. 1.1. Then we will get a little bit more into motivation of it and
discuss what is done so far and our proposal on how it could be solved.

1.1 Preface

Starting from Newton polygon, which is convex polygon with integral co-
ordinates of vertices, one can construct two seemingly unrelated objects.
Either go down to toric diagram, encoding some toric 3d Calabi-Yau man-
ifold, partition function of topological strings on which can be computed
using topological vertices, and which sometimes coincides with the par-
tition function of instantons of 5d N = 1 gauge theory. We will call
“Fourier” transform of it to be dual partition function. Or go to the right
of the figure, constructing bipartite graph on torus, which encodes cluster
integrable system, whose spectral curve have the same Newton polygon.
One can deautonomize this system in a canonical way, loosing involutive
and preserved hamiltonians, but getting bilinear q-difference equations
on A-cluster variables, for any element of cluster mapping class group of
the quiver. It was checked in some examples [14], [16], [15] (all of which
were of field-theoretic type), that the string-theoretic partition functions
mentioned above are satisfy equations coming from cluster algebras. And
despite of the simplicity of formulation, there is no proof for the general
Newton polygon yet. In this thesis we make several steps toward the proof
of this proposal in the full generality.
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Newton polygon

Toric diagram

Bipartite graph on torus

1 1

1 1

2

2

34 4

"Cluster" quiver
1 2

34

Discrete dynamics
of A-cluster variables
τ1τ1 = τ2

1 + Z1/2τ2
3

τ3τ3 = τ2
3 + Z1/2τ2

1

?
Solution by

dual 5d Nekrasov functions
T (u, s; q|Z) = ∑

m∈Z
smZ(uq2m; q, q−1|Z)

τ1 = T (u, s; q|Z), τ3 = is
1
2T (uq, s; q|Z)

Topological strings theory
&

Seiberg-Witten theory

Figure 1.1. The long way between the q-difference equations and their solutions

1.2 String theory and theory of integrable sys-
tems

Throughout its history a string theory grew in a tight connection with the
most advanced mathematical developments. One of the brightest direc-
tions of this collaboration originates in the late 80th, when it appeared
that in the many settings of string theory the most natural language for its
description is the one of classical and quantum integrable systems. Since
that times variety of new examples in this direction was found, and this
interplay generated large number of brilliant novel results.

The special role in strings theory/integrable systems relations is played
by the instanton counting. One can take as a starting point of this part
of story an exact description of low-energy physics of 4d N = 2 super-
symmetric gauge theories found by N.Seiberg and E.Witten [172]. Apply-
ing holomorphicity of the prepotential of the abelian theory, describing
low-energetic theory on Coulomb branch, and symmetry of the theory
under electro-magnetic dualities, they computed the spectrum of stable
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low-energy states of SU(2) theory in terms of the families of complex
curves with meromorphic differentials on them. Shortly, it appeared that
the results gave birth to the entirely new branch of stings theory. First
of all, it were generalized to other gauge groups, theories with matter
and quiver gauge theories. The provided description were even power-
ful enough to study spectrums of non-Lagrangian superconformal theories
[1]. Another direction of studies, important in the following, were de-
tailed consideration of the so-called “wall crossing” phenomenon [45, 46]:
how the spectrum of stable (or BPS-protected) particles discontinuously
jumps at the phase transitions of the theory, which occur at the walls of
marginal stability on the moduli space of vacua. The considerations of
compactifications of exact solution of 4d theory to 3d [173] latter played
an important role in this story. Also the exact solution gave a powerful
boost to the study of engineering of gauge theories using geometry and
branes in strings theory and M-theory [167, 178].

Almost since its appearence the Seiber-Witten theory found its math-
ematical counterpat in the theory of integrable systems [72]. Prciselly
the same families of comples curves which was applied in Seiberg-Witten
theory, served as a main tools for the separation of variables in integrable
systems of particles, and exact solutions of those in terms of θ-functions.
The analogues of Seiberg-Witten theories for 5d N = 1 theories com-
patified on circle [164] and 6d (2, 0)-theories compactified on torus [165]
immediately found their descriptions in trigonometric (or “relativistic”)
[143] and elliptic [133] integrable systems. The theory of integrable sys-
tems also played a central role in the counting of BPS states. In [121]
Kontsevich and Soibelman from geometric perspective derived an explicit
formula matching certain symplectomorphism of algebraic torus with any
phase of 4d N = 2 theory. This symplectomorphisms capture all the in-
formation about the BPS spectrums of the phases, and the requirement
of their equality in different phases (wall crossing invariance) allows to
compute the entire spectrum of BPS particles of the theory, with almost
no a priori knowledges about it. The physical explanation of this for-
mula was given in the series of papers starting from [78, 79]. The authors
utilized the hyperkähler structure of the moduli space of vacuas of 4d the-
ories compactified to 3d, and reformulated the wall-crossing invariance as
a requirement of the smoothness of the metric on this space. The non-
perturbative definition of this metric was given via identification of the
moduli space of vacua with the moduli space of Higgs bundles. Consider-
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ation of complex structures, approximating the particular degenerate one,
in which Higgs bundles degenerate to Hitchin systems (the class of which
includes the integrable systems of particles mentioned above), allowed to
rederive the Kontsevich-Soibelman wall-crossing formula identifying sym-
plectomorphisms of the torus with the cluster transformations of Fock-
Goncharov X -cluster coordinates on the moduli spaces of decorated local
systems [47].

The new stage of development of the correpondence started when the
exact computation of instantonic partition function was done by N.Nekrasov
[141] using localization and regularization of divergencies by so-called
Omega background Ωε1,ε2 . The beauty and non-triviality of the formula
gave rise to many nice advances. The AGT correspondence [5] have iden-
tified the partition functions of instantons with the main ingredient of
correlation functions in conformal field theory - conformal blocks, thus
opening a novel direction for collaboration between representations the-
ory and strings theory. Tuning Omega background to ε1 → 0, the authors
of [145] explored Bethe/Gauge correspondence, relating instanton count-
ing with the quantization of underlying integrable systems. In the another
limit of ε1 = −ε2 the integrable systems are “deautonomized” becoming
isomonodromic problems of Painlevé type, and instanton partition func-
tions solve them by “Kyiv formula” of [68].

Another brilliant check of Nekrasov’s formula was re-derivation of its
5d version in ε1 = −ε2 limit using all-genus topological sting amplitudes
[97] on 3d toric Calabi-Yau manifolds. By any Newton polygon one can
construct family of 3d toric Calabi-Yau manifolds (see e.g. [7]), and com-
pactification of M-theory on those (or dual (p, q) branes web) defines 5d
N = 1 gauge theory [6]. In the cases when the gauge theory posses
Lagrangian description, so that the partition function of instantons in Ω-
background can be computed, it can be reproduced by the computation
of the partition function of topological string on corresponding manifold
[96], [97], [40]. The computation of the partition function exploited there
was based on the “topological vertex” technique [7]: the Calabi-Yau man-
ifolds under consideration are toric, so they can be cutted into C3 pieces,
glued one with another by transition maps. The geometry can be read
off from the “toric diagram”, which is dual as a graph to the triangulated
Newton polygon, as on Fig. 1.1. Roughly speaking1, to compute the par-
tition function by this picture one associates with each junction of three

1Up to subtleties with the “framing” and choosing of Kähler parameters
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line segments the topological vertex function

Vµ,ν,λ(q) =
∑
πλ,µ,ν

q|π|, (1.1)

which counts 3d Young diagrams with 2d Young diagrams λ, µ, ν as asymp-
totics weighted by the number of boxes in them, and summation over 2d
Young diagrams weighted by Qi’s to the power of the number of 2d boxes
to each compact line segment. The parameters Qi are called Kähler pa-
rameters, and can be treated as exponentiated lengths of the segment on
picture, so the parallel segments bounded by the same parallel lines should
have equal Kähler parameters. For the example on Fig. 1.1 following this
rules one gets

Zboxes(q,QB, QF ) = (1.2)

=
∑

λ,µ,ν,ρ

(QB)|λ|+|ν|(QF )|µ|+|ρ|Vµ,ν,∅(q)Vν,ρ,∅(q)Vρ,λ,∅(q)Vλ,µ,∅(q),

where the empty diagrams are associated with non-compact line segments.
Taking summations over µ and ρ, this becomes a partition function of
SU(2) theory with no matter multiplets. As an analog of AGT corre-
spondence for topological strings, can be viewed result of [2], where the
refinement of topological vertex to ε1 6= ε2 is shown to be intertwining
operator of quantum toroidal algebra Uq,t(g̈l1).

The another integrable structure in topological string theory is Topo-
logical String/Spectral Theory correspondence [129]. It conjectures, that
the determinants of quantum Hamiltonians of integrable systems with
single Hamiltonians are equal to topological strings partition function.
The exact quantization conditions for the integrable system can be de-
rived from this [64]. One can view such kind of formulas as an example
of well-known Ordinary Differential Equations/Integrable Models corre-
spondence. The formula might be generalized to the partition functions
for the systems with the several hamiltonians, utilizing spectral curve of
5d theory [143], which is zero locus of Laurent polynomial with the same
Newton polygon as those which were used to build the toric Calabi-Yau
manifold, and which defines its mirror-dual Calabi-Yau manifold. Topo-
logical strings/spectral theory correspondence then states that the parti-
tion function of topological strings is equal to Fredholm determinant of
infinite-dimensional linear operator, quantizing the spectral curve of the
system.
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Non-autonomous equations and partition functions. Conjecture
that the instanton partition functions solve Painlevé equations was pro-
posed for the first time in [68]. The motivation for the solution came there
from a relation between the theory of isomonodromic deformations and
the theory of holonomic fields [169]. The claim was that the τ -function of
Painlevé VI equation, which encodes isomonodromic deformations of rank
two Fuchsian system with four punctures on CP 1, is equal to the chiral
correlating function of four generic primary operators in c = 1 confor-
mal field theory. Using AGT correspondence [5] this function was written
there as Fourier transformation of 4d N = 2 SU(2) gauge theory with
Nf = 4 flavours. The correspondence was immediately generalized by the
same authors to the partition functions of theories with Nf = 0, 1, 2, 3
as solutions to Painlevé III and V equations in [69]. It was promoted
to higher rank [61], [77], [74], [70], with Virasoro algebra being replaced
by WN algebra. In gauge theoretic terms it was shown that the parti-
tion function of SU(N) theory with the linear quiver of length n solves
isomonodromic equations for the Fuchsian system of rank N with 2 full
and n−2 semi-degenerate punctures [74]. Important observation was that
all of the conformal field theories involved in the correspondence were free-
fermionic, so the τ -functions were shown to be free-fermionic then [100],
[77], [74].

Natural deformation of the approach of [68] was to solve q-difference
Painlevé equations with the partition functions of 5d N = 1 supersymmet-
ric theories. The first example of this kind was the solution of q-Painlevé
III equation with the partition functions of 5d SU(2) gauge theory with-
out matter in [24]. This is a example which we considered above. Being
modified by simple “perturbative” factor and “Fourier” transformed, as in
definition of T on Fig. 1.1, bottom, formula [?] becomes a general solution
of q-Painlevé III equation shown on Fig. 1.1, right, where τ = τ(u, s; q|qZ),
τ = τ(u, s; q|q−1Z). More general case of q-Painlevé VI and theories with
Nf = 4 flavours was considered in [102]. In [16] it was suggested that there
should be similar formulas for the solutions of all q-Painleve equations,
which might be classified using the Newton polygons2 with one internal
point [156], [14]. Since not all of the Newton polygons of this type might
be brought into correspondence to some Lagrangian gauge theory with
the well-defined partition function of instantons, it was suggested there to

2The Newton polygons are just convex polygons on integral plane Z2, which will
play important role in the following.
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use in this case a grand canonical partition function of topological string
instead.

1.3 From quantum to classical spin chains
We will start with brief overview of the generalities of R-matrix formalism
for the quantum XXZ-like spin chain, following [111], [148], and then turn
to the details of their classical limit, presenting explicit formulas for the
rank 2 and 3 cases.

1.3.1 Quantum XXZ spin chain

Quantum glM spin chain of XXZ type can be defined using quantum
monodromy matrix T (u), satisfying so-called RTT -relations:

R(u, v) · (T (u)⊗ 1) · (1⊗ T (v)) = (1⊗ T (v)) · (T (u)⊗ 1) ·R(u, v). (1.3)

Here T (u) = ∑M
i,j=1Eij ⊗ Tij(u) (two-sided formal series in spectral pa-

rameter u, as we consider double of RTT algebra) acts in the product of
’auxiliary’ space V = CM (Eij ∈ End(V ) – standard matrix units), and
’quantum’ Hilbert space of the chain H, Tij(u) ∈ End(H). The trigono-
metric R-matrix, R ∈ End(V ⊗ V ), is given by:

R(u, v) =
M∑
i=1

Eii ⊗ Eii +
√
u/v −

√
v/u

q
√
u/v − q−1

√
v/u

∑
i 6=j

Eii ⊗ Ejj+ (1.4)

+ q − q−1

q
√
u/v − q−1

√
v/u

∑
i 6=j

(u/v)−
1
2 sijEij ⊗ Eji

with the sign-factors

sij =


+1, i > j

−1, i < j

0, i = j

(1.5)

The integrals of motion of the chain come from the coefficients of ex-
pansion of the transfer matrix T (u) = trV T (u) = ∑

k∈Z u
kHk. Their

commutativity immediately follows from the RTT -relations 1.3:

0 = [T (u), T (v)] =
+∞∑

m,n=−∞
umvn[Hm, Hn] ⇒ [Hm, Hn] = 0. (1.6)
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For the higher-rank case M > 2 this does not provide the complete set
of commuting Hamiltonians, one has to add higher transfer matrices, or
take the coefficients of the so-called quantum spectral curve equation

S(λ, µ) = detq (T (µ)− λ · 1) =
∑
i,j

Hijλ
iµj (1.7)

with the quantum determinant is defined by

detqF (u) =
∑
σ

(−1)sign(σ)F1,σ(1)(u)F2,σ(2)(uq)...FM,σ(M)(uqM ) (1.8)

The center of the RTT algebra 1.3 ([Tij(u), Ck] = 0 ∀i, j) is generated by
quantum determinant of T -operator: detqT (u) = ∑

Cku
k.

A seminal statement, proven in [35], claims that the algebra defined by
(1.3) is isomorphic to the quantum affine algebra Uq(ĝlM ). More precisely,
there is an isomorphism between the algebra, generated by modes of the
currents

L±(z) =
+∞∑
k=0

M∑
i,j=1

Eij ⊗ L±i,j [±k]z∓k. (1.9)

satisfying the RTT -relations 1.3

R(u, v)·(L±(u)⊗1)·(1⊗L±(v)) = (1⊗L±(v))·(L±(u)⊗1)·R(u, v) (1.10)

together with

R(uq
c
2 , vq−

c
2 ) · (L+(u)⊗ 1) · (1⊗ L−(v)) =

(1.11)
= (1⊗ L−(v)) · (L+(u)⊗ 1) ·R(uq−

c
2 , vq

c
2 )

(1.12)
L+
j,i[0] = L−i,j [0] = 0, L+

k,k[0]L−k,k[0] = 1, 1 ≤ i < j ≤M, 1 ≤ k ≤M
(1.13)

and quantum affine algebra Uq(ĝlM ) with the central extension c. Hence,
different integrable systems, constructed from trigonometricRTT -relations
can be identified with different representations of Uq(ĝlM ).

Among these are spin chains on N sites, exploiting the co-product
property that if T1(u) and T2(v) both satisfy RTT -relations, and act in
different quantum spaces, then so does T = T1(u)T2(v), where the product
is taken over the common auxiliary space. To construct a chain of length
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N , one has to associate an L-operator in some representation πk of the
Uq(ĝlM ) with each site of the chain, and construct quantum monodromy
matrix, taking product in the common auxiliary space

T (u) = L(N)(u/uN ) ... L(1)(u/u1)Q (1.14)

where uk ∈ C are so-called inhomogeneities, L(k)(u) = πk(L+)(u) and Q ∈
End(V ) – a ’twist’ matrix, having trivial quantum space. Such approach
allows to construct many non-trivial integrable systems by assigning to
each site a simple representation of Uq(ĝlM ). Conventional way to do so
in case of zero central charge, is to apply first evaluation homomorphism
Evz : Uq(ĝlM )→ Uq(glM )

Evz(L+
i,j [0]) = L+

i,j , i ≤ j,

Evz(L+
i,j [0]) = 0 , i ≥ j,

Evz(L−i,j [0]) = 0 , i ≤ j,

Evz(L−i,j [0]) = L−i,j , i ≥ j,

Evz(L±i,j [±k]) = z±kL+
i,j , i ≤ j, k > 0

Evz(L±i,j [±k]) = z±kL−i,j , i ≥ j, k > 0,

Evz(L+
i,j [0]) = L+

i,j , i ≤ j,

Evz(L+
i,j [0]) = 0 , i ≥ j,

Evz(L−i,j [0]) = 0 , i ≤ j,

Evz(L−i,j [0]) = L−i,j , i ≥ j,

Evz(L±i,j [±k]) = z±kL+
i,j , i ≤ j, k > 0,

Evz(L±i,j [±k]) = z±kL−i,j , i ≥ j, k > 0,

L+
iiL
−
ii = 1.

(1.15)
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Positive and negative currents could be collected to:

Evz(L+(u)) = 1√
u/z −

√
z/u

(√
u

z
L+ +

√
z

u
L−
)

= Lev(u/z)

Evz(L−(u)) = − 1√
u/z −

√
z/u

(√
u

z
L+ +

√
z

u
L−
)

= −Lev(u/z)

L± =
M∑
i,j=1

Eij ⊗ L±ij .

(1.16)
Homomorphism Evz is well defined only for positive or negative sub-
algebra at once as geometrical progression for L+(u) converges if u/v < 1
and for L−(u) if u/v > 1. But luckily we need only positive part for our
purposes. Note also that L+ as a matrix is upper triangular, while L− -
lower triangular. If we substitute Lev into RTT relation we can decompose
it by degrees of spectral parameters, and get for L±

R+ · (L± ⊗ 1) · (1⊗ L±) = (1⊗ L±) · (L± ⊗ 1) ·R+ (1.17)

R+ · (L+ ⊗ 1) · (1⊗ L−) = (1⊗ L−) · (L+ ⊗ 1) ·R+ (1.18)

where we used that R(u, v) can be represented as(
q
√
u/v − q−1

√
v/u

)
·R(u, v) =

√
u

v
R+ +

√
v

u
R− (1.19)

with

R+ = q
M∑
i=1

Eii ⊗ Eii +
∑
i 6=j

Eii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji (1.20)

R− = q−1
M∑
i=1

Eii ⊗ Eii +
∑
i 6=j

Eii ⊗ Ejj − (q − q−1)
∑
i>j

Eij ⊗ Eji (1.21)

and relations

PR±P =
(
R∓
)−1

, R+ −R− = (q − q−1)P (1.22)

where P = ∑
i,j Eij ⊗ Eji - permutation matrix. The situation here is

similar to the one, which was in the affine context: RTT algebra, now
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without spectral parameters, generated by matrix elements of L± satis-
fying (1.17)-(1.18) is isomorphic to the quantum group Uq(glM ) in the
Drinfeld-Jimbo definitions, if we put

L+
i,j =


(q − q−1)ejiqhj i < j

qhi i = j

0 i > j

, L−i,j =


0 i < j

q−hi i = j

(q−1 − q)q−hieji i > j

(1.23)
where ei,j - generators of Uq(glM ), corresponding to the roots, hk - to
the Cartan sub-algebra [158, 35]. Generators, corresponding to the simple
roots ei = ei,i+1, fi = ei+1,i satisfy relations which are deformation of the
usual glM relations

qhaeb = qδab−δa,b+1ebq
ha , qhafb = qδa,b+1−δabfbq

ha (1.24)

[ea, fb] = δab
qhaq−ha+1 − q−haqha+1

q − q−1 , qhaqhb = qhbqha (1.25)

and q-deformed Serre relations

f2
afa−1 − (q + q−1)fafa−1fa + fa−1f

2
a = 0, (1.26)

f2
a−1fa − (q + q−1)fa−1fafa−1 + faf

2
a−1 = 0 (1.27)

e2
aea−1 − (q + q−1)eaea−1ea + ea−1e

2
a = 0, (1.28)

e2
a−1ea − (q + q−1)ea−1eaea−1 + eae

2
a−1 = 0. (1.29)

Non-simple roots could be expressed using recurrence relation

ea,c = ea,beb,c−qeb,cea,b , ec,a = ec,beb,a−q−1eb,aec,b , a < b < c. (1.30)

Algebra Uq(glM ) plays here role of deformation of the usual algebra of
spin variables. So considering any representation of Uq(glM ), we construct
L-operators satisfying RTT relation, and consequently - integrable spin
chain of XXZ type.

1.3.2 Classical XXZ spin chain

Classical limit of the quantum spin chain appears when we replace algebra
of quantum operators in the limit ~ → 0 by some commutative Poisson
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algebra of classical dynamical variables. Poisson bracket is coming from
the usual prescription

{A,B} = lim
~→0

κ

~
[Â, B̂]. (1.31)

Quantum parameter can be introduced as q = e~. Additional parameter
κ ∈ C× provides us with the family of non-isomorphic Poisson algebras.
Classical r-matrix appears as a first order of the expansion R(u, v, e~)→
1⊗ 1 + ~ r(u, v) +O(~2), and looks

r(u, v) = −
√
u/v +

√
v/u√

u/v −
√
v/u

∑
i 6=j

Eii ⊗ Ejj+ (1.32)

+ 2√
u/v −

√
v/u

∑
i 6=j

(u/v)−
1
2 sijEij ⊗ Eji

Note that we don’t assume any dependence of u and v on ~. This gives
for the RLL relation

{L(u)⊗ L(v)} = κ[L(u)⊗ L(v), r(u/v)], (1.33)

{L(u)⊗ L(v)} =
∑
ijkl

{Lij(u)⊗ Lkl(v)} Eij ⊗ Ekl (1.34)

with the classical L-operator

Lcl+(u) = lim
~→0

Lev(u, q = e~) = (1.35)

= 1
u

1
2 − u−

1
2

(
M∑
i=1

(
u

1
2 eS

0
i + u−

1
2 e−S

0
i

)
Eii+

+2u
1
2
∑
i<j

Sjie
S0
jEij − 2u−

1
2
∑
i>j

Sjie
−S0

i Eij


For classical limit of Uq(glM ), we assume

hi = S0
i /~, eij = Sij/~, (1.36)

ei = ei,i+1 = S+
i /~, fi = ei+1,i = S−i /~.
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Their Poisson brackets and classical limit of Serre relations are

{S0
a, S

±
b } = ±κ(δab − δa,b+1)S±b , {S+

a , S
−
b } = κδab sinh(S0

a − S0
a+1),
(1.37)

{S0
a, S

0
b } = 0, (1.38)

{S+
a , {S+

a , S
+
a−1}} = κ(S+

a )2S+
a−1, {S+

a−1, {S
+
a−1, S

+
a }} = κ(S+

a−1)2S+
a

(1.39)
{S−a , {S−a , S−a−1}} = κ(S−a )2S−a−1, {S−a−1, {S

−
a−1, S

−
a }} = κ(S−a−1)2S−a .

(1.40)
Generators, corresponding to non-simple roots are coming from

κ−1{Sab, Sbc} = Sac + SabSbc, a < b < c (1.41)

κ−1{Sab, Sbc} = Sac − SabSbc, a > b > c (1.42)

Different Poisson algebra appears, if we put q = e−~. R-matrix is tending
to R(u, v)→ 1⊗ 1− ~ r(u, v) + O(~2) with the same r-matrix. Classical
RLL equation changes sign to

{L(u)⊗ L(v)} = κ[r(u/v), L(u)⊗ L(v)]. (1.43)

L-operator, represented through the classical Uq(glM ) generators becomes

Lcl−(u) = lim
~→0

Lev(u, q = e−~) = (1.44)

= 1
u

1
2 − u−

1
2

(
M∑
i=1

(
u

1
2 e−S

0
i + u−

1
2 eS

0
i

)
Eii−

−2u
1
2
∑
i<j

Sjie
−S0

jEij + 2u−
1
2
∑
i>j

Sjie
S0
i Eij


It is different from the Lcl+(u) only by the change of signs near generators

Lcl+(u;Sij , S0
i ) = Lcl−(u;−Sij ,−S0

i ). (1.45)

Together, this results in that the only relations which change are

κ−1{Sab, Sbc} = Sac − SabSbc, a < b < c (1.46)

κ−1{Sab, Sbc} = Sac + SabSbc, a > b > c (1.47)
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The general recipe to turn expressions from one algebra to another is
to invert sign at all the simple generators, and at all the brackets. As
a product of L-operators in both cases q = e±~ satisfies classical RTT
equation, we can construct classical monodromy matrix

T (u) = L(N)(u/uN ) ... L(1)(u/u1)Q. (1.48)

Commuting Hamiltonians of the classical XXZ spin chain are coefficients
of the classical spectral curve

S(λ, µ) = det (T (µ)−λ) = detT (µ)+...+(−λ)n−1TrT (µ)+(−λ)n (1.49)

where the Casimir functions are generated by detT (µ).

Example. Classical limit of Uq(gl2)

Algebra Uq(gl2) has rank 2 and has 4 generators - S0
1 , S

0
2 , S12 =

S+
1 , S21 = S−1 . Poisson brackets in the both cases q = e±~ are similar

{S0
1 , S

0
2} = 0, {S0

1 , S
±
1 } = ±κS±1 , {S0

2 , S
±
1 } = ∓κS±1 , (1.50)

{S+
1 , S

−
1 } = κ sinh(S0

1 − S0
2) (1.51)

Lax operators are

Lcl±(u) = 1
u

1
2 − u−

1
2

 u
1
2 e±S

0
1 + u−

1
2 e∓S

0
1 ±2u 1

2S−1 e
±S0

2

∓2u− 1
2S+

1 e
∓S0

2 u
1
2 e±S

0
2 + u−

1
2 e∓S

0
2

 .
(1.52)

Casimirs are generated by

detLcl±(u) = 1
(u 1

2 − u−
1
2 )2

(
ue±S

0 + u−1e∓S
0+ (1.53)

+2(cosh(S0
1 − S0

2) + 2S+
1 S
−
1 )
)

So there are two independent Casimirs - total projection of the spin S0 =
S0

1 + S0
2 and ’square’ of the spin (or quadratic Casimir) C2 = cosh(S0

1 −
S0

2) + 2S+
1 S
−
1 . If their values are fixed, the resulting symplectic leaf is

2-dimensional. Coordinates S0
1−S0

2 and S+
1 /S

−
1 could be chosen on it, for
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example. Form usual for sl2 chain appears if we transform Lax operator
by

u 7→ u e∓(S0
1+S0

2), L(u) 7→ (u
1
2 −u−

1
2 )

 u−1/2 0

0 1

 ·L(u) ·

 u1/2 0

0 1


(1.54)

Introducing variables

S̃0 = 1
2
(
S0

1 − S0
2

)
, S̃+ = S+

1 e
±S̃0

, S̃− = S−1 e
∓S̃0 (1.55)

Lax operators becomes

Lcl±(u) =

 u
1
2 e±S̃

0 + u−
1
2 e∓S̃

0 ±2S̃−

∓2S̃+ u
1
2 e∓S̃

0 + u−
1
2 e±S̃

0

 . (1.56)

New variables satisfy almost the same relations

{S̃0, S̃±} = ±κS̃0, {S̃+, S̃−} = κ sinh(2S̃0). (1.57)

Note that only in 2× 2 case it is possible to eliminate spectral parameter
from the off-diagonal elements of matrix.

Example. Classical limit of Uq(gl3)

Algebra Uq(gl3) has rank 3 and 9 generators. In the classical limit,
generators corresponding to the simple positive roots are S12 = S+

1 , S23 =
S+

2 . If q = e~, only non-simple positive root S13 can be defined using
relation

κ−1{S+
1 , S

+
2 } = S+

1 S
+
2 + S13. (1.58)

Substituting this into Serre relations

{S+
1 , {S

+
1 , S

+
2 }} = κ2(S+

1 )2S+
2 , {S+

2 , {S
+
2 , S

+
1 }} = κ2(S+

2 )2S+
1 (1.59)

we can get two remaining brackets

{S+
1 , S13} = −κS+

1 S13, {S+
2 , S13} = κS+

2 S13 (1.60)

Analogously, S21 = S−1 , S32 = S−2 , S31 are negative generators, with the
brackets

κ−1{S−1 , S
−
2 } = S−1 S

−
2 − S31 (1.61)



16 Chapter 1. Introduction

{S−1 , S31} = −κS−1 S31, {S−2 , S31} = κS−2 S31 (1.62)

Cartan part has got three commuting generators S0
1 , S

0
2 , S

0
3 . Their Pois-

son brackets with other generators are

{S0
1 , S

±
1 } = ±κS±1 , {S0

2 , S
±
1 } = ∓κS±1 , {S0

3 , S
±
1 } = 0

{S0
1 , S

±
2 } = 0, {S0

2 , S
±
2 } = ±κS±2 , {S0

3 , S
±
2 } = ∓κS±2

{S0
1 , S

±
3 } = ∓κS±3 , {S0

2 , S
±
3 } = 0, {S0

3 , S
±
3 } = ±κS±3

(1.63)

Or generally
{S0

k , Sij} = κ (δik − δjk)Sij (1.64)

For the Poisson brackets between positive and negative simple roots we
have got

{S+
1 , S

−
1 } = κ sinh

(
S0

1 − S0
2

)
, {S+

2 , S
−
2 } = κ sinh

(
S0

2 − S0
3

)
, (1.65)

{S+
3 , S

−
3 } = κ sinh

(
S0

3 − S0
1

)
(1.66)

{S±1 , S
∓
2 } = 0, {S±2 , S

∓
3 } = 0, {S±3 , S

∓
1 } = 0 (1.67)

Finally, for non-simple roots using Jacobi identity

{S13, S
−
1 } = −κS+

2 e
S0

1−S
0
2 , {S13, S

−
2 } = κS+

1 e
S0

3−S
0
2 (1.68)

{S31, S
+
1 } = −κS−2 eS

0
1−S

0
2 , {S31, S

+
2 } = κS−1 e

S0
3−S

0
2 (1.69)

{S13, S31} = κ sinh(S0
1 − S0

3) (1.70)

In agreement with the general prescription, the relations, which are being
changing, if we choose q = e−~, are

κ−1 {S+
1 , S

+
2 } = −S+

1 S
+
2 + S13, {S+

1 , S13} = κS+
1 S13, (1.71)

{S+
2 , S13} = −κS+

2 S13 (1.72)

κ−1 {S−1 , S
−
2 } = −S−1 S−2 − S31, {S−1 , S31} = κS−1 S31, (1.73)

{S−2 , S31} = −κS−2 S31 (1.74)

{S13, S
−
1 } = −κS+

2 e
−S0

1+S0
2 , {S13, S

−
2 } = κS+

1 e
−S0

3+S0
2 (1.75)

{S31, S
+
1 } = −κS−2 e−S

0
1+S0

2 , {S31, S
+
2 } = κS−1 e

−S0
3+S0

2 (1.76)
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The Lax operator is
Lcl+(u) = 1

u
1
2 − u−

1
2
· (1.77)

·


u

1
2 eS

0
1 + u−

1
2 e−S

0
1 2u 1

2S−1 e
S0

2 2u 1
2S−31e

S0
3

−2u− 1
2S+

1 e
−S0

2 u
1
2 eS

0
2 + u−

1
2 e−S

0
2 2u 1

2S−2 e
S0

3

−2u− 1
2S+

13e
−S0

3 −2u− 1
2S+

2 e
−S0

3 u
1
2 eS

0
3 + u−

1
2 e−S

0
3


which gives generating function of the Casimirs:

C(u) = detLcl+(u) = 1
(u 1

2 − u−
1
2 )3
·

·
(
u3/2e−S

0 + u1/2e−S
0
C+

3 + u−1/2eS
0
C−3 + u−3/2eS

0)
where

S0 = S0
1 + S0

2 + S0
3 (1.78)

C+
3 = e2S0

1 + e2S0
2 + e2S0

3 + 4eS0
1+S0

2S12S21 + 4eS0
1+S0

3S13S31+ (1.79)

+4eS0
2+S0

3S23S32 + 8eS0
1+S0

3S32S21S13

C−3 = e−2S0
3 +e−2S0

2 +e−2S0
1 +4e−S0

1−S
0
2S12S21 +4e−S0

1−S
0
3S13S31+ (1.80)

+4e−S0
2−S

0
3S23S32 − 8e−S0

1−S
0
3S12S23S31

note that if we pass from Lcl+ to Lcl−, Casimirs would change S0 → −S0,
C±3 → C∓3 .

1.4 Cluster integrable system
The notion of cluster algebras appeared from the solution [60], [157] of
the total positivity problem of "How to parametrize all matrices whose
minors are strictly positive?". The main component of the solution was
the certain anzatses for the factorization of matrices, which might be use-
fully encoded into planar bicoloured graphs with oriented paths on the
graphs corresponding to the monomials in parametrization. The weights
in the anzatses served as prototypes for X -cluster variables, the minors
in the matrices gave birth to A-cluster variables, and transformations,
identifying equivalent anzatses, became mutations of cluster seeds. The
formal definition of cluster algebra was given first in [58]. It appeared
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soon, that the cluster algebras admit good Poisson structures [81], [83]
which are nicely quantizable [27], [48], and provide a convenient language
for parametrization of the spaces of local systems on surfaces [47], for
theory of stability conditions in algebraic geometry [121] and theory of
integrable systems [82], [71], [55].

Here we remind some basics of the cluster classical integrable systems,
which have two equivalent constructions:

• A combinatorial way [71] assigns to a convex Newton polygon a
bipartite graph Γ on torus T2. The cluster variables {xi} are then
just monodromies of C×-valued connection around the faces of Γ.
The spectral curve of integrable system is given by dimer’s partition
function on Γ ⊂ T2.

• A group theory construction exploits the Poisson submanifolds or
double Bruhat cells, parameterized by cyclically irreducible words in
(W ×W )] (the co-extended double affine Weyl group of P̂GL(N))
[55]. The structure of cluster Poisson variety is coming from re-
striction of standard trigonometric r-matrix bracket [49], while the
integrals of motion are given by Ad-invariant functions on the Pois-
son submanifold.

1.4.1 X -cluster variety

X -cluster variety is defined by the set of split toric charts (C×)d assigned
with d × d integer-valued and skew-symmetric exchange matrix ε. Such
a pair is called seed or cluster seed. Coordinate functions xi ∈ C× on
these charts are Poisson variables with the logarithmically constant Pois-
son bracket

{xi, xj} = εijxixj . (1.81)

The matrix ε can be encoded by quiver Q – an oriented graph, whose
vertices are labeled by cluster variables, and number of arrows from vertex
i to j is equal3 to εij . Generally the Poisson bracket 1.81 has Casimir
functions Z(x), {Z, xi} = 0 for any xi, the number of independent Casimir
functions coincides with the dimension of kernel of ε.

3The arrows from any vertex to itself are forbidden and any two opposite arrows
should be annihilated.
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ε =

0 2 0 -2
-2 0 2 0
0 -2 0 2
2 0 -2 0




1 2

34

Figure 1.2. An example of skew-symmetric matrix ε (two-particle Toda chain)
and corresponding quiver. Poisson bracket has two Casimir functions Z = x1x3
and q = x1x2x3x4.

The cluster seeds are glued together by special coordinate birational
transformations – mutations µk : ({xi}, ε) → ({x′i}, ε′), assigned to each
vertex of the quiver Q or variable xk:

xi 7→ x′i =

 x−1
i , i = k

xi
(
1 + xsgn εik

k

)εik , i 6= k
(1.82)

εij 7→ ε′ij =


−εij , i = k or j = k,

εij + εik|εkj |+ εkj |εik|
2 , otherwise

. (1.83)

The transformation of exchange matrix can be easily reformulated as
transformation of corresponding quiver. Mutations are the Poisson maps,
i.e.

{x′i, x′j} = ε′ijx
′
ix
′
j , (1.84)

Collection of seeds glued by mutations is called X -cluster variety.
Denote by GQ the stabilizer of the quiver Q – the group consisting of

composition of mutations and permutations of the vertices, which maps
quiver Q to itself: such transformations nevertheless generate non-trivial
maps of the cluster variables {xi}. This group is called the mapping class
group of X -cluster variety.

1.4.2 From bipartite graph to cluster integrable system

X -cluster variety from bipartite graph. For a bipartite graph Γ ↪→
T2 embedded in torus (without self-intersections) the vertices are divided
into black and white subsets B,W ⊂ C0(Γ) so that the black vertices are
connected only with the white ones and visa versa. We chose orientation
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of edges from black to white, and assume that graph is connected and all
2-valent vertices are contracted.

x4 x2

x3x1

α

β

γ

δ

(1, 2) (2, 2)

(0, 0) (1, 0)

Figure 1.3. Left: Bipartite graph for the two-particle Toda chain, small arrows
give the Poisson structure from figure 1.2. Center: zig-zag paths α, β, γ, δ. Right:
Newton polygon obtained from zig-zags as elements H1(T2,Z). Numbers are
labeling degrees of (λ, µ) in spectral curve (1.93).

The coordinates X = {xγ ∈ C× | γ ∈ H1(Γ,Z)} of GK integrable
system are multiplicative functions on H1(Γ,Z), considered as an Abelian
group, i.e. xγ1xγ2 = xγ1+γ2 . Any element γ ∈ H1(Γ,Z) can be decomposed
as

γ = nAγA + nBγB +
∑
i

kifi, nA, nB, ki ∈ Z (1.85)

where γA, γB form a basis in H1(T2,Z), while F = {fi} = {∂Bi} is the set
of faces or boundaries of the disks T2 \ Γ = tiBi with the orientation in-
duced from surface, generating H1(Γ,Z)/H1(T2,Z) modulo single relation∑
k fk = 0. Therefore, there is an exact sequence

0→ Z→ F→ H1(Γ,Z)→ H1(T2,Z)→ 0 (1.86)

The set of face variables {xf |f ∈ F} are coordinates on the toric chart on
XG, these are the X-cluster variables, transforming rationally under the
cluster mutations or ’spider moves’ of bipartite graph. Relation∑k fk = 0
can be relaxed, this results in deautonomization q = ∏

i xfi 6= 1 of cluster
integrable system and leads to non-trivial q-dynamics.

Exchange matrix of the cluster seed is given by intersection form on the
dual surface Ŝ, obtained from Γ by gluing disks, which become faces of Ŝ,
to zig-zag paths Z 4, and forgetting structure of the torus. Embedding π̂ :

4Zig-zags could be easily found, as they are presented by paths on Γ, which turn
maximally right at each black vertex, and turn maximally left at each white one. In
the central and right pictures from figure 1.3 the zig-zag paths for Toda chain on two
sites are drawn.
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Γ ↪→ Ŝ allows to consider any cycle γ ∈ H1(Γ,Z) as an element of H1(Ŝ,Z),
which is equipped with non-degenerate skew-symmetric intersection form
〈· , ·〉 : H1(Ŝ,Z) × H1(Ŝ,Z) → Z, which defines the Poisson bracket on X
by

{xγ , xγ′} = 〈π̂γ, π̂γ′〉xγxγ′ . (1.87)

Intersection form computed on faces F give exchange matrix of cluster
seed εij = 〈fi, fj〉. Effective way of writing this matrix is the following:
for each black vertex, draw arrows in the clockwise direction between each
pair of consecutive faces, which have this vertex as a corner. Then matrix
element εij is equal to the alternated number of arrows from fi to fj , see
figure 1.3.

Classes of zig zag paths in H1(T2,Z) are in one to one correspondence
with the boundary intervals of Newton polygon ∆, and this correspon-
dence is the simple way to build ∆ by bipartite graph. They are trivial
in H1(Ŝ,Z) so that the variables xζ , corresponding to the zig-zag paths
ζ ∈ H1(Γ,Z) are Casimir functions of the bracket 1.87, i.e.

{xζ , xγ} = 0, ζ ∈ Z, ∀γ ∈ H1(Γ,Z). (1.88)

Zig-zag variables xzi always present non-trivial elements from H1(T2,Z),
so single zig-zag itself cannot be expressed via the cluster variables. On
the central and right pictures from figure 1.3 zig-zag paths for the Toda
chain on two sites are drawn. Casimir Z from the example from previous
sub-section in terms of it is given by Z = xαxβ.

Spectral curve. Now, we are ready to construct Hamiltonians of inte-
grable system, which is given by dimer partition function on it.

Perfect matching on bipartite graph Γ is such configuration of edges
D ⊂ C1(Γ) that each vertex has one adjacent edge from D. Such configu-
rations has specific property that ∂D = W − B. Fixing any D0 ⊂ C1(Γ)
we can put an element D −D0 ∈ C1(Γ), which is closed, into correspon-
dence to any perfect matching. Any D −D0 under decomposition (1.85)
can be presented as

D −D0 = nA(D −D0)γA + nB(D −D0)γB +
∑
i

ki(D −D0)fi (1.89)

Denoting variables xi = xfi , λ = xγA , µ = xγB dimer partition function
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of bipartite graph Γ could be defined as

ZΓ,D0(λ, µ) =
∑
D

λnA(D−D0)µnB(D−D0)∏
i

x
ki(D−D0)
i (1.90)

Equation ZΓ(λ, µ) = 0 with λ, µ ∈ C× defines curve C ⊂ C× × C×. The
curve C is spectral curve of integrable system. Collecting terms corre-
sponding to the same degrees of spectral parameters

ZΓ,D0(λ, µ) =
∑

(i,j)∈N
λiµjHij , N ⊂ Z2 (1.91)

we get Hamiltonians Hij of the Goncharov-Kenyon integrable system with
the Newton polygon ∆. Change of the base configuration D0 just multi-
plies partition function by monomial

ZD′0 = xD0−D′0ZD0 , xD0−D′0 = λnA(D0−D′0)µnB(D0−D′0)∏
i

x
ki(D0−D′0)
i .

(1.92)
In [71] authors proved for the special choose of D0 that the model

is integrable - i.e. that {Hij ,Hkl} = 0, and the number of independent
Hamiltonians is half of the dimension of phase space. Hamiltonians which
correspond to the boundary integral points of N are Casimirs of Poisson
bracket, and have to be fixed, to get symplectic leaf with non-degenerate
Poisson bracket. Boundary intervals of ∂N are in one to one correspon-
dence with zig-zag paths. Vector presenting boundary interval coincides
with the class of corresponding zig-zag in H1(T2,Z). Choice of D0 pro-
posed in [71] are so that Hij = 1 for one corner of Newton polygon.

Important detail which remained out of the scope yet is that we have
to choose concrete representative in H1(Γ,Z) for cycles γA and γB. Usu-
ally, spectral parameters are expected to commute with all dynamical
variables of the system, so γA and γB have to be chosen as an integral
combinations of zig-zag paths. However, it is not always possible – even
for the simplest example of bipartite graph from figure 1.3, zig-zags are
(1, 0), (1, 2), (−1, 0), (−1,−2)-cycles, and subgroup generated by them in
H1(T2,Z) has index two. Generally, this order is d = |H1(T2,Z)/Z|, so
by choosing spectral parameters expressed via zig-zags, we get Hamiltoni-
ans depending on fractional powers of cluster variables x1/d

i . Convenient
choosing of spectral parameters normalization is so that three Hamiltoni-
ans in three corners of Newton polygon become equal to unit.
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On right panel of figure 1.4 perfect matchings for bipartite graph from
figure 1.3 are drawn. Selecting third matching in the first row as a D0, and
spectral parameters by λ = xγA , µ = xγB with γA = β, γB = −1

2(β + δ),
one gets spectral curve

Z = 1 +λ+λµ2 +λ2µ2Z−1 +λµ

(
√
x1x4 + Z−1

√
x1
x4

+
√
x4
x1

+ 1
√
x1x4

)
.

(1.93)
Coefficient at λµ is precisely Hamiltonian of closed relativistic Toda chain
on two sites. Newton polygon of this curve coincides with the one obtained
from zig-zags and drawn on the right panel of figure 1.3.

a b

cd

e f

gh1 2

21

µ−1, bh λ, bf λ−1µ−2, hd µ−1, df

ae µ−1, ce µ−1, ga µ−2, cg

Figure 1.4. Left: bipartite graph with the edge weights. Small integers are to
enumerate black and white vertices. Right: Perfect matchings for bipartite graph
from figure 1.3 are in blue. Red color indicates reference matchingD0. Weights of
the corresponding contributions to determinant of Kasteleyn operator are written
below.

Kasteleyn operator. Dimer partition function can be computed using
the Kasteleyn operator. To define it, first, consider discrete linear bundle
with connection a on bipartite graph Γ. In trivialization this means that
we associate 1-d vector space C with each vertex of Γ, and discrete mon-
odromy ae ∈ C× with each edge e oriented from black to white. For the
edge with the opposite orientation set a−e = a−1

e . This definition can be
extended to any γ ∈ C1(Γ,Z) by aγ1+γ2 = aγ1aγ2 . Dynamical variables xγ
used above, could be naturally associated with monodromies taken over
cycles, i.e. xγ = aγ if ∂γ = 0. It is problematic to introduce Poisson
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structure for variables ae, as they are not ’gauge invariant’. We can per-
form gauge transformation eiφk at each vertex k, which results in change
aeij → aeije

i(φi−φj) of edge variables5. However monodromies xγ are well
defined, so their bracket is given by (1.87).

Second ingredient in this construction is discrete spin structure - mul-
tiplicative map Ke : C1(Γ) → {±1}, which assigns ±1 to each edge e in
such a way that for any face Bi

K∂Bi = (−1)l(Bi)/2+1 (1.94)

where l(Bi) - number of edges, adjacent to Bi.
Finally, the third ingredient is choosing of two oriented cycles hA

and hB on T2, which cross edges of Γ transversally, and as elements of
H1(T2,Z) they present [hA] = γB and [hB] = γA (indices A and B are
indeed interchanged). We denote by 〈e, hA,B〉 intersection index of edge
e with cycle hA,B. It is +1 if edge cross cycle from the left to the right,
if you look along cycle. Bringing all ingredients together, Kasteleyn op-
erator D : C|B| → C|W | of graph Γ is a |B| by |W | (which are equal)
matrix

D =
|B|∑
i=1

|W |∑
j=1

DijEij , Dij(λ, µ) = aeijKeijλ
〈eij ,hA〉µ〈eij ,hB〉 (1.95)

where we assume that aeij is zero, if there are no edges between vertices
i and j. Note that as an operator acting C|B| → C|W |, it acts from the
right on row vectors. It could be shown that

detD(λ̃, µ̃) =
∑
D

(−1)s([D])λ̃〈D,hA〉µ̃〈D,hB〉aD (1.96)

where summation goes over all perfect matchings, sign (−1)s will depend
only on the resulting class in homology of perfect matching after normal-
ization. Parameters λ̃ and µ̃ are different from λ and µ used above. They
do not indicate belonging of contribution to any particular homology class,
as D are not closed. To make it so, we have to subtract some ’reference
configuration’ D0, and choose pair of elements ζA, ζB ∈ H1(T2,Z), pre-
senting A and B cycles on T2. Precise relation between determinant of

5Actually, Poisson structure could be introduced even for non-closed loops. Inter-
ested reader can find one in Appendix of [71].
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Kasteleyn operator and dimer partition function is

Z ′Γ,D0(λ, µ) =
∑

(i,j)∈N
(−1)s(i,j)λiµjHij = (1.97)

= detD(λ̃, µ̃)
aD0 λ̃

〈D0,hA〉µ̃〈D0,hB〉

∣∣∣∣∣
λ̃→λ/aζA , µ̃→µ/aζB

For our example, cycles hA and hB are shown in figure 1.3, left. Weights
of perfect matchings are written under the pictures in figure 1.4. It can
be easily seen that sum over them could be computed by

detD(λ, µ) = det

 a+ µ−1 c −b− λ−1µ−1 d

λ f + µ−1 h e+ µ−1 g

 = (1.98)

= µ−1 bh+ λ bf + λ−1µ−2 hd+ µ−1 df + ae+ µ−1 ce+ µ−1 ag + µ−2 cg

Dividing it by aD0 = λ−1µ−2hd and rescaling λ→ λ/xβ, µ→ µ/x− 1
2 (β+δ)

with xβ = cg

hd
, xδ = dh

ae
, one immediately gets spectral curve (1.93).

Spider moves. There is a special class of mutations for the quivers
constructed from bipartite graph called spider moves [71]. If mutation is
performed at four-valent vertex corresponding to four-gonal face of bipar-
tite graph, one can change bipartite graph as shown in figure 1.5, left, and
redefine weights on the edges in such a way that dimer partition function
remains unchanged. Cluster variables expressed by edges are changing as
they should under corresponding mutations (see figure 1.5, right, for the
change of quiver).

0

1

2
3

4 0

1

2
3

4

Figure 1.5. Left: Transformation of bipartite graph under spider move. Right:
mutation of quiver under spider-move. We draw only the edges, connecting
1, 2, 3, 4 with 0, affected by the mutation.
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1.4.3 Cluster algebras

Dual description to X -cluster language is A-cluster language [59]. To
define A-cluster algebra, starting from the quiver Q, we associate with
each vertex i ∈ Q of quiver a pair of variables (τi,yi), y-variables are
often called the coefficients, and τ -variables usually refereed as cluster
variables 6. The coefficients take values in tropical semi-field

P = Trop(u1, ...,ur) = 〈un1
1 ...unrr |nα ∈ Q 〉 (1.99)

– a set equipped with the pair of operations:

un1
1 ...unrr � um1

1 ...umrr = un1+m1
1 ...unr+mrr

un1
1 ...unrr ⊕ um1

1 ...umrr = umin(n1,m1)
1 ...umin(nr,mr)

r

(1.100)

It can be easily seen that with respect to � element 1 = u0
1...u0

r is unit,
and each element y = un1

1 ...unrr has inverse u−1 = u−n1
1 ...u−nrr . Both

operations are commutative, we also have distributivity a � (b ⊕ c) =
a� b⊕ a� c. It is convenient for our purposes to allow fractional powers
of u, so that elements u1, ...,ur generate whole P. Field F of rational
functions in {τi}i∈Q with coefficients in P is called ambient field. Cluster
seed is a set (Q, {τi,yi}i∈Q). Mutation µk transforms seed into some other
seed (Q′, {τ ′i ,y′i}i∈Q′) with Q′ related to Q by the rules (1.83), while new
cluster variables τ ′i ∈ F and coefficients y′i ∈ P are defined by

y′i =

 y−1
i , i = k

yi
(
1⊕ ysgn εik

k

)εik , i 6= k
(1.101)

τ ′k = yk
∏|Q|
i=1 τ

[εik]+
i +∏|Q|

i=1 τ
[−εik]+
i

(1⊕ yk)τk
, τ ′i = τi if i 6= k (1.102)

where [a]+ = max(0, a). Alternative point of view on coefficients is to
consider generators of P as frozen variables, placed in additional vertices
of quiver, where mutations are forbidden. If coefficients are expressed
through the generators {uα} by yi = un1,i

1 ...unr,ir for some fixed seed, we

6In contrast to original papers, see e.g. [59], we denote them as τ -variables, since
they satisfy some bilinear relations, as shown in Sect. 2.4.3.
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introduce another matrix b which contains exchange matrix ε as a block

b =

 ε

N

 , where N =



n1,1 n1,2 ... n1,|Q|

n2,1 n2,2 ... n2,|Q|

... ... ... ...

nr,1 nr,2 ... nr,|Q|


. (1.103)

This can be viewed as an addition of r vertices with the variables τ|Q|+1 =
u1, ... , τ|Q|+r = ur to the quiver, and connection of each vertex containing
τ|Q|+α with the vertices containing τi, i < |Q| by nα,i arrows. We will
denote extended quiver by Q̂ so that |Q̂| = |Q|+ r. Mutation rules for τ
variables get unified form

τ ′k =
∏|Q̂|
i=1 τ

[bik]+
i +∏|Q̂|

i=1 τ
[−bik]+
i

τk
, τ ′i = τi if i 6= k, (1.104)

while mutation rules for coefficients are no longer needed - they transfor-
mations are taken into account by transformations of extended quiver with
frozen variables. The map from A-cluster variables to X-cluster variables
is given by

xi =
|Q̂|∏
k=1

τ bkik , 1 ≤ i ≤ |Q|. (1.105)

Under this map the frozen variables (i.e. coefficients) parameterize the
Casimir functions of Poisson algebra {Z, · } = 0, which are monomials
Z = ∏

i x
ci
i in X-variables, defined by the property that ∑i εijcj = 0. If

one takes all unit coefficients, the Casimirs

Z =
|Q|∏
i=1

xcii =
|Q|∏
i=1

|Q|∏
k=1

τ εkicik =
|Q|∏
k=1

τ

∑
i
εkici

k = 1, (1.106)

become trivial. Mutation rules (1.104) and (1.82) are consistent with
(1.105).

In the example of relativistic affine Toda chain with two particles (or
on two sites) one gets two Casimir functions Z and q. Extended exchange
matrix, chosen following [14], is drawn at figure 1.6.

The coefficients can be read from the matrix b (two lowest rows)

y1 = (τ5τ6)2, y2 = τ−2
6 , y3 = (τ5τ6)2, y4 = τ−2

6 (1.107)
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b =

0 2 0 -2
-2 0 2 0
0 -2 0 2
2 0 -2 0
2 0 2 0
2 -2 2 -2




1 2

34

5

6

Figure 1.6. Left: extended exchange matrix b for ŜL2 Toda chain. Right:
extended quiver with frozen vertices shown by blue.

Introducing (cf. with figure 1.2) τ5 = q
1
4 , τ6 = Z 1

4 , one can write dynamics
of cluster variables under q-Painlevé flow T = s1,2s3,4µ1µ3, Tτi = τ i =
τi(qZ), as

(τ1, τ2, τ3, τ4) =
(
τ2,

τ2
2 + q

1
2Z

1
2 τ2

4
τ1

, τ4,
τ2

4 + q
1
2Z

1
2 τ2

2
τ3

)
. (1.108)

Eliminating τ2 and τ4, one turns it into bilinear form of q-Painlevé A(1)′
7

equation
τ1τ1 = τ2

1 + Z
1
2 τ2

3 , τ3τ3 = τ2
3 + Z

1
2 τ2

1 . (1.109)

1.4.4 Dimer models and box-counting

The important equivalence of counting of paths and counting of dimers
on graphs was observed in the context of cluster integrable systems in
[71],[55]. The statistical models of random dimer configurations are well-
studied [105], [118], and are free fermionic, and all correlators and parti-
tion function of the model might have been written using the minors of
Kasteleyn operator, which is basically just the weighted adjacency matrix
of the underlying graph. The spectral curve, which is generating function
of Hamiltonians of the cluster integrable system was written in [71] in
the form (1.97). It was also shown there, how to construct cluster inte-
grable system with the arbitrary Newton polygon of the spectral curve.
The coordinates on phase space of cluster integrable system are X -cluster
coordinates xf , which can be conveniently interpreted as monodromies of
discrete R>0 connection around the faces f of the graph. They are natu-
rally constrained by the condition ∏f xf = 1 because of the triviality of



1.4 Cluster integrable system 29

bundle. In [14] it was shown, that relaxation of the condition to q 6= 1
breaks classical integrability of the model, but “deautonomize” dynamics
generated by the elements of cluster mapping class group. It was also
shown there, that A-cluster variables provide bilinear form for this dy-
namics, and for the cases of Newton polygons with one internal point, the
corresponding dynamical systems are all q-Painlevé equations except two.

Another appearance of parameter q was in the incarnation of dimer
model as a model of statistical physics. The dimer models have nice
alternative interpretation as an ensembles of stepped surfaces built from
the “boxes” having shapes of the faces of graph, which are stacked one on
another. The statistical weights of boxes are equal to weights of faces, and
for large periodic graph with fixed boundary conditions the flux through
the fundamental domain q controls average volume under the surface. The
explicit computations of correlating functions for general q were done in
[149], [150] for hexagonal lattice using the free-fermionic vertex operators,
with various boundary conditions. In this case it was just explicitly the
problem of the counting of boxes, staying along the wall of the room of
complex shape. In the limit q = e−ε → 1 the “typical” surface acquires
infinite volume ∼ ε−3. The “limit shape” problem of finding its shape
were solved first using variational methods in [30] for hexagonal lattice,
and then in [116] for the general graph and boundary conditions. From
the point of view of counting of instantons, the ε → 0 corresponds to
Seiberg-Witten limit [144], where the partition function is dominated by
single term, with the free-energy density being equal to Seiberg-Witten
prepotential of 5d gauge theory [143].

Extensive number of attempts were made to connect topological string
theory, counting of dimers and cluster algebras in the context of so-called
“crystal melting” models, see e.g. [151], [101], [94], [135], [36], [179], [154],
[139], [29], [8], [180]. The dimer models on bipartite graphs on torus
also appeared in string theory in the context of “brane tiling” [88], [51],
[93], [50] constructions of 4d N = 1 theories. Closest to the exposition
of this Chapter consideration were presented in [89], [92], [91], where the
determinant of tight binding Hamiltonian of particle in magnetic field
where attempted to be related to the partition function of topological
string at |q| = 1, and in [114] where both the ideas of “transverse magnetic
flux” and of tropicalization were used. Also similar 2d lattice operators
in the context of the theory of integrable systems were considered e.g. in
[106], [177]. However, there is yet no consistent proof of the conjecture on
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how the partition functions of topological string should appear from the
counting of dimers on the lattices, built by appropriate Newton polygon.

1.5 This thesis

Bellow, I briefly highlight the main results presented in the thesis.

1.5.1 Chapter 2

In this Chapter we discuss relation between the cluster integrable systems
and spin chains in the context of their correspondence with 5d supersym-
metric gauge theories. We show that glN XXZ-type spin chain on M
sites is isomorphic to a cluster integrable system with N ×M rectangular
Newton polygon and N ×M fundamental domain of a ’fence net’ bipar-
tite graph. The Casimir functions of the Poisson bracket, labeled by the
zig-zag paths on the graph, correspond to the inhomogeneities, on-site
Casimirs and twists of the chain, supplemented by total spin. The sym-
metricity of cluster formulation implies natural spectral duality, relating
glN -chain on M sites with the glM -chain on N sites. For these systems
we construct explicitly a subgroup of the cluster mapping class group GQ
and show that it acts by permutations of zig-zags and, as a consequence,
by permutations of twists and inhomogeneities. Finally, we derive Hirota
bilinear equations, describing dynamics of the tau-functions or A-cluster
variables under the action of some generators of GQ.

1.5.2 Chapter 3

Here we notice a remarkable connection between the Bazhanov-Sergeev
solution of Zamolodchikov tetrahedron equation and certain well-known
cluster algebra expression. The tetrahedron transformation is then iden-
tified with a sequence of four mutations. As an application of the new
formalism, we show how to construct an integrable system with the spec-
tral curve with arbitrary symmetric Newton polygon. Finally, we embed
this integrable system into the double Bruhat cell of a Poisson-Lie group,
show how triangular decomposition can be used to extend our approach
to the general non-symmetric Newton polygons, and prove the Lemma
which classifies conjugacy classes in double affine Weyl groups of A-type
by decorated Newton polygons.
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1.5.3 Chapter 4

Important illustration to the principle “partition functions in string theory
are τ -functions of integrable equations” is the fact that the (dual) partition
functions of 4d N = 2 gauge theories solve Painlevé equations. In this
Chapter we show a road to self-consistent proof of the recently suggested
generalization of this correspondence: partition functions of topological
strings on local Calabi-Yau manifolds solve q-difference equations of non-
autonomous dynamics of the “cluster-algebraic”integrable systems.

We explain in details the “solutions” side of the proposal. In the
simplest non-trivial example we show how 3d box-counting of topological
string partition function appears from the counting of dimers on bipar-
tite graph with the discrete gauge field of “flux” q. This is a new form
of topological string/spectral theory type correspondence, since the par-
tition function of dimers can be computed as determinant of the linear
q-difference Kasteleyn operator. As a by-product using WKB method in
the “melting” q → 1 limit we an integral formula for Seiberg-Witten pre-
potential of the corresponding 5d gauge theory. The “equations” side of
the correspondence remains the intriguing topic for the further studies.

1.5.4 Chapter 5

The topic of research presented in this Chapter is disjoint from the top-
ics of others, and is related to hydrodynamic of electronic currents in
graphene.

Strong interaction among charge carriers can make them move like
viscous fluid. In this Chapter we explore alternating current (AC) effects
in viscous electronics. In the Ohmic case, incompressible current distribu-
tion in a sample adjusts fast to a time-dependent voltage on the electrodes,
while in the viscous case, momentum diffusion makes for retardation and
for the possibility of propagating slow shear waves. We focus on specific
geometries that showcase interesting aspects of such waves: current par-
allel to a one-dimensional defect and current applied across a long strip.
We find that the phase velocity of the wave propagating along the strip
respectively increases/decreases with the frequency for no-slip/no-stress
boundary conditions. This is so because when the frequency or strip
width goes to zero (alternatively, viscosity go to infinity), the wavelength
of the current pattern tends to infinity in the no-stress case and to a finite
value in a general case. We also show that for DC current across a strip



32 Chapter 1. Introduction

with no-stress boundary, there only one pair of vortices, while there is an
infinite vortex chain for all other types of boundary conditions.



Chapter 2

Cluster integrable systems
and spin chains

2.1 Introduction
In the seminal paper [172] Seiberg and Witten found ’exact solution’ to 4d
N = 2 super-symmetric gauge theory in the strong coupling regime. More
strictly, the IR effective couplings were constructed geometrically, from the
period integrals on a complex curve, whose moduli are determined by the
condensates and bare couplings of the UV gauge theory. Shortly after, it
has been also realized [72] that natural language for the Seiberg-Witten
theory is given by classical integrable systems. In such context the pure
supersymmetric gauge theories (with only N = 2 vector supermultiplets)
correspond to the Toda chains, while integrable systems for the gauge
theories with fundamental matter multiplets are usually identified with
classical spin chains of XXX-type.

The next important step was proposed in [164], where this picture has
been lifted to 5d. Then it has been shown that transition from 4d to 5d
(actually – four plus one compact dimensions) results in ’relativization’
of the integrable systems [143] (in the sense of Ruijsenaars [159]). In the
simplest case of SU(2) pure Yang-Mills theory, or affine Toda chain with
two particles, instead of the Hamiltonian

H4d = p2 + eq + Ze−q, (2.1)

corresponding to 4d theory, one has to consider

H5d = ep + e−p + eq + Ze−q, (2.2)
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or the Hamiltonian of relativistic Toda chain, which describes effective
theory for 5d pure SU(2) Yang-Mills 1. It has been also shown that 5d
theories with fundamental matter correspond to XXZ-type spin chains
(see e.g. [133] and references therein).

Relativistic Toda chains lead to natural relation of this story with the
integrable systems on the Poisson submanifolds in Lie groups, or more
generally to the cluster integrable systems – recently discovered class of
integrable systems of relativistic type [71, 128, 55]. Direct relation be-
tween cluster integrable systems and 5d gauge theories has been proposed
in [14]. It was shown there that for the case of Newton polygons with
single internal point, dynamics of discrete flow is governed by q-Painlevé
equations and their bilinear form is solved by Nekrasov 5d dual partition
functions (for other examples of 5d gauge theories the same phenomenon
was considered in [102, 16, 15])2.

Cluster integrable systems Any convex polygon ∆ with vertices in
Z2 ⊂ R2 can be considered as a Newton polygon of polynomial f∆(λ, µ),
and equation

f∆(λ, µ) =
∑

(a,b)∈∆
λaµbfa,b = 0. (2.3)

defines a plane (noncompact) spectral curve in C× × C×. The genus g
of this curve is equal to the number of integral points strictly inside the
polygon ∆.

According to [71],[55] a convex Newton polygon ∆, modulo action
of SA(2,Z) = SL(2,Z) n Z2, defines a cluster integrable system, i.e. an
integrable system on X-cluster Poisson variety X of dimension dimX = 2S,
where S is area of the polygon ∆. The Poisson structure can be encoded
by quiver Q with 2S vertices. Let εij be the number of arrows from i-th
to j-th vertex (εji = −εij) of Q, then logarithmically constant Poisson
bracket has the form

{xi, xj} = εijxixj , {xi} ∈
(
C×
)2S

. (2.4)
1The slightly misleading term ’relativistic’ appears here due to formal similarity

of momentum dependence to the rapidities of a massive relativistic particle in 1 + 1
dimensions.

2Other relations between 5d supersymmetric gauge theories and cluster integrable
systems (involving exact spectrum of quantized cluster integrable systems, BPS count-
ing and toric Calabi-Yau quantization) were discussed in [52], [62], [151] correspondingly.
They seem to be related to our case and we are going to return to these issues elsewhere.
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The product of all cluster variables ∏i xi is a Casimir for the Poisson
bracket ((2.4)). Setting it to be

q =
∏
i

xi = 1 (2.5)

and fixing values of other Casimirs, corresponding to the boundary points
of Newton polygon I ∈ ∆̄ (their total number is B−3, since equation (2.3)
is defined modulo multiplicative renormalization of spectral parameters λ,
µ and f∆(λ, µ) itself), one obtains symplectic leaf.

The properly normalized coefficients, corresponding to the internal
points, are integrals of motion in involution

{fa,b(x), fc,d(x)} = 0, (a, b), (c, d) ∈ ∆ (2.6)

w.r.t. the Poisson bracket (2.4). By Pick theorem one has

2S − 1 = (B − 3) + 2g (2.7)

where g is the number of internal points (or genus of the curve (2.3)), or
the number of independent integrals of motion. So the number of inde-
pendent integrals of motion is half of the dimension of symplectic leaf,
and the system is integrable. One of distinguished features of the cluster
integrable systems is that their integrals of motion are the Laurent poly-
nomials of (generally – fractional powers) in the cluster variables.

There are several different ways to get explicit form of the spectral
curve equation (2.3):

• Compute the dimer partition function (with signs) for a bipartite
graph on a torus. One possible form of it is a characteristic equation

detD(λ, µ) = 0 (2.8)

for the Kasteleyn-Dirac operator on a bipartite graph Γ ⊂ T2, de-
pending on two ’quasimomenta’ λ, µ ∈ C×;

• Alternatively, one can get the same equation (2.3) as a Lax-type
equation of a spectral curve, with the Lax operator coming from
affine Lie group construction, identifying cluster variety with a Pois-
son submanifold in the co-extended affine group.

Short exposition of the first construction of cluster integrable system, rel-
evant for this chapter, is contained Section 1.4.
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Classical integrable chains Integrability of classical glM chains of
XXZ type is based on the that their M × M Lax matrices satisfy the
following classical RLL relation

{L(λ)⊗ L(µ)} = κ[r(λ/µ), L(λ)⊗ L(µ)] (2.9)

with the classical (trigonometric) r-matrix 3

r(λ) = −λ
1/2 + λ−1/2

λ1/2 − λ−1/2

∑
i 6=j

Eii ⊗ Ejj + 2
λ1/2 − λ−1/2

∑
i 6=j

λ−
1
2 sijEij ⊗ Eji.

(2.10)
A classical chain of trigonometric type can be defined by the monodromy
operator

T (µ) = LN (µ/µN ) . . . L1(µ/µ1) ∈ End(CM ) (2.11)

where M is called ’rank’ of the chain. Integrability is guaranteed by
classical RTT-relation

{T (λ)⊗ T (µ)} = κ[r(λ/µ), T (λ)⊗ T (µ)] (2.12)

for the monodromy operator that follows from (2.9), and gives rise to
the integrals of motion, which can be extracted from the spectral curve
equation (2.3) given explicitly by the formula

f∆(λ, µ) = det (λQ− T (µ)) = 0. (2.13)

where Q - diagonal twist matrix with the constant entities. Relativistic
Toda system can be considered as certain degenerate case of generic XXZ
chain of rank M = 2 (of length N for N particles).

Examples of Newton polygons In what follows we mostly consider
cluster integrable systems, corresponding to the Newton polygons of the
following types:

• Quadrangles with four boundary points, where all internal points
are located along the same straight line, as on Fig. 2.1, left. This
is the case of relativistic Toda chains, studied in [14]. The corre-
sponding gauge theory is 5d N = 1 Yang-Mills theory with SU(N)

3See details of derivation of Lax matrix from quantum algebra and notations in
Section 1.3.
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Figure 2.1. From left to right Newton polygons for: Toda chain on three sites,
gl2 XXZ spin chain on three sites, gl2 spin chain on three sites with cyclic twist
matrix.

gauge group (for N − 1 internal points) without matter multiplets,
possibly with the Chern-Simons term of level |k| ≤ N – in such case
quadrangle is not a parallelogram.

• “Big” rectangles (modulo SA(2,Z) transform). For the N ×M rect-
angle (see Fig. 2.1, center) this can be alternatively described as a
glN spin chain on M sites (cf. with [21]), or vice versa. The corre-
sponding 5d gauge theories are given by linear quivers theories with
the SU(N) gauge group at each of M − 1 nodes: see Fig. 2.2.

maf

SU(N)M−1SU(N)i+1

mbif

SU(N)i

mbif

SU(N)i−1SU(N)1

mf

Figure 2.2. Linear quiver which defines multiplets for N = 1 gauge theory.
Circles are for gauge vector multiplets, boxes are for hypermultiplets.

• “Twisted rectangles”, or just the parallelograms, which are not SA(2,Z)-
equivalent to the previous class (see Fig. 2.1, right), they can be al-
ternatively formulated as spin chains with nontrivial twists. Gauge
theory counterpart for this class of polygons is not yet known, ex-
cept for the twisted glN chain on one site, leading back to the basic
class of Toda chains.

For all these families the spectral curve of an integrable system, deter-
mined by equation (2.3) is endowed with a pair of meromorphic differen-
tials

(
dλ
λ ,

dµ
µ

)
with the fixed 2πiZ-valued periods. One can also use this
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pair to introduce (the SL(2,Z)-invariant for our family) 2-form dλ
λ ∧

dµ
µ

on C× × C×, whose ’pre-symplectic’ form is the SW differential.

Structure of the Chapter The main aim is to extend the correspon-
dence between 5d theories and cluster integrable systems to wider class
of models. We find isomorphism between the classes of glN XXZ-like spin
chains onM sites, corresponding to 5d SU(N) linear quiver gauge theories
(see Fig. 2.2) [21], and cluster integrable systems with N ×M rectangular
Newton polygons.

We start from the brief overview of classical XXZ spin chains. We
illustrate with the simple example of relativistic Toda chain, how Lax
operators naturally arise from the Dirac-Kasteleyn operator of cluster in-
tegrable system. Then we do this for the general case of XXZ spin chain
of arbitrary length and rank. Spectral (or fiber-base) duality arises as an
obvious consequence of the structure of considered bipartite graph. Spin
chains with additional cyclic permutation twist matrix arise in the cluster
context naturally as well.

Then we explain structure of large subgroup of cluster mapping class
group GQ. We show that in case of general rank and length of chain it
contains subgroup (2.87) which act in autonomous q = 1 limit by permu-
tations of inhomogeneities and diagonal twist parameters of spin chain.
We also discuss issue of deautonomization and propose a way to define
action of GQ on zig-zags in q 6= 1 case. Then we derive bilinear equations
for the action of generators of GQ on A-cluster variables.

2.2 Spin chains

2.2.1 Relativistic Toda chain

Let us start with the case of relativistic Toda chain, which is known to be
related to Seiberg-Witten theory in 5d without matter [143]. Relativistic
Toda chains arise naturally on Lie groups [56], and therefore have cluster
description. A typical bipartite graph of affine relativistic Toda is shown
in Fig. 2.3. For the Toda system with N particles it has 2N vertices, 4N
edges and 2N faces. Corresponding Newton polygon is shown in Fig. 2.1,
left.

The cluster Poisson bracket (2.4) for the Toda face variables is

{x×i , x
×
j } = {x+

i , x
+
j } = 0, (2.14)
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{x×i , x
+
j } = (δi,j+1 + δi+1,j − 2δi,j)x×i x+

j , i, j ∈ Z/NZ
where in the non-vanishing r.h.s. one can immediately recognize the Car-
tan matrix of ŝlN . This Poisson bracket has obviously two Casimir func-
tions, which can be chosen, say, as4

q =
∏
j

(x×j x+
j ), κ1/κ2 =

∏
j

x+
j . (2.15)

However, in what follows we are going to use the edge variables (see Sec-
tion 1.4 for details), which do not have any canonical Poisson bracket, e.g.
since they are not gauge invariant, when treated as elements of C×-valued
gauge connection on the graph. Hence, following [128], we fix the gauge
and parameterize all edges by 2N exponentiated Darboux variables ξk, ηk

{ξi, ηj} = δijξiηj , {ξi,κa} = {ηi,κa} = 0, (2.16)

so that the face variables are expressed, as a products of oriented edge
variables (see Fig. 2.3, left) by

x×i = ξi+1
ξi

(κ2/κ1)δiN , x+
i = ηi

ηi+1
(κ1/κ2)δiN . (2.17)

In terms of the edge variables (2.16) the monodromies over zig-zag paths
(see Fig. 2.3, middle, right) can be expressed as follows

α = ζ/κ1, β = κ2/ζ, γ = κ1ζ, δ = 1/κ2ζ, ζ =
N∏
k=1

√
ξk
ηk

(2.18)

In the autonomous limit q = 1, there is a single independent Casimir
– diagonal twist of monodromy operator κ1/κ2 or coupling of the affine
Toda chain. Reduction from four zig-zags α, β, γ, δ to single Casimir κ1/κ2
is a reminiscence of the freedom λ → aλ, µ → bµ and the fact that
αβγδ = 1.

The Dirac-Kasteleyn operator here can be read of the left picture at
Fig. 2.3, and is given by N ×N matrix5:

D(λ, µ) =
N∑
i=1

(
(ξi + µ−1ηi)Eii − κδiN1

√
ξiηiEi,i+1 + κ−δiN2 µ−1√ξiηiEi+1,i

)
(2.19)

4Only the ratio of κ’s is actually independent Casimir, but we introduce both of
them for convenience in what follows.

5The spectral parameters or quasimomenta λ and µ appear due to intersection of
the edge with the blue and purple cycles in H1(T2,Z), and minuses arise due to discrete
spin structure.
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√
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√
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√
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Figure 2.3. Left: Bipartite graph for the Toda chain. Center, right: zig-zag
paths α, β, γ, δ.

where we have additionally defined

EN,N+1 = λEN,1, EN+1,N = λ−1E1,N (2.20)

and it almost coincides here [39] with the standard N ×N formalism for
the spectral curve of relativistic Toda chain

det D(λ, µ) = 0 ⇔ ∃ D(λ, µ)ψ = 0 (2.21)

with Baker-Akhiezer function ψ ∈ CN .
Now, to illustrate what is going to be done for the spin chains, let us

rewrite this equation in terms of the well-known 2× 2 formalism for Toda
chains, but not quite in a standard way. In order to do that, we first add an
additional black (white) vertex to each top (bottom) edge in left Fig. 2.3,
and draw it in deformed way as in Fig. 2.4. Such operation obviously
does not change the set of dimer configurations, and new dimer partition
function differs from the old one only by total nonvanishing factor.

1,2

1,1

1,1

1,2

1

ξ1

η1

2,2

2,1

2,1

2,2

1

ξ2

η2

3,2

3,1

3,1

3,2

1

ξ3

η3

x×1
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√
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Figure 2.4. Extended and deformed bipartite graph for the Toda chain.
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The Dirac-Kasteleyn matrix, read from the Fig. 2.4, can be written in
the block form

D(λ, µ) =
N∑
i=1

(
Eii ⊗Ai + Ei,i+1 ⊗ CiQδi,N

)
= (2.22)

=
N∑
i=1

(
(ξi + µ−1ηi)Eii ⊗ E11 + Eii ⊗ E12 +

√
ξiηiEii ⊗ E21−

−κδi,N1
√
ξiηiEi,i+1 ⊗ E11 − µκ

δi,N
2 Ei,i+1 ⊗ E22

)
with

Ai =

 ξi + µ−1ηi 1
√
ξiηi 0

 , Ci =

 −√ξiηi 0

0 −µ

 , Q =

 κ1 0

0 κ2

 .
(2.23)

The first factor in the tensor product corresponds to the number of the
particle (or of the ’site’), arising naturally in the framework of 2 × 2
formalism for Toda systems and spin chains below, while the second –
to position of a vertex inside the ’site’. For the ’extended’ (compare to
(2.19)) operator (2.22) one gets the same equation (2.21), but now with
ψ ∈ C2N , which can be written as:

ψ =
N∑
i=1

ei ⊗

 ψi,1

ψi,2

 =
N∑
i=1

ei ⊗ ψi. (2.24)

For the coefficients of this expansion (2.21) gives ψk+1 = Lk(µ)ψk
ψN+1 = λQψ1

(2.25)

or the system of finite-difference equations on Baker-Akhiezer functions
with the quasi-periodic boundary conditions, where the 2× 2 Lax matrix

Li(µ) = −C−1
i (µ)Ai(µ) = µ−

1
2

 µ
1
2

√
ξi
ηi

+ µ−
1
2

√
ηi
ξi

µ
1
2

√
ηiξi

µ−
1
2
√
ξiηi 0

 (2.26)
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is equivalent to the standard Lax matrix for relativistic Toda chain (see
e.g. [128]) up to conjugation by permutation matrix, and redefinition of
the variables

ξ 7→ η, η 7→ ξ−1, µ 7→ µ−1. (2.27)

This Lax operator satisfies classical RLL relation

{Li(λ)⊗ Lj(µ)} = δij [r(λ/µ), Li(λ)⊗ Lj(µ)] (2.28)

with the classical (trigonometric) r-matrix (2.10) 6. Compatibility condi-
tion of (2.25) gives spectral curve equation in the form

det (λQ− LN (µ)...L1(µ)) = 0 (2.29)

where Q = diag (κ1,κ2) is extra twist matrix7, and inhomogeneities {µi},
which appear in the case of generic XXZ chain, are absorbed here into
redefinition of dynamical variables.

2.2.2 Spin chains of XXZ type

Let us now apply the same arguments, which we used for the Toda chain,
to the following class of chains: the rankM chains onN cites of XXZ-type,
which means that the Poisson structure (2.28) is defined by trigonometric
r-matrix. Such systems naturally arise in q → 1 limit of Uq(glM ), see
Appendix 1.3. We claim that such classical spin chain can be alternatively
described as cluster integrable systems, constructed from ’big rectangles’
of the size N ×M .

For a cluster integrable system with such Newton polygon (see Fig. 2.5,
left) one gets a bipartite graph, drawn at Fig. 2.6. According to [71] this
graph is drawn on torus T2, i.e. left side is glued with the right side, and
top - with the bottom, we will call such graphs as N ×M ’fence nets’.

The cluster coordinates x×ia, x+
ia, now associated with the faces of graph

at Fig. 2.6, satisfy the following Poisson bracket relations

{x×ia, x
+
jb} = (−δijδab + δi,j+1δab + δijδa+1,b − δi,j+1δa+1,b)x×iax+

jb, (2.30)

{x×ia, x
×
jb} = {x+

ia, x
+
jb} = 0, i, j ∈ Z/NZ, a, b ∈ Z/MZ

6Up to numeric rescaling, see Section 1.3 for discussion.
7Note that constant diagonal matrices Q satisfy [r,Q⊗Q] = 0, and therefore can be

also used in construction of monodromy operators.
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Figure 2.5. Left: Newton polygon for (N,M) = (3, 2). Zig-zags from Fig. 2.6
as elements of torus first homology group are drawn by colored arrows. Right:
Poisson quiver. It is drawn on the torus, so vertices lying on left-right and up-
down sides have to be identified.

with two kinds of indices living ’on circles’: i, j enumerating rows of bipar-
tite graph and a, b enumerating columns. Corresponding quiver is drawn
at Fig. 2.5, right. As in Toda case, ’fixing’ a gauge, we pass now to the
edge variables

x×ia = η2
ia

ξ2
ia

, x+
ia = ξiaξi+1,a−1

ηi+1,aηi,a−1
(σi+1/σi)δa,1(κa−1/κa)δi,N . (2.31)

with the Poisson bracket

{ξia, ηjb} = 1
2δijδabξiaηjb, i, j ∈ Z/NZ, a, b ∈ Z/MZ (2.32)

Extra parameters in (2.31) are the Casimir functions of the bracket (2.30),
together with

ζhi =
M∏
b=1

ξib
ηib
, ζva =

N∏
j=1

ξja
ηja

, {x×, ζh,v} = {x+, ζh,v} = 0. (2.33)

It is useful to re-express them via the zig-zag variables (see the zig-zag
paths on Fig. 2.6, middle and right)

αi = σi/ζ
h
i , βi = 1/ζhi σi, i = 1, . . . , N (2.34)
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γa = ζva/κa, δa = ζvaκa, a = 1, . . . ,M (2.35)

These formulas relate convenient generators of the center of cluster Poisson
algebra with inhomogeneities {µk = 1/σkζhk = βk}, twists {κa}, ’on-site’
Casimirs ζhi = (αiβi)

1
2 and ’projections of spins’8 ζva = (γaδa)

1
2 of the

chain.
Our main statement here is that the classical spin variables (for defi-

nition see Section 1.3) associated with single site of the chain could also
be expressed via the edge variables ξ, η by

eS
0
a = z2

a, Sab = 1
2z
−2
b (z2

a+z−2
a )τa

τb
, a < b, Sab = −1

2z
2
a(z2

a+z−2
a )τa

τb
, a > b,

(2.36)
where9

za =
√
ξa/ηa, τa =

√
ξaηa

M∏
b=1

z
sgn(b−a)
b (2.37)

and the ’site index’ i = 1, . . . , N is omitted here. Spin-variables cannot
be directly expressed through the cluster variables in a natural way, but
rather as a product of edge variables over some non-closed paths. However
it is possible to express cluster variables via the spin variables on two
adjacent sites by

x×i,a = e−2(S0
a)i , (2.38)

x+
i,a = −

e(S0
a)i+1+(S0

a−1)i(S+
a−1)i+1(S−a−1)i

cosh (S0
a−1)i+1 cosh (S0

a)i

(
σi+1
σi

)δa,1 (κa−1
κa

)δi,N
(2.39)

where index outside brackets of spin variables enumerates number of site.
The spectral curve again can be given by determinant of the Dirac-

Kasteleyn operator, which is the weighted adjacency matrix of the bipar-
tite graph. For generic (N,M) system it has the form:

D(λ, µ) =
N∑
i=1

M∑
a=1

ξia(Ei,i ⊗ Ea,a − κδi,1a σ
δM,a
i Ei,i−1 ⊗ Ea+1,a)+

+ηia(κ
δ1,i
a Ei,i−1 ⊗ Ea,a + σ

δM,a
i Ei,i ⊗ Ea+1,a)

(2.40)

8Notice that spin’s projections are not originally the Casimir functions for spin’s
brackets, but rather ’trivial’ integrals of motion – like the total momentum of particles
in Toda chains.

9This is basically standard bosonization formulas for the spin variables, cf. for
example with [23],[134].
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Figure 2.6. Left: bipartite graphs with labeled edges and faces: each edge,
crossing purple cycle has to be multiplied by µ, each edge, crossing blue cycle –
by λ. Center: horizontal zig-zag paths. Right: vertical zig-zag paths.

where the summand Eij ⊗Eab is corresponding to the edge between black
and white vertices10 (i, a) → (j, b), and those matrices Eij which get out
of fundamental domain are promoted to the elements of the ’loop algebra’,
with the ’loop’ parameters (λ, µ):

E1,0 ≡ λE1,N , EM+1,M ≡ µE1,M . (2.41)

Remark 2.2.1. The operator (2.40) as an element of End(CN )[[λ−1]] ⊗
End(CM )[[µ−1]] can be naturally embedded into tensor product of evalu-
ation representations of the loop algebras g̃lN ⊗ g̃lM , i.e.

D(λ, µ) =
N∑
i=1

M∑
a=1

ξia(hi ⊗ ha − κδi,1a σ
δM,a
i fi−1 ⊗ fa)+

+ηia(κ
δ1,i
a fi−1 ⊗ ha + σ

δM,a
i hi ⊗ fa)

(2.42)

10Signs ’−’ in D arise in a standard way [71] due to choice of Kasteleyn marking or
discrete spin structure on T2.
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for two evaluation representations g̃lK → End(CK)[[ζ]]:

ei = Ei,i+1, 1 ≤ i ≤ K − 1, e0 = eK = ζEK,1

fi = Ei+1,i, 1 ≤ i ≤ K − 1, f0 = fK = ζ−1E1,K

hi = Eii, 1 ≤ i ≤ K.

(2.43)

Let us now, breaking M ↔ N symmetry, collect the terms, corre-
sponding to Eii and Ei,i−1 in the first tensor factor, i.e. rewrite (2.40)
as:

D(λ, µ) =
N∑
i=1

Ei,i ⊗Ai + Ei,i−1 ⊗ Ci(Q)δ1,i (2.44)

with

Ai =
M∑
b=1

(
ξibEb,b + ηibσ

δM,b
i Eb+1,b

)
, Ci =

M∑
b=1

(
ηibEb,b − ξibσ

δM,b
i Eb+1,b

)
,

(2.45)

Q =
M∑
b=1

κbEbb

From the spectral curve equation detD(λ, µ) = 0 one finds for

ψ =
N∑
i=1

ψiei =
N∑
i=1

M∑
a=1

ψiaei ⊗ ea ∈ CMN : D(λ, µ)ψ = 0. (2.46)

that

Aiψi + Ci(Q)δi,1ψi−1 = 0, i = 1, . . . , N, ψ0 ≡ λψN . (2.47)

Solving these equations recursively for the vectors ψi =
M∑
a=1

ψiaea, one
finally gets (

λQ− (−1)NC−1
1 A1...C

−1
N AN

)
ψN = 0 (2.48)

with consistency condition

det
(
λQ− L1

(
σ1ζ

h
1µ
)
...LN

(
σNζ

h
Nµ
))

= 0 (2.49)

of the form (2.13), with the Lax matrices

Li
(
σiζ

h
i µ
)

= −C−1
i Ai, i = 1, . . . , N. (2.50)
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Hence, the spectral curve detD(λ, µ) = 0 is represented in the form
(2.11), common for the classical integrable chains with inhomogeneities
µi = 1/σiζhi = βi and twist Q = ∑

a κaEaa = ∑
a

√
δa/γaEaa. There are

also two sets of Casimirs related to spin variables: total projections of spin
ζva = ∏

i e
S0
ia and single non-trivial on-site Casimirs ζhi . The Lax operators

(2.50) on different sites satisfy classical RLL-relations

{Li(µ)⊗ Lj(µ′)} = 1
2δij [r(µ/µ

′), Li(µ)⊗ Lj(µ′)] (2.51)

which coincide with (1.43) arising from the classical limit of Uq(glM ) with
q = e−~ and κ = 1

2 in (1.31), see Section 2.6 for details. In such way one
gets explicit formulas (with the sign-factors (1.5)

(Li)ab(µ) = 1
µ

1
2 − µ−

1
2


a = b, µ

1
2 z−2
ia + µ−

1
2 z2
ia

a 6= b, µ−
sab

2 (z2
ib + z−2

ib ) τib
τia

, (2.52)

for the Lax operators (2.50) on the sites i ∈ 1, ..., N in terms of variables
introduced in (2.37).

Comparing L-operator (2.52) with (1.44) one comes to the formulas
(2.36), expressing the ’spin operators’ on each site in terms of the edge
variables. Expressions (2.36) satisfy all the relations of the classical limit
of Uq(glM ) with κ = 1

2 . Note that this Lax operator is belonging to the
lowest rank Kirillov orbit.
Remark 2.2.2. An equivalent construction of the cluster integrable systems
is based on the Poisson submanifolds or double Bruhat cells in P̂GL,
endowed with the usual r-matrix Poisson structure [49, 55]. For the family
of systems we consider here, given by the SA(2,Z)-orbit of rectangular
N ×M Newton polygons, one gets in such way a double Bruhat cell of
P̂GL(N +M), given by the word

u = (sMsM ... s1s1Λ)N (2.53)

in the co-extended double Weyl group W̃ (A(1)
K × A

(1)
K ) (here with K =

N +M) with the generators si, si,Λ satisfying relations

s2
i = 1, (sisi+1)3 = 1, sisj = sjsi, for |i− j| > 1

s̄2
i = 1, (s̄is̄i+1)3 = 1, s̄is̄j = s̄j s̄i, for |i− j| > 1

ΛK = 1, Λsi+1 = siΛ, Λs̄i+1 = s̄iΛ

i, j = 1, . . . ,K

(2.54)
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32

x+
31

Figure 2.7. Thurston diagram in the (3, 2) case, which appears from u =
(s2s̄2s1s̄1Λ)3.

We are not going to repeat here all steps of the construction in detail,
and just present the main ingredient – the Thurston diagram for (2.53),
drawn for (N,M) = (3, 2) at Fig. 2.7. The corresponding bipartite graph
(see Fig. 2.7) differs from the discussed above ’fence-net’ by additional
horizontal twist of the cylinder by 2π, which does not affect an integrable
system, since it corresponds to the SL(2,Z) transformation of the spectral
parameters (λ, µ)→ (λ, µλ−1).

Example. SU(2) theory with Nf = 4 The most well-known case of
the system we consider here corresponds to the five-dimensional supersym-
metric gauge theory with the SU(2) gauge group and Nf = 4 fundamental
multiplets. The corresponding Newton polygon is a square with sides of
length N = M = 2 (see Fig. 2.8), and as a spin chain this is just common
XXZ-model on two sites with the Lax operator11 (see e.g. [133])

L(µ) =

 µeS
0 − µ−1e−S

0 2S−

2S+ µe−S
0 − µ−1eS

0

 , Q =

 κ 0

0 κ−1

 .
(2.55)

Spectral curve for the system is given by

det (L (µ/µ1)L (µ/µ2)Q− λ) = 0. (2.56)
11This form is slightly different from (1.52) arising from the classical limit of Uq(gl2).

However, in 2× 2 case these two forms are equivalent.
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The Poisson brackets of spin operators are given by classical trigonometric
r-matrix and written as:

{S0, S±} = ±S±, {S+, S−} = sinh 2S0 (2.57)

for the S-variables on the same site, and zero for the variables on the
different sites. Such bracket has one natural Casimir function

K = −ζh − (ζh)−1 = 1
2 cosh 2S0 + S+S−. (2.58)

Figure 2.8. Newton polygon for (N,M) = (2, 2).

As a cluster integrable system it lives on X-variety with the quiver
corresponding to A(1)

3 -type system from figure 2 in [14], and its deautono-
mization leads to the Painlevé VI equation, solvable by conformal blocks,
or equivalently topological strings amplitudes [102]. We derive Lax opera-
tor for this system from Kasteleyn operator in details in the next example,
which is simply generalization of this example to three sites.

Example. SU(3) theory with Nf = 6. This case is corresponding to
the word u = (22̄11̄Λ)3 in double Weyl group of P̂GL(5). Bipartite graph
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is drawn on Fig. 2.6. Kasteleyn operator is 6× 6 matrix

D =

bw 11 12 21 22 31 32

11 ξ11 µσ1η12 0 0 λκ1η11 −λµκ2σ1ξ12

12 η11 ξ12 0 0 −λκ1ξ11 λκ2η12

21 η21 −µσ2ξ22 ξ21 µσ2η22 0 0

22 −ξ21 η22 η21 ξ22 0 0

31 0 0 η31 −µσ2ξ32 ξ31 µσ2η32

32 0 0 −ξ31 η32 η31 ξ32

=

(2.59)

=


A1 0 λC1Q

C2 A2 0

0 C3 A3

 .
Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ =


ψ1

ψ2

ψ3

 : (2.60)

D(λ, µ)ψ = 0 ⇔


λQψ3 = L1(σ1ζ

h
1µ)ψ1

ψ1 = L2(σ2ζ
h
2µ)ψ2

ψ2 = L3(σ3ζ
h
3µ)ψ3

Li(µ) = 1
µ

1
2 − µ−

1
2


µ−

1
2
ξi1
ηi1

+ µ
1
2
ηi1
ξi1

µ
1
2
ηi2
ξi1

(
ξi2
ηi2

+ ηi2
ξi2

)
µ−

1
2
ξi1
ηi2

(
ξi1
ηi1

+ ηi1
ξi1

)
µ−

1
2
ξi2
ηi2

+ µ
1
2
ηi2
ξi2


(2.61)

ζhi = ξi1ξi2
ηi1ηi2

, Q =

 κ1 0

0 κ2
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which could be rewritten using monodromy operator(
λQ− T 2×2

3 (µ)
)
ψ3 = 0 ⇔ det

(
λQ− T 2×2

3 (µ)
)

= 0,

T 2×2
3 (µ) = L1(σ1ζ

h
1µ)L2(σ2ζ

h
2µ)L3(σ3ζ

h
3µ).

(2.62)

Lax operator (2.61) is of gl2 type, so can be mapped to (1.52). To trans-
form it in sl2 form (2.55) we have to apply transformations like (1.54)

µ 7→ −µ ξ1ξ2
η1η2

, (2.63)

L(µ) 7→
(√

ξ1ξ2
η1η2

µ
1
2 −

√
η1η2
ξ1ξ2

µ−
1
2

) µ−1/2 0

0 1

 · L(µ) ·

 µ1/2 0

0 1


so it becomes

L(µ) =


µ

1
2

√
η1ξ2
ξ1η2

− µ−
1
2

√
ξ1η2
η1ξ2

√
ξ2η2
ξ1η1

(
ξ2
η2

+ η2
ξ2

)

−
√
ξ1η1
ξ2η2

(
ξ1
η1

+ η1
ξ1

)
µ

1
2

√
ξ1η2
η1ξ2

− µ−
1
2

√
η1ξ2
ξ1η2

 . (2.64)

Defining classical sl2 spin variables by

S− = 1
2

√
ξ2η2
ξ1η1

(
ξ2
η2

+ η2
ξ2

)
, S+ = −1

2

√
ξ1η1
η2ξ2

(
ξ1
η1

+ η1
ξ1

)
, eS

0 =
√
ξ1η2
η1ξ2

(2.65)
we see that Lax operator (2.64) coincides with the (2.55) up to replacement
µ1/2 → µ and S0 7→ −S0. The latter is a consequence of the fact that
(2.64) is coming from q = e−~ prescription, but (2.55) - from the usual
q = e~. Poisson brackets of spin variables coming from edge variables
bracket {ξi, ηj} = 1

2δijξiηj are

{S0, S±} = ±1
2 S
±, {S+, S−} = 1

2 sinh 2S0 (2.66)

which differs from (2.57) by factor 1/2, appearing from κ = 1
2 in the pre-

scription for the classical limit of commutators (1.31). For details see Sec-
tion 1.3. Spectral curve (2.56) could be obtained from (2.49) by transfor-
mation λ 7→ λ(κ1κ2)− 1

2 with identification of parameters κ = (κ1/κ2) 1
2 ,

µi = (κ1κ2) 1
2 (σiζhi )−1.
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2.3 Dualities and twists

2.3.1 Spectral duality

For some integrable chains special kind of duality could be observed both
on the classical and on the quantum level: namely system withN -dimensional
auxiliary space on M sites share Hamiltonians with some other system
withM -dimensional auxiliary space onN sites. Under duality spectral pa-
rameter which monodromy operator depends on, and spectral parameter
of characteristic equation exchange, so this duality is often called spectral
duality (however, sometimes referred as ’level-rank’ or ’fiber-base’ duality,
see [134] and references therein).

In the case of our interest, system doesn’t change its type: XXZ clas-
sical spin chain of glM type on N sites is dual to the XXZ chain of the glN
type onM sites [134], [23]. Looking atM×N fence-net bipartite graph, it
becomes obvious: graph keeps its structure under 90-degree rotation. On
the level of Kasteleyn operator, this corresponds to exchange of factors in
tensor product, and using different expressions for spin variables.

SU(2) theory with Nf = 4 and one bi-fundamental multiplet.
We start discussion of spectral duality in our context from simplest non-
trivial example. Let us consider gl3 spin chain on two sites, which is dual
to gl2 chain on three sites, considered in Section 2.2.2. To derive dual
Lax operators, we should permute some rows and columns of Kasteleyn
operator (2.59), which is exchanging of factors in tensor product End(C2⊗
C3) = End(C3 ⊗ C2):

D =

11 21 31 12 22 32

11 ξ11 0 λκ1η11 µσ1η12 0 −λµκ2σ1ξ12

21 η21 ξ21 0 −µσ2ξ22 µσ2η22 0

31 0 η31 ξ31 0 −µσ3ξ32 µσ3η32

12 η11 0 −λκ1ξ11 ξ12 0 λκ2η12

22 −ξ21 η21 0 η22 ξ22 0

32 0 −ξ31 η31 0 η32 ξ32

=

(2.67)
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=

 Ã1 µQ̃C̃2

C̃1 Ã2


Spectral curve is given by condition

detD(λ, µ) = 0 ⇔ ∃ ψ̃ =
(
ψ̃1 ψ̃2

)
: (2.68)

ψ̃D(λ, µ) = 0 ⇔

 ψ̃2 = ψ̃1L̃1(κ1ζ
v
1λ)

µψ̃1Q̃ = ψ̃2L̃2(κ2ζ
v
2λ)

L̃k(λ) = 1
λ

1
2 − λ−

1
2
· (2.69)

·



λ−
1
2 ξ1k
η1k

+ λ
1
2 η1k
ξ1k

λ
1
2 η1k
ξ2k

(
ξ1k
η1k

+ η1k
ξ1k

)
λ

1
2 η1kη2k
ξ2kξ3k

(
ξ1k
η1k

+ η1k
ξ1k

)
λ−

1
2 ξ2k
η1k

(
ξ2k
η2k

+ η2k
ξ2k

)
λ−

1
2 ξ2k
η2k

+ λ
1
2 η2k
ξ2k

λ
1
2 η2k
ξ3k

(
ξ2k
η2k

+ η2k
ξ2k

)
λ−

1
2 ξ2kξ3k
η1kη2k

(
ξ3k
η3k

+ η3k
ξ3k

)
λ−

1
2 ξ3k
η2k

(
ξ3k
η3k

+ η3k
ξ3k

)
λ−

1
2 ξ3k
η3k

+ λ
1
2 η3k
ξ3k



ζvk = ξ1kξ2kη3k
η1kη2kη3k

, Q̃ =


σ1 0 0

0 σ2 0

0 0 σ3

 (2.70)

which could be rewritten using monodromy operator

ψ̃1
(
µQ̃− T̃ 3×3

2 (λ)
)

= 0 ⇔ det
(
µQ̃− T̃ 3×3

2 (λ)
)

= 0, (2.71)

T̃ 3×3
2 (λ) = L̃1(κ1ζ

v
1λ)L̃2(κ2ζ

v
2λ).

It is indeed spectral dual to the curve (2.62). One can check by direct
calculation that

(1− κ1ζ
v
1λ)(1− κ2ζ

v
2λ)det

(
µQ̃− T̃ 3×3

2 (λ)
)

=

= (1− σ1ζ
h
1µ)(1− σ2ζ

h
2µ)(1− σ3ζ

h
3µ)det

(
λQ− T 2×2

3 (µ)
)
.

(2.72)
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General case. If the order of factors in tensor product in (2.44) had
been chosen in the other way, we would get M matrices Ak and Ck of size
N ×N :

D(λ, µ) =
M∑
m=1

Ãm ⊗ Em,m + (Q̃)δM,mC̃m ⊗ Em+1,m (2.73)

Ãm =
N∑
n=1

ξnmEn,n+ηnmκδ1,n
m En,n−1, C̃m =

N∑
n=1

ηnmEn,n−ξnmκ
δn,1
m En,n−1,

(2.74)

Q̃ =
N∑
n=1

σnEnn.

Again, we present spectral curve as condition

∃ ψ̃ =
N∑
n=1

M∑
m=1

ψ̃nmen ⊗ em ∈ CMN : ψ̃D(λ, µ) = 0 (2.75)

which gives for the spectral curve

det (L̃1(κ1ζ
v
1λ)...L̃M (κMζvMλ)− µQ̃) = 0, L̃k(κkζvkλ) = −ÃkC̃−1

k .
(2.76)

Using variables (2.37) we can write dual Lax operator

(L̃m)ij(λ) = 1
λ

1
2 − λ−

1
2


i 6= j, λ−

sij
2 (z2

im + z−2
im ) τ̃im

τ̃jm

i = j, λ
1
2 z−2
im + λ−

1
2 z2
im

, (2.77)

τ̃nm = wnm

N∏
i=1

z−sinim .

We can relate them to L-operators (2.52) of the same size

L(z, w, µ) = L̃(z → z−1, w, λ→ µ−1)>. (2.78)

Noting that for the classical r-matrix

r(a−1)> = −r(a) (2.79)

where transposition is taken in each tensor multiplier, we can deduce from
(2.51) that

{L̃(λ)⊗ L̃(µ)} = 1
2[L̃(λ)⊗ L̃(µ), r(λ/µ)]. (2.80)
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To obtain explicit relation for the dual spectral curves, we have to come
back to the Kasteleyn operator of the system, and consider its determi-
nant. In terms of M ×M blocks Ak, Ck defined by (2.74) spectral curve
is given by

det D(λ, µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 0 ... 0 λC1Q

C2 A2 ... 0 0

... ... ... ... ...

0 0 ... AN−1 0

0 0 ... CN AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (2.81)

=
∏
i

(detCi) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C−1
1 A1 0 ... 0 λQ

1 C−1
2 A2 ... 0 0

... ... ... ... ...

0 0 ... C−1
N−1AN−1 0

0 0 ... 1 C−1
N AN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= ... =
∏
i

(detCi) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 ... 0 λQ

1 1 ... 0 0

... ... ... ... ...

0 0 ... 1 0

0 0 ... 1 (−1)NTM×MN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

TM×MN = L1...LN , Lk = −C−1
k Ak,

and subtracting consequentially lines from first to last

det D(λ, µ) = (−1)NMdet (C1...CN ) det (TM×MN (µ)− λQ). (2.82)

Acting in the same way, we get for the dual spectral curve

det D(λ, µ) = (−1)NMdet
(
C̃1...C̃M

)
det (T̃N×NM (λ)− µQ̃), (2.83)

T̃N×NM = L̃1...L̃M , L̃k = −ÃkC̃−1
k
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so, precise relation between curves is

det (C1...CN ) det (TM×MN (µ)−λQ) = det
(
C̃1...C̃M

)
det (T̃N×NM (λ)−µQ̃)

(2.84)
Note that the relation of pre-factors is Casimir of the bracket

det (C1...CN )
det

(
C̃1...C̃N

) = µ
N
2

λ
M
2

(
σ1...σN
κ1...κM

)1/2
N∏
n=1

(σnζhnµ)−1/2 − (σnζhnµ)1/2

M∏
m=1

(κmζvmλ)−1/2 − (κmζvmµ)1/2
.

(2.85)

2.3.2 Twisted chains

A diagonal twist matrix is not the only one, commuting with r-matrices.
A cyclic twist

QΛ(λ) =
N∑
i=1

Ei+1,i =
N−1∑
i=1

Ei+1,i + λE1,N (2.86)

also satisfies [r(λ/µ), QΛ(λ)⊗QΛ(µ)] = 0. In terms of bipartite graphs it
corresponds to the twist on a cycle of the torus, where the bipartite graph
is drawn on, or the gluing condition for the sides of fundamental domain,
see Fig. 2.6. Such twist also changes a Poisson quiver, even though the
edge variables are not affected themselves.

The twist of a bipartite graph results further in change of the zig-zag’s
structure. Several parallel zig-zags now join into ’longer sequences’ with
non-trivial winding so that rectangle Newton polygon undergoes a ’shear
shift’ – see examples on Fig. 2.9.

In the context of such transformations one can expect nontrivial con-
sequences for spectral duality. Consider the trivial case of glN chain on a
single site, which is dual to rank 1 chain on N sites, and apply the cyclic
twist along the longer side of a bipartite graph. In original picture this is
just a multiplication of a single N×N Lax operator by cyclic permutation
matrix. However in the dual setup, this results in passing from trivial gl1
chain to the Toda chain on the same number of sites, which can be verified
by comparing Fig. 2.9 and Fig. 2.3. After such procedure the number of
Casimirs drops by 2N − 2, while number of Hamiltonians jumps from 0
to N − 1.
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a)

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 2 1, 1 1, 2 1, 1

b)

3, 1 3, 2 3, 1 3, 2

1, 2 1, 1 1, 2 1, 1

2, 2 2, 1 2, 2 2, 1

3, 2 3, 1 3, 2 3, 1

1, 1 1, 2 1, 1 1, 2

c)

1 1 1

2 2 2

3 3 3

1 1 1

d)

2 1 3

3 2 1

1 3 2

2 1 3

Figure 2.9. Examples of twisted gl2 chains. Dashed lines bound fundamental
domains. We use different notations for zig-zags here, comparing to the pictures
above. Edges crossed by red arrows belong to γ2 zig-zag, orange arrows are for
α1. a,b) XXZ chain of rank two and its twisted cousin. Note that the twisted
twice chain is equivalent up to SL(2,Z) transformation λ→ λµ to the untwisted
chain, as Q2

Λ = µ1, like in Remark 2.2.2. c,d) Making Toda chain by twisting
glN chain dual to gl1 chain.

For supersymmetric theories such transformation turns the theory of a
single SU(N) hypermultiplet with only SU(N)× SU(N) flavor symmetry
into pure SU(N) gauge theory.

2.4 Discrete dynamics

The cluster mapping class group GQ consists of sequences of mutations
and permutations of quiver vertices, which maps quiver to itself, but acts
in general non-trivially to the cluster variables (see Section 1.4 for details).
As a simplification one can restrict the action of GQ to the set of Casimirs
of the Poisson bracket. Each monomial Casimir maps to the monomial in
Casimir functions. When the necessary for integrability condition ∏i xi =
1 is relaxed to ∏i xi = q (which is called as deautonomization), these flows
act on the set of Casimirs, inducing non-trivial q−dynamics.

In [14] the cluster mapping class groups for the quivers, corresponding
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to Newton polygons with a single internal point, were identified with the
symmetry groups of q-Painlevé equations12. Passing from X-cluster to
A-cluster variety, the q-Painlevé equations acquire bilinear form for the
tau-functions, and can be solved via the dual Nekrasov partition functions
for 5d supersymmetric SU(2) gauge theories [24, 14, 102, 16], which is a
natural ’5d uplift’ of ’4d’ isomonodromic/CFT correspondence [68]. In
[15] the cluster description was further applied to discrete dynamics of
relativistic Toda chains of arbitrary lengths, where the solutions of non-
autonomous versions are given by SU(N) partition functions with the
|k| ≤ N Chern-Simons terms. Recently, cluster realization of generalized
q-Painlevé VI system was also observed in [153]. Note that for q = 1 case
with trivial Casimirs solution of discrete dynamics for arbitrary bipartite
graph can be written in terms of θ-functions [44].

Below in this section we discuss the cluster mapping class groups and
non-autonomous bilinear equations, arising for generic rectangle Newton
polygons. We present their explicit construction in the example, which
will illustrate the following results:

Structure of the group GQ.
For the SA(2,Z)-class of N ×M rectangular Newton polygon, the MCG
GQ always contains a subgroup of the form

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
× W̃

(
A

(1)
M−1 ×A

(1)
M−1

)
o Z ⊂ GQ. (2.87)

where W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
is a co-extended double Weyl group (2.54).

The generators of each subgroup are naturally labeled by intervals on
sides of a Newton polygon, or subset of ’parallel’ zig-zag paths (in the
same homology class) on a bipartite graph:

W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
: {sαi,αi+1}, {sβi,βi+1}, i ∈ Z/NZ (2.88)

W̃
(
A

(1)
M−1 ×A

(1)
M−1

)
: {sγa,γa+1}, {sδa,δa+1}, a ∈ Z/MZ (2.89)

where subscripts α, β, γ, δ label the corresponding group of paths, see
Fig. 2.6 middle and right. The group being extended by the additional
generator ρ contains lattice of the rank 2N +2M −3 of q−difference flows
of integrable system.

12Such relation for particular cases was earlier mentioned in [90, 146, 24, 147].
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Moreover, in special cases there is an obvious symmetry enhancement:
for example, for N = M an additional ’external’ generator appears, which
rotates the whole picture by π/2. However, sometimes this enhancement
is more essential: if any of the sides is of length 2, two rest Weyl groups
can be ’glued’ together by additional permutation, so the known subgroup
of GQ becomes

W̃
(
A

(1)
2N−1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
⊂ GQ (2.90)

This enhancement is closely related to the fact that spectral curves with
the N × 2 rectangular Newton polygon can be mapped to the curves with
the triangular Newton polygon with the integer sides 2N × 2× 2 (see e.g.
(3.70) in [62]). If both N = M = 2 one finds the extra enhancement from
W̃ (A(1)

1 ×A
(1)
1 )× W̃ (A(1)

1 ×A
(1)
1 ) to W̃ (D(1)

5 ), see below.

Action on spin chain Casimirs.
Inhomogeneities, total spins, on-site Casimirs and twists of spin chain are
permuted under the action of different components of GQ.

Inhomogeneities are given by single zig-zags µi = βi, while on-site
Casimirs are given by products of zig-zags ζhi = (αiβi)

1
2 . So the well

defined transformation of them, which ’permutes sites’ of spin chain are
products of primitive permutations

sαi,αi+1sβi,βi+1 : µi 7→ µi+1, µi+1 7→ µi, ζhi 7→ ζhi+1, ζ
h
i+1 7→ ζhi . (2.91)

Permutations of twists κa = (δa/γa)
1
2 and projections of spins ζva =

(γaδa)
1
2 by products

sγa,γa+1sδa,δa+1 : κa 7→ κa+1, κa+1 7→ κa, ζva 7→ ζva+1, ζ
v
a+1 7→ ζva .

(2.92)
can be viewed as an action of the Weyl group by permutations on the
maximal torus of Lie group.

Bilinear equations.
Equations defining the action of each single generator of GQ on A-cluster
variables (τ×ij , τ+

ij ) could be rewritten in the form of bilinear equations.
Evolution of coefficients can be encapsulated into the transformations of
frozen variables {uαi ,uβi ,uγa ,uδa}, which are evolving in the same way
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as Casimirs in X -variables.

For example τ -variables τ̄×k,a, τ̄
+
k,a transformed under the action of gen-

erator sβi,βi+1 satisfy bilinear equations

(uβi+1 − q
1
N uβi)(uδuγa) 1

N τ+
i−1,aτ

×
i+1,a =

= u
1
M
βi+1

τ̄+
i,aτ
×
i,a − q

1
NM u

1
M
βi
τ̄×i,aτ

+
i,a

(uβi+1 − q
1
N uβi)(uδ/uδa) 1

N τ+
i−1,a+1τ

×
i+1,a =

u−
1
M

αi τ̄×i,aτ
+
i,a+1 − q

1
NM u−

1
M

αi τ̄+
i,a+1τ

×
i,a

(2.93)

for all a ∈ Z/MZ, where uδ = ∏
a uδa . Frozen variables are transforming

as
sβi,βi+1 : uβi 7→ q−

1
N uβi+1 , uβi+1 7→ q

1
N uβi . (2.94)

Bilinear equations for the action of generators sαi,αi+1 , sγa,γa+1 , sδa,δa+1 are
similar.

2.4.1 Structure of GQ
Now we present generators of GQ in terms of the quiver mutations13

{µ×ij , µ
+
ij} (in the vertices, initially assigned with {x×ij , x+

ij}) and permu-
tations of the vertices {sλa,λbij,kl }. Consider for simplicity the (3, 2)-example,
which already illustrates how the explicit formulas look like in generic
case. Here 2(N +M) = 10 generators (2.88) can be realized as

sβ1,β2 = sλa,λb12,12µ
+
11µ
×
11µ
×
12µ

+
12µ
×
11µ

+
11 sα3,α1 = sλa,λb12,31µ

+
32µ
×
11µ
×
12µ

+
31µ
×
11µ

+
32

sβ2,β3 = sλa,λb22,22µ
+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21 sα1,α2 = sλa,λb22,11µ

+
12µ
×
21µ
×
22µ

+
11µ
×
21µ

+
12

sβ3,β1 = sλa,λb32,32µ
+
31µ
×
31µ
×
32µ

+
32µ
×
31µ

+
31 sα2,α3 = sλa,λb32,21µ

+
22µ
×
31µ
×
32µ

+
21µ
×
31µ

+
22

(2.95)
and

sδ2,δ1 = sλa,λb31,31µ
+
21µ
×
21µ

+
11µ
×
11µ
×
31µ

+
31µ
×
11µ

+
11µ
×
21µ

+
21 (2.96)

sγ1,γ2 = sλa,λb21,12µ
+
22µ
×
31µ

+
32µ
×
11µ
×
21µ

+
12µ
×
11µ

+
32µ
×
31µ

+
22

13For the definitions on cluster algebras see Section 1.4.
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sδ1,δ2 = sλa,λb32,32µ
+
22µ
×
22µ

+
12µ
×
12µ
×
32µ

+
32µ
×
12µ

+
12µ
×
22µ

+
22

sγ2,γ1 = sλa,λb22,11µ
+
21µ
×
32µ

+
31µ
×
12µ
×
22µ

+
11µ
×
12µ

+
31µ
×
32µ

+
21

which are sequences of mutations in the vertices along zig-zags in the
forward and then backward directions. One can check that each generator
here is involution i.e. s2 = 1, and acts by rational transformation on
X-cluster variables: e.g. for sβ2,β3 = sλa,λb22,22µ

+
21µ
×
21µ
×
22µ

+
22µ
×
21µ

+
21 one can

explicitly write:

x×31 7→ x×31 ·x
+
22x
×
21

[x×22, x
+
21, x

×
21]

[x×21, x
+
22, x

×
22]
, x×32 7→ x×32 ·x

+
21x
×
22

[x×21, x
+
22, x

×
22]

[x×22, x
+
21, x

×
21]
, (2.97)

x+
21 7→

1
x×21
· [x+

21, x
×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
, x+

22 7→
1
x×22
· [x+

22, x
×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
,

x×21 7→
1
x+

22
· [x×21, x

+
22, x

×
22]

[x×22, x
+
21, x

×
21]
, x×22 7→

1
x+

21
· [x×22, x

+
21, x

×
21]

[x×21, x
+
22, x

×
22]
,

x+
11 7→ x+

11 · x
×
21x

+
21

[x+
22, x

×
22, x

+
21]

[x+
21, x

×
21, x

+
22]
, x+

12 7→ x+
12 · x

×
22x

+
22

[x+
21, x

×
21, x

+
22]

[x+
22, x

×
22, x

+
21]
,

while all the other variables remain unchanged. Here we have used the
notation

[x1, x2, .., xn] = 1 + x1 + x1 · x2 + ...+ x1 · ... · xn = (2.98)

= 1 + x1(1 + x2(....+ xn−1(1 + xn)...)).

Notice also that the result of zig-zag mutation sequences actually do not
depends on the point of the ’zig-zag strip’ one starts with the first mutation
and direction of the jumps along/across given zig-zag. Note that the [ ]-
function possesses nice ’inversion’ property

[x1, ..., xn] = x1...xn · [x−1
n , ..., x−1

1 ] (2.99)

which allows to write equivalently, for example

x×21 7→
1
x+

22
· [x×21, x

+
22, x

×
22]

[x×22, x
+
21, x

×
21]

= 1
x+

21
· [(x×22)−1, (x+

22)−1, (x×21)−1]
[(x×21)−1, (x+

21)−1, (x×22)−1]
. (2.100)
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Each set of permutations sζi,ζi+1 with similar ζ constitute affine Weyl
group of A(1)-type. The groups for different z are commuting, so they
satisfy usual relations

s2
ζi,ζi+1

= 1,

(sζi,ζi+1sζi+1,ζi+2)3 = 1

sζi,ζi+1sζj ,ζj+1 = sζj ,ζj+1sζi,ζi+1 , |i− j| > 1

(2.101)

ζ = α, β with i, j ∈ Z/3Z
s2
ζi,ζa+1 = 1

ζ = γ, δ with i, j ∈ Z/2Z.

sζi,ζi+1sζ′j ,ζ′j+1
= sζ′j ,ζ′j+1

sζi,ζi+1 ,

ζ, ζ ′ = α, β, γ, δ such that ζ 6= ζ ′. There are two more ’external’ automor-
phisms preserving bipartite graph

Λh : x×ia 7→ x×i,a−1, x+
ia 7→ x+

i,a−1

Λv : x×ia 7→ x×i−1,a, x+
ia 7→ x+

i−1,a

(2.102)

which satisfy obvious relations

ΛhΛv = ΛvΛh, Λ2
h = 1, Λ3

v = 1, (2.103)

Λhsζa,ζa+1 = sζa−1,ζaΛh, for ζ = γ, δ, (2.104)

Λhsζi,ζi+1 = sζi,ζi+1Λh, for ζ = α, β, (2.105)

Λvsζi,ζi+1 = sζi−1,ζiΛv, for ζ = α, β , (2.106)

Λvsζa,ζa+1 = sζa,ζa+1Λv, for ζ = γ, δ , (2.107)

and promote affine Weyl groups to extended affine Weyl groups. There is
also one more generator of infinite order

ρ = sλbλaµλb : µλb = ∏
i,a
µλbia , sλbλa : x+

ia 7→ x×ia, x×ia 7→ x+
i−1,a+1,

(2.108)
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satisfying relations

ρ sαi−1,αi = sαi,αi+1 ρ, ρ sβi,βi+1 = sβi,βi+1 ρ, (2.109)

ρ sγi,γi+1 = sγi−1,γi ρ, ρ sδi,δi+1 = sδi,δi+1 ρ,

so the cluster mapping class group contains

W̃
(
A

(1)
2 ×A

(1)
2

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z ⊂ GQ. (2.110)

We conjecture that for general rectangularN×M Newton polygon, cluster
mapping class group contains subgroup (2.87). Construction of generators
for general N and M is straightforward, by ’jumps over zig-zags’ as in
example.

In the case N = M there is also an additional ’external’ generator
Rπ/2 of order 4, which rotates bipartite graph by π/2

Rπ/2 : x×i,a 7→ x+
−a,i, x+

i,a 7→ x×1−a,i. (2.111)

In the case N = 2K or M = 2K there is another additional ’external’
generator, which flips the rectangle.

Discrete flows. The group GQ contains lattice L of discrete flows of
rank B − 3, where B = 2N + 2M is the number of boundary integral
points of Newton polygon. It consists of four pairwise commuting lat-
tices contained in two copies of W (A(1)

N−1) = ZN−1 oW (AN−1) and two
copies ofW (A(1)

M−1) = ZM−1oW (AM−1), and generator (ρ)lcm(N,M) where
lcm(N,M) is the least common multiple of N andM . The lattice is gener-
ated by elements Tζi,ζi+1 which take pair of adjacent strands, wind them
up in opposite directions over cylinder and put on the initial places, if
one imagine W (A(1)

N−1),W (A(1)
M−1) as a groups acting by permutations of

strands on cylinder. For (3, 2) example β-piece of GQ can be presented as
W (A(1)

2 ) = Z2 oW (A2) with Z2 and W (A2) generated by

Tβ1,β2 = sβ1,β2sβ2,β3sβ3,β1sβ2,β3 , Tβ2,β3 = sβ2,β3sβ3,β1sβ1,β2sβ3,β1 (2.112)

and by
sβ1,β2 , sβ2,β3 (2.113)

correspondingly.
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One can find a homomorphism of the lattice L of the shifts (2.112) into
the group of discrete flows G′∆ (defined as in [55] to be an additive group
of integral valued functions on boundary vertices of Newton polygon mod-
ulo sub-group A generated by the restrictions from Z2 to the boundary
of Newton polygon of affine functions f(i, j) = ai+ bj + c). For the case
of rectangular Newton polygons one can easily finds that G′∆ = ZB−3.
Embedding of L to G′∆ actually comes from consideration of the action
of GQ on zig-zags presented in the next section, and results in the image
ZB−3. However, the factor is G′∆/L = Z/lcm(N,M)Z ⊕ Z/NZ ⊕ Z/MZ.
The non-trivial index appears due to the functions on the corners of New-
ton polygon. It can be also seen that the image of generator (ρ)lcm(N,M)

coincides with the image of generator τ from [55].

2.4.2 Monomial dynamics of Casimirs

According to [71] the lattice of Casimir functions xγ is generated by zig-zag
paths14

Z = {γ ∈ H1(Γ,Z) | ε(γ, ·) = 0}. (2.114)

As the skew-symmetric form ε is intersection form on dual surface, this
condition is equivalent to being trivial in dual surface Ŝ homologies. In
order to be expressed in terms of cluster variables {x×ij , x+

ij} Casimir should
be also trivial in torus homologies, i.e. we are interested in subset

C = {γ ∈ H1(Γ,Z) | [γ] = 0 ∈ H1(Ŝ,Z), [γ] = 0 ∈ H1(T2,Z)}. (2.115)

As zig-zags and faces are drawn on torus Z,F ⊂ H1(Γ,Z), they are con-
strained by ∏i xζi = 1, where the product goes over all zig-zag paths
and ∏i xfi = 1, where the product goes over all faces of bipartite graph
on torus. To obtain non-trivial q-dynamic these constraints have to be
relaxed to ∏i xfi = q 6= 1 so that xγ now is an element of extension
H1(Γ̃,Z) = H1(Γ,Z)⊕Q2

〈ω,ω̂〉 with the relations ∑i fi = ω,
∑
i ζi = ω̂. In

multiplicative notations this reads∏
i

xfi = q,
∏
i

xζi = q̂ (2.116)

where we have additionally defined q = xω, q̂ = xω̂. Introduction of q 6= 1
can be considered by lifting of bipartite graph to universal cover of T2

which is R2.
14For details on definitions see Section 1.4.
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Any variable xγ , γ ∈ C can be expressed via face variables xfi , which
are cluster variables, and can be mutated by usual rules (1.82). However,
there is no generic rule for mutation of variable associated with a single
zig-zag, except for mutation in four-valent vertex identified with a ’spider
move’ [71]. We propose here the generic rule for transformation of zig-
zags 15 under the action of generators (2.94), namely, for the N × M
rectangle:

sαi,αi+1 : αi 7→ q
1
N αi+1, αi+1 7→ q−

1
N αi,

sβi,βi+1 : βi 7→ q−
1
N βi+1, βi+1 7→ q

1
N βi,

sγa,γa+1 : γa 7→ q
1
M γa+1, γa+1 7→ q−

1
M γa,

sδa,δa+1 : δa 7→ q−
1
M δa+1, δa+1 7→ q

1
M δa,

(2.117)

where i = 1, . . . , N , a = 1, . . . ,M . The group GQ acts on the elements of
C, embedded in multiplicative lattice generated by zig-zags, precisely as
Coxeter groups of AK−1-type act on the root lattices embedded into ZK
(c.f. [153, 95]).

These rules basically come just from consistency with mutation trans-
formations for the elements of C. There is a two-parametric family of
transformations for zig-zag variables

ζ 7→ ζa[ζ]Ab[ζ]B , if [ζ] = ([ζ]A, [ζ]B)− class of ζ in H1(T2,Z) (2.118)

which do not affect C, since C consists of the combinations of zig-zags with
zero class in torus homology. This ambiguity is fixed using the ’locality
assumption’ that zig-zags not adjacent to the transformed faces are not
changed.

Let us now demonstrate, how formulas (2.117) come for (N,M) =
(3, 2) from consistency with transformations of C, where one can introduce
the following over-determined set of generators

Zβ1,α1 = x×11x
×
12, Zβ2,α2 = x×21x

×
22, Zβ3,α3 = x×31x

×
32,

Zα1,β2 = (x+
11x

+
12)−1, Zα2,β3 = (x+

21x
+
22)−1, Zα3,β1 = (x+

31x
+
32)−1

(2.119)
15We abuse notations, denoting xζ = ζ for zig-zags.
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Zγ1,δ1 = (x×11x
×
21x
×
31)−1, Zδ1,γ2 = x+

12x
+
22x

+
32,

Zγ2,δ2 = (x×12x
×
22x
×
32)−1, Zδ2,γ1 = x+

11x
+
21x

+
31

(2.120)

satisfying

Zβ1,α1Zβ2,α2Zβ3,α3Zγ1,δ1Zγ2,δ2 = 1

Zα1,β2Zα2,β3Zα3,β1Zδ1,γ2Zδ2,γ1 = 1

Zβ1,α1Zβ2,α2Zβ3,α3(Zα1,β2Zα2,β3Zα3,β1)−1 = q = 1.

(2.121)

so that the number of independent Casimirs is seven. In the autonomous
limit, these Casimirs reduce to Zζ,ζ′ = ζ · ζ ′, where ζ, ζ ′ correspond to zig-
zags {α, β, γ, δ}, expressed via the edge variables. The transformation, for
example, sβ1,β2 acts by

sβ1,β2 :
Zβ1,α1 7→ Zα1,β2 , Zβ2,α2 7→

Zβ2,α2Zβ1,α1

Zα1,β2

, Zβ3,α3 7→ Zβ3,α3 ,

Zα1,β2 7→ Zβ1,α1 , Zα2,β3 7→ Zα2,β3 , Zα3,β1 7→
Zα3,β1Zα1,β2

Zβ1,α1

.

(2.122)
and substituting here Zζ,ζ′ = ζ · ζ ′ one finds that the action of sβ1,β2

reduces just to permutation of β1 and β2, the same is true for the other
generators sζ1,ζ2 .

For q 6= 1 consider the generators Tβi,βi+1 (2.112) which act trivially
on C at all in the autonomous limit. One gets now

Tβ1,β2 :
Zβ1,α1 7→ q−1Zβ1,α1 , Zβ2,α2 7→ qZβ2,α2

Zα1,β2 7→ qZα1,β2 , Zα3,β1 7→ q−1Zα3,β1

(2.123)

where q = ∏
i,j x

×
ijx

+
ij . Again, after expressing the Casimirs via zig-zags,

the action of Tβ1,β2 is equivalent to β1 7→ q−1β1, β2 7→ qβ2. These formu-
las suggest that at q 6= 1 one can express generators of C via zig-zags and
q by 16

Zβ1,α1 = q
1
6β1α1, Zβ2,α2 = q

1
6β2α2, Zβ3,α3 = q

1
6β3α3,

Zα1,β2 = q−
1
6α1β2, Zα2,β3 = q−

1
6α2β3, Zα3,β1 = q−

1
6α3β1

(2.124)

16The fractional powers of q in these formulas can be restored using the ’magnetic flux’
interpretation for q 6= 1 in non-autonomous case. This interpretation is also consistent
with the fact that zig-zags with the different orientations collect fluxes of different signs.
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Zγ1,δ1 = q−
1
4γ1δ1, Zδ1,γ2 = q

1
4 δ1γ2, Zγ2,δ2 = q−

1
4γ2δ2, Zδ2,γ1 = q

1
4 δ2γ1

(2.125)
which are consistent with constraints (2.121) with q 6= 1 if one assumed17

α1α2α3β1β2β3γ1γ2δ1δ2 = q̂ = 1. Comparison of transformation (2.122)
with (2.124) and (2.125) leads to the formulas (2.117) for (N,M) = (3, 2).
The action of remaining generators is defined by

Λh : αi 7→ αi, βi 7→ βi, γa → γa+1, δa 7→ δa+1,

Λv : αi 7→ αi+1, βi → βi+1, γa 7→ γa, δa 7→ δa,

ρ : αi 7→ q−
1
N αi−1, βi 7→ βi, γa → q

1
M γa+1, δa 7→ δa.

(2.128)
Remark 2.4.1. Specialities of N = 2 or M = 2 case.
It is well known (see e.g. [62], eq.(3.70)) that spectral curves with a
Newton polygon being 2 × N rectangle can be mapped to the ’triangle
ones’ with the catheti of lengths 2 and 2N (see Fig. 2.10) just by change
of variables. Namely, equation

S(λ, µ) = P+
N (µ)λ2 + PN (µ)λ+ P−N (µ) = 0 (2.129)

under λ 7→ P−N (µ) · λ−1 than S(λ, µ) 7→ λ2P−N (µ)−1S(λ, µ) turns into

S(λ, µ) = λ2 + PN (µ)λ+ P+
N (µ)P−N (µ) = 0. (2.130)

For a corresponding cluster integrable system the Poisson quiver from
Fig. 2.5 can be transformed into the form drawn at Fig. 2.11 – more com-
mon for ’triangular’ polygons 18, studied in detail in [153]. This corre-

17One can incorporate q̂ 6= 1 consistently modifying formulas (2.119) and (2.120) by

Zβ1,α1 = q̂
1
5 x×11x

×
12, Zβ2,α2 = q̂

1
5 x×21x

×
22, Zβ3,α3 = q̂

1
5 x×31x

×
32,

Zα1,β2 = q̂
1
5 (x+

11x
+
12)−1, Zα2,β3 = q̂

1
5 (x+

21x
+
22)−1, Zα3,β1 = q̂

1
5 (x+

31x
+
32)−1

(2.126)
Zγ1,δ1 = q̂

1
5 (x×11x

×
21x
×
31)−1, Zδ1,γ2 = q̂

1
5 x+

12x
+
22x

+
32,

Zγ2,δ2 = q̂
1
5 (x×12x

×
22x
×
32)−1, Zδ2,γ1 = q̂

1
5 x+

11x
+
21x

+
31

(2.127)

However, as a meaning of this extension is not clear, we will assume q̂ = 1 in the
following.

18For generic triangular Newton polygon each node of quiver is connected to six
arrows (and corresponding dimer lattice is hexagonal). However, in 2 × 2N case a
partial cancelation happens: the arrows directed from x×i1 to x×i2 annihilate the arrows
from x×i2 to x×i1, and the same happens with x+

i1 and x+
i2, so only four arrows at each

node remain.
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Figure 2.10. Transformation from rectangle to triangle for (3, 2) case.

x+
31

x+
32

x×32

x×31

x+
21

x+
22

x×22

x×21

x+
11

x+
12

x×12

x×11

Figure 2.11. Quiver for (3, 2) case represented in ’triangular’ form.

spondence results in the ’enhancement’ of the symmetry group 19: a pair
of commuting Weyl groups A(1)

N−1 × A
(1)
N−1 is now embedded into larger

group A(1)
2N−1 with the generators

sαiβi+1 = sλb,λbi1,i2 µλbi1 µ
λb
i2 , sβiαi = sλa,λai1,i2 µλai1 µ

λa
i2 , i = 1, . . . , N (2.131)

Embedding A(1)
N−1 ×A

(1)
N−1 → A

(1)
2N−1 is provided by

sβi,βi+1 = sβiαisαiβi+1sβiαi , sαi,αi+1 = sαiβi+1sβi+1αi+1sαiβi+1 (2.132)

and commutativity of sαi,αi+1 and sβi,βi+1 just follows form the relations
on ’elementary’ generators sβiαi , sαiβi+1 . The generators of A(1)

2N−1 also
commute with sδi,δi+1 , sγi,γi+1 . The generator ρ is also absorbed. Now it
is not a primitive one, but can be presented as a composition

ρ = ΛhΛ̃v
N∏
i=1

sαi,βi+1 (2.133)

19We are grateful to Y.Yamada for clarification of this point.
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where we used ’root’ from Λv

Λ̃v : x×ia 7→ x+
i−1,a, x+

ia 7→ x×i,a, so Λv = (Λ̃v)2 (2.134)

so there are no extra ’dimensions’ in the lattice of the flows.

The action of the enhanced group on Casimirs can be constructed in
a way similar to generic case. For example, for the generator sα1,β2 in
(N,M) = (3, 2) case from

sα1,β2 :

Zβ1,α1 7→
Zβ1,α1

Zα1,β2

Zα1,β2 7→
1

Zα1,β2

,

Zβ2,α2 7→
Zβ2,α2

Zα1,β2

Zγ1,δ1 7→ Zα1,β2Zγ1,δ1 ,

Zδ1,γ2 7→ Zα1,β2Zδ1,γ2 , Zγ2,δ2 7→ Zα1,β2Zγ2,δ2 ,

Zδ2,γ1 7→ Zα1,β2Zδ2,γ1

(2.135)

one gets for the zig-zags

sα1,β2 : α1 7→ q
1
6β−1

2 , β2 7→ q
1
6α−1

1 , γaδa 7→ q−
1
6α1β2γaδa. (2.136)

which contains now ’inversion’ of zig-zag, since αi and βi correspond to the
opposite classes in H1(T2,Z). Generally, for the action of A(1)

5 on zig-zags
one gets

sαiβi+1 : αi 7→ q
1
6β−1

i+1, βi+1 7→ q
1
6α−1

i , γaδa 7→ q−
1
6αiβi+1γaδa

sβiαi : αi 7→ q−
1
6β−1

i , βi 7→ q−
1
6α−1

i , γaδa 7→ q
1
6αiβiγaδa.

(2.137)
Remark 2.4.2. Further enhancement for N = M = 2 ’small square’.
The group GQ for this case can be identified with the q-Painlevé VI sym-
metry groupW (D(1)

5 ) (see e.g. [14]). It corresponds naively to the ’double’
symmetry enhancement

A
(1)
1,α ×A

(1)
1,β → A

(1)
3,α,β, A

(1)
1,γ ×A

(1)
1,δ → A

(1)
3,γ,δ. (2.138)

but it turns out moreover that generators of the ’new’ extended groups
do not commute. For example the generators sα1β2 and sδ1γ2 satisfy

(sα1,β2sγ1,δ1)3 = 1 (2.139)
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sα1,α2sα2,α1

sβ1,β2sβ2,β1

sγ1,γ2 sγ2,γ1

sδ1,δ2 sδ2,δ1

sα1,α2

sα1,β2

sβ1,β2

sγ1,γ2

sγ1,δ1

sδ1,δ2

Figure 2.12. Symmetry enhancement from W
(
A

(1)
1 ×A

(1)
1 ×A

(1)
1 ×A

(1)
1

)
to

W (D(1)
5 ).

and this non-commutativity results in gluing of Dynkin quivers as shown
on Fig. 2.12.

Another cluster realization of W
(
D

(1)
5

)
has been proposed in [14],

given by generators

s0 = sλb,λb11,22 , s1 = sλb,λb12,21 , s2 = sλb,λb11,12µ
λb
11µ

λb
12

s5 = sλa,λa21,12 , s4 = sλa,λa11,22 , s3 = sλa,λa11,21 µ
λa
11µ

λa
21

. (2.140)

in terms of mutations of the same bipartite graph. In our notation this
generators are

s0 = sα1β2sδ1γ1sγ1γ2sδ1γ1sα1β2 , s1 = sα1β2sδ1γ1sδ1δ2sδ1γ1sα1β2 , s2 = sα1β2

s5 = sγ1δ1sα1β2sβ1β2sα1β2sγ1δ1 , s4 = sγ1δ1sα1β2sα1α2sα1β2sγ1δ1 , s3 = sγ1δ1 .

(2.141)
Two presentations can be mapped one to another by conjugation by

sα1β2sγ1δ1sα1β2 .

2.4.3 Towards bilinear equations

Let us finally turn to the issue of bilinear equations for the cluster tau-
functions or A-cluster variables. We postpone rigorous discussion of this
issue for a separate publication, but demonstrate here, how Hirota bilinear
equations can arise in the systems, corresponding to rectangle Newton
polygons.

The simplest example of bilinear equations is provided by spider moves,
or mutations in a four-valent vertex of the Poisson quiver, see also Fig. 1.5
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in Appendix for the transformation of corresponding piece of a bipartite
graph. Such transformation induce the only change in τ -variables, which
(for all unit coefficients)

τ0 7→ τ̄0 = τ1τ3 + τ2τ4
τ0

or τ0τ̄0 = τ1τ3 + τ2τ4. (2.142)

obviously leads to bilinear equation. However, there is no a priori reason
to get bilinear equations from generic action by an element of GQ. For
example, a single mutation in a six-valent vertex rather leads to relation,
which symbolically has form

τ τ̄ = τ3 + τ3 (2.143)

instead of bilinear. Sometimes one can get nevertheless a bilinear relation
for a sequence of mutations without no a priori reason for them to hold, see
e.g. Section. 2.8 of [15]. We are going to show in this section that the same
happens for the transformations, induced by the zig-zag permutations (e.g.
{sβi,βi+1} or {sγa,γa+1}), constructing their explicit action on tau-variables.

For A-cluster algebras20 the role of Casimir functions is played by
’coefficients’ [59], taking values in some tropical semi-field P, see also dis-
cussion in [15]. For the case of rectangle Newton polygons we label the
generators of P by zig-zags (together with q), i.e.

P = Trop(q, {uαi ,uβi}i=1,...,N , {uγa ,uδa}i=1,...,M ). (2.144)

so that the coefficients are expressed by

y×ia = q
1

NM
(uαiuβi)

1
M

(uγauδa) 1
N

, y+
ia = q

1
NM

(uγauδa−1) 1
N

(uαiuβi+1) 1
M

. (2.145)

The action of transformations sζi,ζi+1 on coefficients in this basis is equiv-
alent to the action on generators of P like in (2.117) on zig-zags, i.e.

sαi,αi+1 : uαi 7→ q
1
N uαi+1 , uαi+1 7→ q−

1
N uαi ,

sβi,βi+1 : uβi 7→ q−
1
N uβi+1 , uβi+1 7→ q

1
N uβi ,

sγa,γa+1 : uγa 7→ q
1
M uγa+1 , uγa+1 7→ q−

1
M uγa ,

sδa,δa+1 : uδa 7→ q−
1
M uδa+1 , uδa+1 7→ q

1
M uδa .

(2.146)

20For the definition of A-cluster algebra with coefficients and transition from X to
A-cluster algebra see Section 1.4.3.
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Coefficients could be encoded by ’frozen’ vertices of quiver. This sug-
gests principle that we assign frozen variables to faces of dual surface,
corresponding to zig-zag variables, while mutable variables - to faces of
original torus.

Let us now present an example of the action of the generator sβ1,β2 on
τ -variables in (N,M) = (3, 2) case. An explicit computation gives



τ̄+
11
τ+

11
τ̄×11
τ×11
τ̄+

12
τ+

12
τ̄×12
τ×12


=



u
1
2
β2

q
1

12 (uβ1uβ2) 1
2 q

2
12 u

1
2
β1

q
3

12 uβ1

q
3

12 u
1
2
β1

uβ2 q
1

12 u
1
2
β2

q
2

12 (uβ1uβ2) 1
2

q
2

12 u
1
2
β1

q
3

12 uβ1 u
1
2
β2

q
1

12 (uβ1uβ2) 1
2

q
1

12 u
1
2
β2

q
2

12 (uβ1uβ2) 1
2 q

3
12 u

1
2
β1

uβ2


·C·



τ+
31τ
×
21

τ+
11τ
×
11

τ+
32τ
×
21

τ+
12τ
×
11

τ+
32τ
×
22

τ+
12τ
×
12

τ+
31τ
×
22

τ+
11τ
×
12


(2.147)

where C = diag
(

(uγ1uδ)
1
3 ,u

1
2
α1(uδ/uδ1) 1

3 , (uγ2uδ)
1
3 ,u

1
2
α1(uδ/uδ2) 1

3

)
, uδ =

uδ1uδ2 . The main point is that the matrix in the r.h.s. is nicely invertible
so that these equations can be rewritten in bilinear form



(uβ2 − q
1
3 uβ1)(uδuγ1) 1

3 τ+
31τ
×
21 = u

1
2
β2
τ̄+

11τ
×
11 − q

1
12 u

1
2
β1
τ̄×11τ

+
11

(uβ2 − q
1
3 uβ1)(uδ/uδ1) 1

3 τ+
32τ
×
21 = u−

1
2

α1 τ̄
×
11τ

+
12 − q

1
12 u−

1
2

α1 τ̄
+
12τ
×
11

(uβ2 − q
1
3 uβ1)(uδuγ2) 1

3 τ+
32τ
×
22 = u

1
2
β2
τ̄+

12τ
×
12 − q

1
12 u

1
2
β1
τ̄×12τ

+
12

(uβ2 − q
1
3 uβ1)(uδ/uδ2) 1

3 τ+
31τ
×
22 = u−

1
2

α1 τ̄
×
12τ

+
11 − q

1
12 u−

1
2

α1 τ̄
+
11τ
×
12

. (2.148)

This is actually a generic phenomenon for the zig-zag generators: the same
happens, for example, for the generator sδ1,δ2 from another component of
GQ. One gets explicitly for the transformation of A-cluster variables

t1 = C1 · C2 · t2, (2.149)
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where

t1 =
(
τ̄+

32
τ+

32

τ̄×32
τ×32

τ̄+
22
τ+

22

τ̄×22
τ×22

τ̄+
12
τ+

12

τ̄×12
τ×12

)T

t2 =
(
τ+

31τ
×
31

τ+
32τ
×
32

τ+
21τ
×
31

τ+
22τ
×
32

τ+
21τ
×
21

τ+
22τ
×
22

τ+
11τ
×
21

τ+
12τ
×
22

τ+
11τ
×
11

τ+
12τ
×
12

τ+
31τ
×
11

τ+
32τ
×
12

)T (2.150)

C1 =



uδ2 q
1

12 u
2
3
δ2

q
2

12 (uδ1u2
δ2

) 1
3 q

3
12 (uδ1uδ2) 1

3 q
4
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δ1

uδ2) 1
3 q

5
12 u

2
3
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q
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q
4
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δ1
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3 q
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3
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3 q
4
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uδ2) 1
3 q
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uδ2 q
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) 1
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2
12 (uδ1uδ2) 1
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12 uδ1 u
2
3
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(2.151)

C2 = diag
(

(uα/uα3) 1
2 u

1
3
γ2 , (uαuβ3) 1

2 , (uα/uα2) 1
2 u

1
3
γ2 , (uαuβ2) 1

2 , (uα/uα1) 1
2 u

1
3
γ2 , (uαuβ1) 1

2

)
(2.152)

with uα = uα1uα2uα3 . Again, inverting matrix C1 we end up with the set
of bilinear equations

(uδ2 − q
1
2 uδ1)(uα/uα3) 1

2 τ+
31τ
×
31 = u−

1
3

γ2 τ̄
+
32τ
×
32 − q

1
12 u−

1
3

γ2 τ̄
×
32τ

+
32

(uδ2 − q
1
2 uδ1)(uαuβ3) 1

2 τ+
21τ
×
31 = u

1
3
δ2
τ̄×32τ

+
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1
12 u

1
3
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22τ
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1
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21τ
×
21 = u−

1
3
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+
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×
22 − q

1
12 u−

1
3

γ2 τ̄
×
22τ

+
22

(uδ2 − q
1
2 uδ1)(uαuβ2) 1

2 τ+
11τ
×
21 = u

1
3
δ2
τ̄×22τ

+
12 − q

1
12 u

1
3
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12τ
×
22

(uδ2 − q
1
2 uδ1)(uα/uα1) 1

2 τ+
11τ
×
11 = u−

1
3

γ2 τ̄
+
12τ
×
12 − q

1
12 u−

1
3

γ2 τ̄
×
12τ

+
12

(uδ2 − q
1
2 uδ1)(uαuβ1) 1

2 τ+
31τ
×
11 = u

1
3
δ2
τ̄×12τ

+
32 − q

1
12 u

1
3
δ1
τ̄+

32τ
×
12

(2.153)

It remains yet unclear, how to derive bilinear equations systematically
for compositions of elements of GQ. We are going to return to this issue
together with discussion of their solutions elsewhere.
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2.5 Conclusion
In this chapter we have presented extra evidence that cluster integrable
systems provide convenient framework for the description of 5d super-
symmetric Yang-Mills theory. It has been shown that cluster integrable
systems with the Newton polygons SA(2,Z)-equivalent to the N × M
rectangles are isomorphic to the XXZ-like spin chains of rank M on N
sites (or vice versa) on the ’lowest orbit’. Due to special symmetry of the
Kasteleyn operators, defining spectral curves of these systems, it turns to
be possible to express the Lax operators of spin chain in terms of the X-
cluster variables. Inhomogeneities and twists of the chain can be expressed
via (part of) the zig-zag paths on the Goncharov-Kenyon bipartite graphs.

Rectangle Newton polygons generally correspond to linear quiver gauge
theories [21] so that inhomogeneities, ’on-site’ Casimirs and twists define
the fundamental and bi-fundamental masses together with the bare cou-
plings on the Yang-Mills side. The proposed cluster description possesses
obvious symmetry between the structure in horizontal and vertical direc-
tions so that one gets a natural spectral (or fiber-base or length-rank)
duality, interchanging also the rank and length of spin chains. Shear shift
of one side of a Newton polygon to the shape of N ×M parallelogram
results in the multiplication of the monodromy operator of the spin chain
by the cyclic twist matrix.

We have found that the cluster mapping class group GQ for the ’spin-
chain class’ always contains a subgroup isomorphic to

W̃
(
A

(1)
N−1,α ×A

(1)
N−1,β

)
× W̃

(
A

(1)
M−1,γ ×A

(1)
M−1,δ

)
o Z (2.154)

whose generators act on zig-zag paths by permutations. Moreover, their
action on the A-cluster variables gives rise to the q−difference bilinear
relations. The symmetry enhancement happens in the case N = 2 (or
M = 2) and results in ’gluing’ of two copies of A(1)

N−1 into A
(1)
2N−1. If

both N = M = 2 the symmetry W̃
(
A

(1)
1 ×A

(1)
1

)
× W̃

(
A

(1)
1 ×A

(1)
1

)
o Z

enhances to the D(1)
5 symmetry group of q-PVI equation.

Our first results in this direction actually produce more question than
give answers. The following obvious questions (at least!) can be addressed
for the further investigations:

• Trivial rank-N spin chain on a single site once twisted becomes spec-
trally dual to relativistic Toda chain, see Section 2.3.2. Can we sim-
ilarly identify the spectral duals of the twisted chains of arbitrary



2.6 Appendix. Proof of the RLL relation for cluster L-matrices 75

lengths and twists, whose Newton polygons are generic parallelo-
grams – or even extend this to generic four-gons? This question is
also very interesting on the gauge-theory side, where by now only
the hyperelliptic case of ’generalized Toda’ (four boundary points
and all internal points are lying on one line – pure SU(N) theory
with the CS term) was studied in [15].

• We have derived in Section 2.4.3 the bilinear relations, coming out
of the action of a single ’permutation’ generator of GQ on A-cluster
variables, acting by transpositions on zig-zags. Is there any system-
atic principle to derive bilinear equations for compositions of such
transformations?

• In [24], [14], [102], [15], [25] and [136] the solutions for q-difference
bilinear equations and their degenerations, arising from certain clus-
ter integrable systems, were found in terms of Fourier-transformed
Nekrasov functions for the corresponding 5d gauge theories. As
partition functions for the 5d linear quiver gauge theories are well
known, a natural further step is to show that they solve the bilinear
equations found here (and their hypothetical generalizations!).

2.6 Appendix. Proof of the RLL relation for clus-
ter L-matrices

Here some details of proof of (2.51) are collected. Recall the definitions
(2.52) (here and below i, j = 1, . . . ,M)

Lij(µ) = 1
µ

1
2 − µ−

1
2


i = j, µ

1
2 z−2
i + µ−

1
2 z2
i

i 6= j, µ−
sij
2 (z2

j + z−2
j )τj

τi

, τi = wi

M∏
k=1

zskik .

(2.155)
where the variables zi, wi have Poisson brackets

{zi, wj} = 1
4δijziwj , {zi, zj} = {wi, wj} = 0. (2.156)

It is useful to note that

{zi, τj} = 1
4δijziτj , {τi, τj} = −1

2sijτiτj . (2.157)
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In addition to the sign-factors (1.5) we also introduce 21

skij =


+1, k ∈ (ij)

−1, k ∈ (ji)

0, k = i, j

(2.158)

which satisfies
skij = −skji, skij = sijk, skij = sij + sjk + ski. (2.159)

From definitions (2.155)

z2
k = −

Lkk(λ)√µ− Lkk(µ)
√
λ√

λ/µ−
√
µ/λ

, z−2
k =

Lkk(λ)/√µ− Lkk(µ)/
√
λ√

λ/µ−
√
µ/λ

(2.160)
Lij(λ)Lkl(µ) = λ−

1
2 sij+

1
2 sklµ

1
2 sij−

1
2 sklLij(µ)Lkl(λ), i 6= j, k 6= l.

We take an anzatz

r̃(a) =
M∑
k=1

fk(a)Ekk ⊗ Ekk +
∑
m 6=n

gmn(a)Emn ⊗ Enm (2.161)

and show that one can choose fk and gmn such that equation
{L(λ)⊗ L(µ)} = [r̃(λ/µ), L(λ)⊗ L(µ)] (2.162)

holds. By direct computation it can be shown that (a 6= i 6= j 6= k 6= l):

a. {L(λ)⊗ L(µ)} b. [r̃(λ/µ), L(λ)⊗ L(µ)]

1. Eii ⊗ Ejj 0 0

2. Eaa ⊗ Eij 0 gaiLia(λ)Laj(µ)− gjaLaj(λ)Lia(µ)

3. Eaa ⊗ Eaj ALaa(λ)Laj(µ)−BajLaj(λ)Laa(µ) faLaa(λ)Laj(µ)− gjaLaj(λ)Laa(µ)

4. Eaa ⊗ Eia −ALaa(λ)Lia(µ) +BiaLia(λ)Laa(µ) −faLaa(λ)Lia(µ) + gaiLia(λ)Laa(µ)

5. Eij ⊗ Eji Bji(Ljj(λ)Lii(µ)− Lii(λ)Ljj(µ)) gijLjj(λ)Lii(µ)− gijLii(λ)Ljj(µ)

6. Eij ⊗ Ekl 1
2(skij + slji)Lij(λ)Lkl(µ) gikLkj(λ)Lil(µ)− gljLil(λ)Lkj(µ)

7. Eij ⊗ Eia −1
2s
a
ijLij(λ)Lia(µ) fiLij(λ)Lia(µ)− gajLia(λ)Lij(µ)

8. Eij ⊗ Eaj 1
2s
a
ijLij(λ)Laj(µ) −fjLij(λ)Laj(µ) + giaLaj(λ)Lij(µ)

9. Eij ⊗ Eja BjiLjj(λ)Lia(µ)−BjaLia(λ)Ljj(µ) gijLjj(λ)Lia(µ)− gajLia(λ)Ljj(µ)

10. Eij ⊗ Eai −BjiLii(λ)Laj(µ) +BaiLaj(λ)Lii(µ) −gijLii(λ)Laj(µ) + giaLaj(λ)Lii(µ)
(2.163)

21Notation k ∈ (ij) means that we consider i, j, k on the circle Z/MZ, with k in the
oriented interval from i to j.



2.6 Appendix. Proof of the RLL relation for cluster L-matrices 77

with

A = A(
√
λ/µ) = 1

2

√
λ/µ+

√
µ/λ√

λ/µ−
√
µ/λ

, Bij = Bij(
√
λ/µ) = (λ/µ) 1

2 sij√
λ/µ−

√
µ/λ

.

(2.164)
Computations in 1,2,7,8.a) are straightforward. In 3, 4, 5.a) relation
(2.160) has to be used. 9,10.a) can be obtained by application of (2.160)
and (2.159):

{Lij(λ), Lja(µ)} = (2.165)

= −1
2λ
− 1

2 sijµ−
1
2 sja

τa
τi

(saij(z2
j + z−2

j )(z2
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a ) + (z2
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j )(z2
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a )) =
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a )τa
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j + (saij − 1)z−2
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= −saijλ−
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2 sijµ−
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τi
z

2saij
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2 siaµ−
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2 sja√
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Lia(λ)
[
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1
2 s
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2 s
a
ij
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=

= (λ/µ) 1
2 sjiLjj(λ)Lia(µ)− (λ/µ) 1

2 sjaLia(λ)Ljj(µ)√
λ/µ−

√
µ/λ

Looking at the table (2.163) we can suggest that the last two columns are
equal, if we put

fi = A(
√
λ/µ), gij = Bji(

√
λ/µ) (2.166)

For 1-5 and 9-10 it is obvious. For 6, 7, 8 it is easier to move from the
right to the left. For 6, using (2.159):

gikLkj(λ)Lil(µ)− gljLil(λ)Lkj(µ) = (2.167)

= λ−
1
2 sik−

1
2 skjµ−

1
2 ski−

1
2 sil − λ−

1
2 slj−

1
2 silµ−

1
2 sjl−

1
2 skj√

λ/µ−
√
µ/λ

τj
τk

τl
τi

(z2
j+z−2

j )(z2
l +z−2

l ) =

= λ−
1
2 s
j
ikµ−

1
2 s
l
ki − λ−

1
2 s
i
ljµ−

1
2 s
k
jl√

λ/µ−
√
µ/λ

Lij(λ)Lkl(µ)
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All possible relative positions of the indices i, j, k, l can be encoded in the
table

sjik slki silj skjl skij + slji

+1 +1 +1 +1 0

+1 −1 +1 −1 0

+1 −1 −1 +1 −2

−1 +1 −1 +1 0

−1 +1 +1 −1 +2

−1 −1 −1 −1 0

(2.168)

which shows that 6.a) and 6.b) from (2.163) are equal. For 7.b):

fiLij(λ)Lia(µ)− gajLia(λ)Lij(µ) = (2.169)

= 1
2

(
√
λ/µ+

√
µ/λ)λ− 1

2 sijµ−
1
2 sia − 2λ− 1

2 saj−
1
2 siaµ−

1
2 sja−

1
2 sij√

λ/µ−
√
µ/λ

·

·τj
τi

τa
τi

(z2
j + z−2

j )(z2
a + z−2

a ) =

= 1
2

√
λ/µ+

√
µ/λ− 2(λ/µ)− 1

2 s
j
ia√

λ/µ−
√
µ/λ

Lij(λ)Lia(µ) = −1
2s

a
ijLij(λ)Lia(µ)

which is equal to 7.a). Similarly for 8 a) and b). To show that (2.161) is
equal to (1.32) multiplied by 1

2 , we have to note that

M∑
k=1

Ekk ⊗ Ekk = 1⊗ 1−
∑
i 6=j

Eii ⊗ Ejj (2.170)

and 1⊗ 1 is commuting with anything, so can be always added to the r-
matrix with the arbitrary coefficient, without any change of the relations.



Chapter 3

Solution of tetrahedron
equation and cluster

algebras

3.1 Introduction

In the theory of integrable systems one usually starts with the RLL equa-
tion

R12L1,aL2,a = L2,aL1,aR12 (3.1)

which defines the relation between the R-matrix R : V ⊗ V → V ⊗ V
intertwining a pair of “auxiliary spaces” V, and the Lax operator L :
V ⊗ F → V ⊗ F, acting on the tensor product of the auxiliary space
and the “quantum” space F of the integrable system. The RLL equation
implies [tr1 L1,a, tr2 L2,a] = 0, i.e. that the integrals of motion of the system
commute. The renowned Yang-Baxter equation

R12R13R23 = R23R13R12 (3.2)

appears in this approach as the associativity condition for the braiding
relations (3.1). This condition can be formulated as an equality between
two different ways of permuting the product of three Lax operators:

L3,aL2,aL1,a = J±(L1,aL2,aL3,a), (3.3)

J+ = AdR12AdR13AdR23 , J− = AdR23AdR13AdR12 .
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A solution of the Yang-Baxter equation allows one to construct an inte-
grable system, e.g. a spin chain. Equivalently, in a more abstract language
one can use the solution to define a quasitriangular Hopf algebra, e.g. a
quantum group.

12
3

ab c
Rabc

L12,a

L13,bL23,c
= 3

2 1a

b c

Rabc

L12,a

L13,b L23,c

1

2

34

a b

c

d

e

f

= J±

1
234

ab

c

d

e

f

Figure 3.1. Top. The tetrahedron equation. To view it as a modification of
the Yang-Baxter equation one has to look at the transformation of the dashed
triangle. Bottom. The functional tetrahedron equation. The quantum spaces
are located in the direction transverse to the plane of the figure.

Zamolodchikov tetrahedron equation [182, 184] is a natural generaliza-
tion of the Yang-Baxter equation to three dimensions. While the Yang-
Baxter equation is an equation on operators corresponding to crossings
of lines in a plane, the tetrahedron equation describes triple crossings of
planes in a 3d space. An analog of the RLL equation

L12,aL13,bL23,cRabc = RabcL23,cL13,bL12,a, (3.4)

drawn in Fig. 3.1, left, involves two kinds of spaces, F and V, and two
kinds of operators

L : V⊗V⊗ F→ V⊗V⊗ F, R : F⊗ F⊗ F→ F⊗ F⊗ F. (3.5)

The tetrahedron equation should lead to the structures which are no less
profound and much more beautiful, compared to the Yang-Baxter equa-
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tion. For example, in [122], the tetrahedral structure was related to higher
algebra and category theory. Its interpretation as a “higher” analogue of
the Yang-Baxter equation becomes clear, if one assumes invertibility of
Rabc and multiplies both sides of the equation by R−1

abc on the right1. This
gives a version of Yang-Baxter equation “up to” conjugation, i.e. it is
no longer an equality between two ways to permute the L-operators, but
their equivalence. Considering Lij,x as a matrix acting in Vi ⊗ Vj , with
coefficients in the algebra Ax = End(Fx), we can rewrite Eq. (3.4) as

L12({va})L13({vb})L23({vc}) = L23({v′c})L13({v′b})L12({v′a}), (3.6)

where by {vx} we denote the set of generators of Ax,

Lij,x = Lij({vx}), (3.7)

and
v′x = Rabc vxR−1

abc (3.8)

is the set of generators conjugated by Rabc ∈ Aa ⊗Ab ⊗Ac. Since conju-
gation is an inner automorphism of the algebra, generators v′ satisfy the
same relations as v, and all central functions remain unchanged.

We can apply four transformations (3.6) to rearrange six L-operators
in a different way. Moreover, there are two different ways to perform this
rearrangement (denoted by J+ and J−):

L12,aL13,bL23,cL14,dL24,eL34,f = J±(L34,fL24,eL14,dL23,cL13,bL12,a)

J+ = AdRabcAdRadeAdRbdfAdRcef , J− = AdRcefAdRbdfAdRadeAdRabc .
(3.9)

See the pictorial representation in Fig. 3.1, right. Statement that these
two ways are equivalent gives under certain assumptions the functional
tetrahedron equation [166, 112]

RcefRbdfRadeRabc = RabcRadeRbdfRcef . (3.10)

The first assumption is that (3.6) fixes R uniquely up to constant, or in
other words, that centralizer of L12,aL13,bL23,c in Aa ⊗Ab ⊗Ac is trivial.
The second assumption is that centralizer of L12,aL13,bL23,cL14,dL24,eL34,f
in Aa⊗Ab⊗Ac⊗Ad⊗Ae⊗Af is trivial as well. It will become clear later

1We always assume that R is invertible.
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that (classical limits of) these assumptions are actually satisfied for the L-
operators that we consider in the present Chapter, once we identify these
3-fold and 6-fold products with elements in the largest double Bruhat
cells in PGL(3) and PGL(4), respectively. These two assumptions are
sufficient to derive (3.10) still up to some extra constant factor. To prove
that this factor is identity one needs either to check some matrix element,
or find some extra property (for example, that traces of l.h.s. and r.h.s.
are defined and non-zero). We are not going into such details and refer to
[19, 20] and references therein.

Forgetting about the space F, one can consider Eq. (3.6) as an equation
on the L-matrix valued in some algebra A, together with an automorphism
of Aa⊗Ab⊗Ac. Suppose that A has classical limit to commutative Pois-
son algebra. Then conjugation with Rabc has to be replaced by some
canonical transformation of C[Aa,Ab,Ac].

A solution of tetrahedron equation with V = C2 and the Lax operator
valued in the q-oscillator algebra was found in [160, 23] and further studied
in [120], [131], [117], [19], [162], [20], [17]. We do not give the quantum
solution here as we will not need it here. The classical limit of the solution
is an operator LBS : C2 ⊗ C2 → C2 ⊗ C2 acting as a matrix2

LBS(x, y, λ, µ) =



1

µk −λµx

y λk

−λµ


, (3.11)

where k2 = 1− xy and the Poisson brackets are

{x, y} = k2, {x, λ} = {x, µ} = {y, λ} = {y, µ} = 0. (3.12)

The Lax operator (3.11) satisfies the tetrahedron equation (3.6) with the

2Note that compared with [23] we use different notation for 4 × 4 matrices repre-
senting operators acting on C2 ⊗ C2: indices of the first C2 encode the position of the
2× 2 block while index of the second C2 encodes matrix elements inside the block.
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transformed variables being

x′a = k′−1
b

λb
λc

(
kcxa −

1
λaµc

kaxbyc

)
, y′a = k′−1

b

λc
λb

(kcya − λaµckaybxc) ,

x′b = xaxc + 1
λaµc

kakcxb, y′b = yayc + λaµckakcyb,

x′a = k′−1
b

µb
µa

(
kaxc −

1
λaµc

kcyaxb

)
, y′c = k′−1

b

µa
µb

(kayc − λaµckcxayb) ,

k′a = ka
kb
k′b
, k′c = kc

kb
k′b
,

k′2b = k2
ak

2
bk

2
c − 2k2

ak
2
c + k2

a + k2
c −

kakcyaxbyc
λaµc

− λaµckakcxaybxc,

(3.13)
The new variables (3.13) satisfy the same Poisson brackets, so the transfor-
mation is indeed canonical. Variables with different labels a, b, c Poisson
commute, and λ’s and µ’s do not change under the transformation (the
reason for this is that λ and µ are central functions, so after quantization
they will not be changed by (3.8), and so we demand that they are do not
change in the classical limit as well).

By contracting N Lax operators along one space, and taking the trace

L2N = Tr0 (L01,a1L02,a2 ...L0N,aN ) (3.14)

one gets the Lax operator with auxiliary space (C2)N . This solution is
called the “quantum group-like” solution, as the Lax operator is block-
diagonal and preserves the decomposition LC2N = ⊕N

k=1 LΛkCN , where
LΛkCN is the Lax operator whose auxiliary space is k-th fundamental
representation of Uq(glk). In particular, the first non-trivial operator LCN
in the classical limit satisfies the r-matrix Poisson bracket

{LCN (λ),LCN (µ)} = [r(λ/µ),LCN (λ)⊗ LCN (µ)] (3.15)

with r being the classical trigonometric r-matrix. The quantum version of
the Lax operator satisfies the RLL relation with the quantum trigonomet-
ric R-matrix 3. This implies that by multiplying such Lax operators one
obtains monodromy matrix of some integrable system. This system can
be identified with the XXZ spin chain in the q-oscillatory representation,
or its classical limit.

3We do not give here explicit expression for the classical r-matrix. Interested reader
can find it e.g. in [84], [128] or [140].
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Cluster algebras originally appeared in the theory of Lie groups and
algebras (see e.g. [57]) and are now known to provide convenient language
in the theory of integrable systems [82, 71, 39, 128, 80, ?, 14]. In the
present Chapter we try to make a small step towards fully integrating
the tetrahedron equations into the general mathematical physics context,
showing how Bazhanov-Sergeev solution naturally appears in the theory of
cluster integrable systems. Namely, we show that the Lax operator (3.11)
can be identified with the transfer matrix of paths on a four-gonal bi-
coloured graph shown in Fig. 3.6. The tetrahedron equation for such Lax
operators is then translated into the equality between the transfer matrix
of a graph composed from three four-gonal blocks and the result of the
action of four “spider moves” on it (see Fig. 3.7). This correspondence
allows us to generalize the construction for the spectral curve of the XXZ
chain given in [23] to systems with arbitrary symmetric Newton poly-
gon. We shall note here that this block and the sequence of mutations
leading to tetrahedron equation already appeared in the related contexts
[109, 160, 23, 181, 4], however the full identification was missing.

We start our exposition in Section 3.2 where we give a brief recapit-
ulation of planar networks, Poisson structure on the variables associated
with paths on these networks and the transformations of the networks
preserving the Poisson structure and partition function of paths. We give
three-parametric family of mappings of Poisson variables corresponding
to “corner” paths, shown in Fig. 3.3, all leading to the usual formulas for
the transformations of the face variables.

Then in Section 3.3 we show that the Lax operator (3.11) coincides
with the transfer matrix (3.30) of non-intersecting paths on the planar
network from Fig. 3.6. We interperet the auxiliary space C2 in the Lax
operator as a space on which the transfer matrix of paths acts. We realize
the tetrahedron transformation (3.6) as a sequence of four spider-moves
(and several two-moves) of the planar network shown in Fig. 3.7 and
Fig. 3.11. Surprisingly, this sequence of transformations appears to be
well known in cluster-algebraic literature [119, 181], however it was not
identified before with the Bazhanov-Sergeev solution of the tetrahedron
equation. We also show that the transformation of the “corner” variables
(3.35) derived from the transformations of the network is consistent with
those given by Eq. (3.13).

In Section 3.4 we extend the construction of the Lax operator (3.14) for
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the XXZ spin chain (which has rectangular Newton polygon) made by con-
traction of the “tetrahedron” Lax operators (3.11), to integrable systems
with arbitrary centrally symmetric Newton polygon. Finally, we discuss
this construction from the point of view of the embedding of cluster inte-
grable system into affine group P̂GL(N) and extend it to non-symmetric
Newton polygons. We also prove a Lemma which shows the converse:
it classifies conjugacy classes in double affine Weyl group of A-type by
Newton polygons.

3.2 Perfect networks and flows on them

In this introductory section we recall notions of perfect networks and flows
on them, construct Poisson structure on paths and discuss discrete trans-
formations of networks preserving this structure. This will allow us to
construct solution of the tetrahedron equation in Section 3.3 and Hamil-
tonians of cluster integrable system with arbitrary Newton polygon in
Section 3.4. The way of exposition, which we follow here, is a mixture of
approaches from [83], [175] and [71].

3.2.1 Flows on perfect networks

The main actor in considered approach to cluster integrable systems is a
(planar) perfect network N = (G,w) — (planar) perfectly oriented graph
in disk, with edges weight function w. Orientation is called perfect if all
vertices of a graph can be coloured in three colours: all boundary vertices
are grey ( ), all internal vertices are either white ( ) (and have exactly
one outgoing edge) or black ( ) (and have exactly one incoming edge).
We do not assume graph to be connected, however we assume that there
are no 1-loops (edges going form the vertex to itself) and leaves (inter-
nal 1-valent vertices). All boundary vertices are assumed to be 1-valent.
Boundary vertex with edges oriented away from it is called source. Vertex
with edges oriented toward it is sink. We denote the set of sources by
I, and the set of sinks — by J . It will be useful to put additional grey
vertices in the middles of internal edges, and refer to edges connecting
black and white vertices with grey vertices as half-edges. We say that the
vertex v with the all adjacent half-edges is the fan of vertex v, number
of half-edges in the fan is degree of the vertex and is denoted by deg(v).
To each half-edge e oriented from black or white to grey vertex we as-
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sign weight we ∈ C∗, to half-edge with opposite orientation −e we assign
weight w−e = w−1

e . Weight of any set of oriented edges P is the product
of weights of all half-edges in it wP = ∏

e∈P we.

Flow p on the perfect network N is the set of such non-intersecting
and non-self-intersecting paths ( ) oriented by G that ∂p = B − A
with A ⊂ I, B ⊂ J , i.e. with all begin and end points belonging to the
boundary. The set of all flows with starting points A and end points B
is called FBA . For example, the set of all closed non-intersecting oriented
cycles on graph is F∅

∅ . The sum of weights over all flows from A to B

ZN (A→ B) =
∑
p∈FBA

wp (3.16)

is called partition function of flows from A to B. One can find examples
of perfect networks and sets of all flows on them in Fig. 3.6.

The partition function is naturally multiplicative with respect to the
gluing of disks: take pair of planar networks N ′ = (G1, w1) and N2 =
(G2, w2) on disks D1 and D2. Take intervals `1 ⊂ ∂D1 containing A1 ⊂
I1, B1 ⊂ J1 at boundary of D1, and `2 ⊂ ∂D2 containing A2 ⊂ I2, B2 ⊂ J2
at boundary of D2. We say that perfect network N in disk D is the result
of gluing of N1 over `1 to N2 over `2 if disks are glued D = (D1tD2)/`1∼`2
in such a way that the grey vertices from A1 are glued to B2, and from
B1 — to A2. Set of sources of N is I = (I1\A1)∪ (I2\A2) and set of sinks
is J = (J1\B1)∪ (J2\B2). It is easy to see that partition function of flows
from A to B on glued network N is given by

ZN (A→ B) =
∑

C⊂A1,E⊂B1

ZN1 (C ∪ (A ∩ I1)→ E ∪ (B ∩ J1)) · (3.17)

·ZN2 (E ∪ (A ∩ I2)→ C ∪ (B ∩ J2)) ,
where the sum goes over all subsets of A1 = B2 and B1 = A2.

Consider corresponding subsets in example of two planar networks
glued together in Figure 3.2. Sets that depend on planar networks only
are I = {1, 3, 8} (all sources in ∂D), J = {2, 4, 5, 6, 7} (all sinks in ∂D),
I1 = {1, 3, 13, 11} (all sources in ∂D1), J1 = {2, 4, 5, 12, 10} (all sinks
in ∂D1), I2 = {8, 9, 10, 12} (all sources in ∂D2), J2 = {11, 13, 6, 7} (all
sinks in ∂D2), A1 = B2 = {11, 13} (passages from D2 to D1), A2 =
B1 = {10, 12} (passages from D1 to D2). The particular flow (denoted by

) determines sets A = {1, 3} (starting points of the flow), B = {5, 7}
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Figure 3.2. Gluing of two planar networks.

(endpoints of the flow), C = {13} (passages where flow is allowed to go
from D2 to D1), E = {10, 12} (passages where flow is allowed to go form
D1 to D2). This is a single term in summation which goes over all possible
subsets C ⊂ A1 = B2 and E ⊂ B1 = A2, as we sum over all possible flows
in disk D.

Formula (3.17) can be conveniently encoded using transfer matrix of
flows TN . This is an operator TN : (C2)⊗|I| → (C2)⊗|J | given by

TN =
∑

A⊂I,B⊂J
ZN (A→ B) ·

⊗
j∈J

es(j,B), j ⊗
⊗
i∈I

e∗s(i,A), i, (3.18)

where s(k,X) = + if k ∈ X and s(k,X) = − if k /∈ X. The vectors e±, j
are basis vectors in j-th component of (C2)⊗|J |, vectors e∗±, i are basis co-
vectors in i-th component of (C2)⊗|I|. Using this operator (3.17) becomes
simply

TN = TN1 ◦ TN2 , (3.19)

where spaces with labels A1 contract with corresponding spaces in B1, and
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the same for A2 and B2. Transfer matrices for perfect networks drawn in
Fig. 3.6 are written in (3.30).

Remark. For the reader, familiar with combinatorics of dimers, we note
that there is a bijection between bipartite graphs without two-valent ver-
tices with selected perfect matching D0, and perfect networks without
neighbouring vertices of the same colour. The bijection can be estab-
lished by choosing orientation on the bipartite graph from black to white
for the edges not in D0, and from white to black for those in D0. There is
also similar bijection between perfect matchings on bipartite graphs and
flows on perfect networks.

3.2.2 Poisson structure on paths and X -cluster variety

There is a two-parametric family of Poisson brackets on the weights of half-
edges, see [83]. Here we will use, however, 1-parametric specialization of
it restricted to the paths connecting middles of the edges4 considered in
[71]. Any path p on perfect network N = (G,w) which begins and ends at
the grey vertices (in the middles of edges or at boundary points) can be
decomposed into sum of contributions associated with the fans of internal
vertices

p =
∑

v∈C0(G)
ni,vγ

∗
v,i (3.20)

where C0(G) is the set of internal vertices of G. Generators γ∗v,i are called
simple corners and are associated with paths which go through v and
connect middles of adjusted edges in the clockwise order, see Fig. 3.3
for example. They satisfy relation ∑deg v

i=1 γ∗v,i = 0 which means that by
traversing all simple corners associated with one vertex we get trivial path.
The logarithmically constant Poisson bracket on weights of paths is

{wp1 , wp2} = ε(p1, p2)wp1wp2 , (3.21)

4The latter can be obtained from the former using procedure of the gauge symmetry
reduction in black and white vertices.



3.2 Perfect networks and flows on them 89

where the skew-linear form ε is defined as sum of local contributions of
each fan

ε(p1, p2) =
∑

v∈C0(G)
sgn(v)δv(p1, p2),

δu(γ∗v,i, γ∗w,j) =


±1

2δu,vδu,w if j = i± 1

0 otherwise
,

(3.22)

where sgn(v) = 1 for the black vertices and sgn(v) = −1 for the white.
Example of pairing at three-valent black vertex is shown in Fig. 3.3. In
fact, bracket can be defined by extending it from the bracket on weights of
simple corners γv,i = wγ∗v,i . Thanks to the local structure of the bracket,
the gluing of perfect networks is Poisson map, as it was shown in [83].
There is an opposite operation of splitting network N = (G,w) on D to
N1 = (G1, w1) and N2 = (G2, w2) by cutting D into D1 and D2 along
some simple curve, which intersects G only at middles of edges and divide
grey vertices into pairs of vertices belonging to different networks. It is not
uniquely defined, if only weights of paths connecting boundary vertices of
D are known, because of the gauge redundancy under transformations
at internal grey vertices, which multiply weights of all paths ending at
internal grey vertex v by xv ∈ C∗, and all paths starting at v by x−1

v . We
will face this problem again in Section 3.3.2.

γ∗1 γ∗2 γ∗3

δv(γ∗1 , γ∗2) = 1
2

δv(γ∗2 , γ∗3) = 1
2

δv(γ∗3 , γ∗1) = 1
2

Figure 3.3. Definition of the local pairing on paths at the three-valent vertex,
γ∗1 + γ∗2 = −γ∗3 . Simple corners are shown by blue.

The weight of any flow on planar network can be expressed using
only the weights of oriented boundaries of faces xi = w(∂f̄i∩G). Faces are
defined from decomposition D\G = ⋃

i fi. Note that for unbounded disks
(adjacent to ∂D) we take only parts belonging to G. The face variables
xi satisfy single relation ∏

i xi = 1, as each edge of G belongs to the
boundaries of exactly two faces with the opposite orientations.
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Space of face weights admits structure of the toric chart in the X -
cluster variety. This means that it is algebraic torus with coordinate
functions xi satisfying log-constant Poisson bracket

{xi,xj} = εij xixj (3.23)

with some skew-symmetric matrix ε called exchange matrix. We say that
xi are X -cluster variables, and those xi which come from faces adjacent to
∂D are frozen variables. Exchange matrix ε for perfect networks follows
from (3.21). It is convenient to represent ε as oriented graph (quiver) with
edges with multiplicities, whose oriented adjacency matrix is ε and vertices
correspond to xi, see examples in Fig. 3.5 and 3.7. Toric charts are glued
by transformations of mutations in directions of non-frozen variables xi.
Mutation µi in direction of variable xi is defined by the action

µi(xj) =

 x−1
j , i = j

xj(1 + xsgn εji
i )εji , i 6= j

(3.24)

µi(εkl) =


−εkl, if i = k or i = l

εkl + |εki|εil + εki|εil|
2 , otherwise

on cluster variables and exchange matrix. We will call X -cluster variety
of face variables of graph G by XG. Realization of mutations as transfor-
mations of perfect network will be discussed in the next subsection.

Operation of gluing of the disks results in the product of X -cluster
varieties with amalgamation, for details see [49]. In simple words one has
to replace pair of frozen variables corresponding to two unbounded faces,
which are glued to one bounded, by the new unfrozen variable (which
equals to the product of initial variables), and obtain new exchange ma-
trix from the glued graph. From the point of view of quivers, product with
amalgamation is gluing of quivers by vertices corresponding to frozen vari-
ables.

3.2.3 Plabic graph transformations

There are two well-known basic local transformations of perfect networks,
which preserve both partition function of flows on them and Poisson struc-
ture: two-move shown in Fig. 3.4 and four-move (also known as spider
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move or urban renewal or square move) shown in Fig. 3.5. The choosing
of perfect orientation is inessential here. For the two-move either face vari-
ables and quiver stay the same, while under the four-move they change
as under mutation [157, 71]. Here we present formulas for transformation
of corner variables under this moves, which will be required in Section 3.3.

For both two- and four- moves we derive mapping of the corner vari-
ables from reasonable monomial ansätze using three requirements

1. Transfer matrix of flows has to be preserved

2. Poisson brackets of new corner variables have to be consistent with
the transformed plabic graph

3. Mapping has to respect symmetries of plabic graph

It is easy to see that the unique monomial transformation rule under
the black two-move for corner variables labelled in Fig. 3.4, left, satisfying
this requirements is

l′1 = t3b2, l′2 = b3(t1b1)
1
2 , l′3 = t2(t1b1)

1
2 , (3.25)

r′1 = b3t2, r′2 = t3(t1b1)
1
2 , r′3 = b2(t1b1)

1
2 .

Under white two-move variables labelled in Fig. 3.4, right, transform as

l′1 = t2b3, l′2 = t3(t1b1)
1
2 , l′3 = b2(t1b1)

1
2 , (3.26)

r′1 = b2t3, r′2 = b3(t1b1)
1
2 , r′3 = t2(t1b1)

1
2 .

Exchange matrix ε does not change under these transformations.
For the four-move there is a family of transformations, parametrized
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t1

t2t3

b1

b3b2

r′1

r′3

r′2

l′1

l′2

l′3

t1

t3t2

b1

b2b3

r′1

r′2

r′3

l′1

l′3

l′2

Figure 3.4. Transformations of the plabic graph under the two-moves at black
and white vertices.

by α1, α2, α3, which acts on corner variables by

a′1 = b2d3 ·m−α3+α2
2 m−α3−α2

3 , a′2 = d2 · (1 + x−1)− 1
2m
− 1

4 +α1
1 m−α2

2 mα3
3 ,

a′3 = b3 · (1 + x) 1
2m
− 1

4−α1
1 mα3

2 mα2
3 ,

b′1 = a2c3 ·mα3+α2
2 m−α3+α2

3 , b′2 = c2 · (1 + x−1)− 1
2m

1
4−α1
1 m−α2

2 mα3
3 ,

b′3 = a3 · (1 + x) 1
2m

1
4 +α1
1 m−α3

2 m−α2
3 ,

c′1 = d2b3 ·mα3−α2
2 mα3+α2

3 , c′2 = b2 · (1 + x−1)− 1
2m
− 1

4 +α1
1 mα2

2 m−α3
3 ,

c′3 = d3 · (1 + x) 1
2m
− 1

4−α1
1 m−α3

2 m−α2
3 ,

d′1 = c2a3 ·m−α3−α2
2 mα3−α2

3 , d′2 = a2 · (1 + x−1)− 1
2m

1
4−α1
1 mα2

2 m−α3
3 ,

d′3 = c3 · (1 + x) 1
2m

1
4 +α1
1 mα3

2 mα2
3 ,

(3.27)
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where

x = a1b1c1d1, m1 = a1c1
b1d1

, m2 = a2d2
b2c2

, m3 = a3b3
c3d3

. (3.28)

a1
a2

a3

b1

b3

b2

c1 c2

c3

d1

d3

d2

a′1
a′2

a′3

b′1

b′3

b′2

c′1 c′2

c′3

d′1

d′3

d′2

(a) (b)

Figure 3.5. Top: change of bipartite graph under the spider-move and changes
in the quiver. Grey arrows are for the entries ±1/2 of exchange matrix ε. Bottom:
two ways for parallel bigon reduction and changes in the quiver.

Quivers encoding exchange matrix ε before and after transformation
are drawn in Fig. 3.5, left, bottom. Whole family gives usual transforma-
tion rules for face variables, and are equivalent for our purposes, however
choosing α1 = α2 = 0, α3 = −1

2 strangely makes formulas simpler.
The most subtle transformation is so-called parallel bigon reduction

shown in Fig. 3.5, right. Recall that the zig-zags are paths, which turn
right at each black vertex, and turn left on each white one. Parallel bigon
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is a pairs of zig-zags which have such pair of intersection points, that
disk(s) bounded by their segments between intersection points cannot be
oriented in a way, consistent with orientation of segments.

The subtlety of parallel bigon reduction is that there are two different
ways to perform it, both of which are bad. One of them, labelled by (a) in
Fig. 3.5, change topology of zig-zag paths which will be unwanted for us
in the following, but preserves transfer matrix of flows and acts as cluster
transformation (mutation supplied by forgetting of one variable) on cluster
variables. Another one, labelled by (b), does not change topology of zig-
zags, however, its action on cluster variables is ill-defined and it changes
partition function of flows on plabic network. In the following, we will
either assume that the network does not contain parallel bigons, or reduce
first all its parallel bigons with transformation (b), before considering any
flows.

3.3 Tetrahedron equation from cluster algebra

The claim of this section is that transfer matrices for both plabic graphs
shown in Fig. 3.6, left, coincide with Bazhanov-Sergeev solution of tetra-
hedron equation. Moreover, we will show that tetrahedron transformation
is the result of sequence of four spider-moves.

3.3.1 Lax operators

As only paths which got both ends on the external edges of bipartite graph
contribute to the transfer matrices of flows, we need only path variables
γi shown in Fig. 3.6, left. For both graphs Poisson brackets of variables
are

{γ1, γ2} = −1
2γ1γ2, {γ2, γ3} = 1

2γ2γ3, {γ3, γ4} = −1
2γ3γ4,

{γ4, γ1} = 1
2γ4γ1, {γ1, γ3} = 0, {γ2, γ4} = 0.

(3.29)

All the paths contributing to the transfer matrices are drawn in Fig. 3.6,
right. Note that the only difference between the cases is in non-equivalent
perfect orientation. Two plabic graphs are related by one spider move.

The transfer matrices for upper and lower networks in the basis C2 ⊗
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γ1

γ2

γ3

γ4

1

2 1′

2′

1 γ1 1
γ2γ3γ4

1
γ3

1
γ3γ4

1
γ2γ3

γ1
γ3

γ2

γ3

γ4

γ1

1

2 1′

2′

1 γ2 1
γ4

γ1γ2γ3 γ2γ3 γ1γ2
γ2
γ4

Figure 3.6. Left. Four-gonal pieces of bipartite graphs whose transfer matrices
define Lax operators. Right. Paths contributing to transfer matrices.

C2 = 〈e+ ⊗ e+, e+ ⊗ e−, e− ⊗ e+, e− ⊗ e−〉 are respectively

LCL(γ) =



γ1γ
−1
3

(γ3γ4)−1 γ−1
3

γ1 + (γ2γ3γ4)−1 (γ2γ3)−1

1


, (3.30)

LCL(γ) =



γ2γ
−1
4

γ2γ3 γ−1
4 + γ1γ2γ3

γ2 γ1γ2

1


.

Matrix LCL coincides with Bazhanov-Sergeev Lax operator (3.11) after
conjugation

LBS = (σ1 ⊗ σ1 ◦ P) ◦ LCL ◦ (σ1 ⊗ σ1 ◦ P) (3.31)

where P is a permutation matrix P(u⊗v) = v⊗u, and after identification
of variables

x = γ−1
1 , y = γ1 + (γ2γ3γ4)−1, k = i

√
γ1γ2γ3γ4

, (3.32)

λ = −i
√
γ1γ4
γ2γ3

, µ = −i
√
γ1γ2
γ3γ4

,
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The Poisson brackets (3.12) follow from (3.29). Matrix LCL can be mapped
to LCL by conjugation with P and replacement

γ1 7→ γ−1
4 , γ2 7→ γ−1

3 , γ3 7→ γ−1
2 , γ4 7→ γ−1

1 . (3.33)

In the following we will be dealing with matrix LCL only.

3.3.2 Tetrahedron transformation

Tetrahedron transformation (3.6) for the Lax operators LBS itself recasts
into the relation

L23
CL(γa)L13

CL(γb)L12
CL(γc) = L12

CL(γ′c)L13
CL(γ′b)L23

CL(γ′a) (3.34)

for the transfer matrices of perfect networks. Gluing left and right sides
of this equation from the blocks shown in Fig. 3.6 gives equality for net-
works as drawn in Fig. 3.7. Note that as in Fig. 3.6, each Lax operator
’permutes’ vector spaces. The networks are related by sequence of four
spider-moves µR = µ7µ4µ2µ3 supported by two-moves, detailed sequence
is shown in Fig. 3.11. Mapping (3.13) being rewritten in γ-variables using
(3.32) results in

γ′a,1 = γa,1γa,4

γb,4γc,3[x−1
3 ,x−1

2 ]

√ x4
x2x3

A, γ′a,2 = γa,2γb,4γc,3
γa,4

x2x3[x−1
3 ,x−1

2 ],

γ′a,3 = γa,3γa,4

γb,4γc,3[x−1
3 ,x−1

2 ]

√ x4
x2x3

A, γ′a,4 = γb,4γc,3x2x3[x−1
3 ,x−1

2 ],

γ′b,1 = γa,1γc,1

[x−1
3 ]

, γ′b,2 = γb,2[x−1
3 ]

γa,1γa,4γc,1γc,2

√
x3

x2x4

1
A
,

γ′b,3 = γb,3γa,1γa,4γc,1γc,2

x3[x−1
3 ]

, γ′b,4 = γb,4[x−1
3 ]

γa,1γa,4γc,1γc,2

√
x3

x2x4

1
A
,

γ′c,1 = γc,1γc,2

γa,3γb,2[x−1
3 ,x−1

4 ]

√ x2
x4x3

A, γ′c,2 = γb,2γa,3x4x3[x−1
3 ,x−1

4 ],

γ′c,3 = γc,3γc,2

γa,3γb,2[x−1
3 ,x−1

4 ]

√ x2
x4x3

A, γ′c,4 = γa,3γb,2γc,4
γc,2

x4x3[x−1
3 ,x−1

4 ]

(3.35)
where A = 1 + x−1

3 + x−1
7 [x−1

3 ,x−1
2 ][x−1

3 ,x−1
4 ], [x] = 1 + x, [x, y] = 1 +

x(1 + y) and locations of face variables xi are shown in Fig. 3.7. Their
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explicit expressions in terms of γ-variables are

x2 = 1
γc,1γc,4γc,3γc,2

, x3 = γb,1γa,4γc,2,

x4 = 1
γa,1γa,4γa,3γa,2

, x7 = 1
γb,1γb,4γb,3γb,2

,

x1 = γc,4 × (weights of other boundaries),
x5 = γa,2 × (weights of other boundaries),
x6 = γb,4 × (weights of other boundaries),
x8 = γb,2 × (weights of other boundaries),

(3.36)

where by “weights of the other boundaries” we denote a product of the γ-
variables that correspond to the other boundaries of the face corresponding
to given x-variable, which are unimportant as neither transform under
four- and two-moves, nor contribute into the transfer matrices of flows.

1

2

3

3′

2′

1′

γc,1

γc,2

γc,3

γc,4x1 x2

x6

γb,1

γb,2

γb,3

γb,4

x0

x3

x7

x9

γa,1

γa,2

γa,3

γa,4 x5x4

x8

µR

1

2

3

3′

2′

1′

γ′a,1

γ′a,2

γ′a,3

γ′a,4x′6 x′2

γ′b,1

γ′b,2

γ′b,3

γ′b,4x′1

x′0

x′3 x′5

x′7

x′9

γ′c,1

γ′c,2

γ′c,3

γ′c,4 x′8x′4

Figure 3.7. Left. Tetrahedron equation realized as equality of transfer matrices
of perfect networks. Grey crosses are for the points of gluing of four-gonal building
blocks. Graphs are related by sequence of four spider-moves µR = µ7µ4µ2µ3.
Right. Corresponding quiver before and after mutation.

It is easy to check that formulas (3.35) are consistent with the mapping
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of X -cluster variables

x′0 = x0
1

[x−1
3 ]

, x′1 = x1
[x−1

3 ]
[x−1

3 ,x−1
2 ]

, x′2 = 1
x2x3

1
A
,

x′3 = x3x2x4x7A, x′4 = 1
x3x4

1
A
, x′5 = x5

[x−1
3 ]

[x−1
3 ,x−1

4 ]
,

x′6 = x6 · x3x2[x−1
3 ,x−1

2 ], x′7 = 1
x7

[x−1
3 ,x−1

2 ][x−1
3 ,x−1

4 ]
[x−1

3 ]
,

x′8 = x8 · x3x4[x−1
3 ,x−1

4 ], x′9 = x9
x7

[x−1
3 ,x−1

2 ][x−1
3 ,x−1

4 ]
A,

(3.37)

under µR which follows from (3.24). Trying to recover formulas (3.35) us-
ing ’refined’ formulas (3.25) – (3.27) for transformation of corner variables
one faces problems. In Appendix A we explain how these problems can
be treated successfully.

3.4 Integrable system for arbitrary Newton poly-
gon

In this section we give explicit construction for bi-coloured graph G defin-
ing integrable system with arbitrary Newton polygon. It will turn out that
for symmetric Newton polygon Lax operator is ’patchworked’ by contrac-
tion of ’XXZ spin chain’ rectangular blocks (see Fig. 3.8), which are made
from tetrahedron Lax operators (3.30). This extends results of [23] and
[140] to the case of non-rectangular Newton polygons.

Then we will show, how our constructions come out in the approach
to cluster integrable systems via double Bruhat cells in P̂GL(N). Tetra-
hedron Lax operator will be identified with generator sis̄i of diagonal sub-
group W (A(1)

N−1) ⊂ W (A(1)
N−1 × A

(1)
N−1), and tetrahedron transformation

— with the Coxeter relation there. Embedding of commuting subgroups
P̂GL(a1) × ... × P̂GL(an) ⊂ P̂GL(N), N = a1 + ... + an, will provide
natural framework for the construction of Bruhat cell for arbitrary sym-
metric Newton polygon. Finally, we will construct double Bruhat cells
for non-symmetric Newton polygons via triangular decomposition of Lax
operators, discuss additional freedom, coming from Newton polygons with
sides, containing internal integral points, and prove classification theorem
for perfect networks on torus.



3.4 Integrable system for arbitrary Newton polygon 99

3.4.1 Spectral curve and perfect network on torus

To the moment we were considering bi-coloured graphs on disks only.
Integrable system appears once we consider network on torus: due to [71],
spectral curve, which is generating function of Hamiltonians of integrable
system

S = {(λ, µ) ∈ C∗ × C∗ | S(λ, µ) =
∑

(i,j)∈Z2

λiµjHij = 0}, (3.38)

is equal to the partition function of flows on perfect network N = (G,w)
on torus T2. In this subsection we are going to explain how spectral pa-
rameters (λ, µ) and Hamiltonians of the system appear.

There are two major differences in structure of XG for the network
N = (G,w) on torus T2 compared to the case of disk. First, there are no
open faces, so H1(G, ∂G) = H1(G), and second, not any path on G can be
decomposed as a sum of paths along boundaries of faces, one has to take
also representatives of H1(T2). Bringing this together we can uniquely
decompose any closed path γ ∈ H1(G) into

γ = nA(γ)γA + nB(γ)γB +
∑
fi∈F

ni(γ)∂fi, (3.39)

where F is the set of faces of graph G embedded into T2, and γA, γB is
fixed pair of paths on G, which represent two classes in homologies of
torus with non-trivial intersection. The best choices for γA,B are zig-zag
paths Z (those oriented paths which turn left at each white vertex and
turn right at each black one) because, as it is easy to see, all face variables
xi and all zig-zag variables ζα = wzα , zα ∈ Z are Poisson-commuting

{xi, ζα} = 0, {ζα, ζβ} = 0. (3.40)

with respect to the bracket (3.21), so they are good candidates for the
role of ’spectral parameters’. For further convenience, we fix trivialization
H1(T2) = Z2 by choosing a pair of cycles on torus hA, hB with simple
intersection < hA, hB >= 1, so one can assign a vector ~uα = (aα, bα) ∈
H1(T2) to each zig-zag [zα] = aα[hA] + bα[hB]. It often happens that the
lattice [Z], generated by classes ~uα of all zig-zags, does not generate entire
lattice Z2 = H1(T2), but some sub-lattice of finite index |H1(T2)/[Z]| = d
instead. In those cases there is no way to choose any pair of zig-zags



100 Chapter 3. Solution of tetrahedron equation and cluster algebras

zα, zβ ∈ Z to be ’basic cycles’ γA = zα and γB = zβ, and express all classes
in homologies as their integral combination. In such cases one has to make
coefficients nA, nB, ni in (3.39) rational numbers with denominators being
divisors of d instead. So we get an embedding of finite index H1(G) ⊂
Z2 ⊕ 1

dZ
|F | which implies decomposition for the space of functions

XG = C[(H1(G))∗] ⊂ C[λ±1, µ±1]⊗ C[x±1/d
i ]i∈F, (3.41)

where λ = (ζα)kA,α(ζβ)kA,β , µ = (ζα)kB,α(ζβ)kB,β will have powers chosen
so that

kA,α~uα + kA,β~uβ = (1, 0), kB,α~uα + kB,β~uβ = (0, 1), (3.42)

so that λ, µ are variables corresponding to generators (1, 0) and (0, 1) of
homologies, and will play the role of ’spectral parameters’ in the following.
Now, spectral curve of cluster integrable system defined by perfect network
N = (G,w) can be calculated as partition function of flows

S(λ, µ) = ZT2 =
∑
p∈FT2

wp = (3.43)

=
∑
p∈FT2

λ< [p], hB>µ−< [p], hA>
∏
fi∈F

xni(p)i =
∑

(i,j)∈∆
λiµjHij ,

where FT2 is the set of flows on torus, Hamiltonians Hij = Hij({xa})
depend only on face variables xi, which are X -cluster coordinates, and
set ∆ ⊂ Z2 is convex envelope of those (i, j) ∈ Z2 for which Hij are
non-zero, and is called Newton polygon of curve S. It was proved in [71]
that for minimal bi-coloured graphs there exist special perfect orientations,
called α-orientations (we will give both definitions in a moment)5 for which
following theorem holds.

Theorem ([71]). Let N = (G,w) be α-orientated perfect network on
torus with minimal bi-coloured graph and (3.43) be partition function of
flows on it. Then:

1. Hamiltonians corresponding to boundary points of ∆ are Casimir
functions.6

5Actually, logic of [82] and [80] suggests that similar statement holds for any perfect
orientation, however the understanding of this point is still missing in the literature.

6Spectral parameters (λ, µ) are obviously Casimirs as well, as they are expressible
via zig-zag variables only.



3.4 Integrable system for arbitrary Newton polygon 101

2. Hamiltonians corresponding to internal points are algebraically in-
dependent and in involution

{Hij , Hkl} = 0. (3.44)

3. Number of Hamiltonians (which are not Casimirs) is exactly half of
the dimension of symplectic leaf.

4. The Newton polygon ∆ is the unique (up to permutation of collinear
vectors) convex polygon whose set of primitive oriented boundary
intervals is {~uk}|Z|k=1.7

Together statements 1-3 imply integrability of the system. Statement
4 gives simple way to predict shape of the Newton polygon without compu-
tation of entire spectral curve. We will use it intensively in the following.
By deforming slightly zig-zag paths from the graph, so that they cross
edges only at grey vertices, and erasing graph itself, one obtains so-called
wiring diagram. This operation is invertible: it is easy to recover the
graph from its wiring diagram [71].

Partition function of flows ZT2 on toric network N = (G,w), G ⊂ T2

can be obtained by gluing of sides of the disk with network Ñ = (G̃, w). To
do this, divide boundary of the disk into four clockwise oriented segments
`a, `b, `c, `d with no sources or sinks at the points of contact of segments.
The gluing is possible if one can find such continuous monotonic map
j1 : `a → `c that puts beginning of `a to the end of `c, end of `a to the
beginning of `c, sources to sinks and sinks to sources, and similar map
for j2 : `b → `d. If one found j1,2, then the partition function of flows on
perfect network N on torus is related to Ñ on the disk, from which the
torus is glued with j1,2, by

ZT2 =
∑
A⊂Ia

∑
B⊂Ib

∑
C⊂Ic

∑
D⊂Id

· (3.45)

·ZÑ (A ∪B ∪ C ∪D → j1(A) ∪ j2(B) ∪ (j1)−1(C) ∪ (j2)−1(D))

where Ik and Jk are sets of sinks and sources on `k for k ∈ {a, b, c, d}, and
we use identifications j1(Ia) = Jc, j2(Ib) = Jd, j

−1
1 (Ic) = Ja, j

−1
2 (Id) =

Jb. Term with chosen subsets (A,B,C,D) contributes to Hamiltonian
7It might be so because there is a pair of zig-zags which travel in two opposite

directions along each edge of graph, so
∑

k
[zk] =

∑
k
~uk = 0.



102 Chapter 3. Solution of tetrahedron equation and cluster algebras

H|C|−|A|,|D|−|B|, if generators of H1(T2) are chosen to be hA = −`b = `d
and hB = `a = −`c respectively. To obtain the same partition function
using transfer matrix of flows, one can ’take trace’ of transfer matrix by
contraction of spaces whose boundary points are glued by j1,2. With ex-
plicit dependence on λ and µ (which are not λ, µ from (3.41), but just
generating parameters, keeping trace of classes in homologies) incorpo-
rated it looks

ZT2 = Trj1,j2
(
TN ◦ λP̂Ja−P̂JcµP̂Jb−P̂Jd

)
, P̂X =

∑
i∈X

1
2(1 + σ̂z,i), (3.46)

where σ̂z,i = 1⊗ ...⊗ σz ⊗ ...⊗ 1 is operator acting by σz-matrix in space
i, and by unity in all other spaces.

Now, it remains to construct special orientation for network on torus,
for which Hamiltonians are involutive. We construct it using so-called
dominant orientation for network on disk. In the following we will be
considering only graphs called minimal graphs, for which zig-zags do not
have self-intersections, there are no closed zig-zags (i.e. those isotopic to
S1) and no parallel bigons of zig-zags. For minimal planar graphs, we can
label zig-zags by their staring points.

Take any linear order 6 on the set of zig-zags, i.e. for any pair of
zig-zags z1 and z2 set z1 6 z2 or z2 6 z1. For intersecting zig-zags order
must be strict, those zig-zags which do not have intersection points could
be equal in this order. Take any black or white vertex v, and let zig-zags
which pass it are za < za−1 < ... < z1, where a is the degree of the vertex.
We say that za is the lowest zig-zag at v and z1 is the highest zig-zag
at v. The order is said to be consistent at v if it satisfies the following
requirements:

• If zig-zag z1 is highest at v, then it is highest in the next vertex along
z1 if the next vertex is black, and in the previous vertex along z1 if
the previous vertex is white. Note, that the both cases could occur
at the same vertex, as we do not demand graph to be bipartite.

• Any other zig-zags zi, i = 2, ..., a is not the highest in the next
vertex along zi if the next vertex is black, and in the previous vertex
along zi, if the previous vertex is white.

The order is consistent if it is consistent at all vertices. To construct
perfect orientation on the graph by ordering on zig-zags, define first ori-
entation on fans of all internal vertices. For any black vertex the only
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incoming half-edge is those, along which the highest zig-zag come to the
vertex, and all the other are outgoing. For any white vertex the only out-
going half-edge is those, along which the highest zig-zag leave the vertex,
and all the other are incoming. It is easy to see that if the order on zig-
zags is consistent, then orientations of halves of all the internal edges are
consistent. We do not give explicit description of the set of all consistent
orders on zig-zags, however make the following

Conjecture. All perfect orientations without oriented loops for graphs
on disks are orientations constructed from some consistent orders on zig-
zags.

If one glue pair of disks D1 and D2, each equipped with dominant
orientation, the dominant orientation on D1 ∪` D2 can also be obtained,
once the orders on zig-zags are concerted, and consistency condition at
boundary vertices holds (note that all the gluings in Section 3.3.2 was so).
The same is true also for gluing disk into torus. Now, construct α-ordering
by taking any zig-zag to be the highest among all, and other zig-zags to be
ordered according to counter-clockwise order of their classes in H1(T2,Z)
considered as vectors in Z2. As it was claimed, for orientation built from
such ordering, Hamiltonians Hij are involutive.

3.4.2 Integrable system with symmetric Newton polygon

In this sub-section using four-gonal block from Fig. (3.6) we construct
cluster integrable systems with arbitrary symmetric Newton polygon. As
it was discussed in the previous sub-section, for this it is enough to con-
struct such bi-coloured graph, that collection of homology classes of its
zig-zags coincides with the set of oriented boundary intervals of the New-
ton polygon.

We say that Newton polygon is ’symmetric’ if it is invariant under the
central symmetry (i, j) 7→ (−i,−j), see e.g. Fig. 3.8. Due to the symme-
try, it always has even number of vertices — it is 2n-gonal. Let’s select
any point with the minimal i-coordinate. Starting from this point, we enu-
merate all oriented boundary intervals ~u1 = (a1, b1), ~u2 = (a2, b2), ..., ~un =
(an, bn) in counter-clockwise direction, until the point, which is symmet-
ric to the initial one. Since we started from the left-most point, then all
ai > 0. We assume also that all intervals are primitive, i.e. gcd(ai, bi) = 1.
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Opposite half of polygon, which starts at rightmost point, and ends at left-
most, consists of vectors with coordinates −~u1, ...,−~un.

~u1 = (1,−1)

~u2 = (3, 2)

~u3 = (0, 1)

Figure 3.8. Left. Example of the Newton polygon. Center. Schematic drawing
of the graph on torus. Four-gonal blocks are drawn in details on the right panel.
Edges are coloured according to the colours of zig-zags going along them, by
colours from the left panel. Right. Detailed view on graph and on wiring diagram
of zig-zags at the intersection points.

Decompose fundamental domain of torus into grid of n×n rectangular
blocks. Diagonal block at i-th position has ai sources on its left side, ai
sinks on its right side, |bi| sinks and sources on upper and lower sides
respectively if bi > 0, or visa versa if bi < 0. Edges are non-intersecting,
and if bi > 0, then graph is constructed by iterative connection of closest
non-connected sources with sinks by edges starting from top-left corner,
while if bi < 0, the process of connection starts from bottom-left corner,
see example in Fig. 3.8, center. Non-diagonal block at row i (counting
from the top) and column j (counting from the left) is ai× |bj | ’fence net’
bipartite graphs, which is rectangular grid glued from four-gonal blocks.
As it is shown in Fig. 3.8, right, at each four-gonal block zig-zag paths
are going without changing of direction, so it is easy to convince yourself
that the classes of zig-zags in H1(T2) are precisely ~u1, ..., ~un,−~u1, ...,−~un
as required.

Remark. Bi-coloured graphs on torus obtained in this way might be not
simple because of parallel bigons. The evidence for this, is that the graph
constructed by proposed recipe, for each pair of boundary intervals ~ui and
~uj , has |aibj |+ |ajbi| four-gonal blocks at their intersection points, which
is not SA(2,Z)-invariant quantity. Obtaining minimal graph, which is
necessary for integrability theorem, requires additional spider-moves and
parallel bigon reductions. As an illustration, interested reader can try to
construct graph and reduce it for the Newton polygon obtained from the
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one drawn in Fig. 3.8 by transformation x 7→ x+ y, y 7→ y.

Transfer matrix of each four-gonal block is LCL from (3.30), which
we identified with the solution of tetrahedron equation. If all blocks are
oriented as in Fig. 3.6, top, then the global orientation turns out to be the
α-orientation, so does not have oriented cycles. It is known since [23], and
redirived in the context of cluster integrable systems in [140], that ’fence
net’ a× b block being glued by pairs of opposite sides to cylinder defines
either Lax operator of gla classical XXZ spin chain on b sites or glb chain
on a sites, depending on pair of sides chosen to be glued. As we remarked
in (3.14), it was noted in [23] that the result of contraction of tetrahedron
Lax operators decomposes into direct sum of Lax operators for XXZ chain
with auxiliary space being sum of all fundamental representations of gla

(C2)⊗a =
a⊕
i=0

C(ia) ⇒ T (µ) =
a⊕
i=0
LΛiCa(µ). (3.47)

In our approach this is the result of the natural grading by the number of
paths which cross cylinder from the left to the right, and implication8 of
LGV lemma [86, 123]. Dependence on spectral parameter µ comes from
the paths which cross horizontal boundary of fundamental domain, and
formula (3.46).

Cylindric transfer matrix of the system with arbitrary Newton polygon
can be obtained by cutting of graph drawn in Fig. 3.8 by vertical line
between any pair of columns of four-gons. Due to the chosen orientation,
all the sources are located on the left, and all sinks are located on the
right side of cylinder. The transfer matrix by cylindric LGV lemma again
provides Lax operator acting in direct sum ⊕r

i=0 ΛiCr, r = a1 + ... +
an. The first fundamental Lax operator LCr(µ) satisfies r-matrix Poisson
bracket (3.15), as it was proved in [84].

One can keep decomposing cylinder by vertical cuts, up to separating
transfer matrix into product of n transfer matrices, each corresponding to
flows passing one column in the array of fence-nets. We will clarify how
this cylindric blocks are related to combinatorics of affine Weyl groups be-
low. However, we want to stress here, that only the toroidal representation
of the system makes SA(2,Z) covariance explicit.

8This is not LGV lemma itself, as we deal with cylinder. Some subtleties with
spectral parameter and its signs appear because of the closed paths which go around
cylinder. For discussions see [84] and [125].
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3.4.3 Integrable systems on Poisson-Lie group

Another origin of cluster coordinates in integrable systems is factorization
ansätze for elements of Poisson-Lie group P̂GL(N) [49], [82], [?], which
appeared in theory of positive matrices [57]. In this approach phase spaces
of systems are double Bruhat cells Bw ⊂ P̂GL(N), which are enumerated
by elements w of extended double Weyl group W̃

(
A

(1)
N−1 ×A

(1)
N−1

)
, which

has presentation
W̃
(
A

(1)
N−1 ×A

(1)
N−1

)
= (3.48)

=
〈

si, s̄i,Λ sisi+1si = si+1sisi+1, Λsi = si+1Λ, s2
i = 1, s̄isj = sj s̄i,

i ∈ Z/NZ s̄is̄i+1s̄i = s̄i+1s̄is̄i+1, Λs̄i = s̄i+1Λ, s̄2
i = 1

〉
.

Each reduced decomposition of w into product of generators si, s̄i,Λ pro-
vides open embedding of X -cluster chart in Bw: to each generator one as-
signs certain matrix (namely, transfer matrix in one-path sector of blocks
shown in Fig. 3.9), depending on X -cluster variables. Product of these
matrices in the same order, as letters in the word w are located, provide
matrix g(λ) parametrizing Bw. Cycle hA is chosen to be interval lying on
the ’back’ side of cylinder and connecting its left and right boundaries, so
the dependence on λ comes from generators s0, s̄0 and Λ which contain
edges crossing hA, for details see [?].

The restriction of r-matrix bracket with trigonometric r-matrix

{g(λ1)⊗ g(λ2)} = [r(λ1/λ2), g(λ1)⊗ g(λ2)] (3.49)

to double Bruhat cells, which are Poisson submanifolds, turns out to be
compatible with logarithmically constant bracket (3.21). The simplest
way to check this is by checking for each block drawn in Fig 3.9, and
using co-product property of r-matrix bracket, that if g1 and g2 satisfy
it, then g1g2 also satisfies. Exchange matrix ε can be easily written from
the word w by considering graphs, dual to those drawn in Fig. 3.9, as
it was done in Fig. 3.5. Change of reduced decomposition via Coxeter
relations sisi+1si = si+1sisi+1 and s̄is̄i+1s̄i = s̄i+1s̄is̄i+1 amounts in single
four-move and pair of two-moves. Relation s̄isj = sj s̄i can be realized as
single two-move and does not affect exchange matrix if i = j ± 1, and is
single four-move if i = j. The relations s2

i = 1 and s̄2
i = 1 can be done

by pair of two-moves followed by parallel bigon reduction of type (b),
and therefore are not cluster transformations and do not preserve transfer
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matrix, however preserves wiring of zig-zags. If one applies parallel bigon
reduction of type (a) instead, one gets Weyl semi-group with relation
s2
i = si. Below we will assume that we use reduction of type (b).

Spectral curve of integrable system is given by characteristic equation

S(λ, µ) = det(g(λ)− µ). (3.50)

Hamiltonians of the system are Ad-invariant functions on Bruhat cells,
and so only conjugacy class of word w matters. Taking characteristic
equation of g(λ) is close relative of gluing torus into cylinder, so the spec-
tral curve coincides with the one given by (3.43) up to transformations
S(λ, µ) 7→ f(λ)S(λ, µ), µ 7→ g(λ)µ, where f, g are some rational functions
with coefficients depending on Casimirs.

..
.

..
.

1

i

i+ 1

N

si

..
.

..
.

1

i

i+ 1

N

s̄i

..
.

..
.

1

i

i+ 1

N

Λ

Figure 3.9. Basic graphs on cylinder corresponding to generators of Weyl group.
Zig-zag paths are drawn by green lines, and generators act on their ends by
permutation. Note that zig-zags are drawn so, that in-going and out-going ends
of zig-zags alternate along the boundary.

Important observation, which we will need in the following, is that the
building blocks for si, s̄i,Λ indeed ’permute’ zig-zag paths, which we will
sometimes refer as strands. One can see in Fig. 3.9 that zig-zags going
from the left to the right along lines i and i+1 are permuted after passing
si, while s̄i permutes those going from the right to the left along i and
i + 1. Note, that the label i of generators si and s̄i is given not by the
number of zig-zag, but by the number of horizontal line of bi-coloured
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graph. Generator Λ shifts by +1 all zig-zags going from the left to the
right, and by −1 those going from the right to the left.

Weyl group interpretation of tetrahedron equation Double Weyl
group of P̂GL(N) contains diagonal subgroup W (A(1)

N−1) ⊂ W (A(1)
N−1 ×

A
(1)
N−1) generated by sis̄i and Λ. Comparing Fig. 3.6 and Fig. 3.9 one

sees that plabic graphs corresponding to Lax operator of Bazhanov and
Sergeev coincides with the one presenting word sis̄i in double Weyl group!
As we will see below, systems with symmetric Newton polygons can be
constructed using diagonal subgroup only, so this again gives construc-
tion of integrable system with arbitrary symmetric Newton polygon from
contraction of Lax operators (3.11). Tetrahedron transformation shown
in Fig. 3.7, can be interpreted just as braiding relation

µR : (sis̄i)(si+1s̄i+1)(sis̄i) 7→ (si+1s̄i+1)(sis̄i)(si+1s̄i+1) (3.51)

for diagonal subgroup of W̃ (A(1)
N−1 × A

(1)
N−1). This is the same transfor-

mation, which relates two ’positive’ parametrizations [57] for the largest
Bruhat cell w0 in PGL(3).

The functional tetrahedron equation (3.10) recasts into statement, that
two ways to identify two different parametrizations for the largest Bruhat
cell w0 in PGL(4) are equivalent

w0 = (s1s̄1s2s̄2s3s̄3)(s1s̄1s2s̄2)(s1s̄1) ∼= (s3s̄3s2s̄2s1s̄1)(s3s̄3s2s̄2)(s3s̄3).
(3.52)

Symmetric Newton polygon Now, we are ready to show how con-
struction from section 3.4.2 for integrable system with symmetric Newton
polygon (~u1, ..., ~ur,−~u1...,−~ur) can be reproduced for double Bruhat cell
of the group P̂GL(N), N = a1 + ... + an. Construction comes from con-
sideration of commuting subgroups P̂GL(a1) × P̂GL(a2) × ... × P̂GL(an)
in P̂GL(N), similar to those from [53], and observation that si and s̄i act
on zig-zag paths by permutations. Consider subgroup W̃i,j = W̃ (A(1)

j−i ×
A

(1)
j−i) ⊂ W̃ (A(1)

N−1 × A
(1)
N−1) which permutes strands from i to j keeping
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other strands intact. More precisely, generators s′i,Λ′ of this subgroup are

s′a = si+a−1, s̄′a = s̄i+a−1, 1 ≤ a ≤ j − i,

s′0 = si−1si−2...s1s0sN−1...sj+1sjsj+1...sN−1s0s1...si−2si−1,

s̄′0 = s̄i−1s̄i−2...s̄1s̄0s̄N−1...s̄j+1s̄j s̄j+1...s̄N−1s̄0s̄1...s̄i−2s̄i−1,

Λ′ = si−1s̄i−1si−2s̄i−2...s1s̄1s0s̄0sN−1s̄N−1...sj+1s̄j+1Λ,

(3.53)

so generators from s′1 to s′j−i−1 act on strands i, ..., j as usual, while the
affine generators are ’skipping’ other strands 1, ..., i− 1, j + 1, ..., N . Gen-
erator Λ′ of subgroup Wi,j will be referred as Λi,j in the following. Note,
that bipartite graph defined by block Λij is the same stripe of four-gons
as a one, which appeared in Section 3.4.2.

It is always possible using SA(2,Z) transformation to place Newton
polygon in such a way, that it does not have any vertical sides. It is
straightforward to check that the Bruhat cell which gives Newton polygon
(~u1, ..., ~un,−~u1...,−~un) is defined then by element

w = (Λ1,r1)b1(Λr1+1,r2)b2 ...(Λrn−1+1,rn)bn , rk = a1 + ...+ ak (3.54)

in double Weyl group. Side (ak, bk) of the Newton polygon is generated by
strands ark−1+1, ..., ark . Together they got projection ak on the generator
of homologies oriented along cylinder. Generator Λrk−1+1,rk mixes only
them, and each application of this ’twist’ operator increases their common
projection on generator of homologies, oriented across cylinder, by 1. By
applying it bk times and making torus from cylinder, they are gluing into
longer strands representing class (ak, bk) ∈ H1(T2,Z), so it presents side
~uk of the Newton polygon. Strands going along the same lines but with
the opposite orientations generate class −~uk.

Non-symmetric Newton polygons For integrable system with non-
symmetric Newton polygon it is convenient to present Lax operator in tri-
angular decomposed form. This requires getting out of diagonal subgroup
of W̃ (A(1)

N−1 ×A
(1)
N−1), and considering separately ’positive’ and ’negative’

commuting subgroups W̃ (A(1)
a1−1)× ...× W̃ (A(1)

an−1) and W̃ (A(1)
c1−1)× ...×

W̃ (A(1)
cm−1), where ~u1 = (a1, b1), ..., ~un = (an, bn) are primitive oriented

boundary intervals of polygon between the leftmost and rightmost points,
~v1 = (−c1,−d1), ..., ~vm = (−cm,−dm) are intervals between the rightmost
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and leftmost points in counter-clockwise direction. Introducing halves of
’twisting’ operators

Λ+
ij = si−1si−2...s1s0sN−1...sj+1Λ, Λ−ij = s̄i−1s̄i−2...s̄1s̄0s̄N−1...s̄j+1Λ,

(3.55)
where ri = a1 + ... + ai and li = c1 + ... + ci, the word in double Weyl
group which provides wiring diagram for non-symmetric Newton polygon
is

w = w+w−Λ−b1−...−bn , (3.56)
w+ = (Λ+

1,r1)b1 ...(Λ+
rn−1+1,rn)bn , w− = (Λ−1,l1)d1 ...(Λ−lm−1+1,lm)dm ,

see example in Fig. 3.10, left. As far as the shifts w− 7→ Λkw−Λ−k preserve
Newton polygon, b1 + ... + bn = d1 + ... + dm and only the conjugacy
class of word matters, the same Newton polygon is provided by w =
w−w+Λ−d1−...−dn . The upper- and lower- diagonal Lax operators defined
by w± are constructed from hexagonal graph, in contrast to the symmetric
case, where the basic building blocks were four-gonal ’fence-net’ graph.

Wiring of parallel zig-zags It remains to discuss a wiring of paral-
lel zig-zags. Take Newton polygon with integral points on the boundary,
which are not at the corners, i.e. those having at least one ’non-simple’
side ~u′k = hk · (ak, bk), with gcd(ak, bk) = 1 (hk > 0, and let a′k > 0 for
certainty). Considering hk simple boundary intervals (ak, bk) separately,
one gets hk commuting sub-groups (W̃ (A(1)

ak−1))×hk , whose resulting con-
tribution into word in double Weyl group by twists is

wk,k+hk =
(
Λ+
rk−1+1,rk−1+ak

)bk
...
(
Λ+
rk−1+(hk−1)ak+1,rk−1+hkak

)bk
. (3.57)

Alternatively, one can consider this intervals together, which gives group
W̃ (A(1)

hkak−1) contributing by

wk,k+hk =
(
Λ+
rk−1+1,rk−1+hkak

)bkhk
. (3.58)

Two choices can be transformed one into another by local moves, however
the second ansatz is more reduced compared to the first one, as it involves
(N − akhk + 1)bkhk generators against (N − ak + 1)bkhk in the first case.
Another benefit is that it can be easily extended to involve ’wiring’ of
parallel strands, by

wk,k+hk =
(
Λ+
rk−1+1,rk−1+hkak

)hkbk
w̃k, w̃k ∈W (Ahk−1), (3.59)
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whereW (Ahk−1) is group acting by permutations of strands rk−1+1, rk−1+
2, ..., rk−1 + hk, see example in Fig. 3.10, right. One can assign such
’non-affine’ word to each non-simple boundary interval of Newton poly-
gon, however it is more natural not to bring all parallel intervals together,
but to join them according to decomposition of w̃k into a product of simple
cycles.

~u1 = (1, 0)
~u2 = (1, 0)
~u3 = (1, 0)

~v1 = (−1, 2)
~v2 = (−1, 0)
~v3 = (−1,−2) s̄1 s̄2 s̄0 s̄1 s̄0 s̄2 s̄1 s̄0

(12)(3)

~u1 = (2, 0)
~u2 = (1, 0)

~v1 = (−1, 1)
~v2 = (−1, 1)
~v3 = (−1,−2) s1 s̄2 s̄1 s̄0 s̄2 s̄1 s̄0

Figure 3.10. Top: Example of the double Bruhat cell in P̂GL(3) with non-
symmetric Newton polygon. The corresponding element in the double Weyl
group is w = (Λ−1,1)−2(Λ−3,3)2 = (s̄0s̄2Λ)−2(s̄2s̄1Λ)2 = s̄1s̄2s̄0s̄1s̄0s̄2s̄1s̄0, where
we used commutation relations of s̄i with Λ. The bipartite graphs are drawn on
torus, i.e. one has to glue right side with the left one, and upper with the lower.
Bottom: Example of the double Bruhat cell in P̂GL(3) with non-trivial wiring
of parallel zig-zags, the corresponding element in double Weyl group is w =
s1(Λ−1,1)−1(Λ−2,2)−1(Λ−3,3)2 = s1(s̄0s̄2Λ)−1(s̄1s̄0Λ)−1(s̄2s̄1Λ)2 = s1s̄2s̄1s̄0s̄2s̄1s̄0.

3.4.4 Classification of perfect networks on torus

Systematizing examples of previous subsection, we show now that all bi-
coloured graphs on torus can be reduced by local moves to ’normal forms’,
which are enumerated by Newton polygons (containing information about
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winding of zig-zags on torus), with the sides containing integral inter-
nal points partitioned according to the wiring of parallel zig-zags. Nor-
mal form attributed to graph is unique, up to SA(2,Z) transformation of
Newton polygon. Similar combinatorics already appeared in [34] in the
description of moduli spaces of monopole walls.

The statement is straightforward consequence of the fact, proved in
[55], that one can always ’slice’ bipartite graph on torus, and put into
correspondence to it some conjugacy class in double Weyl group (3.48),
and the following

Lemma. Any conjugacy class in double Weyl group (3.48) contains
unique element of the form

w = w+
1 · ... · w

+
n · w−1 · ... · w

−
m · Λ−b1−...−bn , (3.60)

w+
k =

(
Λ+
rk−1+1,rk

)bk (rk−1 + gcd(ak, bk), ..., rk−1 + 1),

w−k =
(
Λ−lk−1+1,lk

)dk (lk + gcd(ck, dk), ..., lk + 1),

where

• Numbers ak, bk, ck, dk define ordered set of counter-clockwise ori-
ented, boundary intervals ~uk = (ak, bk), ~vk = (−ck,−dk) with ak, ck >
0, of some Newton polygon of width N . The order starts from the
direction (0,−1), ’parallel’ vectors (i.e. proportional, with positive
rational coefficient)9 are ordered from the longest to shortest.

• Numbers rk, lk are defined by rk = a1 + ...+ ak, lk = c1 + ...+ ck for
k > 0, r0 = l0 = 0.

• Words Λ±ij are ’subgroup twists’ defined by formula (3.55).

• Words (j, ..., i) = sisi+1...sj−2sj−1 and (j, ..., i) = s̄is̄i+1...s̄j−2s̄j−1
are simple cycles10, i < j.

9Sides of the Newton polygon, containing internal integral points, can be split into
pieces in various different ways.

10The name comes from its action as permutation j 7→ j − 1, ..., i+ 1 7→ i, i 7→ j
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Proof. Any element w of the group W̃ (A(1)
N−1 × A

(1)
N−1) admits decom-

position w = w+w−Λ−K , where w+, w− are words, which contain only
generators si,Λ or s̄i,Λ respectively, and total degree of Λ in either w+ or
w− is K. Both w± belong to sub-groups of W̃ (A(1)

N−1) - type, so we will
classify conjugacy classes of its elements, and then show, how ambiguity
with the distribution of Λ can be fixed. Choose for definiteness subgroup
generated by si,Λ. There is a structure of semi-direct product

W̃ (A(1)
N−1) = ZN oW (AN−1), (3.61)

which comes from presentation w+ = L · g, where g is element of non-
affine Weyl group generated by si, and L is element of lattice generated
by commuting elements Λ+

i,i, as defined in (3.55), i.e. those which take
strand, wind it up over cylinder, and bring back onto initial place. Writing
this as pairs, and using additive notation for elements of lattice ei = Λ+

i,i,
we get product rule

(L1 ; g1) · (L2 ; g2) = (L1 +Rg1(L2) ; g1g2), (3.62)

where Rg1 acts on the basis elements of lattice by permutations

Rsi(ei) = ei+1, Rsi(ei+1) = ei, Rsi(ej) = ej if i 6= j, j+1 andRg1Rg2 = Rg1g2 .
(3.63)

The conjugacy classes in W̃ (A(1)
N−1) are in bijection with the set of pairs

(~q , λ), where λ = (λ1 ≥ ... ≥ λ`(λ) > 0) is the partition of number N , ~q ∈
Z`(λ) and `(λ) is the number of parts in the partition λ. Indeed, conjugacy
classes of permutations on N elements are enumerated by partitions λ of
number N , each containing representative

(p1, ... , 1)(p2, ... , p1 + 1) ... (p`(λ), ... , p`(λ)−1 + 1), (3.64)

where p0 = 0, pi = λ1 + ... + λi, and (j, ... , i) = si... sj−1 is cyclic permu-
tation, acting on the lattice by

R(j,...,i) : ei 7→ ei+1 , ... , ej−1 7→ ej , ej 7→ ei (3.65)

for i < j. As simple cycles (pk, ..., pk−1 + 1) commute for different k, and
generators of the lattice can be shifted along the cycles

[(ek ; id) · (0 ; (j, ... , i))] = [(el ; id) · (0 ; (j, ... , i))], ∀ i ≤ k, l ≤ j, (3.66)
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where [ ] is taking of conjugacy class, then by moving elements of the
lattice to the ’first lines’, one gets

[w+] = [w+
1 ... w

+
`(λ)] , w+

k = (qk · epk−1+1 ; (pk, ... , pk−1 + 1)), (3.67)

for some qk ∈ Z, so the vector ~q = (q1, ..., q`(λ)) is the vector of the ’lengths’
of lattice elements. To put conjugacy class in the form of the products of
’twists’ Λij , note that(

Λpk−1+1, pk
)qk ·(pk−1+gcd(λk, qk), ... , pk−1+1) = (Vk ; σk (pk, pk−1+1)σ−1

k ),
(3.68)

where the lattice element Vk = t′k(epk−1+1+...+epk)+epk−1+1+...+epk−1+t′′
k

with t′k ∈ Z≥0, 0 ≤ t′′k < λk is defined by qk = t′kλk + t′′k, and comes from
decomposition (

Λpk−1+1, pk
)qk = (Vk ; (pk, ..., pk−1 + 1)qk), (3.69)

which can be checked by direct computation, using that Λ+
ij = (k, ... , i) ·

Λ+
kk · (j, ... , k) for any i ≤ k ≤ j, and non-affine permutation σk is defined

from

(pk, ..., pk−1+1)qk ·(pk−1+gcd(λk, qk), ... , pk−1+1) = σk·(pk, ..., pk−1+1)·σ−1
k

(3.70)
which holds, because all orbits of the action of i 7→ i + qk on Z/λkZ can
be uniquely presented by one of the numbers 1, ..., gcd(λk, qk), so both
sides of (3.70) got only one orbit. From (3.68), using (3.66), for conjugacy
classes follows

[
(
Λpk−1+1, pk

)qk · (pk−1 + gcd(λk, qk), ... , pk−1 + 1)] = (3.71)

= [
(
qk · epk−1+1 ; (pk, ..., pk−1 + 1)

)
] = [w+

k ],

which is almost statement of the Lemma. The w− part can be reduced to
the normal form, encoded by (~̄q, λ̄), in the same way. The only element,
which is common for words w+ and w− is Λ, which also do not commute
with all generators si and s̄i. However, we initially distributed it in w =
w+w−Λ−K in a such way, that the total degree of Λ inside w−Λ−K or
Λ−Kw+ is zero, so the treatment of w+ or w− is not affected by another
part. Finally, conjugating w± by suitable permutations from non-affine
parts, we can rearrange indices of si, s̄i inside w±k by counter-clockwise
order on the directions of vectors (λi, qi), (−λ̄i,−q̄i), starting from the
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direction (0,−1), and by decrease of lengths for the vectors of the same
slope, obtaining numbers (ai, bi) and (ci, di). The properties that the sum
of vectors is zero, i.e. that they can be composed into the boundary of
Newton polygon, and that the width of this polygon is N , are guaranteed
by ∑i λi = ∑

i λ̄i = N , ∑i qi = ∑
i q̄i = K.

3.5 Discussion
In this Chapter we have demonstrated that the Bazhanov-Sergeev solution
of the tetrahedron equation appears naturally as the basic building block
for the transfer matrix of paths in the theory of cluster integrable systems.
We have also shown how the integrable system with arbitrary symmetric
Newton polygon can be built using this building block. We have explained
how this construction originates from the combinatorics of words in the
double affine Weyl groups and used it to explicitly construct bi-coloured
graph for the integrable system associated with any Newton polygon. We
have also proven the classification Lemma stating that we have constructed
all possible systems of such kind.

The following questions seem to be promising for future developments
of this topic:

• As the Poisson brackets on weights of paths are bi-linearly constant,
it can be quantized in a straightforward way by [48]

{wγ1 , wγ2} = ε(γ1, γ2)wγ1wγ2 −→ ŵγ1ŵγ2 = t
1
2 ε(γ1,γ2)ŵγ1+γ2

(3.72)
The mutation, which was a canonical transformation classically, in
the quantum world becomes a conjugation by quantum dilogarithm.
Extension of the arguments presented in this Chapter to the quan-
tum case will provide a closed formula for the tetrahedron R-matrix
Rabc in terms of four quantum dilogarithms. This can clarify the ap-
pearance of the product of four functions similar to quantum dilog-
arithms at the root of unity in the vertex weight of the 3d vertex
model [10, 11, 107, 108], whose solution is known to be a solution
of the tetrahedron equation [113, 170]. Such product (outside of the
roots of unity) was also noted in [160]. Another promising direc-
tion of research is construction of new solution for the tetrahedron
equation using cluster algebras with fermionic variables [152], as
suggested by recent appearance of quivers with fermionic nodes in
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representations theory of affine algebras [117, 126, 127, 12, 183] and
approach of [162] to super-algebras using tetrahedron equation.

• Surprisingly, the same quiver and the same cluster transformation
as those shown in Fig. 3.7 have already appeared in the context
of the relation between cluster algebras and vertex integrable sys-
tems in [181]. The physical origin of these solutions was the 2d
N = (2, 2) supersymmetric sigma-model, whose Kähler parameters
were shown in [22] to transform as cluster variables under Seiberg
dualities. From the other side, the approach to cluster integrable
systems which we have used here is suspected to originate from 5d
N = 1 theories [39, 14, 140], where cluster variables play the role of
Seiberg-Witten curve’s moduli. This intriguing coincidence should
have some unifying physical origins.

• The systems we have considered were mainly of “affine” type: they
live on double Bruhat cells of the affine group P̂GL(N) and being
rewritten in Darboux variables represent “closed” chains of interact-
ing particles [39, 128, 55, 80]. The integrability theorem, proved in
[71], assumes that the perfect network on torus is minimal, i.e. that
its zig-zags do not have self-intersections, and that parallel zig-zags
(those, whose classes in H1(T2,Z) are proportional with positive co-
efficient) do not intersect. The cluster description of the “open”
chains11, which live on double Bruhat cells of the non-affine group
PGL(N), involves networks drawn on a cylinder (or on a cut torus
— this can be treated as a particular case of a “squashed” Newton
polygon of zero area). So all the intersections of zig-zags are either
self- or parallel-, and integrability of such systems is not guaranteed
by [71]. However it can be proved by other methods.
We have unified these classes of systems by considering the wiring
of parallel zig-zags. As it was shown in [84], the Lax operator of any
network on a cylinder has an r-matrix Poisson bracket with itself,
however the general integrability criterion, which allows to compare
the number of independent integrals of motion and the dimensions
of the symplectic leaves still has to be developed.

• We have proven the classification theorem for bi-coloured graphs on
11Which were historically the first examples of the cluster description of integrable

systems [82].
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torus. Graphs which contain wiring of parallel zig-zags cannot be
made minimal by local moves, i.e. self-intersections of zig-zags are
protected by topology. However, they can always be made “locally
minimal”, which means that they become such networks on torus,
that being cut by any curves into a disk, they become minimal net-
work on the disk, as follows from the reduction theorem proved
in [174]. In the language of double Weyl groups locally minimal
diagrams are those defined by reduced words.
However, in our consideration we allowed to reduce parallel bigons by
the use of s2

i = 1 which is not a cluster transformation. Classification
of the normal forms of the locally minimal networks “up to cluster
transformations” with the bigon reduction relation s2

i = si seems to
be a fruitful direction for further investigations, especially as it might
exhibit interesting SL(2,Z) covariant behaviour 12. The problem of
parallel bigons itself is still poorly understood in cluster algebras,
and also awaits its solution. We also expect, that the condition
that the Newton polygon does not contain vertical sides might be
removed and full SL(2,Z) covariance restored by the replacement of
the double affine Weyl group with a certain generalization thereof,
originating from toroidal algebras.

• In this Chapter we have been discussing continuous time integrabil-
ity only. However, the cluster integrable systems are known to have
rich discrete dynamics. In [65] the general structure of the group
of discrete transformations generated by spider moves was given.
However, it is known that even for quivers coming from bi-coloured
graphs there is a much larger group of cluster transformations (se-
quences of mutations and permutations of quiver vertices) which
bring quivers back into itself, which however cannot be represented
by a sequence of bi-coloured graph transformations (see e.g. [99] for
hexagonal lattice and [140] for the four-gonal one). These trans-
formations are related to boundary intervals of Newton polygons
with integral internal points, and realize permutations of “parallel”
zig-zags (whose classes in torus homology coincide).
We expect that using the results of this Chapter, a big piece of
the cluster mapping class group containing the sub-group W (A(1)

N )
12However, we conjecture that the set of cyclically irreducible words will be the same

for both relations, s2
i = si and s2

i = 1.
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for each boundary interval with N internal points, and a subgroup
described in [65], can be explicitly constructed. The half Dehn-twists
R-matrix [87, 171] should also find their natural interpretation in
this construction.

3.6 Appendix. Details on tetrahedron transfor-
mation.

As it was said in Section 3.3.2, it is easy to check that transformation of
cluster variables (3.37) is agreed with tetrahedron transformation (3.13)
via (3.32). However, it is not that easy to derive transformation rules
for γ variables (3.35) directly from sequence of two- and four- moves.
The major difficulty is that after sequence of moves shown in Fig. 3.11
new variables γ′ defined in Fig. 3.7 can not be expressed using γx,i with
x = a, b, c; i = 1, 2, 3, 4 variables only, but more refined corner variables,
a1, a2, a3, ..., l1, l2, l3, as indicated in Fig. 3.11, should be involved.

It turns out that this problem might be treated by choosing of ap-
propriate gauge. After application of two- and four- moves one can still
apply gauge transformations at points shown by grey crosses in Fig. 3.7,
left, bottom, which transform γ′ variables by

γ′a,1 → Xγ′a,1, γ′a,2 → X−1Y γ′a,2, γ′a,3 → Y −1γ′a,3,

γ′b,2 → Zγ′b,2, γ′b,3 → XZ−1γ′b,3, γ′b,4 → X−1γ′b,4,

γ′c,1 → Z−1γ′c,1, γ′c,4 → Y −1Zγ′c,4, γ′c,3 → Y γ′c,3,

(3.73)

and change transfer matrix of each four-gonal block, but do not affect
transfer matrix of whole network. Direct check shows13 that once X,Y, Z
are chosen to be

X =
√
f2γa,4
e3γa,2

(
γa,1γa,4γ

2
b,3γc,1γc,2

γa,2γa,3γ2
b,1γc,3γc,4

)1/8

,

Y =
√
l2b2
a3k3

(
d3l3
i2a2

)3/8(γa,2γb,4γc,2
γa,4γb,2γc,4

)1/4

,

Z =
√
h2γc,4
g3γc,2

(
γa,2γa,3γ

2
b,1γc,3γc,4

γa,1γa,4γ2
b,3γc,1γc,2

)1/8

,

(3.74)

13With four-move parameters chosen to be α1 = α2 = 0, α3 = − 1
2 in (3.27)
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Figure 3.11. Tetrahedron transformation as sequence of eight two-moves and
four spider-moves. Red colour highlights those parts of graph which being trans-
formed by two- or four- moves.

transformed γ′ variables match (3.35) obtained directly from (3.13) via
(3.32).
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Chapter 4

Topological strings
amplitudes and
Seiberg-Witten

prepotentials from the
counting of dimers in

transverse flux

The proposal of this Paragraph is to show how the partition functions
of topological strings can be obtained in purely cluster algebraic setting,
building the missing red arrow on Fig. 1.1. We claim that in order to deau-
tonomize the cluster integrable system, one has to uplift the Kasteleyn op-
erator from torus to the plane, covering the torus. The deautonomization
parameter q plays a role of the transverse flux of discrete R>0-connection.
The partition function of dimers, which provided spectral curve in the
autonomous case, becomes a partition function of dimers on the infinite
plane. We claim, that being properly regularized and with certain scaling
of parameters, this partition function reproduces the counting of topolog-
ical vertices, which constitute topological string partition function.

This proposal is well agreed with the topological strings/spectral the-
ory correspondence like in [16], since the partition function of dimers on
a plane can be computed using the determinant of Kasteleyn operator,
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which in this case is almost a quantization of spectral curve. Cluster
algebraic interpretation of partition functions opens a room for proving
bilinear relations among them as for A-cluster variables related by muta-
tions of the cluster seed.

Structure of this Chapter In the Paragraph we illustrate all construc-
tions using the single example of cluster integrable system isomorphic to
relativistic Toda chain on two sites, which is shown on Fig. 1.1.

In Section 4.1 we introduce basic objects and recollect necessary facts
on thermodynamic of dimer statistical models. Then we explain how
the “deautonomization” of ∏f xf = q 6= 1 can be achieved by replacing
spectral parameters λ, µ in the Kasteleyn operator of dimers on torus
by the q-commuting operators of magnetic translations T̃x, T̃y. We also
discuss degeneracy of their action on the space of functions on Z2 due to
their commutativity with the dual magnetic translations.

In Section 4.2 we discuss q → 1 limit. We show how the solution of
“limit shape” problem can be derived from the WKB approximation for
Kasteleyn operator. We show then that the free energy of the model,
properly regularized in this limit, gives closed formula for the Seiberg-
Witten prepotential of corresponding 5d N = 1 gauge theory.

In Section 4.3 we show how all the necessary box-counting degrees of
freedom arise from the counting of dimers, resulting in the main formula
of equality of partition function of dimers (in the proper limit) to the dual
partition function of topological strings

Z(Q0 = q,QB, QF , Q2) = (4.1)

=
∑
n∈Z

(Q2)n−1(QBQF )n(n−1)q
2
3n(n−1)(2n−1)Zboxes(q, q2nQB, q

2nQF ).

where Zboxes is defined in 1.2. Then, we discuss some issues of inconsis-
tency of the requirements of “infinite distance” between the walls of the
room, and of “freezing out” of non-boxcounting degrees of freedom.

In Section 4.4 we outline results of the Paragraph, and propose some
directions for the future developments.
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4.1 Kasteleyn operator of dimers in transverse
flux

In this section we will show, how making edge weights linearly dependent
on the position of fundamental cell, one can relax condition ∏f∈F1 xf =
q = 1, deautonomizing cluster integrable system.

4.1.1 Zero flux

Definition of the model. The dimer models are usually defined on
bipartite graphs, such graphs Γ that the vertices V can be decomposed
into black and white subsets V = B tW , and edges connect only vertices
of the opposite colours, see example of Fig. 4.1. Throughout the Chapter
we assume the graphs to be minimal in the sense of [71]. The edges e ∈ E
are weighted by the positive real statistical weights we ∈ R>0 for edges
oriented from black to white vertex (which is assumed to be canonical
in the following), and by weights w−e = w−1

e for the edges taken with
opposite orientations. We also extend multiplicatively w to any sets S of
edges by wS = ∏

e∈S we. It is often instructive to consider edge weights
as discrete connections in R>0-bundle over Γ.

The possible microscopic states of the model are dimers configurations
D ∈ D(Γ) (also called perfect matchings) on Γ, which are such collections
of edges of Γ, that each vertex have exactly one adjacent edge from this
collection and all edges are taken with the canonical black-to-white ori-
entation. The partition function can be defined, as usual, as a sum of
statistical weights over all configurations

Z(Γ, w) =
∑

D∈D(Γ)
wD. (4.2)

It changes by simple common factor

Z(Γ, w) 7→
(∏
v∈B

g−1
v

)( ∏
v∈W

gv

)
Z(Γ, w)

under R>0 gauge transformations of edge weights

we 7→ gt(e)weg
−1
s(e) (4.3)

where g is R>0-valued function on vertices, and s(e), t(e) are starting and
terminal vertices of edge e. So it is meaningful to consider the partition



124 Chapter 4. Counting of dimers in transverse flux

function normalized by the weight of some fixed dimers configuration D0

Z(Γ, w;D0) = Z(Γ, w)
wD0

=
∑

D∈D(Γ)
wD−D0 . (4.4)

which depends, for planar graphs, only on gauge invariant face weights
xf = ∏

e∈∂f we, since for any dimers configurations D,D0 holds ∂(D −
D0) = 0 and any cycle in a disk is contractible.

Kasteleyn operator. The dimer models are “free fermionic”: it simply
follows from the definition of determinant, that their partition functions
can be effectively computed [105] as determinants

Z(Γ, w) = ±det KΓ (4.5)

where Kasteleyn matrix KΓ : C|B| → C|W | is twisted by additional signs
weighted adjacency matrix of Γ

(KΓ)α,β =
∑

∂e=α−β
(−1)κewe, α ∈W, β ∈ B, (4.6)

and signs (−1)κe , called Kasteleyn orientation, for every face f are re-
quired to satisfy condition∏

e∈∂f
(−1)κe = (−1)|∂f |/2+1. (4.7)

For planar graph all Kasteleyn orientations are equivalent up to Z/2Z
gauge transformations

(−1)κe 7→ (−1)σs(e)+σt(e) (−1)κe (4.8)

where (−1)σ is ±1-valued function on vertices. The overall sign ± in (4.5)
is gauge-dependent.

Fugacities of the translation invariant model on infinite lattice.
The bipartite graph is called periodic and planar if it can be embed-
ded into plane R2 without intersections of edges and in a way invari-
ant under the action of a Z2 lattice generated by the pair of discrete
translations Tx,Ty. The fundamental domains of this action are cells of
rectangular grid, formed by infinite simple horizontal and vertical curves
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γh,j = (Ty)jγh,0 and γv,i = (Tx)iγv,0 transversal to edges, cell (i, j) is
bounded by the curves γv,i, γv,i+1 and γh,i, γh,i+1, see Fig. 4.1, left. We
decompose set of vertices as V = V1×Z2, where the first multiplier is finite
and counts vertices inside of the cell, and the second denotes position of
fundamental cell which a vertex belongs to. We assume that V1 contains
equal number of black and white vertices B1 and W1. Sets of edges and
faces could be decomposed in a similar way E = E1 × Z2, F = F1 × Z2,
where we attribute an edge to the fundamental cell according to the posi-
tion of the black vertex adjacent to it, and a face intersecting few cells to
one of the fundamental cells which it intersects.

4 3 4 3

1 2 1 2

4 3 4 3

1 2 1 2

1, (i, j)

1, (i, j)

1, (i, j+1)

1, (i+1, j)

1, (i+1, j)

1, (i+1, j+1)

2, (i, j)

2, (i, j)

2, (i, j+1)
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2
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i
2
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x̃1 = q
w2w8
w3w5
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w4w6

x̃3 = w4w6
w1w7

x̃4 = w1w7
w2w8

x̃1x̃2x̃3x̃4 = q

Figure 4.1. Example of bipartite graph, known to describe Toda integrable
chain on two sites. Left: labelling of vertices, faces, and edge weights. Since
we consider only periodic weightings of faces, we do not put labels of their fun-
damental domains on the plot. Right: edges weighting of finite flux q = e−ε,
according to (4.18) and face weights expressed in terms of edge weights.

If the weighting on periodic graph is also periodic we = wTxe = wTye,
then by factorization of plane by Z2 action we obtain associated model
on graph Γ1 embedded in torus T2, with the sets of vertices, edges and
faces V1, E1 and F1, and γh,i, γv,j projected to cycles γh, γv generating
H1(T2,Z). Since any closed cycle p on Γ1 can be decomposed as

p = nph +mpv +
∑
f∈F1

nf∂f (4.9)

where ph, pv are some cycles on Γ1 homotopic to γh and γv, the set of
gauge-invariant functions on the space of edge weights is generated by
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face weights xf and pair of “monodromies” xh = ∏
e∈ph we, xv = ∏

e∈pv we.
The face weights of dimer model on torus are not independent, they always
satisfy a “vanishing of total transverse flux” constraint

q =
∏
f∈F1

xf = 1 (4.10)

since ∑f∈F1 ∂f = 0. We will construct the weighting for the model with
non-vanishing flux q in the next subsection. Also, there is no canonical
choosing for cycles ph, pv, however there is a “twist” of edge weights by
eBx , eBy ∈ R>0

we 7→ e〈e,γv〉Bx+〈γh,e〉By we (4.11)

where 〈 , 〉 is a skew-symmetric intersection form with the orientation fixed
by 〈γh, γv〉 = 1, which do not change face weights, but shifts xh 7→ eBxxh,
xv 7→ eByxv. We will be using xf , f ∈ F1 and eBx , eBy as a full set of
fugacities, determining model with the vanishing flux.

4.1.2 Non-vanishing flux

Below we will use the additive notations for gauge transformations, edge
and face weights

gv = egv , we = ewe , xf = exf , (4.12)

where g, w and x are cochains from the discrete de Rham complex

0 C0(Γ,R) C1(Γ,R) C2(Γ,R) 0d0 d1 (4.13)

with the differentials

(d0g)(e) = gt(e) − gs(e), (d1w)(f) =
∑
e∈∂f

we. (4.14)

Using these differentials the gauge transformations and fluxes can be writ-
ten as

w 7→ w + d0g and xf = (d1w)(f). (4.15)

We will also refer to elements of C2(Γ,R) which are not necessary exact
as to face weightings. The classification of discrete R>0-connections on V
with arbitrary translation invariant fluxes is provided by the following:
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Lemma. Choose any face weighting x̃ on periodic graph, which is trans-
lation invariant Tx,yx̃ = x̃. Denote total flux through the fundamental cell
by −ε = ∑

f∈F1 x̃f and fix decomposition

x̃f = xf −

χf +
∑

(i,j)∈Z2

δf,f×(i,j)

 ε (4.16)

where x, χ are translation invariant face weightings of zero flux through
the fundamental cell ∑

f∈F1

xf =
∑
f∈F1

χf = 0, (4.17)

face f×(i,j) is the face, which the crossing γh,j∩γv,i belongs to, and δf,f ′ = 1
if f = f ′, and δf,f ′ = 0 otherwise. Then there is a unique up to gauge
transformation discrete connection w̃ such that d1w̃ = x̃, and its gauge
equivalence class is presented by edge weighting

w̃e = we −

ωe + 1
2

∑
(i,j)∈Z2

i〈γ[i,i+1]
h,j , e〉+ j〈γ[j,j+1]

v,i , e〉

 ε (4.18)

where w and ω are translation invariant edge weightings with fluxes d1w =
x, d1ω = χ, γ[i,i+1]

h,j and γ[j,j+1]
v,i are intervals of γh,j and γv,i bounded by

γv,i, γv,i+1 and γh,j , γh,j+1 respectively.

Remark. The illustrating example to this Lemma can be found in Fig. 4.1,
right. Note, that we separated part of face weighting of zero total flux into
x and χ, in order to fix fluxes in ε→ 0 limit by x and to control ’direction’
along which the total flux vanishes by χ. We also put sign “−” at ε to
have q < 1 for exponentiated flux q = e−ε at positive values of ε.

Proof. To prove existence of w and ω, push translation invariant fluxes
x and χ down to Γ1. The conditions that x, χ ∈ Im d1 are equivalent there
to x, χ ⊥ Ker δ2 where codifferential δ2 : C2(Γ1,R)→ C1(Γ1,R) is defined
by

(d1w, x)2 = (w, δ2x)1 (4.19)
(w′,w′′)1 =

∑
e∈E1

w′ew′′e , (x′, x′′)2 =
∑
f∈F1

x′fx′′f , (4.20)

or explicitly by
(δ2x)(e) = xt(e∗) − xs(e∗), (4.21)
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where e∗ is the edge of dual graph, obtained from e by counter-clockwise
rotation by 90◦. Space Ker δ2 is one-dimensional and generated by the
constant function Ω : Ωf = 1 ∀ f ∈ F1, so orthogonalities (x,Ω)2 = 0 and
(χ,Ω)2 = 0 are guaranteed by (4.17).

The i and j depending terms in (4.18) contribute to (4.16) with −ε ·
δf,f×(i,j)

, and generate total flux −ε. This can be computed in any example,
and then checked that upon adding vertices to ∂f×(i,j) and moving them in a
way, which keeps γh,j∩γv,i inside of f×(i,j) and do not put other intersection
points inside of it, flux remains the same. Intersections of boundaries of
other faces with γh,• and γv,• come in pairs, whose contributions from
these terms cancel each other.

To show uniqueness of the gauge orbit, take difference of any pair of
discrete connections w0 = w̃′−w̃′′ both having flux x̃. It is closed d1w0 = 0
and exact

w0 = d0g, gv =
∑

e∈pv0,v

(w0)e, (4.22)

where pv0,v is any path connecting some fixed vertex v0 with v, and the
sum is path independent as ∑e∈p(w0)e = 0 for any closed path p, so g is
well defined. Thus, g provides desired gauge transformation w̃′ = w̃′′+d0g.
�

The Kasteleyn operator K̃ : C|B1| ⊗ C|Z2| → C|W1| ⊗ C|Z2| constructed
from weighting (4.18) can be compactly written in terms of Γ1 as

K̃ = K̃1(T̃x, T̃y) =
∑
e∈E1

(−1)κeqωewe · Et(e),s(e) ⊗
←−T (e) (4.23)

where q = e−ε is exponentiated flux per fundamental cell, and the trans-
lation operator←−T (e) is ordered along the edge e product over its intersec-
tions with γh, γv, which are images of γh,•, γv,• under projection from R2

to T2
←−T (e) =

←−∏
p∈e∩γh,v

(
T̃x

)〈e,γv〉p (T̃y

)〈γh,e〉p (4.24)

of the basic q-commuting “magnetic translations” T̃x,y : C|Z2| → C|Z2|

T̃x =
∑

(i,j)∈Z2

q−
1
2 j Ei+1,i ⊗ Ej,j , T̃y =

∑
(i,j)∈Z2

q
1
2 i Ei,i ⊗ Ej+1,j , (4.25)

T̃yT̃x = qT̃xT̃y. (4.26)
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The notation K̃1(T̃x, T̃y) means that we can consider K̃ as a finite ma-
trix K̃1 : CB1 → CW1 , with coefficients in the skew Laurent polynomi-
als C[q, q−1, T̃x, T̃

−1
x , T̃y, T̃

−1
y ]. For example, this matrix presentation for

Kasteleyn operator of the network drawn in Fig. 4.1 is

K̃1 =

 w1 + w3T̃−1
y −w6 − w8T̃x

w4 + w2T̃−1
x w7 + w5T̃y

 . (4.27)

The space C|Z2| as a representation of the algebra of q-difference op-
erators by T̃x and T̃y is largely reducible. The degeneracy can be lifted
utilizing the algebra of q−1-difference operators, represented by “dual mag-
netic translations”

T̃∨x =
∑

(i,j)∈Z2

q−
1
2 j Ei−1,i ⊗ Ej,j , T̃∨y =

∑
(i,j)∈Z2

q
1
2 i Ei,i ⊗ Ej−1,j , (4.28)

T̃∨y T̃∨x = q−1T̃∨x T̃∨y . (4.29)

which commute with the former

[T̃s, T̃∨s′ ] = 0, s, s′ = x, y. (4.30)

Therefore any operator, which is a skew Lauren polynomial Q̃ = Q̃(T̃∨x , T̃∨y )
in T̃∨x , T̃∨y , commutes with K̃ in the sense that(

Id C|W1| ⊗ Q̃
)
· K̃ = K̃ ·

(
Id C|B1| ⊗ Q̃

)
. (4.31)

The form (4.23) of Kasteleyn operator survives under gauge transforma-
tions constant inside of fundamental cells, the universal condition deter-
mining operators of dual translations is

T̃∨x T̃x = q−ŷ , T̃∨y T̃y = qx̂ , (4.32)

qx̂ =
∑

(i,j)∈Z2

qi Ei,i ⊗ Ej,j , qŷ =
∑

(i,j)∈Z2

qj Ei,i ⊗ Ej,j . (4.33)

The operator Q̃ is hypostasis of eponymous Laurent polynomial from [116],
which was shown there to label possible limit shapes of dimer model. In
the next section we will show that the complex Burgers equation control-
ling limits shapes in [116] is simply the WKB approximation in q → 1
limit to the spectral problem for the Kasteleyn operator (4.23).
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4.2 Seiberg-Witten integrability inWKB approx-
imation

In this Section we look at the “melting” q → 1 limit of vanishing flux
for dimer model. The usual arguments of quantum mechanical quasi-
classics are applicable to Kasteleyn operator (4.27) in this limit. The main
result of this Section is that the free energy (4.58), which is a regularized
volume under the “limit shape” (4.52), satisfies Seiberg-Witten equations
(4.59). We will use only the example (4.27) throughout the Section, but
all arguments of it can be generalized in a straightforward way.

4.2.1 Quasiclassics of vanishing flux at q → 1 and height
function of limit shape

The main observable in dimer models is “height” function, which counts
portions of dimers oriented “horizontally” and “vertically” in average con-
figuration. Its meaning becomes more clear, once the configurations of
dimer model are interpreted as stepped surfaces.

Let’s choose some reference configuration D0 as in (4.4). As for any
D ∈ D(Γ) holds ∂D = W−B, the differenceD−D0 is a collection of closed
and non-intersecting (having no common vertices) cycles on plane, which
we interpret as boundaries of “steps”. The orientation of cycle determines
whether its step is upward or downward. Assuming each step to be of
heights 1, the difference of heights between the pair of faces f1, f2 of Γ is
〈p∗f2,f1

, D−D0〉, where p∗f2,f1
is any path on the dual graph Γ∗ connecting

f1 and f2 and 〈 , 〉 is an intersection pairing. Since ∂(D − D0) = 0, the
heights difference is independent on choosing of path p∗f2,f1

for planar Γ.
The averaged height function h : F×F → R computes the mean difference
of heights over the ensemble of stepped surfaces

hf2,f1(Γ, w;D0) = hf2,f1 = 1
Z(Γ, w;D0)

∑
D∈D(Γ)

〈p∗f2,f1 , D −D0〉wD−D0 .

(4.34)
It is clear from this definition, that the fugacity ε in q = e−ε controls the
“volume” under the stepped surface made out of these loops, since each
loop l = ∂B contributes to the statistical weight of configuration in par-
tition function by ∼ e−ε·Area(B). The infinite volume limit corresponds to
ε→ 0, and the problem of finding the height function and its fluctuations
in this limit is called the limit shape problem.
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Due to free-fermionic nature of the model, all correlating functions of
any local observables in it can be computed by bare knowledge of two-
point Green function G, defined by the equations1

K̃ ·G = Id , [Q̃,G] = 0. (4.35)

The problem (4.35) for generic q is fully solved only for hexagonal lattices
with various boundary conditions using free fermionic vertex operators in
[149, 150]. The knowledge of the solution of (4.35) in few leading orders
in ε at ε→ 0 limit is enough for any purposes of the limit shape problem,
but this is still a cumbersome problem. However, the information about
height function itself can be heuristically extracted from the structure of
Ker K̃ ∩Ker Q̃, which is the solution of the simpler problem

K̃ψ = 0, Q̃ψ = 0. (4.36)

In coordinates x = εi, y = εj, considered as continuous coordinates on
R2, these equations become

∑
b∈B1(K̃1)v,b

(
e

1
2y−ε∂x , e−

1
2x−ε∂y

)
ψb(x, y) = 0

Q̃
(
e

1
2y+ε∂x , e−

1
2x+ε∂y

)
ψb(x, y) = 0

, b ∈ B1, v ∈W1.

(4.37)
They can be solved order-by-order in ε using standard quasi-classical an-
zaets for wave-function

ψb(x, y) = exp
( i
ε
S

(0)
b (x, y) + S

(1)
b + ...

)
, b ∈ B1. (4.38)

In the leading orders e 1
ε

# and ε0 the consistency conditions for the equa-
tions (4.36) become

P (ez, ew) ≡ det K1(ez, ew) = 0

Q(ez∨ , ew∨) = 0∑
b∈B1

(K1)v,b (ez, ew) eS
(1)
b = 0

, (4.39)

1The equation [Q̃,G] = 0 has not-clear-yet physical nature, but should be related to
the control over boundary conditions of the model, and the exact Green functions from
[149, 150] satisfy it.
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where K1 = K̃1|ε=0, Q = Q̃|ε=0 and

z = 1
2y − i∂xS(0)(x, y), w = −1

2x− i∂yS(0)(x, y), (4.40)

z∨ = 1
2y + i∂xS(0)(x, y), w∨ = −1

2x+ i∂yS(0)(x, y). (4.41)

Commutativity of K̃ and Q̃ implies in the quasiclassical limit that the
differential

dS(0) = ∂xS
(0)dx+ ∂yS

(0)dy = (4.42)

= i
2(zdw − wdz)− i

2(z∨dw∨ − w∨dz∨) + i
2d(w∨z − z∨w)

is closed, so the quasiclassical action S(0) = S(0)(x, y) can be defined by
its integration from. In the simplest case when Q = P , the conditions
(4.39) and (4.40) can be solved by z∨ = z̄, w∨ = w̄ and one can simplify
(4.42) to

S
(0)
Q=P (x, y) = Im

(∫ z(x,y)
(wdz − zdw) + z̄w

)
= (4.43)

= −2 · Im
(∫ z(x,y)

zdw

)
+ 2 · Re (z)Im (w),

which up to exact terms is (−2) times an imaginary part of integral of the
meromorphic differential zdw, called Seiberg-Witten differential, over the
complex curve

CP = {P (ez, ew) = 0 ⊂ (C∗)2}. (4.44)
To compute the height function, let’s assume now that the local be-

haviour of model with flux in ε → 0 limit mimics those of the “homoge-
neous” model of zero flux on the torus. For homogenous model the height
function can be easily computed using an expression for free energy density
[118]

R(Bx, By) =
2π∫
0

2π∫
0

dθdφ

(2π)2 logP (eBx+iθ, eBy+iφ), (4.45)

since the average number of “horizontal” and “vertical” dimers are dual
to the “twist” parameters (Bx, By) h(x+ ε, y)− h(x, y) ' −∂ByR = θ∗

π

h(x, y + ε)− h(x, y) ' ∂BxR = φ∗
π

, (4.46)
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where P (eBx+iθ∗ , eBy+iφ∗) = 0. At the same time, the zero-mode of ho-
mogeneous model is

ψα,(a,b) = ei(aθ∗+bφ∗)ξα, α ∈ B1, (a, b) ∈ Z2, (4.47)

where (K1)(eBx+iθ∗ , eBy+iφ∗) · ξ = 0. Applying in (4.47) coordinates a =
x/ε, b = y/ε and comparing it with (4.38), one can guess the height
function of the model with flux in ε→ 0 limit to be

h(x, y) =
∫

(∂xh dx+ ∂yh dy) ' S(0)(x, y)
πε

. (4.48)

The WKB quantization condition coming from single-valuedness of wave-
function becomes also the natural condition for height difference between
frozen regions of the model [116] to be integral.

In the case of Q = P comparing formulas (4.39), (4.40) with (4.46),
one can deduce

hQ=P (x, y) = −2
ε
R
(
y

2 ,−
x

2

)
. (4.49)

In [116] similar results were obtained, but the logic (and notations)
were different. Pair of equations (4.39) appeared there as a solution of
variational problem, optimizing the total surface tension2 to be minimal.
The Euler-Lagrange equation of this problem results to equations

∂yz − ∂xw = 1, P (ez, ew) = 0, (4.50)

called complex Burgers equation. The function Q appears then as a free
function, parametrizing the space of solutions of this equation, and con-
trolling the boundary conditions for solutions. So the equation, which
in our setup is a consistency condition supporting Hamilton-Jacobi equa-
tion, appears also to be the stationary-action principle for 2d field theory.
Expression for height function similar to (4.48) was also derived in [116].

4.2.2 Free energy density is Seiberg-Witten prepotential.

The WKB arguments can be also applied to computation of partition
function in ε→ 0 limit. The usual heuristics

Tr[A(Tx, Ty)] →
∫∫

dxdy

ε2

∫∫
dθdφ

(2π)2A(e
y
2 +iθ, e−

x
2 +iφ) as ε→ 0

(4.51)
2The surface tension density is a Legandre dual to the free energy density R. It

computes the energy of the region with the known slope (∂xh, ∂yh) in opposite to R,
which computes energy of the region with fugacities (Bx, By).
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gives the integral formula for the partition function of the model

Z = det K̃ = etr log K̃ ∝ exp
( 1
ε2

∫∫
dxdyR

(
y

2 ,−
x

2

))
= qVol(P,P ),

(4.52)
Vol(P, P ) = 1

2

∫∫
dxdy

ε2 hQ=P (x, y).

The proportionality of the free energy of the model to the volume3 under
the limit shape is a natural thing: in the leading order, the partition func-
tion is dominated by single configuration, and the free energy determined
by it is proportional to the sum of areas of all contours which this config-
uration contains (which is basically volume). It is diverging, and proper
regularization of determinant in (4.52) and extension of the formula to
the case Q 6= P requires careful consideration of the boundary conditions
for the model and role of Q. We will instead define some regularization of
Vol guided by its properties and natural equation satisfied by it. In order
to to this we need first to make a closer look to the properties of spectral
curve P (ez, ew) = 0 and function R.

For the lattice drawn on Fig. 4.1, the Laurent polynomial P computed
using (4.27) is

P (λ, µ) = det K1(λ, µ) = (4.53)
= w2w6

λ
+ w4w8λ+ w1w5µ+ w3w7

µ
+ (w3w5 + w2w8 + w1w7 + w4w6) .

For the purposes of this Section the rescalings P (λ, µ) 7→ A · P (Bλ,Cµ)
are immaterial, so we will be using here P in the equivalent form

P (λ, µ) = λ+ Z

λ
+ µ+ 1

µ
− U, (4.54)

Z = x1x3, −U = √x1x4 + 1
√
x1x4

+
√
Z

(
√
x3x4 + 1

√
x3x4

)
, (4.55)

where xi are face variables labelled following Fig. 4.1, left. Curves CP
appearing in planar dimer models are Harnak [115], which means that the
logarithmic projection (λ, µ) 7→ (log |λ|, log |µ|) of spectral curve CP to R2

is 2 to 1 mapping in the interior of amoeba4

A(P ) = {(x, y) ∈ R2 | ∃ (θ, φ) ∈ R2 : P (ex+iθ, ey+iφ) = 0}, (4.56)
3Up to 1/2, whose appearance in the definition of Vol is unclear.
4Starting from here and until the end of this Section we use coordinates (x, y) dif-

ferently compared to the usage above.
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and 1 to 1 at its boundary. The inverse is also true: any Harnak curve
in C∗ × C∗ can be obtained from some planar dimer model. For Laurent
polynomial (4.53) the curve is Harnak if Z ∈ R≥0, U ≥ U0 = 2(

√
Z + 1)

which is satisfied because of xi ∈ R≥0, following from positivity of edge
weights. The corresponding amoeba is drawn on Fig. 4.2, left.

γi = −∂Ωi

θ φ

γ0 0 0
γ1 0 −π
γ2 −π 0
γ3 0 π

γ4 π 0

A
B

x

y

Ω0 Ω1

Ω2

Ω3

Ω4

−R(x, y)

Figure 4.2. Left: Amoeba A(P ) of the curve P (ex+iθ, ey+iφ) = 0. Red lines are
for θ = const, blue are for φ = const, their values are taken for one of two sheets
of CP over A(P ). Boundaries γi of ovals Ωi are oriented counter-clockwise along
∂A. The projections of A− and B− cycles are drawn by dashed lines. Right:
minus Ronkin function −R(x, y) for the same P .

Complement of amoeba of Harnak curve consists of disjoint regions
R2\A(P ) = ∪iΩi, which are bounded and unbounded ovals. Their com-
binatorics of ovals is captured by Newton polygon NP of polynomial P -
the convex hull of such (i, j) ∈ Z2, that λiµj is contained in P (λ, µ) with
non-zero coefficient. Bounded ovals correspond to integral internal points
of NP , unbounded ovals to integral boundary points, so the amoeba can
be contracted to the graph, dual to some triangulation of Newton polygon.
The function R, called Ronkin function of P in mathematical literature,
in case of Harnak P is concave function on R2, linear of slope (i, j) on oval
corresponding to point (i, j) of Newton polygon, and interpolating slopes
of ovals in the interior of amoeba, as shown on Fig. 4.2, right.

Since the ovals have to be invariant under the complex involution
(λ, µ) 7→ (λ̄, µ̄), functions θ(x, y) and φ(x, y) can take only πZ values
there. The parametrization of CP by (z, w) is uniquely determined by the
condition, that the single-valued smooth functions θ(x, y), φ(x, y) in the
interior of A are such solution of

z = x+ iθ(x, y), w = y + iφ(x, y) : P (ez, ew) = 0, (4.57)
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that θ = φ = 0 at γ0 and φ(x, y) is increasing along the short paths from
γ0 to γ3. We call part of CP parametrized by this (z, w) to be upper
sheet, and those, which is complex conjugated, to be lower. Both θ, φ
considered as a functions on CP are single valued in the interior of A and
on γ0, however they can have jumps at other γi.

Now we can define the regularization of free energy in (4.52) by

F(U) = F̃(U)− F̃(U0), (4.58)

F̃(U) = i
π

∫∫
R2

R(x, y)dxdy −

∫
γ1

−
∫
γ3

 x2dy

8 −

∫
γ4

−
∫
γ2

 y2dx

8

 .
It is finite, since at large x, y graphs or Ronkin functions for P with
the same values of Z but different U are exponentially close. The overall
normalization and presence of boundary terms is justified by the following
Claim, which is natural due to the reasons explained in Introduction:

Claim. The prepotential F defined in (4.58) satisfies Seiberg-Witten
equation

∂F
∂a

= aD, a =
∮
A
z
dw

2πi , aD =
∮
B
z
dw

2πi , (4.59)

where A and B = −γ0 are simple cycles on curve, which intersect with
A ∩ B = 1, as shown on Fig. 4.2, and orientation of A-cycle is such, that
it is directed from γ0 to γ3 when goes along the upper sheet of CP .

Proof. Firstly, note that a = a(U) is analytic function at a generic
point, so (4.59) is equivalent to

∂F
∂U

= aD
∂a

∂U
, (4.60)

and that since R(x, y;U) − R(x, y;U0) is exponentially small at infinity,
we can interchange integration and differentiation

∂

∂U

∫∫
R2

(R(x, y;U)−R(x, y;U0)) dx ∧ dy2πi =
∫∫
R2

∂R(x, y)
∂U

dx ∧ dy
2πi .

(4.61)
Decompose R2 = Ω0 ∪A∪Ω1 ∪Ω2 ∪Ω3 ∪Ω4, and consider integrals over
the regions separately. For any of Ωi or A, their shapes depend on U , so
change of the order of differentiation and integration over any single of
them would change integral by additional contact term.
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• Let (x, y) ∈ Ω0, then

∂R(x, y)
∂U

=
2π∫
0

dφ

2π

∮
|z|=x

dz

2πi
∂UP (ez, ey+iφ)
P (ez, ey+iφ) = (4.62)

=
2π∫
0

dφ

2π
∂UP (ez∗ , ey+iφ)
∂zP (ez∗ , ey+iφ) = −

∮
A

∂z(w)
∂U

dw

2πi = −∂a(U)
∂U

where the contour of integration is deformed first from Re z = x
to Re z = −∞, keeping Rew = y, and picking pole at z∗, such
that P (ez∗ , ey+iφ) = 0, see Fig. 4.3. Then the remaining integration
over dφ becomes integral of −idw over A-cycle, and we use that
0 = dP/dU = ∂UP + ∂zP∂Uz, assuming that z = z(U,w) 5. As
∂UR(x, y) does not depends on (x, y) ∈ Ω0, it remains to compute∫∫

Ω0

dx ∧ dy
2πi =

∮
∂Ω0

xdy

2πi = (4.63)

= 1
2πi

∮
−γ0

(zdw − i(θdy + xdφ) + θdφ) =
∮
B
z
dw

2πi = aD(U)

where we used that θ = φ = 0 at γ0.

• Regions Ω1,Ω2,Ω3,Ω4 do not contribute to integral, as we can de-
form integration contour there to Re z → +∞, Rew → +∞, Re z →
−∞, Rew → −∞ respectively, where integrand is exponentially
suppressed, without picking any poles.

• For any (x, y) ∈ A we can shift integration contour to x → −∞,
along any sequence of straight segments of rational slope. The poles
are picked as in (4.62), because of SL(2,Z) invariance of integration
measure

− ∂z(w)
∂U

dw

2πi = ∂UP

∂zP

dw

2πi = (4.64)

= ∂UP

d∂z̃P − c∂w̃P

(
d+ c

∂z̃

∂w̃

)
dw̃

2πi = −∂z̃(w̃)
∂U

dw̃

2πi ,

5These two steps are equivalent to deformation of 2d contour and picking Poincaré
residue of dz∧dw

P
at P = 0
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Re z = x

z∗(φ)

ez

Figure 4.3. Slice of the curve CP by y = const section, plotted in ez coordinate,
shown by ovals. The y is such that the y = const line crosses a hole of amoeba.
Red dots are points with the same φ. Dashed circle is dz integration contour in
(4.62), which has to be contracted to zero.

where z = az̃+ bw̃, w = cz̃+ dw̃, with a, b, c, d ∈ Z, ad− bc = 1. As
the integrand is a holomorphic form, the integration contour might
be deformed to any convenient smooth contour which goes from
w = w(x, y) to γ3, and then to w̄, on another sheet. Using that
inside of A we can present area element dx ∧ dy as

dx ∧ dy = 1
4 (dz ∧ dw̄ + dz̄ ∧ dw) , (4.65)

we apply integration by parts, to get

−
∫∫
A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
dz ∧ dw̄ + dz̄ ∧ dw

8πi =

=
∫
∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi + (4.66)

+
∫∫
A

(
w̄
∂z̄(w̄)
∂U

dz ∧ dw̄
(4πi)2 − w

∂z(w)
∂U

dz̄ ∧ dw
(4πi)2

)
=

=
∫
∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi +

+
∫
∂A

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
.

Using that the contours in
∫ w̄
w (∂z/∂U)dw are now closed (since

w = w̄ at ∂A), and some of them can be contracted to points at
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infinity, where ∂z(w)/∂U is exponentially suppressed, the first inte-
gral reduces to

4∑
i=0

∫
γi

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi = ∂a

∂U

∫
γ0

ydx

4πi = aD
2
∂a

∂U
.

(4.67)
Using also the values of θ, φ ∈ πZ on γi at upper sheet of CP , which
are indicated on Fig. 4.2, and SL(2,Z) invariance (4.64), we get for
the remaining

4∑
i=0

∫
γi

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
= (4.68)

=
4∑
i=0

∫
γi

∂z

∂U

(zw̄ − z̄w)dw
(4πi)2 =

∫
γ1−γ3

∂x

∂U

xdy

8πi +
∫

γ4−γ2

∂y

∂U

ydx

8πi .

All contributions brought together give us identity (4.60). �

Another interesting limit can be taken now. It is called perturbative or
tropical or decompactification in different contexts. In it, the parameters
scale as

U = eR5u, Z = eR5z, R5 → +∞. (4.69)

The amoeba shrinks then to its spine, which is a union of intervals as
shown on Fig. 4.4, and pre-image of projection CP → A becomes S1 over
the internal points of intervals, and pairs of triangles, connecting these
circles, over the joints of intervals. The Ronkin function in the leading
in R5 order become piecewise linear function of x, y, and integrations in
(4.58) becomes trivial exercises in computations of polyhedron volumes.
Taking U0 = 2(

√
Z + 1) at which domain Ω0 shrinks to point, one gets

F → − R3
5

24πi (2u− z)2(4u+ z), (4.70)

a =
∮
A
z
dw

2πi → R5 · (z − u), aD =
∮
B
z
dw

2πi →
R2

5
2πi 2u(2u− z).

This completely “frozen” by extreme values of parameters configuration
will be the starting point in the next Section. However we will “unfroze”
it in a different way, keeping finite q under extreme values of xi.
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x

y y = −u

y = x− z y = −x

y = u

y = z − x y = x

x = ux = z − u

Figure 4.4. Amoeba of the curve CP in tropical limit. Coordinates here are
normalized by R5

4.3 Boxcounting in tropical limit

In this Section we will show, how the Fourier-transformed topological
string amplitude (4.1) comes combinatorially from the counting of dimers
in the running example as on Fig. 4.1: we identify degrees of freedom cor-
responding to 0d boxes constituting 3d Young diagrams, 1d boxes consti-
tuting 2d Young diagrams and 2d boxes constituting 1d Young diagrams.
We also suggest how the properly taken tropical limit for face weights
xi = eR5ξi+xi , R5 → ∞ might suppress all the other degrees of freedom,
but it appears to be inconsistent with the thermodynamic limit.

4.3.1 Combinatorics of boxcounting

The starting point for the box counting combinatorics is the “empty room”
dimers configuration, which is drawn on all four panels of Fig. 4.5 by
coloured dimers. The structure of configuration is similar to the struc-
ture of amoeba drawn on Fig. 4.2: there are four unbounded domains
corresponding to Ω1,Ω2,Ω3,Ω4, and one internal domain Ω0. Dimers con-
figurations in unbounded domains are just the tilings by configurations
corresponding to four “external” monomials at λ, λ−1, µ, µ−1 in (4.53),
and configuration in Ω0 is one of those at λ0µ0. Two parameters defin-
ing this configuration are width N and height M of central domain. For
the configuration on Fig. 4.5 we have N = 4, M = 5 by the number of
fundamental domains filled by purple dimers plus 1.

The “rotation in the set of faces” is a transition from one dimers con-
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Q0 = x1x2x3x4 Q1,B = x2x3(Q0)N

Q1,F = x2
x1

(Q0)M Q2 = x2
(
x2
x1

)N
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Figure 4.5. Toda bipartite lattices with “empty room” configuration D0 drawn.
Faces involved in the rotations corresponding to addition of boxes weighted by
Q0, Q1,B , Q1,F , Q2 are highlighted by lime colour.

figuration to another by choosing such a set of faces that exactly half
of edges on their common boundary (each second edge) is contained in
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dimers configuration, and exchanging sets of occupied and non-occupied
edges on this boundary. This changes the weight of the dimers configu-
ration by the product of the corresponding face weights. There are four
classes of transformations of the “empty room” configuration (and config-
urations obtained from it by these transformations), which correspond to
adding of different types of boxes to the room:

• Four rotation in the sets of faces as on Fig. 4.5, left, top. Each
rotation of this type is weighted by q = Q0 = x1x2x3x4, and corre-
sponds to the addition of 0d box to one of four 3d Young diagrams
located in the corners of the room. First rotation of this type opens
possibility for three more similar rotations in the adjacent locations,
which is in agreement with the fact that there are three 3d Young
diagrams containing two boxes. Similar matching works further, un-
til the diagram growing in one corner touches diagram from another
corner. This can be easily seen considering e.g. left top corner of the
“room” and erasing edges between the faces 2 and 3, 3 and 4, 4 and
1, which are not covered by any dimers there and are not involved
into transformations then. Making reduction of pairs of adjacent
2-valent vertices of bipartite graph after erasing, we get hexagonal
lattices, which provides 3d box counting [151].

• Two rotations weighted by Q1,B as shown on a top right panel, and
two ones weighted by Q1,F from a bottom left panel are correspond-
ing to addition of 1d boxes constituting four 2d Young diagrams.
These 2d Young diagrams can be considered as a so long lines of
boxes added to the corners, that they meet each other. However,
since the shapes corresponding to addition of boxes to different cor-
ners are different, there is a mismatch, because of which Q1,B and
Q1,F are not simply degrees of q, but contain also other combina-
tions of the weight of faces. So the 2d Young diagrams determine
the initial shape, on the top of which 3d Young diagrams are built.

• Rotation shown on a bottom right panel is weighted by Q2 and
results in the change (N,M) 7→ (N + 2,M + 2). In terms of the
boxes, this can be viewed as change of the level of “floor” in the
room. Since you can repeatedly apply this transformations, they
are enumerated by N or 1d Young diagrams.

• There are also two types of transformations of infinite weights, shown
on Fig. 4.6, left. They change (N,M) 7→ (N + 1,M) and (N,M) 7→
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(N,M + 1), and do not contribute to the partition, since we assume
boundary conditions at infinity to be fixed. However, we will be
back to them in the Discussion section, we expect them to play an
important role in the context of solutions of q-difference equations
with the partition functions of dimers. From the point of view of
box counting, these transformations are corresponding to shifts of
the “walls” of the room.

Summation of 3d and 2d boxes is given by Zboxes(q,QB, QF ) in (4.1),
Q2, QB and QF in the formula are taken at some large fixed values of
(N,M). The weight in front of Zboxes(q,QB, QF ) originates from multi-
plication byQ2 factors for (N,M), (N+2,M+2),...,(N+2n−2,M+2n−2).
The growth rate 4

3εn
3 in the exponent is related to the volume of pyramid.

It matches nicely with the leading in u term

F ∼ −4
3

(R5u)3

2πi (4.71)

in (4.70), where 2πi comes from the different normalization of prepoten-
tial compared to the volume. The external summation over n is for the
summation over the “heights” of the floor, or divergences of size of central
domain from (N,M). It has to go in the limits −min(N,M) ≤ n ≤ +∞,
but we can take it to be two-sided infinite, since we are working in ap-
proximation N,M → +∞, which is also important for 3d Young diagrams
to not to touch each other.

4.3.2 Inconsistency of “freezing out” and thermodynamic
limit

We are going to suggest now how to freeze all non-boxcounting “rotations”
at once by the proper tuning of weights of faces, and show then why
thermodynamically this is incompatible with N,M → +∞ limit.

First of all, there are no possible local rotations of size� N,M in non-
bounded domains Ω1,Ω2,Ω3,Ω4, since the dimers configurations which tile
them are “extremal”: the difference with any other configuration will be
a collection of paths which go in one direction and can’t go back. There
are many possible local rotations in the central domain, as it is shown on
Fig. 4.6, right. We are looking for such limit of faces’ weights to zeroes
or infinities (tropical limit), that weights of all rotations in this domain
are suppressed. We also want to keep finite q, so we will assume now
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Figure 4.6. Left: “Unbounded” rotations, changing (N,M) 7→ (N + 1,M + 1)
and (N,M) 7→ (N,M + 1). Right: different types of rotation
possible in the central region, which are freezing out in tropical
limit. The weights of rotations shown on picture by lime color are
x1, (x1)2x4, (x2)−1, (x2)−2(x3)−1, (x1)4x3(x4)2, (x1)6(x3)2(x4)3, (x2)−5(x3)−3(x4)−1, ...

x1x2x3x4 = 1 in compare with the weights of individual faces. Then, the
partition function of local rotations can be estimated, by selecting the
term at λ0µ0 in the partition function on large torus of size L × L [118],
which can be estimated as

ZT2,L×L(Γ, w;D0)|λ0µ0 ≤ (4.72)

≤ (w3w5)−L2
L∏
a=1

L∏
b=1

det K1(λe
2πia
L , µe

2πib
L )|λ0µ0 ≤

(det K1(λ, µ)
w3w5

)L2

|λ0µ0 =

=
∑

2a+2b+c=L2

(
x1
x2

)a
(x1x4)b (1 + x1 + x1x4 + x1x3x4)c

Using additive variables ξi in xi = eR5ξi+xi at R5 → +∞, all terms except
1 are vanishing if

ξ1 < 0, ξ1 + ξ4 < 0, ξ1 + ξ3 + ξ4 < 0, ξ1 + ξ2 + ξ3 + ξ4 = 0. (4.73)

As a check, one can see that all of the rotations shown on Fig. 4.6, right,
are suppressed in this limit. It also has to be shown that these bounds
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are enough to suppress all the local rotations in between of domain Ω0
and other domains Ωi. We do not know how to show this systematically
though.

Unfortunately, constraints (4.73) are inconsistent with the thermody-
namic limit N,M → +∞. We require that in thermodynamic limit all
the weights Q0, Q1,B, Q1,F , Q2 should be finite, not becoming 0 or ∞.
Inverting formulas for their weights on Fig. 4.5, one gets

x1 = XN+1,M , x2 = XN,M , x3 = 1
XN,M+1

, x4 = 1
XN+1,M−1

, (4.74)

where XN,M = Q2 · (Q0)NM
(Q1,B)M · (Q1,F )N . The leading terms are determined

here by Q0 = q = e−ε since NM � N,M � 0, so taking R5 = NM , one
gets

ξ1 = −ε, ξ2 = −ε, ξ3 = ε, ξ4 = ε ⇒ ξ1 + ξ3 + ξ4 = ε > 0, (4.75)

which is inconsistent with (4.73).
Another issue with thermodynamic limit is the instability due to the

multiplier ∼ q
4
3n

3
in (4.1). Even if all Q are finite and non-boxcounting

degrees of freedom are suppressed, the cubic term at n → −∞ domi-
nates all the other contributions at fixed n, making small n preferable and
breaking N,M � n� 1 assumptions.

4.4 Discussion
In the Chapter we made several steps towards understanding the role of
cluster algebras in the theory of topological string. We have shown how
starting from the “deautonomization” of cluster integrable system one
naturally gets objects related to topological string: either Seiberg-Witten
prepotential in the “melting” limit, or boxcounting of topological vertices
in the “tropical” limit. Despite of inconsistencies, outlined in the Section
4.3.2, this consideration seems to provide proper framework for the con-
struction of the arrow shown on Fig. 1.1 in the Introduction.

We want to sketch now how the missing arrow from Fig. 1.1 can be
constructed, after resolving of inconsistencies of Section 4.3.2. First, it has



146 Chapter 4. Counting of dimers in transverse flux

to be understood how the transformations of the weighted bipartite graph
on torus, corresponding to the mutations in X -cluster algebra, should
be properly uplifted to the transformation of quasi-periodically bipartite
graph on a plane. Then, in the theory of total positivity, many of A-
cluster variables are come as minors of the transfer matrices of paths
on the bipartite graphs [60], [13], [157], or equivalently to the different
minors of the Kasteleyn operator of this graph. We can relate then the
different minors of infinite-dimensional q-difference Kasteleyn operator to
the different A-cluster variables in deautonomized case. These minors also
correspond to the partition functions of dimers with the different boundary
conditions. Those, which are related by the unbounded “rotations” from
Fig. 4.6, left, in the boxcounting limit present the same partition functions,
but with the slightly shifted parameters. In our example, one can produce
four different partition functions in this way, corresponding to (QB, QF )
and its shifts

(Q1,B, Q1,F ) 7→ (qQ1,B, Q1,F ), (Q1,B, Q1,F ) 7→ (Q1,B, qQ1,F ), (4.76)

(Q1,B, Q1,F ) 7→ (qQ1,B, qQ1,F ),

which reproduces shifts of parameters in four τ -functions in [14]. Then, the
q-difference equations, satisfied by the dual topological string amplitudes
become a Plucker relations between the regularized infinite dimensional
minors of Kasteleyn operator, or exchange relations in the corresponding
A-cluster algebra. The evidences of proper combinatorics, underlying this
problem, might be contained in [73], [161], [44].

There is also a number of other intriguing directions, in which the
developments of this Chapter might be continued:

• It is conjectured that all the fluctuations of the height function above
the limit shape at “infinite volume” q → 1 limit can be described us-
ing the Gaussian free field in the properly chosen complex structure,
see e.g. [104]. In Section 4.2.1 using the quasi-classical computation
for the zero-mode of Kasteleyn operator we provided a heuristic
derivation for the height function of the limit shape. Similar quasi-
classical computation for the Green function (4.35) would provide a
solution for a problem of uniformization of fluctuations in spirit of
[116]: for any bipartite lattice and boundary conditions.
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• The distinguishing property of prepotential F(U,Z) is that it sat-
isfies the Seiberg-Witten equation (4.59). However, this equation
does not fix Z-dependence completely. There are also the so-called
residue formulas and WDVV equations, which are differential equa-
tions on prepotential, involving ∂/∂Z derivatives [130], [76]. These
formulas would be important approbations for prepotential (4.58)
as for the physical prepotential related to gauge theory.
The formula (4.58) has to be extended also beyond the Harnak lo-
cus, since it essentially uses the property that the complex curve
P (ez, ew) = 0 projects 2 to 1 inside its amoeba. Another promis-
ing direction of studies is their extension to the case P 6= Q. This
is a completely novel direction with no known analogue of Seiberg-
Witten equation.

• In [14] the quantization of cluster algebras [27], [48] was also applied,
and the non-commutative q-difference bilinear equation on quantum
τ -functions where derived there as a result of application of several
mutations. The solutions of these equations were provided there
in terms of 5d Nekrasov functions with the generic Ω-background,
which generalizes the self-dual background of the commutative case.
Our approach can be also generalized to this case in a straightfor-
ward way, promoting the face variables to be t-commutative, and
performing the proper normal ordering. In this case, we expect the
boxcounting formulas to be upgraded to the (q, t) counting of “re-
fined topological vertices” [98]. Similar ideas were proposed in [142].
Also the property of refined topological amplitude to intertwine the
action of quantum toroidal algebra [3] might find its “cluster” inter-
pretation using two-parametric quantization of classical r-matrix of
[83]. It would be also interesting to “refine” results of [37] in this
setting.

• The dimer models are similar to the Hermitian matrix models, since
both can be described as specifications of Schur processes [149], [132].
One of the most fundamental properties of matrix models is the
genus expansion, when the diagrams of perturbation theory are in-
terpreted as ribbon graphs, and the entire series is interpreted as a
summation over all topologies. Similar expansion in q-case is more
tricky and there is no final answer what to count as “expansion over
genuses” in that case yet [138]. However, the dimer models might
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shed some light on this.
By bipartite graph on surface one can construct bipartite graph on
dual surface by twisting all of its ribbons [71]. This can be also done
with the graph Γ on the plane R2, getting the graph Γ̃ on the infinite
genus, but “regular”, dual surface S̃. Uplifting the paths, which are
contributions to the normalized partition function of dimers, to the
dual surface, one gets the set of cycles of non-trivial topology on S̃.
Shrinking all the cycles on S̃, which are not winded by these paths,
one gets finite genus curve, so the entire partition function becomes
a summation over the surfaces of different topologies.
Once the expansion is properly formulated, one can find the observ-
ables for q-deformed resolvent, cut and joint, and check operators
to obtain the loop equations and formulate q-topological recursion.
This topological recursion might be also useful for the enumerative
problems of [103] and [37].

• The phase space of cluster integrable system, as X -cluster variety,
is equipped with the logarithmically quadratic Poisson bracket for
the face variables. For our main example from Fig. 4.1 the quiver
encoding this bracket is drawn on Fig. 2 from [14] under the name
A

(1)′
7 . The same quiver can be obtained6 by computing the Euler

form of sheaves from the exceptional collection

C = (O(0),O(1, 0),O(1, 1),O(2, 1)) (4.77)

of coherent sheaves on Hirzebruch surface F0 = P1 × P1 [18]. More
striking coincidence is that the formula (4.22) from [18] for the Chern
classes [N ; (c1,1, c1,2); c2] of the dual objects

γ1 = [1; (0, 0); 0], γ2 = [−1; (1, 0); 0], (4.78)

γ3 = [−1; (−1, 1); 1], γ4 = [1; (0,−1); 0]

can be reproduced taking the “finite”, not depending on N and M
parts of degrees of Qi variables in (4.74), and under identifications

γ1 ↔ x2, γ2 ↔ x3, γ3 ↔ x4, γ4 ↔ x1, (4.79)
6We are grateful to Fabrizio Del Monte for bringing our attention to this correspon-

dence
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N ↔ degQ2, c1,1 ↔ degQ1,B, c1,2 ↔ degQ1,F , c2 ↔ degQ0.
(4.80)

The correspondences above are precise to be just coincidence, so
the dimer statistical model should have the deeper meaning in the
counting of geometric objects, and there is a point to start. The local
3d Calabi-Yau, a mirror dual to the one defined by uw = P (λ, µ)
with P from (4.54), is the total space of the canonical bundle over
F0 [6], and D-branes on this total space are in correspondence with
the exceptional collection of sheaves on the base [18]. And there
is a straightforward way to produce more examples of this kind for
check, since the both sides (either local 3d CY and cluster integrable
system with the spectral curve P ) can be conveniently constructed
starting from the Newton polygon.
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Chapter 5

Alternating currents and
shear waves in viscous

electronics

5.1 Introduction

Existence of strongly interacting carriers in high-mobility materials opens
fascinating possibilities for "viscous electronics" where current flows like
a viscous fluid rather than according to Ohm’s law [9, 33, 137, 176, 124].
Here we describe a new phenomenon that could be observable in such
materials - propagating shear waves. We show that, apart from intrinsic
interest, observing such waves gives an independent way to measure the
viscosity of the electronic fluid and establish what are the real boundary
conditions satisfied by electronic flows.

Propagation of weak low-frequency currents in strongly interacting
systems is described by classical viscous hydrodynamics. Viscous hydro-
dynamics has been mostly focused on the flows past the bodies. Viscous
electronics makes it necessary to consider flows produced by sources and
sinks. Studies of DC currents were started recently in [124, 54, 176, 66, 67]
and brought several interesting effects (current flowing against electric
field, super-ballistic conductance, electric field expulsion from a flow, etc),
some of which were observed experimentally [9, 168].

In this Chapter we present a study of alternating current (AC) either
flowing across the strip or past the obstacles like strongly disordered zones
in the bulk. In the Ohmic case, time-dependent voltage on the electrodes
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makes the current and potential distribution instantaneously adjust to
it, as far as the flow is incompressible. In the viscous case, momentum
propagates by diffusion, which leads to retardation and the possibility of
running waves. We consider only charge neutral viscous modes, interaction
of electromagnetic waves with viscous electron flows was considered in [41].

For weak currents we can neglect non-linearity in the Navier-Stokes
equations and by incorporating Ohmic resistance get the following equa-
tion:

mn(∂t + γp(r))vi − η∇2vi = −ne∂iϕ. (5.1)

For AC case all quantities depend on time as e−iΩt. For such dependence
equation gets form:

(−iΩ + γp(r))vi − ν∇2vi = −em∂iϕ , (5.2)

where ν = η/mn is the kinematic viscosity.
We start by describing the simplest setting for generating a shear wave.

During the process of placing a graphene sheet on an insulating substrate
many impurities are accumulating between them. Due to Van-der-Waals
forces, the impurities tend to concentrate in the localized regions, "bub-
bles" and "folds", where resistance is high. Running AC current through
the sample with such regions will generate shear viscous waves transversal
to the current. If impurities concentrate in a long fold, we suggest running
AC current parallel to its boundary ~v0(x, y) = v0e

−iΩt~ex. We assume that
γp → ∞ inside the fold and zero outside. Then the current must turn
to zero at the boundary of the current-carrying region, which thus corre-
sponds to the no-slip boundary condition. The solution of (5.10) then has
a simple form

vx(y, t) = v0 Re
(

exp[−iΩt](1− exp[−|y|
√
−iΩ/ν])

)
, (5.3)

which describes a wave propagating with the speed
√

2νΩ while oscil-
lating and exponentially decreasing in space with the same wavenumber
κ =

√
Ω/2ν. Therefore, registering such a wave gives one an ability to

directly measure the viscosity of the electronic fluid. The above con-
sideration is valid at sufficiently low frequencies such that the speed of
the viscous wave is much smaller then the speed of sound-plasmon mode:√

2νΩ� vF /
√

2. On the other hand, the wavelength must be less than the
sample size, which is realistically not much larger than Nlee with N ' 5.
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One can estimate ν ' vF lee where lee is the mean free path for momentum-
conserving electron-electron collisions. That allows one to recast the ap-
plicability condition as N−2 < Ωlee/vF < 1. At Ω ' 10GHz the respec-
tive wavelength is several microns for graphene with vF ' 106m/sec and
ν ' 103cm2/sec [9]. Due to small sizes of samples, the retardation effects
for EM waves related to the finite light speed can be neglected up to THz
frequencies, for which EM wave length is about 100 µm.

5.2 Half-plane geometry
In order of increasing complexity, we consider now the current injected into
a half plane. The potential in the half-plane with a no-stress boundary
can be computed exactly:

φ = I0ν

πme
Re e−iΩt

(
γp − iΩ

ν
log(rλIR)− y2 − x2

(x2 + y2)2

)

Note that finite frequency is equivalent to a finite imaginary resistivity,
for the large r-s - we have logarithmic behavior at infinity as in the Ohmic
case. And like in the usual electrical networks, "impedance" z = γp − iΩ

ν
defines the phase shift between I and φ. But in half-plane there are no
real running waves of the potential - only zero-potential line which is
oscillating between 0 and ∞ once each half-period. In the no-slip case we
have the same asymptotic behaviour. However, running waves could be
clearly seen on the vorticity map. For example, vorticity for the no-stress
case is given by:

ω = − I
π

Re e−iΩt
∫ +∞

0
e−qyk sin(kx)dk

where q2 = k2 +κ, κ = (γp− iΩ)/ν = ρeiθ so ρ describes overall intensity
of resistance, and θ = − arctan Ω/γp - relative contributions of reactance
and resistance. As Ω > 0, γp > 0, thus 0 > θ > −π/2. Properties of the
running wave can be extracted by considering the asymptotic y → +∞
in the vicinity of x = 0, where the integral oscillates and exponentially
decreases with y. Vorticity in this limit is given by:

ω = −Ix

√
ρ3/2

2πy3 cos
(
−y√ρ sin θ2 + 3

2θ − Ωt
)
e−y
√
ρ cos θ/2
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The propagation speed of zero-vorticity lines and the amplitude decay rate
are the same in both no-slip and no-stress cases and respectively given by

v = Ω
√
ρ| sin θ/2| , γ = √ρ cos θ2 . (5.4)

The main difference between no-slip and no-stress cases is in the behavior
near the boundary. In the no-stress case zero vorticity lines are approach-
ing edge in the transverse direction, while in the no-slip case they are
oriented along the edge. Running waves and behaviour near the bound-
ary can be see in Fig. 5.6 and Fig. 5.7 in Section 5.5). Similar difference
in the behaviour near the boundary could be also observed in the strip
geometry.

5.3 Strip geometry

Let us now describe in detail how AC current across the strip generates
a shear wave running along the strip. It is instructive to comment on the
DC case first. In this case, at the distance from the electrodes comparable
to the strip width w, the pair of separatrices appears, dividing the inside
streamlines connecting electrodes and closed lines outside, that belong to
vortices [54]. The pattern of the vortical flow outside depends crucially
on the boundary conditions [163]. If the boundary is stress-free then the
streamlines close to the separatrices are able to go arbitrary far before
turning back. If, however, boundary stress is non-zero (as, for instance,
at a no-slip boundary) then the streamlines turn back at a finite distance
and a chain of vortices appears (an infinite chain in an infinite strip). The
properties of waves in the AC case are then also strongly dependent on
the boundary conditions, as shown below.

Experimentally, it is most feasible to change the frequency Ω. Whether
the frequency is large or small is determined by comparing the period
with the viscous time of momentum diffusion across the strip, τ = w2/ν.
Therefore, the dimensionless parameter is Ωτ = Ωw2/ν. We can also de-
note Dv =

√
ν/Ω, which is the characteristic vortex’s length scale, as it

can be seen e.g. from the formula (5.4). Since Ωτ = (w/Dv)2 then low
frequency (DC limit) corresponds to a narrow strip. When the frequency
Ω→ 0, we find very different phase velocities for different boundary con-
ditions: no-slip boundary corresponds to the wave velocity going to zero
while no-stress to a finite value.
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Assuming translational symmetry along x and a uniform Ohmic resis-
tance we write for the Fourier harmonics of the stream function defined
by ~v(x, y) = ∇× ~ezψ(x, y):

(∂yy − q2)(∂yy − k2)ψ = 0 (5.5)

Considering dynamics of the fluid constrained by the two edges at −w/2
and w/2, we have to put also boundary conditions. The velocity compo-
nent normal to the boundary is zero everywhere, except the source and
the sink: vy(x,±w/2) = I0δ(x). For the tangential component we gener-
ally impose mixed conditions vx = l∂yvx at y = −w/2 and vx = −l∂yvx
at y = w/2, which transforms into no-slip in the limit l → 0 and into
no-stress in the limit l → ∞. Dependence of the results on l could be
analytically evaluated in the DC case (see Supplementary Materials): for
a finite nonzero l the features are qualitatively similar to the no-slip limit.
Influence of a finite Ohmic resistance is similar to that in the half-plane
case, so from now on we neglect Ohmic resistance.

We start analysis of vortex dynamics in the strip from the vorticity
distribution in the no-stress case:

ω(x, y) = − I
π

Re e−iΩt
+∞∫
0

k sin kx cosh yq
cosh wq

2
dk (5.6)

For a wide strip, dynamics is almost width-independent: vortices are
ejected from the electrodes and move toward the mid-line of the strip,
where they meet, join, and move along the strip as a single big vortex
which occupies entire strip. It can be seen, that far from the source they
have regular form, distinct geometrical periodicity and on average - vor-
ticity decays exactly exponentially.

When w/Dν → ∞, the distance between vortices saturates to a con-
stant, while if w/Dν → 0, the wave length tends to infinity as Dν/w.
The results of numerical computation shown in the Fig. 5.2, left, are in a
good agreement with the results of the "saddle point" estimation for the
integral. To put it simply, vortices cannot be squeezed into too narrow
strip.

Let us see how different is the no-slip case. Vorticity in this case is
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Figure 5.1. Contours of constant vorticity ω(x, y) = const for the no-stress
boundary conditions for w/Dν = 5. Different pictures correspond to differ-
ent moments of time. Places where lines condensate correspond to the isolines
ω(x, y) = 0. Videos with the dynamic here and below can be sent by authors on
demand.

Figure 5.2. Dependence of the distances between zeroes of function ω(x, 0)
(see Fig. 5.3) far from the source in log-log scale. Lines - linear fit, points -
results of numerics. Upper panel: no-stress case. Asymptotic dependence on the
frequency is λ/w ∼ (τΩ)−1, Ω → 0 and λ/w ∼ (τΩ)−1/2, Ω → ∞ (x � w, Dν)
Lower panel: no-slip case. Here λ/w ∼ const, Ω→ 0 and λ/w ∼ (τΩ)a, Ω→∞,
a ∼ 0.6. Characteristic time scale is τ = w2/ν



5.3 Strip geometry 157

given by:

ω = I

π
Re e−iΩt

+∞∫
0

dk κ cosh yq sinh wk
2 sin kx

k cosh wq
2 sinh wk

2 − q cosh wk
2 sinh wq

2

The major striking difference is that zero-vorticity lines at mid-strip move
towards the source as seen in Fig. 5.3. The reason is that the wave
of vorticity is emitted from the source not as a round vortices, as in the
no-stress case, but rather as elongated ellipses oriented along the edge.

Figure 5.3. Contours of the constant vorticity ω(x, y) = const for the no-slip
boundary conditions for w/Dν = 5.

The movement of the vortex line in mid-strip is the result of the meet-
ing of ’waves’, coming from the source and the sink. Frequency dependence
of the distance between zero-vorticity points at y = 0, which in fact is the
vortex size, is shown on the Fir. 5.2, right. This horizontal distance is
different from the vertical distance between "layers" in the half-plane case,
and thus doesn’t tend to some constant in the limit w →∞ (in distinction
from the distance between vortices in the no-stress case). DC limit Ω→ 0
corresponds to w/Dν → 0. As follows from the consideration of the DC
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case, there must still exist vortices of finite length in this limit, as long as

λ/Dν ∼ w/Dν ⇒ λ ∼ w, (5.7)

that is the vortex size shouldn’t depend on Ω. Another interesting novelty
in comparison with the no-stress case is that for the narrow strip vortexes
are moving by jumps, not smoothly. The less is w, the shorter is the
duration of jump - major part of the period vortices are spending as a
standing wave, and only when the amplitude is very little, I(t)→ 0, they
are moving. In the limit w → ∞, vortexes are moving smoothly. This
phenomenon is due to the asymmetry between the real and imaginary
parts of the function.

Formula for the voltage in the no-stress case has the form:

Vl→∞(x, y) = φ(x, y)− φ(+∞, y) =

= −mνI0
eπ

Re e−iΩt
+∞∫
0

dk
q2 sinh ky
k cosh kw

2
cos kx (5.8)

and, surprisingly, there are no vortices at all, as it can be seen, e.g. on the
Fig. 5.4. This happening because of miraculous cancellation of the terms
containing cosh qw/2 in the numerator and in the denominator. However,
this cancellation is absent for finite l length, and thus for general l we
shall see vortices as in the no-slip case. Potential for the no-slip case has
the form:

Vl→0(x, y) = φ(x, y)− φ(+∞, y) = −mνI0
eπ

Re κe−iΩt×

×
+∞∫
0

qdk

k

sinh ky sinh wq
2 cos kx

k cosh wq
2 sinh wk

2 − q cosh wk
2 sinh wq

2
(5.9)

General behaviour is qualitatively similar to that of the vorticity, including
freezing and inverted phase speed.

5.4 Conclusions
To conclude, vorticity and potential waves propagating along the strip
are qualitatively different for no-stress and no-slip boundary conditions -
waves could be observed on the vorticity map in the both cases, and on
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Figure 5.4. Distribution of the voltage for the no-stress case

Figure 5.5. Distribution of the potential in the no-slip case.

the potential map in the no-slip case only. There is no running potential
wave for no-stress case. Moreover, phase speed of the waves is directed
in the opposite directions in the different cases. Wave-length of viscous
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waves also depending on the frequency in a different ways for the no-stress
and no-slip cases.

5.5 Appendix A. AC current in a half-plane
To find the velocity field of a Ohmic-viscous flow we need to solve the
equation:

(−iΩ + γp(r))vi − ν∇2vi = −em∂iϕ , (5.10)

with the uniform Ohmic resistivity γp(r) = const. Acting by ∇× on both
sides and assuming translational invariance along x, we get the equation
for the stream function:

(∂yy − q2)(∂yy − k2)ψ = 0. (5.11)

Here the stream function is defined by ~v(x, y) = ∇×~ezψ(x, y), its Fourier
image ψ(x, y) =

∫ dk
2πe

ikxψ(k, y), and

q2 = k2 + κ, κ = (γp − iΩ)/ν = ρeiθ.

This equation has 4 solutions ψ(k, y) = c1e
−|k|y + c2e

|k|y + c3e
qy + c4e

−qy.
General boundary conditions vy(x, 0) = I0δ(x) and vx(x, 0) = l∂yvx(x, 0)
give ψ(k, 0) = I/(ik) and l∂yyψ(k, 0) = ∂yψ(k, 0). Adding condition
v(x, y) → 0, y → +∞ we completely define all the coefficients and
find:

ψ(x, y) = I

π

+∞∫
0

e−qyk(1 + kl)− e−kyq(1 + ql)
k(k − q)(1 + l(k + q)) sin(kx)dk . (5.12)

The solution for the non-resistive case corresponds to the limit κ → 0.
The vorticity ω(x, y) = ∆ψ(x, y) is plotted in Figure 6, where one can see
two vortices appearing every half-period. A line of zero vorticity separates
the two vortices from the next pair. In the lower panel of Fig. 5.6, the
vorticity is shown for the case with strong ohmic resisitivity, θ = −π/6.
It can be seen that in this case vortices disappear much faster, yet there
are no qualitative differences. Thus, for simplicity sake, further we will
consider non-ohmic case only. In the no-slip case, zero-vorticity line is
oriented along the edge of the bulk. On the contrary, the line comes
in the transverse direction in the no-stress case. This difference gives
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qualitatively different pictures for the strip case.
Most of the flow properties related to vortices are encoded in the vorticity:

ω(x, y) = − I
π

+∞∫
0

(1 + kl)(k + q)
1 + l(k + q) e−qy sin(kx)dk (5.13)

In the no-stress case l→ +∞ we have:

ω(x, y) = − I
π

+∞∫
0

e−qyk sin(kx)dk (5.14)

It is vanishing at the x = 0. However, we can consider its behaviour at
x ∼ 0. As for k � 1/y, k � 1/√ρ exponential suppresses other integrands,
and for small x we can expand sin(kx) ∼ kx. At the first order we have:

ω(x, y) = −Ix
π

(∂2
yy − κ)

+∞∫
0

e−qydk (5.15)

Obtaining asymptotic at y → +∞, in the lowest order in 1/y we get:

ω(x, y) = −Ix
√

κ
√
κ

2πy3 e
−y
√
κ, (5.16)

ω(x, y, t) = Reω(x, y)e−iΩt =

= −Ix

√
ρ3/2

2πy3 cos
(
−y√ρ sin θ2 + 3

2θ − Ωt
)
e−y
√
ρ cos θ/2

Thus, zero-vorticity lines correspond to:

− y√ρ sin θ2 + 3
2θ − Ωt = π

(
k + 1

2

)
, k ∈ Z (5.17)

Or for the non-Ohmic case:

y
√

Ω/2ν − Ωt = π

(
k + 3

4

)
, k ∈ Z (5.18)
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Figure 5.6. No-stress case. Upper row: vorticity for the half-plane for the pure
AC case, θ = −π/2. Lower row: partially ohmic case: Dν = 1/√ρ, θ = −π/6

In the no-slip case l→ 0 we have:

ω(x, y) = − I
π

+∞∫
0

e−qy(k + q) sin(kx)dk (5.19)

In the lowest degrees by 1/y and x it gives:

ω = ωl→+∞ −
Ixκ
πy

e−y
√
κ = −Ix

√κ
√
κ

2πy3 + κ
πy

 e−y√κ (5.20)

For large enough y we get:

ω(x, y) ∼ −Ixκ
πy

e−y
√
κ, (5.21)

ω(x, y, t) ∼ −Ixρ
πy

e−y
√
ρ cos θ2 cos

(
y
√
ρ sin θ2 + Ωt− θ

)
(5.22)

Thus, the coordinates of zero-vorticity lines are given by:

y
√
ρ sin θ2 + Ωt− θ = π

(
k + 1

2

)
k ∈ Z (5.23)

In the non-Ohmic case, it gives:

y
√

Ω/2ν − Ωt = πk k ∈ Z (5.24)
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The speed of zero-vorticity line and the decay rate of excitations are the
same in both cases:

v = Ω
√
ρ| sin θ/2| , γ = √ρ cos θ2 (5.25)

which shows robustness of the result with respect to appearance of small
(γp < ω) Ohmic contribution, which only slightly changes angle θ.

Figure 5.7. No-slip case. Upper: vorticity for the half-plane for the pure AC
case, θ = −π/2. Lower: partially ohmic case: Dν = 1/√ρ, θ = −π/6

The potential is be obtained as follows:

∂iϕ = − ν

em
(κ −∇2)vi (5.26)

which for general l gives

V (x, y) = φ(x, y)−φ(+∞, y) = κIν
πme

+∞∫
0

q(1 + lq)e−ky
k(k − q)(1 + l(k + q)) cos(kx)dk .

(5.27)
That gives in the no-stress limit l→ +∞

Vl→+∞(x, y) = − Iν

πme

+∞∫
0

q2

k
e−ky cos(kx)dk (5.28)

which has singularity at x, y → 0 given by

Vl→+∞(x, y) ∼ − Iν

πme

y2 − x2

(y2 + x2)2 . (5.29)
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That coincides with the expression for the DC case. Asymptotic for large
x is given by

Vl→+∞(x, y) ∼ − Iνκ
πme

Re
+∞∫
0

e−k(y+ix)

k
dk ∼ − Iνκ

πme
log(rλIR) (5.30)

and has log-dependence on IR cutoff (assuming that r � 1/λIR). This
assymptotic coincide up to a complex phase with the solution for the
Ohmic case. No-slip limit l→ 0 is as follows:

Vl→0(x, y) = − Iν

πme

+∞∫
0

q(k + q)e−ky
k

cos(kx)dk = (5.31)

= Vl→+∞(x, y)− Iν

πme

+∞∫
0

qe−ky cos(kx)dk,

and has similar asymptotic behaviour. In both cases there are no running
waves, as far as there is no spatially oscillating mixing between real and
imaginary parts.

5.6 Appendix B. General equations for the strip
Expression for ψ in the case of strip could be obtained from the general
solution

ψ(k, y) = A cosh ky +B cosh qy + C sinh ky +D sinh qy (5.32)

of the equation
(∂yy − k2)(∂yy − q2)ψ = 0 (5.33)

with the boundary conditions

ψ(k,−w/2) = I

ik
, l∂yyψ(k,−w/2) = ∂yψ(k,−w/2) (5.34)

ψ(k,w/2) = I

ik
, l∂yyψ(k,w/2) = −∂yψ(k,w/2) (5.35)

(for definitions of q and ψ(k, y) see previous Section). General solution
looks:

ψ(x, y) = − I
π

∞∫
0

dk

k
· (5.36)
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·
q cosh ky

(
lq cosh qw

2 + sinh qw
2
)
− k cosh qy

(
kl cosh kw

2 + sinh kw
2

)
k cosh qw

2 sinh kw
2 − q cosh kw

2 sinh qw
2 − κl cosh kw

2 cosh qw
2

sin kx

where y - coordinate from the mid of the strip, and for vorticity:

ω(x, y) = I

π
· (5.37)

·
∫
dk

κ cosh qy
(
kl cosh kw

2 + sinh kw
2

)
k cosh qw

2 sinh kw
2 − q cosh kw

2 sinh qw
2 − κl cosh kw

2 cosh qw
2

sin kx.

General expression for the potential

V (x, y) = φ(x, y)− φ(∞, y) = −Imν
eπ
· (5.38)

·
∞∫
0

dk

k

κq sinh ky
(
lq cosh qw

2 + sinh qw
2
)

k cosh qw
2 sinh kw

2 − q cosh kw
2 sinh qw

2 − κl cosh kw
2 cosh qw

2
cos kx

is computed by integration of Stokes equation in x and differentiation on
y.

5.7 Appendix C. Wavelength computations
Dependence λ/Dν(w/Dν) can be found analytically in the various inde-
pendent ways. First of all, we can apply saddle-point approximation, as
far as we have large parameter x→ +∞. If we find saddle-point value of
the wave-number k0 = k0(w), we will be able to obtain distance between
vortices as λ0 = π/Re k0. For integral

ω(x, 0) = − I

2πi

+∞∫
−∞

keikx−ln coshwq/2dk (5.39)

saddle-point equation can be written as:

kw

qw
tanh qw/2 = i

x

w
(where q =

√
k2 − i/D2

ν) (5.40)

If we are interested in the behavior of the function for the large values
of x, we should make l.h.s. of equation large. There are two ways to do
so. If w/Dν � 1, then we need q � k, and thus k → (1 + i)/

√
2Dν ,
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λ0 = π
√

2Dν . In the opposite limit w/Dν � 1 we can make tanh large
by choosing q ∼ k ∼ iπ/2w + O(w/D2

ν) - main contribution is purely
imaginary. Sub-leading order:

k0 ∼ iπ/2w +
√
−i/x+ w/D2

νπ +O(w3), (5.41)

in the limit x → +∞ gives λ0 = π2D2
ν/w. Both results agree with the

results of the numerics presented in the main text.
For the no-slip case we can again try to find λ by finding the pole

closest to the real axis. Equation for the pole has the form:

q sinh qw2 cosh kw2 − k sinh kw2 cosh qw2 = 0 (5.42)

It can be symmetrized by using replacements:

k2 = i/2(σ + 1), γ = w/2
√
i/2 (5.43)

and gets form
√
σ + 1 tanh γ

√
σ + 1 =

√
σ − 1 tanh γ

√
σ − 1 (5.44)

In the limit γ → 0 (or equally w → 0) it can be solved by direct expansion
in σ. In the first order σ = 3/(2γ2), which gives k0 =

√
6/w2 + i/2D2

ν , λ0 =
πw/
√

6. Opposite limit w → +∞ is treated numerically in the main text.

5.8 Appendix D. Comment on DC case in the
strip

The DC case in the strip was considered in the [124], where only one pair
of vortices was shown both for no-slip and and no-stress case. Here we
show that there could be multiple pairs of vortices. Consider, for instance,
vorticity for the DC case:

ω(x, y) = −4I0
π

+∞∫
0

k cosh ky
(
kl cosh

(
kw
2

)
+ sinh

(
kw
2

))
2kl(1 + cosh kw) + kw + sinh kw sin kx dk

(5.45)
At x � w one can use the sadle-point approximatin with the following
saddle point condition:

2kl(1 + cosh kw) + kw + sinh kw = 0 . (5.46)

It gives in the two limits:
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• l→ 0: kw+ sinh kw = 0 - lots of solutions, with non-zero imaginary
part (minimal - with Re k0 ∼ 2.25).

• l→∞: k0 ∼ iπ(2k + 1) + 1√
lw

, i.e. λ = π

Re k0
∼ π
√
lw

Results of numerical solving of this equation is given in the figure below,
which coincides well with the analytic asymptotic.

Figure 5.8. Dependence of the wavelength on the slippage parameter. In the
limit l → +∞ the wavelength tends to infinity, while for all the other values it
remains finite. Dashed line - analytical asymptotic for l→ +∞.
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for the quantum affine algebra Uq(ĝlN ); Lett. Math. Phys. 91 (2010)
167; [arXiv:0711.2821].

[149] A. Okounkov, N. Reshetikhin, Correlation function of Schur process
with application to local geometry of a random 3-dimensional Young
diagram, [arXiv:math/0107056].

[150] A. Okounkov, N. Reshetikhin, Random skew plane partitions and
the Pearcey process, [arXiv:math/0503508].

[151] A. Okounkov, N. Reshetikhin, C. Vafa, Quantum Calabi-Yau
and Classical Crystals, In: Etingof, P., Retakh, V., Singer, I.M.
(eds) The Unity of Mathematics. Progress in Mathematics, vol 244
[arXiv:hep-th/0309208].

[152] V. Ovsienko, M. Shapiro, Cluster algebras with Grassmann
variables, to appear in Electron. Res. Announc. Math. Sci.,
[arXiv:1809.01860].

[153] N.Okubo, T.Suzuki Generalized q-Painlevé VI systems of type
(A2n+1+A1+A1)(1) arising from cluster algebra [arXiv:1810.03252].

https://arxiv.org/abs/hep-th/9609219
https://arxiv.org/abs/hep-th/0306238v2
https://arxiv.org/abs/0908.4052
http://arxiv.org/abs/1505.03067
http://arxiv.org/abs/1704.05403
https://arxiv.org/abs/0711.2821v2
https://arxiv.org/abs/math/0107056
https://arxiv.org/abs/math/0503508v1
https://arxiv.org/abs/hep-th/0309208v2
https://arxiv.org/abs/1809.01860
http://arxiv.org/abs/1810.03252


182 BIBLIOGRAPHY

[154] H. Ooguri, M. Yamazaki, Crystal Melting and Toric Calabi-
Yau Manifolds, Commun. Math. Phys. 292, 179-199 (2009)
[arXiv:0811.2801].

[155] H. Ooguri, M. Yamazaki, Emergent Calabi-Yau Geometry, Phys.
Rev. Lett. 102: 161601 (2009) [arXiv:0902.3996].

[156] C. M. Ormerod, Y. Yamada, From Polygons to Ultradiscrete
Painlevé Equations, SIGMA 11 (2015), 056, [arXiv:1408.5643].

[157] A. Postnikov, Total positivity, Grassmannians, and networks,
[arXiv:math/0609764].

[158] L.D. Faddeev, N.Yu.Reshetikhin, L.A.Takhtajan, Quantization of
Lie groups and Lie algebras; Algebra and Analysis (Russian) 1.1
(1989), 118-206

[159] S.N.M. Ruijsenaars, ”Relativistic Toda systems”, Commun.Math.
Phys., 133:217 (1990), 753-760. [euclid.cmp/1104201396].

[160] S. M. Sergeev, Quantum 2 + 1 evolution model, Journal of Physics
A: Mathematical and General, 32 (30), [arXiv:solv-int/9811003].

[161] J. Stienstra, Hypergeometric Systems in two Variables, Quivers,
Dimers and Dessins d’Enfants, in “Modular Forms and String Dual-
ity”, AMS, 2008, 125–161, [arXiv:0711.0464].

[162] S. M. Sergeev, Supertetrahedra and superalgebras, J. Math. Phys.
50, 083519 (2009), [arXiv:0805.4653].

[163] M. Semenyakin, Comment on ’Linking Spatial Distributions of Po-
tential and Current in Viscous Electronics’ [arXiv:1609.05316].

[164] N.Seiberg, Five Dimensional SUSY Field Theories, Non-trivial
Fixed Points and String Dynamics; [arXiv:hep-th/9608111].

[165] N.Seiberg, Non-trivial Fixed Points of The Renormalization Group
in Six Dimensions; [arXiv:hep-th/9609161].

[166] S. M. Sergeev, Solutions of the functional tetrahedron equation con-
nected with the local Yang – Baxter equation for the ferro-electric,
[arXiv:solv-int/9709006].

https://arxiv.org/abs/0811.2801v2
https://arxiv.org/abs/0902.3996v3
https://arxiv.org/abs/1408.5643
https://arxiv.org/abs/math/0609764
https://projecteuclid.org/euclid.cmp/1104201396
https://arxiv.org/abs/solv-int/9811003
https://arxiv.org/abs/0711.0464
https://arxiv.org/abs/0805.4653
https://arxiv.org/abs/1609.05316
https://arxiv.org/abs/hep-th/9608111v2
https://arxiv.org/abs/hep-th/9609161v1
https://arxiv.org/abs/solv-int/9709006


BIBLIOGRAPHY 183

[167] S.Katz, A.Klemm, C.Vafa, Geometric Engineering of Quan-
tum Field Theories; Nucl. Phys. B497: 173-195, 1997
[arXiv:hep-th/9609239].

[168] R. K. Kumar et al., Superballistic flow of viscous electron fluid
through graphene constrictions, Nature Phys 13, 1182–1185 (2017).
[arXiv:1703.06672].

[169] M. Sato, T. Miwa, M. Jimbo, Holonomic quantum fields I–V, Publ.
RIMS Kyoto Univ. 14, (1978), 223–267; 15, (1979), 201–278; 15,
(1979), 577–629; 15, (1979), 871–972; 16, (1980), 531–584.

[170] S. Sergeev, V. V. Mangazeev, Yu. G. Stroganov, The vertex formu-
lation of the Bazhanov-Baxter Model, J. Stat Phys 82, 31–49 (1996),
[arXiv:hep-th/9504035].

[171] G. Schrader, A. Shapiro, A cluster realization of Uq(sln) from quan-
tum character varieties, [arXiv:1607.00271].

[172] N.Seiberg, E.Witten, Monopole Condensation, And Confinement In
N=2 Supersymmetric Yang-Mills Theory; Nucl. Phys. B426: 19-52,
1994 [arXiv:hep-th/9407087].

[173] N.Seiberg, E.Witten, Gauge Dynamics And Compactification To
Three Dimensions; [arXiv:hep-th/9607163].

[174] D. Thurston, From Dominoes to Hexagons, [arXiv:math/0405482].

[175] K. Talaska, A formula for Plucker coordinates associated with
a planar network, Int Math Res Notices (2008), ID: rnn081,
[arXiv:0801.4822].

[176] I. Torre, A. Tomadin, A. K. Geim, M. Polini, Nonlocal transport
and the hydrodynamic shear viscosity in graphene, Phys. Rev. B 92,
165433 (2015). [arXiv:1508.00363].

[177] A.P. Veselov, I.M. Krichever, S.P. Novikov, Two-dimensional per-
oodic Schrödinger operator and Prym’s θ-functions, [PDF].

[178] E.Witten, Solutions Of Four-Dimensional Field Theories Via M
Theory; Nucl. Phys. B500: 3-42, 1997 [arXiv:hep-th/9703166].

https://arxiv.org/abs/hep-th/9609239
https://arxiv.org/abs/1703.06672
https://arxiv.org/abs/hep-th/9504035v1
https://arxiv.org/abs/1607.00271
https://arxiv.org/abs/hep-th/9407087
https://arxiv.org/abs/hep-th/9607163v1
https://arxiv.org/abs/math/0405482
https://arxiv.org/abs/0801.4822v2
https://arxiv.org/abs/1508.00363
http://www.math.columbia.edu/~krichev/pdfs/1985-1989/1985-TPSOAPT.pdf
https://arxiv.org/abs/hep-th/9703166


184 BIBLIOGRAPHY

[179] B. Young, Computing a pyramid partition generating function with
dimer shuffling, Journal of Combinatorial Theory Series A 116(2),
334-350 [arXiv:0709.3079].

[180] M. Yamazaki, Crystal Melting and Wall Crossing Phenomena, Int.
J. Mod. Phys. A26 (2011) 1097-1228, [arXiv:1002.1709v3].

[181] M. Yamazaki, Cluster-Enriched Yang-Baxter Equation from
SUSY Gauge Theories, Lett Math Phys 108, 1137–1146 (2018),
[arXiv:1611.07522].

[182] A. B. Zamolodchikov, Tetrahedra equations and integrable systems
in three-dimensional space, JETP, Vol. 52, No 2, p. 325.

[183] Y. Zenkevich, Higgsed network calculus, [arXiv:1812.11961].

[184] A. B. Zamolodchikov, Tetrahedron equations and the relativistic S-
matrix of straight-strings in 2+1-Dimensions, Commun. Math. Phys.
79, 489–505 (1981).

https://arxiv.org/abs/0709.3079v2
https://arxiv.org/abs/1002.1709v3
https://arxiv.org/abs/1611.07522v1
https://arxiv.org/abs/1812.11961


Summary

Partition functions in string theory and supersymmetric field theories can
be often computed exactly and be shown to have rich symmetries. Often
the symmetry can be presented in the form of the differential or difference
equation, which the partition function solves. Among the first exam-
ples of this kind was the discovery of the relevance of classical integrable
systems of particles in the context of Seiberg-Witten theory, describing
low-energy dynamics of 4d N = 2 supersymmetric gauge theories. Later
it was independently observed that the Painlevé equations are solved by
the instanton partition functions of those SUSY gauge theories in the
self-dual Omega-background. From the point of view of integrable sys-
tems the pass from Seiberg-Witten theory to the full partition function
is the“deautonomization” of them. The uplift of the story to 5d N = 1
SUSY gauge theories compactified on a circle corresponds to the “rela-
tivisation” of integrable systems, i.e. making the momentum-dependence
of Hamiltonians to be exponential. After the “deautonomization” these
systems become the q-difference equations of q-Painlevé type.

The notions of cluster varieties and cluster algebras were invented in
the early 2000th for the solution of the classical problem of the parametriza-
tion of the space of “totally positive” matrices, i.e. those matrices, all
minors of which are strictly positive. The new notion was immediately
and successively applied to the description of the moduli spaces of local
systems on Riemann curves, to the theory of integrable systems, and to
the description of stability conditions in algebraic geometry. The initial
point for my work in this thesis was the observation that there is a natural
structure of X-cluster variety on the phase space of the relativistic Toda
chain, which corresponds to the 5d N = 1 SU(N) gauge theory without
the matter multiplets. The discrete dynamics which appears as a result
of the action of cluster mapping class group on the cluster variables, can
be solved by the partition functions of these theories.
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In Chapter 2 we construct the structure of the X-cluster variety on
the phase space of the XXZ spin chain. This extends the class of the
previously known examples of gauge theories/cluster integrable systems
correspondences, since the XXZ spin chains are known to be corresponding
to 5dN = 1 quiver gauge theories, with the linear quivers of constant rank.
The so-called spectral duality, interchanging the rank and the length of
the spin chain, found its natural interpretation in the cluster description.
We also described the structure of the large piece of the cluster mapping
class group for those systems and derived the bilinear equation for the
dynamic of A-cluster variables under the action of generators of cluster
mapping class group.

In Chapter 3 we show that the “master” solution of Bazhanov-Sergeev
to the tetrahedron equation has a clear cluster-algebraic origin. The action
of tetrahedral R-matrix by conjugation appears to be equivalent to the
application of four mutations; we also show how this interpretation fits into
the context of application of cluster algebras to the parametrization of the
double Bruhat cells in GL(N). Using this interpretation of the Bashanov-
Sergeev solution, we give a clear recipe how the cluster integrable system
with the arbitrary symmetric Newton polygon can be constructed using
it. We also prove there the combinatorial lemma, which allows us to
generalize this consideration to the arbitrary Newton polygon.

In Chapter 4 we make a few steps toward understanding why it hap-
pens that the partition functions of topological string theory, generalizing
the partition functions of the gauge theories, are solving the equations
appearing from the discrete dynamics of the cluster variables. We claim
that the box-counting of topological vertices, which is the major tool to
compute the partition function of topological strings, can be obtained di-
rectly from the cluster algebras. In order to do this, one has to uplift the
partition function of dimers on the bipartite graph on torus, which en-
codes the Hamiltonians of integrable system, to the periodic graph on the
plane, and to “deautonomize” the discrete U(1) connection on the graph,
parametrizing the cluster variables, by applying non-zero transverse flux
of purely imaginary magnetic field to it. This claim can be also viewed
as a particular example of so-called Topological Strings/Spectral Theory
correspondence, since the partition function of dimers on the plane can
be computed as a determinant of the q-difference operator. We check
the correspondence, by showing that the density of the free-energy of the
model of dimers, being computed in the limit of vanishing flux, satisfies
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the Seiberg-Witten equations, as it is expected from the string-theoretic
perspective.

Chapter 5 is devoted to a project which is not directly related to the
main lines of my research in the field of integrable systems. In this project
we conduct the phenomenological study of the hydrodynamic regime of
the flows of electrons in graphene. There we propose the principal scheme
of the experiment, which would allow us to measure the viscosity of the
electronic liquid, by applying the AC current of THz frequency to the
sample of the Hall bar geometry.
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Samenvatting

Partitiefuncties in snaartheorie en supersymmetrische veldentheorieën kun-
nen vaak exact worden berekend en er kan worden aangetoond dat zij rijke
symmetrieën hebben. Vaak kan de symmetrie worden voorgesteld in de
vorm van een differentiaalvergelijking, die door de partitiefunctie wordt
opgelost. Een van de eerste voorbeelden van deze aard was de ontdek-
king van de relevantie van klassieke integreerbare systemen van deeltjes
in de context van de Seiberg-Witten theorie, die de lage-energiedynamica
van vier-dimensionale supersymmetrische ijkentheorieën beschrijft. Later
werd ontdekt dat de Painlevé -vergelijkingen op een soortgelijke manier
kunnen worden opgelost. In de theorie van integreerbare systemen is de
overgang van Seiberg-Witten theorie naar de volledige partitiefunctie een
voorbeeld van wat men “deautonomisatie” noemt.

De begrippen clustervariëteiten en clusteralgebra’s zijn in het begin
van de jaren 2000 uitgevonden voor de oplossing van het klassieke pro-
bleem van de parametrisatie van de ruimte van “totaal positieve” matri-
ces, d.w.z. die matrices, waarvan alle minoren positief zijn. De theorie
werd achtereenvolgens toegepast op de beschrijving van de moduliruimten
van lokale stelsels op krommen in een Riemann-ruimte, op de theorie van
integreerbare stelsels, en op de beschrijving van stabiliteitsvoorwaarden in
de algebraïsche meetkunde. Het uitgangspunt van dit proefschrift was de
waarneming dat er een natuurlijke structuur van clustervariëteiten bestaat
in de faseruimte van de relativistische Toda-keten.

In hoofdstuk 2 construeren we de structuur van de clustervariëteit op
de faseruimte van een XXZ-spin keten. De zogenaamde spectrale dualiteit,
waarbij de rang en de lengte van de spinketen worden verwisseld, vindt
zijn natuurlijke interpretatie in de clusterbeschrijving.

In hoofdstuk 3 laten we zien dat de bekende oplossing van Bazhanov-
Sergeev voor de tetraëdervergelijking een duidelijke cluster-algebraïsche
oorsprong heeft. We laten ook zien hoe deze interpretatie past in de



190 Samenvatting

context van de toepassing van clusteralgebra’s op de parametrisatie van
Bruhatcellen. Met behulp van deze interpretatie van de Bashanov-Sergeev
oplossing geven we een duidelijk recept hoe het clusterintegreerbare stelsel
geconstrueerd kan worden.

In hoofdstuk 4 zetten we een paar stappen om te begrijpen waarom
het gebeurt dat de partitiefuncties van de topologische snaartheorie, die
de partitiefuncties van de ijktheorieën veralgemenen, de vergelijkingen op-
lossen die voortkomen uit de discrete dynamica van de clustervariabelen.
Wij poneren dat het aantal topologische hoekpunten rechtstreeks uit de
clusteralgebra’s kan worden verkregen. Deze bewering kan ook worden
gezien als een bijzonder voorbeeld van de zogenaamde Topologische Sna-
ren/Spectrale Theorie correspondentie. We controleren de corresponden-
tie door aan te tonen dat de dichtheid van de vrije-energie van het model
van dimeren, berekend in de limiet van nul magnetische flux, voldoet aan
de Seiberg-Witten vergelijkingen, zoals verwacht wordt vanuit het snaar-
theoretisch perspectief.

Hoofdstuk 5 is gewijd aan een project dat niet direct verband houdt
met de hoofdlijnen van mijn onderzoek op het gebied van integreerbare
systemen. In dit project verrichten wij de fenomenologische studie van
het hydrodynamische regime van de elektrische stroom van elektronen in
grafeen. Daar stellen wij een experiment voor, dat ons zou toelaten de
viscositeit van de elektronische vloeistof te meten, door de wisselstroom
van THz-frequentie toe te passen in de Hall-bar geometrie.
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