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Abstract: We study translationally invariant Pauli stabilizer codes with qudits of ar-
bitrary, not necessarily uniform, dimensions. Using homological methods, we define a
series of invariants called charge modules. We describe their properties and physical
meaning. The most complete results are obtained for codes whose charge modules have
Krull dimension zero. This condition is interpreted as mobility of excitations. We show
that it is always satisfied for translation invariant 2D codes with unique ground state in
infinite volume, which was previously known only in the case of uniform, prime qudit
dimension. For codes all of whose excitations are mobile we construct a p-dimensional
excitation and a (D− p− 1)-form symmetry for every element of the p-th charge mod-
ule. Moreover, we define a braiding pairing between charge modules in complementary
degrees. We discuss examples which illustrate how charge modules and braiding can be
computed in practice.
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1. Introduction

Pauli stabilizer codes are spin systems whose ground state (and excitations) are described
by eigenequations for a set of mutually commuting operators, each of which is a tensor
product of finitely many Pauli matrices, or generalizations thereof called clock and shift
matrices. Initially these models were studied as a class of quantum error-correcting codes
[1,2]. Due to their mathematical tractability and nontrivial properties, they have become
popular also as exactly solvable models of exotic phases of quantum matter. Qubits (or
qudits) are typically placed on sites of a D-dimensional square lattice. Perhaps the most
famous example is the toric code [3].

One may ask which quantum phases can be realized as Pauli stabilizer codes. It has
been shown [4,5] that for codes on Z

2 lattice with prime-dimensional qudits, stacks of
toric codes are the only nontrivial phases with a unique ground state in infinite volume.
The story is richer for qudits of composite dimension. Namely, it was shown [6] that
every abelian anyon model which admits a gapped boundary [7] may be represented by
a Pauli stabilizer code.1 It was conjectured that the list of models constructed therein
is exhaustive (up to finite depth quantum circuits and stabilization). There was even
work on algorithmic determination of the corresponding abelian anyon model given a
stabilizer code [9]. The proposed classification depends on several assumptions, one of
which is that all local excitations in Pauli stabilizer codes are mobile and hence can be
created at endpoints of string operators. In this paper we prove this, extending earlier
results for prime-dimensional qudits. Stabilizer codes are even richer for D > 2 [10]
due to the existence of so-called fractons: local excitations which can not be moved
in any direction by acting with local operators. All this shows that mathematical study
of stabilizer codes is an interesting and nontrivial problem. It is also closely related to
classification of Clifford Quantum Cellular Automata [11–13].

Let us recall how similar classification problems were handled in other areas, e.g. al-
gebraic topology. Historically, researchers first discovered some basic invariants, such as
Euler characteristic or fundamental group. Later they developed more systematic meth-
ods, e.g. axiomatic (co)homology and homotopy theory. In our situation, the module of
topological point excitations [14] and (for the case D = 2) topological spin and braiding

1 During final revisions of this manuscript we have learned about [8], where it is claimed that abelian anyon
models without gapped boundaries can also be realized if one uses Pauli subsystem codes.
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[5] are the known invariants. It is natural to look for machinery that produces their gen-
eralizations. Hopefully it will allow researchers to make progress in this classification
problem.

In this article, we develop such tools for translationally invariant Pauli stabilizer codes
with qudits of arbitrary (perhap not even uniform) dimension placed on a lattice described
by a finitely generated abelian group �. This setup incorporates infinitely extended as
well as finite spatial directions. Of course physics crucially depends on D = rk(�) (the
number of independent infinite directions). We describe stabilizer codes by symplectic
modules over a group ring R of � and their Lagrangian (or more generally, isotropic)
submodules. This is closely related to the approach developed in [14]. In contrast to
treatment therein, the emphasis is on modules with direct physical interpretation, rather
than their presentations with maps from free modules.2

We propose a definition of modules Qp of charges of p-dimensional excitations
(anyons, fractons, strings etc.) for every non-negative integer p. The construction of Qp

uses standard homological invariants of modules. In the case of local excitations (p = 0),
our definition agrees with the known one. For general p, the physical interpretation of
mathematically defined Qp is most justified under the assumption that all charge modules
have zero Krull dimension (which we interpret as the requirement that the excitations
are mobile). In this case, we define for every element of Qp an operator with (p + 1)-
dimensional support which creates an excitation on its boundary. This excitation is
uniquely defined modulo excitations which can be created by p-dimensional operators.
Its mobility (moving around with p-dimensional operators) is established. We show also
that every element of Qp gives rise to a (D− p− 1)-form symmetry [15]. Furthermore,
a braiding pairing between Qp and Qq (with p + q = D − 2) is defined and its basic
properties (such as symmetry) are established.

It is natural to expect that for codes with only mobile excitations, the underlying
abelian groups of Qp and pairings between them described above are (a part of) data of
some Topological Quantum Field Theory (TQFT), e.g. an abelian higher gauge theory3.
Such correspondence exists in every example known to authors. Modules Qp have more
structure, which does not seem to be captured by a TQFT: they are acted upon by the
group of translations. In some cases this allows to distinguish models with the same
topological order which are distinct as Symmetry Enriched Topological (SET) phases
with translational symmetry.

Section 2 details the mathematical set-up of translationally invariant stabilizer codes
in terms of commutative algebra. Rudiments of symplectic geometry over group rings of
� are laid out here. Section 3 makes the connection between topological excitations and
the functor Ext. Section 4 discusses operations on stabilizer codes, e.g. coarse-graining
and stacking. In particular we prove that charge modules are invariant to coarse-graining
and that they provide obstructions to obtaining a system from a lower dimensional one
by stacking. Section 5 ventures a definition of mobility for excitations in any dimension.
We also include a proof for the conjecture that in any 2D code with unique ground
state, all excitations are mobile and can be created with string operators. In Sect. 6, we
specialize to codes with only mobile excitations. It is shown that in this case charges may
be described by cohomology classes of a certain Čech complex. We show how to obtain
interesting operators and physical excitations from Čech cocycles. Moreover, we define

2 The latter approach is very useful in concrete computations. We prefer ours in general considerations.
3 Say, with action 1

4π

∑D−1
p=1

∑
i, j K

i j
p
∫
AipdA j

D−p , where Aip are p-form U(1) gauge fields and K

matrices are non-degenerate and satisfy Ki j
p = (−1)p+1K ji

D−p .
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braiding in terms of a cup product in the Čech complex and show that our proposal
reduces to what is expected for D = 2. Several examples are worked out in Sect. 7.
Some known mathematical definitions and facts used in the main text are reviewed in
appendices: Gorenstein rings in Appendix A, local cohomology in Appendix B and Čech
cohomology in Appendix C.

Let us mention some problems which are left unsolved in this work. Firstly, results of
Sect. 6 are restricted to so-called Lagrangian stabilizer codes such that charge modules
have Krull dimension zero. We would like to remove some of these assumptions in the
future, for example to treat models with spontaneous symmetry breaking or fractons.
Secondly, we did not prove that braiding is non-degenerate. We expect that this can be
done by relating braiding to Grothendieck’s local duality, in which we were so far un-
successful. We expect also that the middle-dimensional braiding admits a distinguished
quadratic refinement for D = 4k + 2 (which is already known to be true for D = 2 from
previous treatments) and that it is alternating (rather than merely skew-symmetric) for
D = 4k. Thirdly, it is not known in general to what extent invariants we defined deter-
mine a stabilizer code, presumably up to symplectic transformations (corresponding to
Clifford Quantum Cellular Automata), coarse graining and stabilization. We hope that in
the future a one-to-one correspondence between equivalence classes of stabilizer codes
with only mobile excitations and some (abelian) TQFTs will be established.

2. Stabilizer Codes and Symplectic Modules

In order to obtain homological invariants of a stabilizer code, we need to translate it
to the language of modules. In this section we generalize [14] to codes with arbitrary
(prime or composite) qudit dimensions. Multiple qudits are placed on each lattice site.
A d-dimensional qubit is acted upon by shift and clock matrices X, Z , which satisfy

X Z = e
2π i
d Z X, Xd = Zd = 1. (1)

For brevity, products of Z and X (possibly acting on finitely many different qudits) and
phase factors will be called Pauli operators. Unlike [14], our framework does not require
qudits in a model to have a uniform dimension. Instead, an array of qudits with various
dimensions populates each lattice site. We let n be a common multiple of dimensions of
all qudits in a model.

All rings are commutative with unity and Zn is the ring Z/nZ.

Definition 1. Let n be a positive integer and � a finitely generated abelian group. Zn[�]
is the group ring of � over Zn . When n and � are clear from the context, we denote
R = Zn[�]. For λ ∈ �, we denote the corresponding element of R by xλ. If r =∑

λ∈� rλxλ (with all but finitely many rλ ∈ Zn equal to zero), we call r0 the scalar part
of r . Moreover, we let r =∑λ∈� rλx−λ. Operation r �→ r is called the antipode.

Example 2. Suppose that � = Z
D . Then R is the ring of Laurent polynomials in D

variables x1, . . . , xD , corresponding to D elements of a basis of ZD . A general element
of R is a sum of finitely many monomials xλ1

1 · · · xλD
D with Zn coefficients; exponents λi

are in Z. Here we use the more economical notation in which such monomial is simply
denoted xλ. One may think of λ as a multi-index.

For a lattice � with the same array of qudits on each site, ring R = Zn[�] describes
certain basic operations on Pauli operators. An element xλ translates a Pauli operator
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on the lattice by λ ∈ �, while a scalar m ∈ Zn raises a Pauli operator to m-th power.
As n is a common multiple of qudit dimensions, taking the n-th power of any Pauli
operator gives a scalar. This action endows the collection P of all local Pauli operators
modulo overall phases with an R-module structure. We will sometimes call elements
of P operators for conciseness. Addition in P corresponds to composition of operators,
which is commutative because we are disregarding phases. Specifically, if qudits on
each site have respective dimensions n1, . . . , nq , then P is isomorphic to the module
⊕q

j=1 Zn j [�]⊕2. It is not a free module unlessn = n1 = n2 = · · · = nq . We will see that
it nevertheless shares some homological properties of free modules, which is important
in the study of invariants. In most cases, understanding of proofs is not necessary to read
the remainder of the paper.

We will also define an antipode-sesquilinear symplectic form ω : P × P → R on
P , which captures commutation relations satisfied by Pauli operators. More precisely,
if T, T ′ are Pauli operators corresponding to elements p, p′ ∈ P , then

T T ′ = exp

(
2π i

n
ω(p, p′)0

)

T ′T . (2)

Thus it is the scalar part of ω which has most direct physical interpretation, whereas
ω(p, p′) encodes also commutation rules of all translates of T, T ′. Algebraically ω is
much more convenient to work with, essentially because the scalar part map R → Zn is
not a homomorphism of R-modules. Sesquilinearity of ω implies that ω(xλ p, xλ p′) =
ω(p, p′), which is the statement that commutation relations of Pauli operators are trans-
lationally invariant.

Stabilizer code is a collection of eigenequations for a state4 � of the form

T� = �, (3)

where T are Pauli operators (with phase factors chosen so that 1 is in the spectrum of
T ). If such equations are imposed for two operators T, T ′, then existence of solutions
requires that p, p′ ∈ P satisfy ω(p, p′)0 = 0. In a translationally invariant code, the
same condition has to be satisfied for all translates of T, T ′, i.e. ω(p, p′) = 0. It follows
that the images in P of operators defining the code generate a submodule L with ω|L ≡ 0.
Such submodules of (P, ω) are called isotropic. The stabilizer code determines a unique
state if L is Lagrangian, i.e. it is isotropic and every p ∈ P such that ω(p, p′) = 0 for
every p′ ∈ L is in L . Throughout the article, we refer to codes with this property as
Lagrangian codes.

In quantum computation, one wishes to use spaces of states satisfying (3) to store
and protect information. When error occurs, there are violations of eigenequations called
syndromes. On the other hand, one may also think of solutions of (3) as ground states
of a certain Hamiltonian. Then syndromes are also regarded as energetic excitations.
Excited states are described by

T� = e
2π i
n ϕ(p)�, (4)

where p ∈ L corresponds to T and ϕ is a Zn-linear functional. The excitation is local
(supported in a finite region) if ϕ(xλ p) vanishes for all but finitely many λ ∈ �.

4 Here we regard � as a vector in some Hilbert space on which Pauli operators act. This Hilbert space is
not specified a priori. However, one can reinterpret the eigenequations as �pre(T ) = 1, where �pre is a state
on the algebra of local operators. The Hilbert space and � may be then constructed from �pre using the GNS
construction.
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The discussion above establishes a correspondence between a translationally invariant
Pauli stabilizer code and an isotropic submodule of (P, ω). This correspondence will
allow us to tap into the power of homological algebra. For the rest of the section, we
develop the right hand side of the correspondence with additional generality.

Definition 3. For aZn-module M , let M# = HomZn (M,Zn). If M is an R-module, then
M# is made an R-module as follows: rϕ(m) = ϕ(rm) for r ∈ R, ϕ ∈ M# and m ∈ M .
Moreover, we can define

M#
� = {ϕ ∈ M# | ∀m ∈ M ϕ(xλm) 	= 0 for finitely many λ ∈ �}. (5)

Definition 4. Let M be an R-module. We define M to be the R-module which coincides
with M as an abelian group, but with antipode R-action. In other words, if m ∈ M ,
we denote the corresponding element of M bym and put xλm = x−λm. Furthermore, we
let M∗ = HomR(M, R). M∗ is identified with the module ofZn-linear maps f : M → R
such that f (rm) = r f (m) for r ∈ R and m ∈ M .

The following Lemma provides a useful description of M∗.

Lemma 5. Let M be an R-module. The map taking ϕ ∈ M∗ to its scalar part ϕ0 ∈ M
#
�

(i.e. ϕ0(m) = ϕ(m)0 for m ∈ M) is an R-module isomorphism M∗ ∼= M
#
� with inverse

given by the formula

ϕ(m) =
∑

λ∈�

ϕ0(x
λm)xλ. (6)

Definition 6. We denote the total ring of fractions of R by K .

Please see Appendix A for some definitions referred to below.

Lemma 7. R is a Gorenstein ring of dimension rk(�), the free rank of �. Its total ring
of fractions K is a QF ring.

Proof. Zn is a QF ring by Baer’s test. Thus (−)# is an exact functor and R# is an injective
R-module, as HomR(−, R#) = (−)#. Now suppose that rk(�) = 0. Then R is finite,
so dim(R) = 0. We have a bilinear form

R × R � (r, r ′) �→ (rr ′)0 ∈ Zn (7)

which yields an isomorphism R ∼= R#. Hence R is a QF ring.
Next, let � be arbitrary. We can split � = �1 ⊕ �2, where �1 is finite and �2

free. We have R = Zn[�1][�2], which is a Laurent polynomial ring in D = rk(�)

variables over the QF ring Zn[�1]. By Lemmas 54, 56, R is a Gorenstein ring. Standard
dimension theory shows that dim(R) = D.

Invoking Lemma 54, K is also Goreinstein. It remains to show that dim(K ) = 0.
As Zn[�1] is Artinian, it is the product

∏s
i=1 Ai of some Artin local rings Ai . Thus

R = ∏s
i=1 Ai [�2]. An element of R is a zero-divisor if and only if its component in

some Ai [�2] is a zero divisor, so K = ∏s
i=1 Ki , where Ki is the total ring of fractions

of Ai [�2]. We will show that each Ki is Artinian.
Let mi be the maximal ideal of Ai . Then mi is nilpotent and every element of Ai\mi

is a unit. Clearly mi [�2] is a prime ideal in Ai [�2]. We claim that it is the unique
minimal prime. Indeed, if q ⊂ Ai [�2] is a prime ideal, then q∩ Ai is prime in Ai , hence
equal to mi . Thus mi [�] ⊂ q and the claim is established. Next, McCoy theorem [16]
and nilpotence of mi imply that mi [�2] is the set of zero divisors of Ai [�2], so every
non-minimal prime ideal of Ai [�2] is killed in Ki . ��
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Recall that an element of R is said to be regular if it is not a zero divisor. The
torsion submodule of an R-module M is the set of all elements of M annihilated by a
regular element of R. Equivalently, it is the kernel of the natural map M → M ⊗R K .
If M coincides with its torsion submodule, it is called a torsion module. If the torsion
submodule of M is 0, then M is said to be torsion-free. Quotient of any module by its
torsion submodule is torsion-free.

Lemma 8. Let M be an R-module.

1. M is torsion if and only if M∗ = 0.
2. If M is finitely generated, then M is torsion-free if and only if it can be embedded in

some free module Rt .

Proof. 1. ⇐� : Let M∗ = 0. Then HomK (M ⊗R K , K ) = M∗ ⊗R K = 0 (since
Hom commutes with localization), so M ⊗R K = 0 by Lemmas 7, 57. Thus M , and
hence M , is a torsion module.

2. �⇒ : As M is torsion-free, it embeds in M ⊗R K , which in turn embeds in K t

by Lemmas 7 and 57. Let e1, . . . , et be a basis of K t . Since M is finitely generated,
there exists a regular element d ∈ R such that the image of M in K t is contained in
the R-linear span of d−1e1, . . . , d−1et , which is R-free.

��
Definition 9. Quasi-symplectic module is a finitely generated R-module M equipped
with a Zn-bilinear pairing ω : M × M → R satisfying

1. ω(m′, rm) = rω(m′,m) = ω(rm′,m) for r ∈ R and m,m′ ∈ M ,
2. ω(m,m)0 = 0 for every m ∈ M ,
3. the map � : M � m �→ ω(·,m) ∈ M∗ is injective.

We write M∗/M for the quotient of M∗ by the image of �. If M∗/M = 0, i.e. � is an
isomorphism, (M, ω) is called a symplectic module. If N is another quasi-symplectic
module, an isomorphism f : M → N is said to be symplectic if ω( f (m), f (m′)) =
ω(m,m′) for every m,m′ ∈ M .

Proposition 10. Let M be a quasi-symplectic module. Then

1. M is torsion-free.
2. For every m,m′ ∈ M we have ω(m,m′) = −ω(m′,m).
3. M∗/M is a torsion module. More generally, if N ⊂ M is a submodule, the cokernel

of M � m �→ ω(·,m)|N ∈ N∗ is a torsion module.

Proof. 1. If m ∈ M is a torsion element, then m ∈ ker(�) = 0.
2. For r ∈ R, let rλ be the coefficient of xλ ∈ R. One has rλ = (r x−λ)0. Plugging into

ω(m,m)0 = 0 an element m = m′ + m′′ gives

ω(m′,m′′)0 = −ω(m′′,m′)0. (8)

Taking m′′ = xλm yields ω(m′,m)−λ = −ω(m,m′)λ, establishing the claim.
3. For this part, we denote the functor HomK (−, K ) by (−)∨. We have a short exact

sequence

0 → M ⊗R K
�′
−→ M∗ ⊗R K → (M∗/M) ⊗R K → 0, (9)
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where �′ = � ⊗R idK . We may identify M∗ ⊗R K with (M ⊗R K )∨, since Hom
commutes with localization. As �′ is injective, the homomorphism

�′′ = HomK (�′, K ) : (M ⊗R K )∨∨ → (M ⊗R K )∨ (10)

is surjective by Lemma 7. We identify (M ⊗R K )∨∨ = M ⊗R K , by Lemma 57.
Using 2. we find that for any m,m′ ∈ M and k, k′ ∈ K :

�′′(m ⊗ k)(m′ ⊗ k′) = −�′(m ⊗ k)(m′ ⊗ k′). (11)

It follows at once that also �′ is surjective. Thus the short exact sequence (9) yields
(M∗/M) ⊗R K = 0, i.e. M∗/M is a torsion module.
Now let N ⊂ M be a submodule. We have a short exact sequence

0 → N → M → M/N → 0. (12)

Applying ∗ gives

0 → (M/N )∗ → M∗ → N∗ → Ext1
R(M/N , R). (13)

We have Ext1
R(M/N , R) ⊗R K = Ext1

K (M/N ⊗R K , K ) = 0, since Ext commutes
with localization. Hence Ext1

R(M/N , R) is a torsion module. As both homomorphisms
M → M∗ and M∗ → N∗ have torsion cokernel, so does their composition. ��
Corollary 11. Suppose that� is finite and let M be a quasi-symplectic R-module. Then
M is symplectic. More generally, if N ⊂ M is a submodule, then the map M � m �→
ω(·,m)|N ∈ N∗ is surjective.

Proof. The assumption guarantees that R is a finite ring, so every element is either a
zero-divisor or invertible. Hence torsion modules vanish. ��
Definition 12. Let M be a quasi-symplectic module and N ⊂ M a submodule. Set
Nω = {m ∈ M | ω(·,m)|N = 0}. N is called isotropic (resp. Lagrangian) if N ⊂ Nω

(resp. N = Nω).

Recall that the saturation satM (N ) of a submodule N ⊂ M is defined to be the module
of all m ∈ M such that rm ∈ N for some regular element r ∈ R. If N = satM (N ), then
N is said to be saturated (in M). This is equivalent to M/N being torsion-free.

Proposition 13. Let N be a submodule of a quasi-symplectic module M.

1. If L ⊂ N, then Nω ⊂ Lω.
2. Nω = Nωωω.
3. If N is isotropic, N ⊂ Nωω ⊂ Nω, with equalities if N is Lagrangian.
4. Nωω = satM (N ).
5. Nωω/N is a torsion module.

Proof. Points 1.-3. are established with simple manipulations.
4. Clearly satM (N ) ⊂ Nωω. For the reverse inclusion, it is sufficient to check that

if N is saturated then Nωω ⊂ N . Let m ∈ M\N . We will construct z ∈ Nω such that
ω(m, z) 	= 0, showing that m 	∈ Nωω.

Put L = N +Rm. As N is saturated, L/N is torsion-free. Hence by Lemma 8 we have
(L/N )∗ 	= 0. Choose a nonzero element ϕ ∈ (L/N )∗. Composing with the quotient map
L → L/N we obtain ϕ′ ∈ L∗ which annihilates N and ϕ′(m) 	= 0. By Proposition 10
there exists a regular element r ∈ R and z ∈ M such that rϕ′ = ω(·, z)|L . The element
z is as desired.

5. follows immediately from 4. and the definition of satM (N ). ��
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Corollary 14. Suppose that � is finite and let M be a quasi-symplectic R-module. Then
for every submodule N ⊂ M we have Nωω = N.

Proof. As in Corollary 11. ��
Proposition 15. Let M be a quasi-symplectic module and N ⊂ M an isotropic submod-
ule.

1. Nωω/N is the torsion module of Nω/N.
2. There exists an induced quasi-symplectic module structure on Nω/Nωω.
3. There exists a canonical embedding M/Nω → N∗ with torsion cokernel.
4. There exists a canonical embedding Nω → (M/N )∗ with torsion cokernel. If M is

symplectic, this embedding is an isomorphism.

Proof. 1. follows from Proposition 13. The bilinear form ω on M restricted to Nω has
kernel Nωω, which establishes 2. By Proposition 10, we have a map M → N∗ with
torsion cokernel. Its kernel is clearly Nω, proving 3.

4. Dualizing the short exact sequence 0 → N → M → M/N → 0 gives

0 → (M/N )∗ → M∗ → N∗, (14)

so (M/N )∗ may be identified with the set of ϕ ∈ M∗ with trivial restriction to N . Next
we note that �(Nω) = �(M) ∩ (M/N )∗, so

(M/N )∗/�(Nω) = (M/N )∗/
(
�(M) ∩ (M/N )∗

) ⊂ M∗/M. (15)

��
Definition 16. Let M be an R-module. We say that M is quasi-free if there exists a
Zn-module M0 such that M ∼= M0 ⊗Zn R. We will also interpret elements of M0 ⊗Zn R
as polynomials in xλ with coefficients in M0, thus writing M0 ⊗Zn R = M0[�].
Remark 17. Let M, M0 be as in Definition 16. Then M0 is determined by M up to
isomorphism. M is finitely generated over R if and only if M0 is finitely generated
over Zn . Moreover, an R-module M is free if and only if it is quasi-free and free as a
Zn-module.

Proposition 18. Let P0 be a finitely generatedZn-module equipped with a bilinear form
ω0 : P0 × P0 → Zn which is

• alternating: ω0(p0, p0) = 0 for every p0 ∈ P0,
• nondegenerate: ω0(·, p0) = 0 implies p0 = 0.

Let P = P0[�] and define a Zn-bilinear form ω : P × P → R by

ω(p0x
λ, p′

0x
μ) = ω0(p0, p

′
0)x

μ−λ, for p0, p
′
0 ∈ P0, λ, μ ∈ �. (16)

Then (P, ω) is a symplectic module.

Proof. First note that P0 and P#
0 have the same number of elements. Thus the map

P0 � p0 �→ ω0(·, p0) ∈ P#
0 , being injective by definition, is bijective.

A short calculation shows that conditions 1. and 2. in the Definition 9 are satisfied.
Using the description of P∗ in Lemma 5, it is easy to see that � is an isomorphism. ��

Physically, P0 is the group generated by clock and shift matrices acting on qubits on
a single lattice site, considered modulo phases.
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Definition 19. A stabilizer code is a tuple C = (n,�, L , P), where P is symplectic
module over R = Zn[�] as constructed in Proposition 18 and L ⊂ P is an isotropic
submodule. We will also abbreviate C = (�, L , P) or (L , P) when there is no danger
of confusion. To C we associate

• integer dimension D = rk(�), the free rank of �,
• quasi-symplectic module S(C) = Lω/Lωω,
• torsion module Z(C) = Lωω/L ,
• torsion module Q(C) = L∗/(P/Lω).

We say that C is saturated if L ⊂ P is saturated (Z(C) = 0) and Lagrangian if L ⊂ P is
Lagrangian (Z(C) = S(C) = 0). An isomorphism of stabilizer codes (L , P) → (L ′, P ′)
is a symplectic isomorphism P → P ′ taking L to L ′.

Let us interpret physically objects defined above. Let H be a Hilbert space on which
local Pauli operators act irreducibly and let H0 ⊂ H be the space of solutions of (3)
in H. We assume that H0 	= 0. One can show that operators in Lω act irreducibly in
H0. Since they commute with operators in Lωω, the latter act in H0 as scalars. This
is a trivial statement for operators in L , but for operators in Lωω \ L the conclusion
relies on the irreducibility of H, through Schur’s lemma. Values of the latter operators
may be changed by acting on a state with a suitable automorphism of the local operator
algebra (more precisely, a non-local Pauli operator) which preserves all operators in L .
This gives a state which is not representable by an element of H (belongs to a different
superselection sector). Hence we have the following interpretations.

• Z(C) labels order parameters for spontaneously broken symmetries. If Lωω is La-
grangian, isomorphism classes of representations H with H0 	= 0 are in bijection
with Z(C)# (and hence also with Z(C) if Z(C) is finite).

• Elements of S(C) are Pauli operators acting in H0 (sometimes called logical opera-
tors) modulo operators which act in H0 as scalars. Hence dim(H0) is the square root
of the number of elements5 of S(C).

By the discussion around (4) and Lemma 5, module L∗ parametrizes local excitations.
Therefore Q(C) = L∗/(P/Lω) is the module of local excitations modulo excitations
which can be created by acting with local operators.

3. Topological Charges

In this section we define a series of homological invariants Qi , with Q0 isomorphic to Q
in Definition 19. Moreover, we show that Q0 is isomorphic to the module of topological
point excitations defined in [14] and derive some general properties of Qi . Firstly, we
show that Qi (C) = 0 for i > D − 1 (and also for i = D − 1 for saturated codes).
Secondly, we obtain bounds on Krull dimensions of Qi (C). We expect Qi to describe
i-dimensional excitations (or defects). This is shown in Sect. 6 for Lagrangian codes
such that all Qi have Krull dimension zero. Computations of Qi for certain specific
codes are presented in Sect. 7.

We remark that it follows immediately from our results that for saturated codes C
with D = 2, the module Q(C) either vanishes or has Krull dimension zero. Together
with the discussion in Sect. 5 it implies that all point excitations are mobile, i.e. they

5 S(C) is at most countably infinite. It is is not finite, dim(H0) in this statement has to be interpreted as the
Hilbert dimension, not the algebraic dimension.
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can be transported around by suitable string operators. This result has previously been
shown only for codes with qudits of prime dimension [14]. Method adapted therein does
not generalize to the case of composite qudit dimension due to the failure of Hilbert’s
syzygy theorem, a crucial ingredient of the proof.

Lemma 20. If M is a quasi-free module and N is free over Zn, then for i > 0

ExtiR(M, N ) = 0, TorRi (M, N ) = 0. (17)

Proof. Every Zn-module is a direct sum of cyclic modules, so without loss of generality
M = Zk[�] with k|n. Let l = n

k . We have a free resolution

· · · → R
k−→ R

l−→ R
k−→ R

mod k−−−→ M → 0. (18)

Erasing M and applying HomR(−, N ) we obtain the sequence

0 → N
k−→ N

l−→ N → . . . , (19)

which is exact in every degree i > 0. This establishes the claim for Ext. The argument
for Tor is analogous. ��
Proposition 21. Let C = (L , P) be a stabilizer code. We have

Q(C) ∼= Ext1
R(P/L, R). (20)

Proof. Consider the short exact sequence

0 → L → P → P/L → 0. (21)

We apply ∗, use Lemma 20 and identify (P/L)∗ = Lω, P∗ = P to get

0 → Lω → P → L∗ → Ext1
R(P/L, R) → 0, (22)

so Ext1
R(P/L, R) ∼= L∗/(P/Lω) = Q(C). ��

Proposition 21 motivates the definition of generalized charge modules.

Definition 22. Generalized charge modules of a stabilizer code C = (L , P) are defined
as

Qi (C) = Exti+1
R (P/L, R), i ≥ 0. (23)

Proposition 23. For i > 0 we have a canonical isomorphism

Qi (C) ∼= ExtiR(L, R). (24)

Proof. Inspect the long exact sequence obtained by applying (−)∗ to (21). ��
The next proposition shows that our definition of Q(C) agrees with topological point

excitations in [14].

Proposition 24. Let (L , P) be a stabilizer code and let σ : F → P be a homomorphism
with F quasi-free and im(σ ) = L. Let T be the torsion submodule of the cokernel of
σ ∗ : P∗ → F∗. Then T ∼= Q0(C).
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Proof. Choose a quasi-free module F ′ and a homomorphism ι : F ′ → F with image
ker(σ ). One may extend it to a quasi-free resolution of P/L:

· · · → F ′ ι−→ F
σ−→ P → P/L → 0. (25)

By Lemma 20 this resolution may be used to compute Ext•(P/L, R). Thus we erase
P/L and apply (−)∗, yielding the complex

0 → P∗ σ ∗−→ F∗ ι∗−→ F ′∗ → . . . (26)

whose homology ker(ι∗)/ im(σ ∗) in degree 1 is Q0(C). This exhibits Q0(C) as a sub-
module of coker(σ ∗). It is contained in T because Q0(C) is torsion. It only remains
to show that every ϕ ∈ F∗ representing an element of T is in ker(ι∗). Indeed, let
rϕ = σ ∗(ψ) for some r ∈ R not a zero-divisor and ψ ∈ P∗. Then r ι∗(ϕ) = 0, so
ι∗(ϕ) = 0 since F ′∗ is torsion-free. ��

Recall that the dimension dim(M) of an R-module M is defined as the Krull dimen-
sion of the quotient ring R/ Ann(M), where Ann(M) is the annihilator of M . A nonzero
module has a nonnegative Krull dimensions. By convention, the zero module has Krull
dimension −∞.

Proposition 25. Let C be a stabilizer code.

1. Qi (C) = 0 for i ≥ D.
2. QD−1(C) ∼= ExtDR (Z(C), R). In particular QD−1(C) = 0 if C is saturated.
3. dim(Qi (C)) ≤ D − 1 − i . In particular Qi (C) is a torsion module.
4. If C is saturated, then dim(Qi (C)) ≤ D − 2 − i .

In particular, saturated 1D codes have no topological charges.

Proof. 1. follows from the definition of a Gorenstein ring. 3. follows from Lemma 59.
Now suppose that C is saturated. Then P/L is torsion-free, so by Lemma 8 there
exists a short exact sequence

0 → P/L → F → M → 0 (27)

with F finite free. Applying (−)∗ gives a long exact sequence from which

Exti+1
R (P/L, R) ∼= Exti+2

R (M, R), i ≥ 0. (28)

In particular ExtDR (P/L, R) = 0. Invoking Lemma 59 establishes 4.
2. We have a short exact sequence

0 → Lωω/L → P/L → P/Lωω → 0. (29)

Apply ∗ and use ExtDR (P/Lωω, R) = 0, established in the proof of 4.
��
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4. Operations on Pauli Stabilizer Codes

One Pauli stabilizer code may give rise to various other codes. For example, one may
“compatify” some (even all) spatial directions, i.e. replace�by a quotient group. Another
possibility is stacking of infinitely many copies of a certain code to create a code with
higher dimension. Finally, one has coarse-graining, which does not change the code, but
forgets about some of its translation symmetry. In this section we discuss stacking and
coarse-graining (in particular how they affect invariants of a code), but compactifications
are postponed to future work. Moreover, we explain that the choice of n (which has to
be a common multiple of qubit dimensions) does not matter and that the whole theory
reduces to the case when n is a prime power.

Definition 26. Let C = (n,�, L , P) be a stabilizer code and let k be a positive integer
divisible by n. Then we may regard L and P as Zk[�]-modules, yielding a stabilizer
code C′ = (k,�, L , P). We will not distinguish between C and C′. Proposition below
shows that this does not affect charge codes. Given data (�, L , P) we choose n (needed
to define the ring R) as the smallest positive integer annihilating the abelian group P .

Proposition 27. Let C, C′ be as above. Then S(C′) coincides with S(C) regarded as
a Zk[�]-module. Similarly, Z(C) = Z(C′) and Qi (C′) = Qi (C).

Proof. If M ⊂ P is a submodule, Mω is the same overZn[�] andZk[�]. This establishes
the first two equalities. For the last one, note that Ext•R(−, R) may be computed using
quasi-free resolutions by Lemma 20, a quasi-free Zn[�]-module is also quasi-free over
Zk[�], and for any Zn[�]-module M we have

HomZk [�](M,Zk[�]) ∼= HomZn [�](M,Zn[�]). (30)

��
Definition 28. Direct sum of stabilizer codes is defined by

(n,�, L , P) ⊕ (m,�, L ′, P ′) = (gcd(n,m),�, L ⊕ L ′, P ⊕ P ′). (31)

Clearly S(C), Z(C) and Qi (C) are additive.

Proposition 29. Let C = (n,�, L , P) be a stabilizer code and let n =
r∏

i=1
pnii be the

prime decomposition of n. Then

C =
r⊕

i=1

(pnii ,�, Li , Pi ), (32)

where Pi = {m ∈ P | pnii m = 0}, Li = L ∩ Pi .

Proof. Chinese remainder theorem. ��
Note that Proposition 29 implies that the study of stabilizer code with general n

reduces to the case when n is a prime power.

Definition 30. Let � be a finitely generated abelian group and let ι : � → � be a
homomorphic embedding. For any Zn[�]-module M let ι∗M = M ⊗Zn[�] Zn[�]. Then
ι∗ is an exact functor because Zn[�] is free over Zn[�]. In particular for a stabilizer
code (�, L , P) we have ι∗L ⊂ ι∗P , allowing us to define

ι∗(�, L , P) = (�, ι∗L , ι∗P). (33)
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The operation introduced in Definition 30 may be thought of as stacking of �/�

layers of the system described by (�, L , P). Let us note that

S(ι∗C) = ι∗S(C), Z(ι∗C) = ι∗Z(C), Qi (ι∗C) = ι∗Qi (C). (34)

Due to these simple formulas, structure of charge modules may be used to show that a
certain system cannot be obtained from a lower dimensional system by stacking. Here
we note only a simple criterion based on whether charge modules vanish.

Proposition 31. Suppose that C is a stabilizer code with Qi (C) 	= 0. Then C is not
isomorphic to any ι∗(�, L , P) with rk(�) < i + 1. If C is saturated, rk(�) = i + 1 is
also excluded.

Proof. Formula (34) and Proposition 25. ��
Proposition 32. Suppose that C is a stabilizer code which is not saturated. Then C is
not isomorphic to any ι∗(�, L , P) with rk(�) = 0.

Proof. Zero-dimensional systems have Z(C) = 0 by Corollary 14. The claim follows
from (34). ��
Definition 33. Let ι : � → � be a finite index embedding. If M is a Zn[�] module, we
let ι∗M be M treated as Zn[�]-module. We define

ι∗(�, L , P) = (�, ι∗L , ι∗P). (35)

This operation is called coarse graining.

Proposition 34. Coarse graining satisfies

S(ι∗C) = ι∗S(C), Z(ι∗C) = ι∗Z(C), Qi (ι∗C) = ι∗Qi (C). (36)

Proof. Let M ⊂ P be a submodule and p ∈ P . Then p ∈ Mω if and only if the
scalar part of ω(m, p) vanishes. The scalar part is unchanged by coarse graining, so
(ι∗M)ω = ι∗(Mω). This establishes first two equalities in (36). For the last one, ι∗ is
an exact functor which takes free modules to free modules and commutes with (−)∗, as
one verifies using Lemma 5. ��

5. Mobility Theorem

A local excitation is said to be mobile if there exist local Pauli operators which ‘move’ it
in all non-compact directions of the lattice. By ‘move’, we mean destroying the excitation
and creating its displaced copy, without creating additional excitations.

Recall that Q = L∗/(P/Lω) describes all local excitations modulo those creatable
by local Pauli operators. According to the previous paragraph, an excitation e ∈ L∗ can
be displaced by an element γ ∈ � if and only if (xγ − 1)e ∈ P/Lω. In conclusion,
mobility of all local excitations is equivalent to the existence of a subgroup � ⊂ � of
finite index such that xγ − 1 annihilates Q for each γ ∈ �. We now show that this
condition is also equivalent to the vanishing of the Krull dimension of R-module Q.

Lemma 35. If n, r are positive integers, let Ln(r) be the largest integer such that (x −
1)Ln(r) divides xn

r − 1 in Zn[x]. For example, L p(r) = pr for any prime number p.
One has lim sup

r→∞
Ln(r) = ∞.
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Proof. Factorization xn − 1 = −(x − 1)2
n−1∑

j=0
( j + 1)x j implies that Ln(1) ≥ 2. We will

show that Ln(2r) ≥ Ln(r)2. Write xn
r − 1 = (x − 1)n

r
f (x). Then

xn
2r − 1 = (xn

r
)n

r − 1 = (xn
r − 1)Ln(r) f (xn

r
)

= (x − 1)Ln(r)2
f (x)Ln(r) f (xn

r
). (37)

��
Proposition 36. If a ⊂ R is an ideal, then dim(R/a) = 0 if and only if there exists a
subgroup � ⊂ � of finite index such that xγ − 1 ∈ a for every γ ∈ �.

Proof. ⇐� : R/a is a finite ring, so dim(R/a) = 0.
�⇒ : choose λ1, . . . , λD ∈ � which generate a subgroup of finite index and put

xi = xλi . If m ⊂ R is a maximal ideal, then R/m is a finite field, so there exists a
positive integer such that xri − 1 ∈ m. As dim(R/a) = 0, there exist finitely many
maximal ideals m ⊂ R containing a. Thus it is possible to choose r such that

(xr1 − 1, . . . , xrD − 1) ⊂
⋂

m⊃a

m = √
a. (38)

Since R is Noetherian,
√
a
N ⊂ a for large enough N . Lemma 35 implies that there exist

N , L such that

(x L1 − 1, . . . , x LD − 1) ⊂ ((xr1 − 1)N , . . . , (xrD − 1)N ) ⊂ a. (39)

We may take � to be the span of Lλ1, . . . , LλD . ��
Corollary 37. All local excitations of a stabilizer code C are mobile if and only if
dim(Q(C)) = 0. In particular this is true if D = 1 or C is saturated and D = 2.

Proof. The second part of the statement follows from dimension bounds in Proposi-
tion 25. ��

Though logically equivalent, the condition dim(R/a) = 0 avoids mentioning a finite
index subgroup of �. It is also the easier condition to establish in a proof, due to the
large number of results in dimension theory. An example is given by Corollary 37 above.

A direct characterization of mobility for i-dimensional topological charges in Qi , i >

0 may be possible, given an interpretation of charges in terms of extended excitations. We
leave this to future efforts. Instead we make the conjectural definition that mobility for Qi

is still equivalent to dim(Qi ) = 0. We sometimes call a codeCmobile if dim(Qi (C)) = 0
for all i . In the next section we will see that under this assumption elements of Qi (C)

may indeed be interpreted as excitations, which are mobile in a suitable sense.

6. Codes with only Mobile Excitations

This section is devoted to analysis of topological charges for mobile codes. Mobil-
ity allows to describe topological charges in terms of Čech cocycles. Cup product for
Čech cohomology fits a physical process commonly known as braiding. It furnishes
an algebraic description of exchange relations for mobile excitations. A direct physical
interpretation of Čech cocycles is also given.
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6.1. Mathematical preliminaries. If A is a ring and M an A-module, let EA(M) be the
injective envelope of M . We refer to Appendix B for other definitions and facts used
below.

Proposition 38. Let a ⊂ R be an ideal such that dim(R/a) = 0. Then

�a(R
#) ∼=

⊕

m

ER(R/m), (40)

the sum being taken over maximal ideals of R containing a.

Proof. Lemma 62 allows to reduce to the case of a being itself a maximal ideal m.
We put k = R/m. R-module R# represents the exact cofunctor (−)# on the category
of R-modules, so it is injective. By [17, Proposition 3.88], �m(R#) is also injective.
It is easy to see that k# ∼= {ϕ ∈ R# |mϕ = 0} is an essential submodule of �m(R#),
so �m(R#) = ER(k#). The proof will be completed by showing that k# ∼= k as an
R-module. As k# is annihilated by m, it is a k-vector space. We have to argue that its
dimension over k is 1. Let p be the characteristic of k. Every element of k# factors
through Zp, so

dimZp (k
#) = dimZp (HomZp (k,Zp)) = dimZp (k) (41)

and hence dimk(k#) = dimZp (k#)

dimZp (k) = 1. ��
Lemma 39. Every maximal ideal of R has height D.

Proof. R is a product of rings Zpt [�] where p is prime and t ∈ N, so we may assume
that n = pt with no loss of generality. Then R is an extension of S = Zp[�] by a
nilpotent ideal, so its poset of prime ideals is isomorphic to that of S. The result for S is
standard, see e.g. [18, Corollary 13.4]. ��
Proposition 40. Let a ⊂ R be an ideal such that dim(R/a) = 0 and let M be a quasi-free
module. Then H j

a(M) = 0 for j 	= D and

HD
a (M) ∼=

(
⊕

m

ER(R/m)

)

⊗ M, (42)

the sum being taken over maximal ideals of R containing a.

Proof. Lemma 62 allows to reduce to the case of a being a maximal ideal m. First
consider the case M = R. By maximality of m and H j

m(R) being m-torsion, every
element of R \ m acts as an invertible endomorphism of H j

m(R). Thus we have R-
module isomorphisms H j

m(R) ∼= H j
m(R)m ∼= H j

m′(Rm), where m′ is the extension of
m in Rm. The second isomorphism follows from Lemma 65. By Lemma 39, Rm is
a Gorenstein ring of dimension D, so Lemma 63 gives H j

m(R) = 0 for j 	= D and
HD
m(R) ∼= ERm(Rm/m′) ∼= ER(R/m).

Local cohomology can be computed using the Čech complex, so the result for M = R
shows that Č•(t, R) is a flat resolution of E := ER(R/m), up to a degree shift. Since
Č•(t, M) ∼= Č•(t, R) ⊗R M , this implies that for any module M we have Ȟp(t, M) ∼=
TorRD−p(E, M). Now specialize to the case of M being quasi-free and invoke Lemma 20.
��
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Let � ⊂ � be a subgroup such that �/� is finite and let γ1, . . . , γD be a basis of �.
We put

xi = xγi , ti = 1 − xγi , a = (t1, . . . , tD) (43)

and consider the Čech complex Č•(t, R) (see Appendix C). Lemma 64 and Proposi-
tions 38, 40 show that its only nonzero cohomology module ȞD(t, R) is isomorphic to
�a(R#). Our next goal is to construct an explicit isomorphism.

Definition 41. Let Zn[[�]] be the set of formal sums
∑

λ∈� rλxλ. This is an abelian
group, but in general not a ring: the product

(
∑

λ∈�

rλx
λ

)⎛

⎝
∑

μ∈�

r ′
μx

μ

⎞

⎠ =
∑

λ∈�

⎛

⎝
∑

μ∈�

rλ−μr
′
μ

⎞

⎠ xλ (44)

is well-defined only if for every λ ∈ � there are only finitely many μ ∈ � such that
both rλ−μ and r ′

μ is nonzero. This condition is always satisfied if one of the two factors
is in R, so Zn[[�]] is an R-module. Using the pairing

Zn[�] × Zn[[�]] � (r, r ′) �→ (rr ′)0 ∈ Zn, (45)

we identify Zn[[�]] with R#.

Recall that ČD(t, R) = Rt1...tD and that ȞD(t, R) is the quotient of Rt1...tD by the
sum of images of Rt1...t j−1t j+1...tD (module of coboundaries).

Definition 42. We consider formal Laurent expansions of 1
ti

(regarded as elements of

R#) into positive and negative powers of xi :
(

1

ti

)

+
=

∞∑

j=0

x j
i ,

(
1

ti

)

−
= −

∞∑

j=1

x− j
i , (46)

The residue homomorphism Res : Rt1...tD → R# is defined by

r

tk1
1 · · · tkDD

�→ r
D∏

i=1

[(
1

ti

)ki

+
−
(

1

ti

)ki

−

]

. (47)

This is well-defined because ti
(

1
ti

)

± = 1.

Proposition 43. ker(Res) is themodule of coboundaries and the image ofRes is�a(R#).
Therefore Res induces an isomorphism ȞD(t, R) → �a(R#).

Proof. A Čech coboundary is a sum of elements as on the left hand side of (47) with at
least one ki equal to zero, each of which is annihilated by Res. Moreover, the right hand
side of (47) is annihilated by tkii , so it belongs to �a(R#). We have obtained an induced
homomorphism ȞD(t, R) → �a(R#). From now on the symbol Res refers to this
induced homomorphism. Let z be the cohomology class of 1

t1...tD
. Clearly a ⊂ Ann(z).

We evaluate

Res(z) =
∑

γ∈�

xγ . (48)
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One checks that the annihilator of the right hand side is a, so Ann(z) ⊂ a. We deduce
that the submodule M of ȞD(t, R) generated by z intersects ker(Res) trivially. Clearly
M is an essential submodule of ȞD(t, R), so Res is injective. Propositions 38, 40 imply
that it is an isomorphism. ��

6.2. Physical interpretations of charges. For the rest of this section we assume that
C = (�, L , P) is a Lagrangian stabilizer code such that dim(Qi (C)) = 0 for every i .
Proposition 36 allows us to choose a subgroup � ⊂ � of finite index such that xγ − 1
annihilates all Qi (C) for all γ ∈ �. With this �, we consider the Čech complex as
discussed around (43).

6.2.1. Charges as čech cocyles

Proposition 44. We have Qi (C) ∼= Ȟi+1(t, P/L) for 0 ≤ i ≤ D − 2.

Proof. We can continue the quotient map P → P/L to a quasi-free resolution P• →
P/L with P0 = P . Applying (−)∗ yields a complex

0 → L → P → P∗
1 → P∗

2 → . . . , (49)

where we used isomorphisms (P/L)∗ ∼= L and P∗ ∼= P . From this we have also a
cochain complex K • with K 0 = P/L , Ki = P∗

i for i > 0:

K • 0 → P/L → P∗
1 → P∗

2 → . . . (50)

Its cohomology is trivial in degree zero and Ext•R(P/L, R) elsewhere. Next, we form a
double complex Č•(t, K •), with the following properties:

• Č0(t, K •) ∼= K • has cohomology described above. If p > 0, the complex Čp(t, K •)
is exact because Čp(t,−) = Čp(t, R) ⊗R − is an exact functor annihilating the
cohomology of K •.

• Č•(t, K 0) has cohomology Ȟ•(t, P/L). If q > 0, the complex Č•(t, Kq) has
nonzero cohomology only in degree D, by Proposition 40.

The isomorphism is established either by a diagram chase or using the double complex
spectral sequence. The former approach is essentially elementary and we sketch it below.

We let d be the differential induced from K • and δ the Čech differential. Let i ∈
{1, . . . D − 1} and consider q ∈ ExtiR(P/L, R) represented by an element q(0) ∈ Ki

annihilated by d. Then also δq(0) is annihilated by d, so by exactness of Č1(t, K •) there
exists q(1) ∈ Č1(t, Ki−1) such that dq(1) = δq(0). Hence δq(1) is annihilated by d. If
i = 1, this implies that δq(1) = 0 because d : Č2(t, K 0) → Č2(t, K 1) is injective.
If i > 1, we conclude that there exists q(2) ∈ Č2(t, Ki−2) such that dq(2) = δq(1).
Continuing like this inductively we obtain a sequence of elements q( j) ∈ Č j (t, Ki− j ),
0 ≤ j ≤ i , such that

dq(0) = 0, dq( j) = δq( j−1) for j 	= 0, δq(i) = 0. (51)

The Čech cohomology class of q(i) is declared to be the image of q in Ȟi (t, P/L).
With similar reasoning one checks that this cohomology class does not depend on ar-
bitrary choices in the construction of q(i). Thus a well-defined homomorphism h :
ExtiR(P/L, R) → Ȟi (t, P/L) is obtained. Performing the same steps reversed yields a
homomorphism in the opposite direction, easily seen to be an inverse of h. ��
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Remark 45. If we assume that xγ − 1 annihilates Qi (C) for every i ≤ d for some
0 ≤ d ≤ D − 2, we may still obtain Qi (C) ∼= Ȟi+1(t, P/L) for 0 ≤ i ≤ d. The
proof of Proposition 44 goes through with essentially no modifications. Moreover, even
with no restrictions on dim(Qi (C)) we may construct a homomorphism Ȟi (t, P/L) →
ExtiR(P/L, R) for 1 ≤ i ≤ D − 1. If dim(ExtiR(P/L, R)) 	= 0, this homomorphism
cannot be surjective.

6.2.2. Charges as topological excitations Next we provide a concrete interpretation of
our charge modules Qi (C) (reinterpreted as Čech cocycles by Proposition 44) in terms
of operators and physical excitations.

Definition 46. We define P̂ = P ⊗R R#. Recall that P ∼= P0[�] for some finite abelian
group �, so P̂ ∼= P0[[�]]. We will sometimes multiply elements of R# and P̂ . Such
product is well-defined under a condition analogous to the one discussed in Definition
41. Symplectic form on P extends to a pairing between P and P̂ valued in R#. Under
suitable conditions one may also pair two elements of P̂ .

Elements of P̂ describe products of Pauli operators (up to phase) with possibly infi-
nite spatial support. Such expressions do not necessarily define bona fide operators on a
Hilbert space, but they make sense as automorphisms of the algebra of local operators.
Hence they may be applied to states, in general yielding a state in a different superse-
lection sector. The extended symplectic forms captures their “commutation rules” with
local Pauli operators.

Definition 47. Let s = (s1, . . . , sD) be a tuple of elements of the multiplicative group
{±}. We think of s as a label of an orthant in � ∼= Z

D . For every s we define an embedding
of Pt1...tD (and hence also of every Pti0 ...i p

for a sequence 1 ≤ i0 < · · · < i p ≤ D, since

P is torsion-free) in P̂ as follows:

p

tk1
1 · · · tkDD

�→ p
D∏

i=1

(
1

ti

)ki

si

. (52)

If π is an element of Pt1...tD , we denote the element of P̂ obtained this way by π s , to
emphasize dependence on s.

Consider a cocycle ϕ ∈ Čp(t, P/L). We lift ϕ to a cochain ϕ̃ ∈ Čp(t, P). Then
σ = δϕ̃ ∈ Čp+1(t, L) is a cocycle. Note that the map taking the cohomology class of ϕ

to the cohomology class of σ is the connecting homomorphism in the long exact sequence
of Čech cohomology. Consider images in P̂ of components of ϕ̃ and σ . Two observations
are in order. Firstly, ϕ̃s

i1...i p
describes an infinite Pauli operator whose support is extended

only in directions i1 . . . i p, and moreover is contained in a shifted orthant specified by
s. Secondly, each σ s

i0...i p
is ω-orthogonal to L . Hence we have an identity

p∑

j=0

(−1) jω
(
·, ϕ̃s

i0...i j−1i j+1...i p

)∣
∣
∣
L

= 0 in L
#
. (53)

Let us rewrite this as

ω
(
·, ϕ̃s

i1...i p

)∣
∣
∣
L

=
p∑

j=1

(−1) jω
(
·, ϕ̃s

i0...i j−1i j+1...i p

)∣
∣
∣
L

(54)
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By comparing supports of the two sides of this equation we can see that action of
ϕ̃s
i1...i p

creates an excitation (violation of the stabilizer condition) which is supported on
a thickened boundary of the support of ϕ̃s

i1...i p
. Hence ϕ̃s

i1...i p
represents a p-dimensional

extended operator which creates an excitation on the (p − 1)-dimensional boundary of
its support. This excitation does not depend on the lift of the cocycle ϕ to ϕ̃.

Next, let us suppose that ϕ represents the trivial cohomology class. That is, we have
ϕ = δψ for some ψ ∈ Čp−1(t, P/L). We lift ψ to a cochain ψ̃ valued in P and choose
ϕ̃ = δψ̃ . Then

ϕ̃s
i1...i p =

p∑

j=1

(−1) j−1ψ̃ s
i1...i j−1i j+1...i p , (55)

which shows that the (p − 1)-dimensional excitation created by ϕ̃s
i1...i p

can be created

by operators ψ̃ s
i1...i j−1i j+1...i p

, each of which is extended in only p − 1 (rather than p)
directions.

Note that even though an excitation corresponding to a p-cocycle ϕ is created by an
operator with p-dimensional support, it can be shifted by an element of � by the action
of a (p−1)-dimensional operator. Indeed, xγ −1 annihilates cohomology, so (xγ −1)ϕ

is a coboundary. The result follows from the discussion of the previous paragraph.
Summarizing, an element of Qp(C) ∼= Ȟp+1(t, P/L) gives rise to an excitation

extended in p dimensions, determined modulo excitations created by p-dimensional
operators.

6.2.3. Charges as higher form symmetries Now let ϕ ∈ Čp(t, P/L) be a cocycle. We
consider the expression

ϕ̃Res
i1...i p =

∑

si1 ,...,si p∈{±}
si1 · · · si p ϕ̃s

i1...i p . (56)

This makes sense because ϕ̃s
i1...i p

does not depend on s j for j 	∈ {i1, . . . , i p}. ϕ̃Res
i1...i p

is
a p-dimensional extended operator. By the earlier discussion, the excitation it creates
is supported in the union of a finite collection of subsets infinitely extended in at most
p − 1 directions. On the other hand, there exists some k such that each tki j annihilates
it. One checks that a nonzero element with such property must be infinitely extended in

all p directions. We obtain the conclusion that ω(·, ϕ̃Res
i1...i p

)

∣
∣
∣
L

= 0, i.e. ϕ̃Res
i1...i p

preserves

the state defined by the stabilizer condition.
Since the cochain ϕ̃ allows to construct a symmetry ϕ̃Res

i1...i p
of the ground state for

every coordinate p-plane (labeled by i1 < · · · < i p), it defines a (D− p)-form symmetry
of C. Let us now investigate to what extent this (D − p)-form symmetry is uniquely
determined by the cohomology class of ϕ.

Firstly, let us fix the cocycle ϕ and ask for the dependence on the choice of the lift ϕ̃.
For two different lifts ϕ̃, ϕ̃′, the difference ϕ̃′Res

i1...i p
− ϕ̃Res

i1...i p
is an infinite sum of elements

of L , i.e. it represents a product of local operators separately preserving the ground
state. A p-dimensional (p ≥ 1) operator of this form should be regarded as a trivial
(D − p)-form symmetry.
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To understand the dependence on the cocycle ϕ representing a given cohomology
class, let us suppose that ϕ = δψ . We lift ψ and choose ϕ̃ = δψ̃ . With this choice
expression (56) vanishes on the nose.

Summarizing, we have argued that the definition (56) defines a (D − p)-form sym-
metry of C, which depends only on the cohomology class of ϕ. This means that we have
an alternative interpretation of Qp(C) as a group of (D − p − 1)-form symmetries of C
(possibly nontrivially acted upon by �).

6.3. Braiding.

Definition 48. Let ϕ ∈ Ȟp(t, P/L), ψ ∈ Ȟq(t, P/L). The cup product defined in the
Appendix C yields an element

ϕ � δψ ∈ Ȟp+q(t, P/L ⊗R L), (57)

where δ is the connecting homomorphism Ȟq(t, P/L) → Ȟq+1(t, L) in a long exact
sequence. Using the map (with a slight abuse of notation) in Čech cohomology induced
by the symplectic pairing ω : P/L ⊗R L → R we obtain a class

ω(ϕ � δψ) ∈ Ȟp+q(t, R). (58)

This class is trivial if p + q 	= D, by Proposition 40. Let us suppose that p + q = D.
Then we may define

�(ϕ,ψ) = Res (ω(ϕ � δψ)) ∈ �a(R
#). (59)

Proposition 49. Let ϕ ∈ Ȟp(t, P/L), ψ ∈ ȞD−p(t, P/L). We have:

1. Graded skew-symmetry: �(ϕ,ψ) = −(−1)p(D−p)�(ψ, ϕ).
2. Translation covariance: �(ϕ, rψ) = �(rϕ,ψ) = r�(ϕ,ψ).
3. Commutation rule of operators introduced in Sect. 6.2:

�(ϕ,ψ) = Res(ω(ϕ̃1...p, ψ̃p+1...D)) = ω(ϕ̃Res
1...p, ψ̃

Res
p+1...D). (60)

Proof. 1. follows from the graded commutativity and graded Leibniz rule of the cup
product and antipode skew-symmetry of ω. 2. is obvious.

3. From the relevant definitions we have

�(ϕ,ψ) = Res
D−p∑

j=0

(−1) jω(ϕ̃1...p, ψ̃p...p+ j−1,p+ j+1...D). (61)

Let 0 < j ≤ D − p. The j-th term on the right hand side of (61) is the residue of an
element of Rt1...tp− j−1tp− j+1...D , so it vanishes. The 0-th term is equal to the right hand
side of (60). ��

We propose to interpret the scalar part of � as a higher dimensional version of
braiding. Thus �(ϕ,ψ) encodes braiding of excitations described by ϕ,ψ as well as their
translates. We will see later that for D = 2 our proposal reduces to known expressions,
providing evidence for our interpretation.

Recall that we have a decomposition Ȟp+1(t, P/L) =⊕m �mȞp+1(t, P/L), where
m are maximal ideals of R containing a. Its summands are charges characterized by spe-
cific behavior under translations, so we interpret m as momentum “quantum numbers”.
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Note that for every m, the ideal m obtained by acting with the antipode also contains a,
as a = a. We think of m as momentum opposite to m. The following Proposition shows
that two charges with fixed momentum may braid nontrivially only if their momenta are
opposite.

Proposition 50. Suppose that ϕ ∈ �mȞp+1(t, P/L), ψ ∈ �m′ȞD−p−1(t, P/L). If
m 	= m′, then �(ϕ,ψ) = 0.

Proof. For some j , ϕ is annihilated by m j and ψ by m′ j . Therefore �(ϕ,ψ) is annihi-
lated by m j + m′ j . If m 	= m′, this sum is R. ��

Decomposition of Ȟp+1(t, P/L) into m-torsion parts is not invariant to coarse-
graining. In fact, after sufficient coarse-graining we can assure that a contains all xλ −1.
Then, for n being a prime power, a is contained in only one maximal ideal. Decompo-
sition into m-torsion parts (and more generally, the module structure on Qi (C)) is an
invariant protected by the translation symmetry and hence in principle can be used to
distinguish SET phases with the same topological order.

6.4. Braiding and spin in 2D. We will now specialize to 2D Lagrangian codes. The
assumption dim(Q) = 0 is automatically satisfied, as stated in Corollary 37. Hence we
have well-defined braiding. Expression (60) agrees with the standard braiding formula
as a commutator of two orthogonal string operators. Let us explain this in more detail.

Consider a Lagrangian C = (Z2, P, L). We have R = Zn[x±
1 , x±

2 ]. There exists
some l > 0 such that ti = 1 − xli ∈ Ann(Q(C)). Therefore we have the following
commutative diagram with exact rows

0 P/L L∗ Q(C) 0

0 Č1(t, P/L) Č1(t, L∗) 0

ι0

δ

ι1

For any e ∈ L∗, we have δe = (e, e) = ι1(
p1

xl1−1
,

p2

xl2−1
) with pi = (xli −1)e ∈ P/L . One

may check that e �−→ (
p1

xl1−1
,

p2

xl2−1
) defines an isomorphism between L∗ and 1-cocycles,

with elements of P/L mapped onto coboundaries. In particular this map induces an
isomorphism L∗/(P/L) → Ȟ1(t, P/L). A lift of pi to P represents a Pauli operator
which moves the excitation e by l units in the i-th direction. For this reason, pi is
sometimes called an i-mover.

Let e1, e2 ∈ L∗ be two excitations and let pi (e j ) be their movers. We can then form
arbitrarily long string operators

(x−cl
i + · · · + 1 + · · · xcli )pi (e j ) (62)

which transport (displaced) excitations described by e j by (2c + 1)l units of length.
Braiding may be related [5,19] to the commutator phase

ω((x−cl
1 + · · · + xcl1 )p1(e1), (x

−cl
2 + · · · + xcl2 )p2(e2))0 (63)

with sufficiently large c. This expression is asymptotically independent of c because the
two strings operators cross at most along a finite set. Taking c to infinity, this expression
matches the scalar part of (60) with
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ϕ =
(
p1(e1)

xl1 − 1
,
p2(e1)

xl2 − 1

)

, ψ =
(
p1(e2)

xl1 − 1
,
p2(e2)

xl2 − 1

)

. (64)

We remark that it is also equal to the evaluation of the Laurent polynomialω(p1(e1), p2(e2))

at x1 = x2 = 1.
One can also define the topological spin function

θ(e) =ω((x−cl
1 + · · · + x−l

1 )p1(e), (x
−cl
2 + · · · + x−l

2 )p2(e))0

−ω((x−cl
2 + · · · + x−l

2 )p2(e), (1 + xl1 + · · · + xcl1 )p1(e))0

−ω((1 + xl1 + · · · + xcl1 )p1(e), (x
−cl
1 + · · · + x−l

1 )p1(e))0 (65)

with sufficiently large c (the right hand side, as a function of c, is eventually constant).
It is a quadratic refinement of the braiding pairing:

�(e, f )0 = θ(e + f ) − θ(e) − θ( f ) and θ(ke) = k2θ(e) for k ∈ Zn . (66)

Formula (65) appeared first in [5], where the case of prime-dimensional qudits was
studied.

7. Examples

In this section we discuss examples with concrete codes. They serve several purposes.
Firstly, they show that invariants we proposed are nontrivial, calculable and yield what
is expected on physical grounds in models which are already well understood. Secondly,
they support our physical interpretation of mathematical objects and the conjecture
that braiding is non-degenerate. Finally, the last example illustrates certain technical
complication that does not arise for codes with prime-dimensional qudits.

In examples presented below we take P to be a free module R2t with the symplectic
form

ω

((
a
b

)

,

(
a′
b′
))

= (a† b†
)
(

0 −1
1 0

)

︸ ︷︷ ︸
denote λ

(
a′
b′
)

, (67)

where a, a′, b, b′ ∈ Rt and † denotes transposition composed with antipode. Following
[14], we represent L as the image of a homomorphism σ : Rs → R2t , described by
a 2t × s matrix with entries in R.

We will also work with cocycles in Č•(t, P/L). In calculations it is convenient to
identify them with cochains in Č•(t, P) which are closed modulo Č•(t, L), with two
cochains identified if they differ by a cochain in Č•(t, L).

7.1. 3D Zn-toric code. We take � = Z
3 and denote generators of R corresponding to

three basis vectors by x, y, z, so that R is a Laurent polynomial ring in three variables
x, y, z. 3D toric code is defined by P = R6, L = im(σ ) with

σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − x̄ 0 0 0
1 − ȳ 0 0 0
1 − z̄ 0 0 0

0 0 z − 1 y − 1
0 z − 1 0 1 − x
0 1 − y 1 − x 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (68)



  126 Page 24 of 37 B. Ruba, B. Yang

We have the following free resolution of P/L

0 → R
τ−→ R4 σ−→ R6 → P/L → 0, τ =

⎛

⎜
⎝

0
x − 1
1 − y
z − 1

⎞

⎟
⎠ . (69)

Erasing P/L and applying (−)∗ we obtain

0 → P
σ †λ−−→ R4 τ †−→ R → 0. (70)

Here matrix ε = σ †λ (rather than σ †) is present because the canonical isomorphism
P → P∗ is given by λ if both P and P∗ are identified with R6. From this resolution we
easily get

Ext1
R(P/L, R) ∼= Zn, generated by the class of

(
1 0 0 0

)T ∈ R4,

Ext2
R(P/L, R) ∼= Zn, generated by the class of 1 ∈ R. (71)

Both Ext modules are annihilated by x − 1, y − 1, z − 1.
Let us show how Čech cochains can be obtained from classes found above. The

procedure below follows from proof of Proposition 44. In the construction of the Čech
complex we may take (x1, x2, x3) = (x, y, z). Recall that we defined ti = 1 − xi . Now
consider

(
1 0 0 0

)T ∈ R4. Applying the Čech differential gives

R4
t1 ⊕ R4

t2 ⊕ R4
t3 �

⎛

⎜
⎝

⎛

⎜
⎝

1
0
0
0

⎞

⎟
⎠ ,

⎛

⎜
⎝

1
0
0
0

⎞

⎟
⎠ ,

⎛

⎜
⎝

1
0
0
0

⎞

⎟
⎠

⎞

⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

−t−1
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, ε

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

−t−1
2
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, ε

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

−t−1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (72)

The final expression is the image through ε of a certain element of Č1(t, P). Let us call
this cochain ϕ. By construction, it is closed modulo L . Let us show how this can be
checked by an explicit computation:

Č2(t, R6) = R6
t2t3 ⊕ R6

t1t3 ⊕ R6
t1t2 � δϕ

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
t−1
2

−t−1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
t−1
1
0

−t−1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
t−1
1

−t−1
2
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎜
⎝σ

⎛

⎜
⎝

0
−t−1

2 t−1
3

0
0

⎞

⎟
⎠ , σ

⎛

⎜
⎝

0
0

−t−1
1 t−1

3
0

⎞

⎟
⎠ , σ

⎛

⎜
⎝

0
0
0

−t−1
1 t−1

2

⎞

⎟
⎠

⎞

⎟
⎠ . (73)
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One can go through a similar procedure with the element generating Ext2. Let us
record the final result:

Č2(t, R6) � ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

t−1
2 t−1

3
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
−t−1

1 t−1
3

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0

t−1
1 t−1

2
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (74)

Having these formulas in hand we evaluate

�(ϕ,ψ)0 = 1 ∈ Zn . (75)

Hence braiding is a non-degenerate pairing in this example.
It is well known that toric code is closely related to Zn gauge theory. With this

interpretation, line operators corresponding to ϕ are Wilson lines. They create electric
excitations at their endpoints. Cocycle ψ corresponds to electric flux (surface) operators,
which create magnetic field on the boundary. Braiding between the two excitations is an
Aharonov-Bohm type phase. We remark also that the relation between generators of L ,
described by the map τ , corresponds to Bianchi identity.

7.2. 4D Zn-toric code. In a 4D version of the Zn toric code we have P = R8. We let
x1, . . . , x4 be four variables corresponding to generators ofZ4 and denote basis vectors of
P by e1, . . . , e4, a1, . . . , a4. Consider the free module R7 with basis {g}∪{ fi j }1≤i< j≤4.
We define L = im(σ ), where σ : R7 → P is given by

σ(g) =
4∑

i=1

(1 − xi )ei , σ ( fi j ) = −(xi − 1)a j + (x j − 1)ai . (76)

Elements σ(g), σ ( fi j ) generate L . To continue σ to a resolution of P/L , we need to de-
scribe relations between generators. Consider the free module R4 with basis
{bi jk}1≤i< j<k≤4. Define τ1 : R4 → R7 by

τ1(bi jk) = (xi − 1) f jk − (x j − 1) fik + (xk − 1) fi j . (77)

Then im(τ1) = ker(σ ), but we still have to take care of relations between relations. Let
τ2 : R → R4 be given by

τ2(1) = (x1 − 1)b234 − (x2 − 1)b134 + (x3 − 1)b124 − (x4 − 1)b123. (78)

We have constructed a free resolution

0 → R
τ2−→ R4 τ1−→ R7 σ−→ R8 → P/L → 0 (79)

Proceeding as in the 3D case we found

Q0 ∼= Zn, Q1 = 0, Q2 ∼= Zn, (80)
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all annihilated by xi−1. After some tedious calculations we found also the Čech cochains
ϕ ∈ Č1(t, P) and ψ ∈ Č3(t, P) corresponding to generators of Q0 and Q2:

ϕi = ai
xi − 1

, ψi c = (−1)i ei
∏

j 	=i (x j − 1)
, (81)

where i c denotes the triple of indices complementary to i . Given these expressions it is
easy to check that

�(ϕ,ψ)0 = 1. (82)

Again, braiding is non-degenerate.

7.3. 4D Zn 2-form toric code. By a 2-form version of the toric code we mean a code in
which degrees of freedom are assigned to lattice plaquettes. Starting from dimension 4
such code is neither trivial nor equivalent to the standard (‘1-form’) toric code. Module
P ∼= R12 has basis {ei j , ai j }1≤i< j≤4, with nontrivial symplectic pairings of the form
ω(ei j , ai j ) = 1. Consider the free module R8 with basis {gi , fic }4

i=1. We define L =
im(σ ), where σ : R8 → P is given by

σ(gi ) = −
∑

j<i

(1 − x j )e ji +
∑

j>i

(1 − x j )ei j ,

σ ( fi jk) = −(xi − 1)a jk + (x j − 1)aik − (xk − 1)ai j . (83)

ker(σ ) coincides with the image of τ : R2 → R8 such that

τ

(
1
0

)

=
∑

i

(1 − xi )gi , τ

(
0
1

)

=
∑

i

(−1)i (xi − 1) fic . (84)

This defines a free resolution

0 → R2 τ−→ R8 σ−→ R12 → P/L → 0, (85)

from which we derive

Q0 = 0, Q1 ∼= Zn ⊕ Zn, Q2 = 0, (86)

with Q1 annihilated by all xi − 1. Two Čech cochains corresponding to generators of
Q1 take the form

ϕi j = ai j
(xi − 1)(x j − 1)

, ψi j = (−1)i+ j ei jc

(xi − 1)(x j − 1)
, (87)

where i j c is the pair of indices complementary to i j . We find

�(ϕ,ψ)0 = 1, (88)

so braiding is non-degenerate.
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7.4. Zn Ising model. For the Ising model in zero magnetic field we have P = R2 and
L = im(σ ), where

σ =
(
x1 − 1 · · · xD − 1

0 · · · 0

)

, (89)

where D ≥ 1 is arbitrary. We see that

(
1
0

)

∈ Lωω\L and Lωω/L ∼= Zn , in accord

with the interpretation of Lωω/L in terms of order parameters for spontaneously broken
symmetries. Next, we note that P/L ∼= R ⊕ R/a, where a = (x1 − 1, · · · , xD − 1).
Hence for every i > 0 we have

ExtiR(P/L, R) ∼= ExtiR(R/a, R). (90)

As elements xi − 1 form a regular sequence in R, this Ext vanishes for i 	= D and
ExtDR (P/L, R) ∼= R/a. Therefore the only nonzero Qi is QD−1 ∼= Zn . This is consis-
tent with the interpretation of Qi in terms of i-dimensional excitations: the Ising model
features domain walls, which are objects of spatial codimension 1. However, our formal-
ism does not provide a systematic construction of this domain wall (Ising model is not a
Lagrangian code). Let us also remark that we expect that there exists a generalization of
braiding that allows to pair QD−1 with Lωω/L . Physically such pairing should describe
how the value of order parameter changes as the domain wall is crossed.

7.5. Zn toric code on a cylinder. Consider the 2D cylinder geometry � = ZL × Z.
Thus R = Zn[x, y±]/(x L − 1). We let P = R4 and L = im(σ ), where

σ =
⎛

⎜
⎝

1 − x 0
1 − y 0

0 y − 1
0 x − 1

⎞

⎟
⎠ . (91)

Let us put Wx =∑L−1
j=0 x j−1 ∈ R. Note that (x − 1)Wx = 0, so

(y − 1)

⎛

⎜
⎝

0
0
Wx
0

⎞

⎟
⎠ = Wx

⎛

⎜
⎝

0
0

y − 1
x − 1

⎞

⎟
⎠ ∈ L . (92)

Since y− 1 is a regular element, it follows that
(
0 0 Wx 0

)T ∈ Lωω. Similar calculation

shows that
(
0 Wx 0 0

)T ∈ Lωω. Classes of these two elements generate Lωω/L ∼=
Zn×Zn . One may check also that Lω = Lωω. Hence there exist n2 superselection sectors
containing a ground state and in each of these sectors the ground state is unique. This
is different than for the toric code on a torus, for which there is only one superselection
sector containing an n2-dimensional space of ground states. This illustrates the difference
in physical interpretations of modules Z(C) and S(C).

Let us also mention that in the present example Q(C) ∼= Zn × Zn , as on a plane
(but not on a torus). Even though the code is effectively one-dimensional (one direction
being finite), this does not contradict Proposition 25 because Z(C) 	= 0.
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7.6. Zpt Plaquette model. Let n = pt , where p is a prime number and t a positive
integer. We consider a Zpt version of Wen’s plaquette model [20] on a plane. Thus we

take P = R2 and let L be the span of s = (1 − xy x − y
)T. L is freely generated by s,

so there exists an element ϕ ∈ L∗ such that ϕ(s) = 1. Clearly (x − y)ϕ and (xy − 1)ϕ

are representable by elements of P and we have

Q ∼= R/(x − y, xy − 1). (93)

There exists an abelian group isomorphism Q ∼= Zn × Zn (as for the toric code), but in
contrast to the case of toric code Q is acted upon nontrivially by translations. Hence this
model is in a different SET phase (with translational symmetry) than the toric code. On
the other hand, these models are well-known to be equivalent if translational symmetry
is ignored.

For a subgroup of � acting trivially on Q, we can take the subgroup of index 4 gen-
erated by x2, y2. With this choice, we found the following Čech cocycle ϕ representing
the generator of Q (corresponding via the isomorphism (93) to the class of 1):

ϕ1 =
(
x x2

)T

1 − x2 , ϕ2 =
(−y y2

)T

1 − y2 . (94)

Classes of cocycles ϕ and xϕ form a Zn basis of Čech cohomology.
We will find the decomposition of Q into m-torsion parts. If p 	= 2, maximal ideals

of R containing the annihilator of Q are of the form

m± = (p, x ∓ 1, y ∓ 1). (95)

The case p = 2 is special because then m+ = m−. We assume that p 	= 2 from now on.
m±-torsion submodules of Q correspond to cocycles ϕ± = (1 ± x)ϕ. They also form a
Zn basis of Čech cohomology. By Proposition 50, ϕ+ is �-orthogonal to ϕ−. Indeed, a
calculation gives

�(ϕ, ϕ) = (x + y)
∑

k,l∈Z
x2k y2l , (96)

and therefore

�(ϕ+, ϕ−) = (1 + x)(1 − x)�(ϕ, ϕ) = 0,

�(ϕ±, ϕ±) = (1 ± x)(1 ± x)�(ϕ, ϕ) = ±2
∑

k,l∈Z
(±x)k(±y)l . (97)

Remark 51. Redefining s to
(
1 + xy x + y

)
gives a second code, which is related to the

one above by a local unitary transformation (which is y2-invariant but not y-invariant).
Simple calculation gives Q ∼= R/(x + y, xy + 1), so this code is in a different SET phase
than the previous one.
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7.7. Haah’s code and X-cube model. Haah’s code and X -cube model (over Z2) are
defined by

σHaah =
⎛

⎜
⎝

1 + xy + yz + zx 0
1 + x + y + z 0

0 1 + x̄ + ȳ + z̄
0 1 + x̄ ȳ + ȳ z̄ + z̄ x̄

⎞

⎟
⎠ ,

σX -cube =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 + x̄ + ȳ + x̄ ȳ 0 0
1 + ȳ + z̄ + ȳ z̄ 0 0
1 + x̄ + z̄ + x̄ z̄ 0 0

0 1 + z 0
0 1 + x 1 + x
0 0 1 + y

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (98)

In both cases σ is injective, so L is free. This implies that Qi = 0 for i > 0, so our
approach confirms that corresponding phases of matter do not admit nontrivial spatially
extended excitations. Computation of Q0 of course agrees with what is known.

7.8. Z2 toric code phase using Z4 coefficients. We consider a code with composite-
dimensional qudits which is nevertheless in the same phase as the Z2 toric code. Let
R = Z4[x±, y±], P = R4 and L = im(σ ), where

σ =
⎛

⎜
⎝

2 + 2x̄ 0 0 0
2 + 2 ȳ 0 0 0

0 1 − y 2 0
0 1 − x 0 2

⎞

⎟
⎠ . (99)

Let us define a matrix

τ =
⎛

⎜
⎝

2 0 0 0
0 2 0 0
0 1 − y 2 0
0 1 − x 0 2

⎞

⎟
⎠ . (100)

We have an infinite free resolution

· · · → R4 τ−→ R4 τ−→ R4 τ−→ R4 σ−→ P → P/L → 0. (101)

Erasing P/L and applying (−)∗ we obtain

0 → P
σ †λ−−→ R4 τ †−→ R4 τ †−→ R4 → · · · , (102)

from which one obtains

Q0 ∼= Z2 ⊕ Z2, Qi = 0 for i > 0. (103)

Q0 is generated by classes of e = (
2 0 0 0

)T and m = (
0 2 0 0

)T, respectively. Fol-

lowing procedure outlined in 7.1, we find their corresponding cochain in Č1(t, P):

ϕ =
⎛

⎜
⎝

⎛

⎜
⎝

0
0
t−1
1
0

⎞

⎟
⎠ ,

⎛

⎜
⎝

0
0
0
t−1
2

⎞

⎟
⎠

⎞

⎟
⎠
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and

ψ =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
2t−1

1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

2t−1
2
0
0
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

Having these formulas in hand we evaluate the braiding

�(ϕ, ϕ)0 = �(ψ,ψ)0 = 0, �(ϕ,ψ)0 = 2 ∈ Z4, (104)

and the topological spin

θ(ϕ) = θ(ψ) = 0, θ(ϕ + ψ) = 2. (105)

In spite of vanishing of higher Qi , there exists no finite free resolution – see charac-
terization in Proposition 52 below. We remark that such phenomenon could only appear
in models consisting of composite-dimensional qudits, and that its occurence is not an
invariant of the topological phase. In fact such behavior is possible even for a model
with a trivial (product state) ground state.

We also remark that ExtiR(L , R) = 0 for i > 0. If n was prime, we would be able to
deduce from this that L is a free module. In the present example, L is not even quasi-free.
Indeed, if L was quasi-free, L/2L would be a free module over S = Z2[x±, y±]. On
the other hand, it is not difficult to check that Ext1

S(L/2L , S) 	= 0. This motivates the
following result.

Proposition 52. Let n = pt for a prime number p. An R-module has finite projective
dimension if and only if it is free over Zn. If this condition is satisfied, there exists a free
resolution of length not exceeding D.

Proof. �⇒ : A projective R-module P is a summand of a free R-module, which is
clearly free over Zn . Thus P is also projective over Zn . Projective modules over Zn are
free.

Now let P• → M be a finite projective resolution of a module M . By the paragraph
above, this is also a free resolution of M considered as a Zn module. Thus M has finite
projective dimension over Zn . Such Zn-modules are free.

⇐� : Let M be free over Zn . We choose a Zp[�]-free resolution

0 → PD → · · · → P1
∂1−→ P0

∂0−→ M/pM → 0 (106)

of length D. This is possible by Hilbert’s syzygy theorem. We will lift the resolution of
M/pM to a resolution of M of the same length. Let Ki = ker(∂i ).

For the purpose of this proof it will be convenient to denote reduction of an element
mod p by an overline. We have

∂0

⎛

⎜
⎝

r1
...

rn

⎞

⎟
⎠ =

n∑

i=1

rimi (107)
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for some m1, . . . ,mn ∈ M such that mi generate M/pM . Then by Nakayama, mi
generate M . Define P̂0 = Rn and ∂̂0 : Rn → M by

∂̂0

⎛

⎜
⎝

r1
...

rn

⎞

⎟
⎠ =

n∑

i=1

rimi . (108)

By construction, ∂̂0 is surjective. Let K̂0 = ker(̂∂0). Reducing the short sequence 0 →
K̂0 → Rn ∂̂0−→ M → 0 mod p yields

0 → K̂0/pK̂0 → P0
∂0−→ M/pM → 0, TorR1 (K̂0, R/(p)) = 0. (109)

Here we used the simple fact that an R-module N is free over Zn if and only if
TorR1 (N , R/(p)) = 0, which can be verified using the resolution

· · · → R
p−→ R

pt−1

−−→ R
p−→ R → R/(p) → 0. (110)

Results in (109) imply that K̂0/pK̂0 may be identified with K0 and K̂0 is free over Zn .
Now replace M by K0 and P0 by P1 and repeat. Proceeding like this inductively we

find short exact sequences

0 → K̂D → P̂D → K̂D−1 → 0,

. . . ,

0 → K̂0 → P̂0 → M → 0

such that each Pi is free and K̂i/pK̂i ∼= Ki . In particular K̂D = 0 by Nakayama. Short
sequences compose into a free resolution of M of length D:

0 → P̂D → · · · → P̂0 → M → 0. (111)

��

7.9. Double semion from condensingZ4 toric code. We consider a code with composite-
dimensional qudits. Let R = Z4[x±, y±], P = R4 and L = im(σ ), where

σ =
⎛

⎜
⎝

x̄ − 1 0 0 2
ȳ − 1 0 2x 0
1 − y 2 + 2y 2 0
x − 1 2 + 2x 0 2 ȳ

⎞

⎟
⎠ . (112)

We define a matrix

τ =
⎛

⎜
⎝

2 0 0 0
1 + x y 2 0 0
x + x y 0 2 0
1 + x 0 0 2

⎞

⎟
⎠ . (113)

We have an infinite free resolution

· · · → R4 τ−→ R4 τ−→ R4 τ−→ R4 σ−→ P → P/L → 0. (114)
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We apply (−)∗ and get

0 → P
σ †λ−−→ R4 τ−→ R4 τ−→ R4 → . . . , (115)

with matrices explicitly given by

σ †λ =
⎛

⎜
⎝

1 − y x − 1 1 − x 1 − y
2 + 2y 2 + 2x 0 0

2 0 0 2x
0 2y 2 0

⎞

⎟
⎠ ,

τ † =
⎛

⎜
⎝

2 1 + xy x + xy 1 + x
0 2 0 0
0 0 2 0
0 0 0 2

⎞

⎟
⎠ . (116)

It is easy to check that ker(τ †) = im(τ †), so Exti (P/L, R) = 0 for i ≥ 2 and

Ext1(P/L, R) ∼= im(τ †)/ im(σ †λ). (117)

To compute this quotient, first note that the first two components of any vector in the
image ofσ †λ are in the ideal (x−1, y−1). Hence the first column, the second column, and
the sum of the first two columns of τ † each represent nontrivial elements in the quotient.
We claim that these are the three nonzero elements of im(τ †)/ im(σ †λ) ∼= Z2 ⊕ Z2.
Here is the proof:

• The first column of τ † is annihilated by 2, and the first column multiplied by x − 1
(resp. y−1) is 2x times the second (resp. 2y times the first) column of σ †λ. Similarly
one can verify that the class of the second column is annihilated by 2, x − 1, and
y − 1. This establishes that the images of the first two columns of τ † in the quotient
(117) generate a submodule isomorphic to Z2 ⊕ Z2.

• Next, we prove that the quotient is spanned by the elements described above. Note
that

(
x(1 − y) 0 2 0

)T is the fourth column of σ †λ multiplied by x . Modulo xy
times the first column of τ †, this element is the third column of τ †. Similarly, the
fourth column of τ † is the sum of the third column of σ †λ and the first column of τ †

multiplied by x .

Čech cocycles ϕ corresponding to the first two columns of τ † can be deduced from
the reasoning above:

ϕ =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
2x
x−1
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

2y
y−1
0
0
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ , ψ =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
− x

x−1− xy
x−1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

y
y−1
0
0

− xy
y−1

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ . (118)

In order to recognize the double semion phase, it is convenient to denote

ψ+ = ψ + ϕ, ψ− = ψ. (119)

Using the explicit formulas for cocycles we find the braiding

�(ψ±, ψ±)0 = 2, �(ψ+, ψ−)0 = 0, (120)

and the topological spin

θ(ψ±) = ±1, θ(ψ+ + ψ−) = 0. (121)
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A. Gorenstein Rings

Definition 53. Noetherian ring A is called a Gorenstein ring if its injective dimension
(as a module over itself) is finite. If it is zero, i.e. A is an injective A-module, then A is
called a QF ring.6

Lemma 54. Let A be a Gorenstein ring. Every localization of A is a Gorenstein ring.
The injective dimension of A equals the Krull dimension of A.

Proof. Corollaries 1.3 and 5.6 in [21]. ��
Remark 55. It is popular to define the Gorenstein property first for Noetherian local rings
and then declare a general Noetherian ring to be Gorenstein if its localization on any
prime ideal is Gorenstein. Such rings do not necessarily have finite dimension. This
situation is not encountered in this paper, so it is more convenient to stick to the more
restrictive Definition 53.

Lemma 56. If a ring A is Gorenstein, so is the polynomial ring A[x].
Proof. Follows immediately from [22, Tag 0A6J]. ��
Lemma 57. Let A be a QF ring. Every A-module M embeds in a free module (of finite
rank if M is finitely generated). The naturalmodulemap M → HomA(HomA(M, A), A)

is injective (an isomorphism if M is finitely generated). In particular M = 0 if and only
if HomA(M, A) = 0.

Proof. See [17, Theorem 15.11]. ��
Lemma 58. Let A be a commutative ring, M an A-module and r ≥ 0 an integer. If
dim(M) ≤ r , then the localization Mp vanishes for all prime ideals p ⊂ A with
dim(A/p) > r . If M is finitely generated, the converse is true.

Proof. Observe that dim(M) ≤ r if and only if Ann(M) is not contained in any prime
ideal p ⊂ A with dim(A/p) > r . Suppose that this condition is satisfied and let p be
such that dim(R/p) > r . Then R\p contains an element of Ann(M), so Mp = 0. Next,
let M be finitely generated. Then S−1M = 0 for a multiplicative set S ⊂ R if and only
if S ∩ Ann(M) 	= ∅. Thus Mp = 0 for a prime ideal p if and only if Ann(M) is not
contained in p. ��
Lemma 59. Let A be a Gorenstein ring of dimension D and let M be a finitely generated
A-module. Then dim(ExtiA(M, A)) ≤ D − i .

Proof. Let p ⊂ A be a prime ideal with dim(A/p) ≥ D − i . Then Ap is a Goren-
stein ring with Ap ≤ D − i , so Exti+1

A (M, A)p ∼= Exti+1
Ap

(Mp, Ap) = 0. Now invoke
Lemma 58. ��

B. Local Cohomology

Definition 60. Let A be a Noetherian commutative ring and a ⊂ A an ideal. If M is an
A-module, �a(M) = {m ∈ M | ∃ j ∈ N a jm = 0} is called a-torsion submodule of M .
Modules M such that M = �a(M) are said to be a-torsion. �a is a left exact functor. Its
right derived functors H j

a are called local cohomology functors. More explicitly, H j
a(M)

is defined as the j-th degree cohomology of the complex �a(I •), where M → I • is an
injective resolution.

6 QF stands for quasi-Frobenius.

https://stacks.math.columbia.edu/tag/0A6J
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Note that by construction, every H j
a(M) is a subquotient of an a-torsion module and

hence is a-torsion. Moreover, H0
a(M) ∼= �a(M).

Lemma 61. Let M be an A-module.

1. H j
a(M) ∼= H j√

a
(M), where

√
a = {a ∈ A | ∃ j ∈ N a j ∈ a}.

2. If a1, . . . , at are coprime, then H j
a1...at (M) ∼=

t⊕

i=1
H j
ai (M).

Proof. 1. As A is Noetherian, (
√
a)N ⊂ a for some N , so �a = �√

a .

2. By induction, for any i 	= j and k ∈ N ideals aki , a
k
j are coprime. Letting K (I ) =

{m ∈ M | Im = 0} for an ideal I , Chinese remainder theorem gives K (ak1 . . . akt ) =
⊕t

i=1 K (aki ). Next use �a1...at (M) =⋃∞
k=0 K (ak1 . . . akt ). ��

Lemma 62. Let a be an ideal such that dim(A/a) = 0. Then for any A-module M and
any j we have a natural isomorphism

H j
a(M) ∼=

⊕

m

H j
m(M), (122)

where the sum is over maximal ideals m ⊂ A containing a.

Proof. We have
√
a = ⋂

mm. Moreover, there exists finitely many maximal ideals
containing a and they are pairwise coprime. In particular their intersection coincides
with the product. We invoke Lemma 61. ��
Lemma 63. Let A be a local Gorenstein ring with maximal ideal m and residue field k
and let D be the dimension of A. Then H j

m(A) = 0 for j 	= D and HD
m(A) is an injective

envelope of k.

Proof. See [23, Theorem 11.26]. ��

C. Čech Complex

Now let t = (t1, . . . , tr ) be a sequence of elements of A and let M be an A-module. We
define in terms of its localizations

Č0(t, M) = M, Čp(t, M) =
⊕

1≤i1<···<i p≤r

Mti1 ...ti p . (123)

If ϕ ∈ Čp(t, M), we let ϕi1...i p be its component in Mti1 ...ti p for every sequence 1 ≤
i1 < · · · < i p ≤ r . A differential δ : Čp(t, M) → Čp+1(t, M) is defined by

(δϕ)i0...i p =
p∑

j=0

(−1) jϕi0...i j−1i j+1...i p , (124)

in which ϕi0...i j−1i j+1...i p is implicitly mapped from Mti0 ...ti j−1 ti j+1 ...ti p to Mti0 ...ti p by the

localization homomorphism. This makes Č•(t, M) a cochain complex. Its cohomology
is denoted by Ȟ•(t, M) and called Čech cohomology.
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Lemma 64. One has Ȟ•(t, M) ∼= H•
a(M), where a = (t1, . . . , tr ).

Proof. See [23, Theorem 7.13]. ��
Lemma 65. Let U be a multiplicatively closed subset of A, A′ = U−1A and let a′ be the
extension of a in A′. Then for any A-module M we have H j

a′(U−1M) ∼= U−1H j
a(M).

Proof. Follows from Lemma 64 because the corresponding property of Čech cohomol-
ogy is easy to verify. ��

Clearly we have Č•(t, M) = Č•(t, A) ⊗A M . Since modules Čp(t, A) are flat, this
implies that Č•(t,−) takes short exact sequences of modules to short exact sequences of
complexes. Hence every short exact sequence of modules induces a long exact sequence
in Čech cohomology.

Let ϕ ∈ Čp+1(t, M), ψ ∈ Čq+1(t, N ) with p, q ≥ 0. We define the cup product
ϕ � ψ ∈ Čp+q+1(t, M ⊗A N ) by

(ϕ � ψ)i0...i p+q = ϕi0...i p ⊗ ψi p ...i p+q . (125)

It is associative and satisfies the graded Leibniz rule

δ(ϕ � ψ) = δϕ � ψ + (−1)pϕ � δψ, (126)

hence induces a product Ȟp+1(t, M) ⊗A Ȟq+1(t, N ) → Ȟp+q+1(t, M ⊗A N ).
Let τ : N ⊗A M → M ⊗A N be the standard isomorphism. For brevity we denote

induced maps of Čech complexes and in Čech cohomology with the same symbol.
Mimicking formulas in [24] we define products

�1 : Čp+1(t, M) ⊗A Čq+1(t, N ) → Čp+q(t, M ⊗A N ),

(ϕ �1 ψ)i0...i p+q−1 =
p−1∑

j=0

(−1)(p− j)(q+1)ϕi0...i j i j+q ...i p+q−1 ⊗ ψi j ...i j+q . (127)

They satisfy the following identity:

ϕ � ψ − (−1)pqτ(ψ � ϕ)

= (−1)p+q+1 [δ(ϕ �1 ψ) − δϕ �1 ψ − (−1)pϕ �1 δψ
]
. (128)

If ϕ,ψ are cocycles and [ϕ], [ψ] are their cohomology classes, this gives

[ϕ] � [ψ] = (−1)pqτ ([ψ] � [ϕ]) . (129)

In this sense the cup product is graded commutative.

Remark 66. The Čech complex and the cup product depend on the ordering of elements
ti . Howeover, cohomology (and the cup product in cohomology) do not. We refer for
example to [22, Tag 01FG] and discussion in [24].

https://stacks.math.columbia.edu/tag/01FG
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