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Abstract: In this study, we systematically investigate the multipartite correlations in the process of

black hole radiation via the Parikh–Wilczek tunneling model. We examine not only the correlations

among Hawking radiations but also the correlations between the emissions and the remainder of

the black hole. Our findings indicate that the total correlation among emitted particles continues to

increase as the black hole evaporates. Additionally, we observe that the bipartite correlation between

the emissions and the remainder of the black hole initially increases and then decreases, while the

total correlation of the entire system monotonically increases. Finally, we extend our analysis to

include quantum correction and observe similar phenomena. Through this research, we aim to

elucidate the mechanism of information conservation in the black hole information paradox.

Keywords: correlations; black hole information paradox; Hawking radiations

1. Introduction

In the mid-1970s, Hawking found that a black hole can actually emit radiation be-
cause particle–antiparticle pairs occur naturally near the event horizon due to vacuum
fluctuations, which is also known as Hawking radiation [1,2]. In the original calculation,
Hawking suggested that black hole radiation is approximately thermal radiation and does
not carry any information. Thus, information about the collapsed matter in the black hole
appears to be lost as the black hole evaporates, contrary to the principles of quantum
mechanics [3]. Since black hole radiation is a unitary process, according to quantum theory,
information should be conserved. This puzzle is known as the black hole information
paradox. A significant breakthrough was achieved by Parikh and Wilczek, who intro-
duced the quantum tunneling method and proved that black hole radiation is not strictly
thermal [4]. Inspired by the Parikh–Wilczek model, Cai and his collaborators developed
a reliable resolution for the black hole information paradox [5–10]. The core idea of this
approach is discovering that correlations exist between non-thermal Hawking radiations
and can transport all black hole information. Therefore, information is conserved during
the evaporation of the black hole.

It can be seen that correlations play a key role in ensuring the conservation of black
hole information. Most of the previous works examined the bipartite correlation between
the Hawking radiations. This work focuses on the multipartite correlations in the process
of black hole evaporation. It is important to point out that we are not only concerned
with the correlations among emitted particles but also the correlations between radiations
and the remaining part of black hole. The rest of this paper is organized as follows. We
first review the Parikh–Wilczek tunneling model and information conservation. Then, we
systematically calculate various correlations during the evaporation of the Schwarzschild
black hole, including bipartite correlation and total correlation. In addition to the common
Schwarzschild black hole, we also survey the correlations in the evaporation process of
a black hole, considering quantum correction. We find that the phenomena are similar
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regardless of whether there is quantum correction or not. Lastly, we also give a general
explanation and summary of these phenomena, which provides a new idea for solving the
black hole information paradox.

2. Parikh–Wilczek Model and Information Conservation

Parikh and Wilczek proposed for the first time that black hole evaporation can be
regarded as a quantum tunneling process. Considering the conservation of energy, the
tunneling probability of a Hawking radiation particle E is given by [4]

Γ(E) ∼ exp

[

−8πE

(

M − E

2

)]

= exp(∆SBH), (1)

where M indicates the mass of the Schwarzschild black hole, ∆SBH represents the decrease
in the Bekenstein–Hawking entropy of the black hole. More specifically, we consider the
successive Hawking radiations E1, E2, ..., En. The entropy transported by the first emitted
particle E1 is

SE1
= − ln Γ(E1) = 8πE1

(

M − E1

2

)

. (2)

Next, the entropy transported by the second emission E2 is [5]

SE2|E1
= − ln Γ(E2|E1) = 8πE2

(

M − E1 −
E2

2

)

. (3)

To be clear, this is the conditional entropy of the second emission E2 after the black hole has
emitted the first particle E1. In fact, the independent tunneling probability of the second
emitted particle E2 should take the form of Equation (2), like the first emission E1

SE2
= − ln Γ(E2) = 8πE2

(

M − E2

2

)

. (4)

Furthermore, the total entropy of two emissions E1 and E2 is

SE1E2
= SE1

+ SE2|E1
= 8π(E1 + E2)

(

M − E1 + E2

2

)

. (5)

Iterating the above calculation until the black hole totally evaporates, namely ∑i Ei = M,
we can identify

SE1E2...En = ∑
i

SE1|E1E2...Ei
= 4πM2. (6)

It is exactly equal to the initial black hole entropy, which means that Hawking radiations can
transport all the information of the black hole. In other words, the black hole information
is not lost. Based on the above discussion, we will systematically survey the various
correlations among Hawking radiations and the black hole in the following content.

3. Correlations without Quantum Correction

In the Schwarzschild black hole scenario, the black hole entropy without quantum
correction follows the Bekenstein–Hawking form

SM = 4πM2. (7)

According to the Parikh–Wilczek tunneling model, the entropy transported by the emission E is

SE = 8πE

(

M − E

2

)

. (8)
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When examining two Hawking radiations E1 and E2, the bipartite correlation between two
emissions is [5]

C2
E1E2

=SE1
+ SE2

− SE1E2

=8πE1

(

M − E1

2

)

+ 8πE2

(

M − E2

2

)

− 8π(E1 + E2)

(

M − E1 + E2

2

)

=8πE1E2.

(9)

Additionally, we can calculate the total correlation among the sequential Hawking radia-
tions E1, E2, ..., En,

Cn−total
E =∑

i

SEi
− (n − 1)SE

=∑
i

8π(ET − Ei)

(

M − ET − Ei

2

)

− (n − 1)8πET

(

M − ET

2

)

=8π ∑
i<j

EiEj,

(10)

where ET = ∑i Ei, and we measure the total correlation by the following definition [11,12]

Cn−total
A1 A2...An

= ∑
i

SAi
− (n − 1)SA1 A2...An

. (11)

where Ai represents the complementary of Ai. It becomes evident that the total correlation
of Hawking radiations would grow monotonically as the black hole evaporates.

On the other hand, if the remaining part of the black hole is taken into account, the
bipartite correlation between emissions E and the remainder R can be given by

C2
ER =SE + SR − SM

=8πET

(

M − ET

2

)

+ 8π(M − ET)

(

M − M − ET

2

)

− 4πM2

=8πET(M − ET).

(12)

This is a typical concave downward parabola. That is, the correlation between emissions
and the remainder of the black hole first increases and then decreases as the black hole
radiation continues. Similar to the Page curve [13,14], the bipartite correlation reaches its
maximum when the black hole evaporates halfway (ET = 0.5 M). It is worth noting that
the above discussions are based on the stable black hole, which means that the antiparticle
has entered the black hole for a long time, and the entanglement between the particle and
the antiparticle has been removed due to the annihilation between the negative particle
and the matter in the black hole. Therefore, we calculate the correlation and entropy long
after the annihilation in the black hole. In addition, we can rewrite Equation (8) as follows:

SE = 8πE(M − E) + 4πE2. (13)

The first term is the correlation between the emitted particle and the rest of the black
hole according to Equation (12). The second term can be regarded as self-entropy or self-
correlation, which quantifies the maximum entropy that Hawking radiation E can carry if
it collapses into the black hole [15].
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Moreover, we can also obtain the total correlation among emissions and the remaining
part of black hole

C(n+1)−total
ER =∑

i

SEi
+ SR − nSM

=∑
i

8π(M − Ei)

(

M − M − Ei

2

)

+ 8πET

(

M − ET

2

)

− n4πM2

=8π ∑
i<j

EiEj + 8πET(M − ET).

(14)

If the black hole continues to radiate a particle En+1, the total correlation will transform
into the following form

C(n+2)−total
E ′R′ = 8π ∑

i<j

EiEj + 8πEn+1ET + 8π(ET + En+1)(M − ET − En+1). (15)

Thus, we find

∆C total
ER = C(n+2)−total

E ′R′ − C(n+1)−total
ER = 8π(M − ET − En+1)En+1. (16)

It is clear that ∆C total
ER ≥ 0. Therefore, we can conclude that the total correlation inside

the entire system, consisting of emissions and the remainder of black hole, would keep
increasing as the black hole evaporates.

Assume the black hole fully evaporates, that is to say, ET = ∑i Ei = M. The total
correlation will become

Cn−total
M =∑

i

SEi
− (n − 1)SM

=∑
i

8π(M − Ei)

(

M − M − Ei

2

)

− (n − 1)4πM2

=4πM2 − 4π ∑
i

E2
i .

(17)

It is not difficult to find Cn−total
E + 4π ∑i E2

i = SM, which means the total correlation plus
the self-entropy of the radiations is exactly equal to the black hole entropy. As a result,
the emissions transport all the black hole entropy and no information is lost when the
evaporation of black hole ends.

4. Correlations with Quantum Correction

In this section, we will discuss the correlations in black hole radiation using the Parikh–
Wilczek model, including quantum correction. Due to the introduction of logarithmic
correction, the Bekenstein–Hawking entropy takes the following form [15–21]

SM = 4πM2 − 8πα ln M, (18)

where the sign of coefficient α remains uncertain in string theory. For the loop quantum
gravity theory, α is suggested to be equal to 0.5. Without a loss of generality, we set
α = ±0.5 in later calculations. Considering quantum correction, the entropy transported
by the emission E is

SE = 8πE

(

M − E

2

)

+ 8πα ln
M − E

M
. (19)
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For the two Hawking radiations E1 and E2, their bipartite correlation is given by [15]

C2
E1E2

=8πE1

(

M − E1

2

)

+ 8πα ln
M − E1

M
+ 8πE2

(

M − E2

2

)

+ 8πα ln
M − E2

M

− 8π(E1 + E2)

(

M − E1 + E2

2

)

− 8πα ln
M − E1 − E2

M

=8πE1E2 + 8πα ln
(M − E1)(M − E2)

M(M − E1 − E2)
.

(20)

Adopting the definition in Equation ( 11), we can derive the total correlation among
the sequential Hawking radiations E1, E2, ..., En

Cn−total
E =∑

i

[8π(ET − Ei)

(

M − ET − Ei

2

)

+ 8πα ln
M − ET + Ei

M
]

− (n − 1)[8πET

(

M − ET

2

)

+ 8πα ln
M − ET

M
]

=8π ∑
i<j

EiEj + 8πα ln

∏
i
(M − ET + Ei)

M(M − ET)n−1
.

(21)

It is difficult to intuitively judge the monotonicity of the above result due to the logarithmic
correction. We can examine the change in the total correlation of all emitted particles

∆C total
E = 8πETEn+1 + 8πα ln

(M − ET)
n ∏

i
(M − ET − En+1 + Ei)

(M − ET − En+1)n ∏
i
(M − ET + Ei)

= ∑
i

8π[EiEn+1 + α ln
(M − ET)(M − ET − En+1 + Ei)

(M − ET − En+1)(M − ET + Ei)
]

= ∑
i

∆C total
Ei

(22)

Apparently, both ∆C total
Ei

and the change in the total correlation ∆C total
E are always positive

(refer to Figure 1). This demonstrates that the total correlation continues to grow, just as it
would if quantum correction is not considered.

0 20 40
0

25,000

50,000
 = ±0.5, Ei = 10
 = ±0.5, Ei = 25
 = ±0.5, Ei = 40

En+1

C total
Ei

Figure 1. The evolution of ∆C total
Ei

with En+1 when M − ET = 50.
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In addition, we can obtain the bipartite correlation between emissions and the remain-
ing part of the black hole

C2
ER =8πET

(

M − ET

2

)

+ 8πα ln
M − ET

M
+ 8π(M − ET)

(

M − M − ET

2

)

+ 8πα ln
ET

M

− 4πM2 + 8πα ln M

=8πET(M − ET) + 8πα ln
ET(M − ET)

M
.

(23)

Figure 2 illustrates the bipartite correlation C2
ER as functions of ET , assuming M = 100. It

should be noted that when ET → M, the logarithmic correction term would tend toward
infinity. The same phenomenon also exists in Equations (20) and (21). In fact, the black hole
would stop evaporating when it approaches the critical mass Mc∼

√
α, for α is positive [22].

On the other hand, the tunneling probability would tend toward 0 when ET → M for α

is negative [9]. So, we can ignore the divergence caused by quantum correction near the
end of the black hole evaporation. As shown in Figure 2, the bipartite correlation reaches a
maximum when the black hole approaches half its mass, which is similar to the Page curve.

0 30 60 90
0

25,000

50,000

  = -0.5
  = 0.5

C 2
ER

ET
Figure 2. The evolution of C2

ER with ET when M = 100.

Similarly, Equation (19) can be rewritten as

SE = 8πE(M − E) + 8πα ln
E(M − E)

M
+ 4πE2 − 8πα ln E. (24)

The first two terms are the correlation between the emitted particle and the rest of black hole.
The latter two terms represent the self-entropy or self-correlation of the emitted particle.

Next, we examine the total correlation among all emitted particles and the remaining
part of the black hole. According to Equation (11), the total correlation of the whole system
can be expressed as

C(n+1)−total
ER =∑

i

[8π(M − Ei)

(

M − M − Ei

2

)

+ 8πα ln
Ei

M
] + 8πET

(

M − ET

2

)

+ 8πα ln
M − ET

M
− n(4πM2 − 8πα ln M)

=8π ∑
i<j

EiEj + 8πET(M − ET) + 8πα ln

(M − ET)∏
i

Ei

M
.

(25)

Because of the existence of the quantum correction, we still cannot directly judge its
monotonicity, but we can survey the change in total correlation if the remaining part of
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the black hole continues to radiate the particle En+1. The change in total correlation can be
formulated as

∆C total
ER = 8π(M − ET − En+1)En+1 + 8πα ln

(M − ET − En+1)En+1

M − ET
. (26)

Interestingly, this is exactly the bipartite correlation C2
R′En+1

between the new remaining part

of the black hole M − ET − En+1 and the emitted particle En+1 according to Equation (23).
As shown in Figure 2, we find that C2

R′En+1
is always positive, which means that the total

correlation of the whole system is monotonically increasing.
Besides, if the black hole is completely exhausted, the total correlation is given by

Cn−total
M =∑

i

[8π(M − Ei)

(

M − M − Ei

2

)

+ 8πα ln
Ei

M
]− (n − 1)(4πM2 − 8πα ln M)

=4πM2 − 4π ∑
i

E2
i + 8πα ln

∏
i

Ei

M
.

(27)

As in the case without quantum correction, the self-entropy of the emitted particles plus
the total correlation is equal to the initial entropy of the black hole. This implies that the
black hole entropy can be completely transported by Hawking radiations and black hole
information is conserved.

5. Correlations in Black Hole Radiation and Information Conservation

The Parikh–Wilczek tunneling model elucidates that

Γ(E) ∼ exp(∆SBH) = exp[s(M − E)− s(M)], (28)

where s(M) is the entropy of black hole with mass M and s(M) decreases to s(M − E) after
radiating a particle E. Thus, the entropy of emitted particle E can be given by

SE = − ln Γ(E) = s(M)− s(M − E) = [s(M)− s(M − E)− s(E)] + s(E), (29)

where s(M)− s(M − E)− s(E) represents the bipartite correlation between emission and
the rest of the black hole, and s(E) is self-entropy or self-correlation of emitted particle E.

Another important discovery is that the two Hawking radiations are not independent
of each other [5], i.e., C2

E1E2
̸= 0. The bipartite correlation between two emissions E1 and E2

can be expressed by

C2
E1E2

=SE1
+ SE2

− SE1,E2

=s(M)− s(M − E1) + s(M)− s(M − E2)− [s(M)− s(M − E1 − E2)]

=s(M) + s(M − E1 − E2)− s(M − E1)− s(M − E2)

(30)

Taking the sequential Hawking radiations E1, E2, ..., En as a whole, we can calculate
the bipartite correlation between emissions E and the remaining part of the black hole R

C2
ER =SE + SR − SM

=s(M)− s(M − ET) + s(M)− s(ET)− s(M)

=s(M)− s(M − ET)− s(ET).

(31)

Notably, the bipartite correlation, when combined with the self-entropy of emissions and
the remainder of the black hole, equates to the origin entropy of the black hole. This
suggests that the entropy is conserved during the black hole evaporation.



Entropy 2024, 26, 680 8 of 9

Considering the whole system, the total correlation among all emitted particles and
the remainder of the black hole is

C(n+1)−total
ER =∑

i

SEi
+ SR − nSM

=∑
i

[s(M)− s(Ei)] + s(M)− s(M − ET)− ns(M)

=s(M)− s(M − ET)− ∑
i

s(Ei).

(32)

It is not hard to observe that the total correlation plus the self-entropy of emissions and the
remainder of the black hole is equal to the black hole entropy. Consequently, we can once
again conclude that the entropy is conserved in the process of the black hole radiation.

When the black hole completely evaporates, we can obtain the total correlation

Cn−total
M =∑

i

SEi
− (n − 1)SM

=∑
i

[s(M)− s(Ei)]− (n − 1)s(M)

=s(M)− ∑
i

s(Ei).

(33)

Noticeably, the total correlation plus the self-entropy of the emitted particles is equal to the
initial entropy of the black hole. This suggests that the black hole entropy can be entirely
transported by Hawking radiations.

For the Kerr–Newman black hole or Reissner–Nordström black hole, the black hole
may not be able to entirely evaporate because of the existence of a black hole remnant.
Naturally, it is not convenient to discuss whether Hawking radiations can transport all
the black hole entropy. However, our analysis has shown that regardless of the type
of black hole, entropy is conserved in the process of black hole radiation. Suppose the
Kerr–Newman black hole or Reissner–Nordström black hole also totally evaporates under
certain circumstances. In that case, we believe that all black hole information will also
be transported by the Hawking radiations. Combined with the previous phenomenon
of entropy conservation in black hole evaporation, we can conclude that the evaporation
process of black hole is unitary and no information is lost.

6. Discussion and Conclusions

In conclusion, our study sheds light on the relation between multipartite correlations
and the black hole information paradox. We have demonstrated that as black hole evap-
orates, the total correlation among emitted particles increases steadily. Furthermore, the
bipartite correlation between the Hawking radiations and the remainder of the black hole
exhibits a nontrivial behavior, initially rising before declining. Nevertheless, the total corre-
lation of the system consistently rises throughout the process of black hole evaporation.
In addition, we also proved that the entropy is conserved in the process of the black hole
radiation and all black hole entropy can be transported by Hawking radiations. These
findings offer insights into the underlying mechanisms governing information conservation
during black hole evaporation, potentially addressing the paradoxical loss of information.
By uncovering the role of multipartite correlations, our study contributes to a deeper un-
derstanding of the resolution to the black hole information paradox. Future research may
study the further implications of these correlations in the context of quantum gravity and
information theory, providing new avenues for exploring the nature of the black hole.

Funding: This work was supported by the National Natural Science Foundation of China under

Grant No. 11725524.

Institutional Review Board Statement: Not applicable.



Entropy 2024, 26, 680 9 of 9

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [CrossRef]

2. Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [CrossRef]

3. Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [CrossRef]

4. Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [CrossRef] [PubMed]

5. Zhang, B.; Cai, Q.-Y.; You, L.; Zhan, M.S. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black

hole information loss. Phys. Lett. B 2009, 675, 98–101. [CrossRef]

6. Zhang, B.; Cai, Q.-Y.; Zhan, M.S.; You, L. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole

information loss paradox. Ann. Phys. 2011, 326, 350. [CrossRef]

7. Zhang, B.; Cai, Q.-Y.; Zhan, M.S.; You, L. Noncommutative information is revealed from Hawking radiation as tunneling.

Europhys. Lett. 2011, 94, 20002. [CrossRef]

8. Zhang, B.; Cai, Q.-Y.; Zhan, M.S.; You, L. Information conservation is fundamental: Recovering the lost information in Hawking

radiation. Int. J. Mod. Phys. D 2013, 22, 1341014. [CrossRef]

9. Zhang, B.; Cai, Q.-Y.; Zhan, M.S.; You, L. Correlation, entropy, and information transfer in black hole radiation. Chin. Sci. Bull.

2014, 59, 1057–1065. [CrossRef]

10. He, D.S.; Cai, Q.-Y. Gravitational correlation, black hole entropy, and information conservation. Sci. China-Phys. Mech. Astron.

2017, 60, 040011. [CrossRef]

11. Han, T.S. Nonnegative entropy measures of multivariate symmetric correlations. Inf. Control 1978, 36, 133–156. [CrossRef]

12. Kumar, A. Multiparty quantum mutual information: An alternative definition. Phys. Rev. A 2017, 96, 012332. [CrossRef]

13. Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743. [CrossRef] [PubMed]

14. Page, D.N. Time dependence of Hawking radiation entropy. J. Cosmol. Astropart. Phys. 2013, 9, 28. [CrossRef]

15. Kuwakino, S.; Wen, W.-Y. N-partite information in Hawking radiation. J. High Energ. Phys. 2015, 2015, 99. [CrossRef]

16. Banerjee, R.; Majhi, B.R. Quantum tunneling and back reaction. Phys. Lett. B 2008, 662, 62–65. [CrossRef]

17. Medved, A.J.M.; Vagenas, E.C. On Hawking radiation as tunneling with logarithmic corrections. Mod. Phys. Lett. A 2005, 20, 1723.

[CrossRef]

18. Chen, Y.X.; Shao K.N. Information loss and entropy conservation in quantum corrected Hawking radiation. Phys. Lett. B 2009,

678, 131–134. [CrossRef]

19. Zhang, J. Black hole quantum tunnelling and black hole entropy correction. Phys. Lett. B 2008, 668, 353–356. [CrossRef]

20. Corda, C. Black hole quantum spectrum. Eur. Phys. J. C 2013, 73, 2665. [CrossRef]

21. Corda, C.; FatehiNia, M.; Molaei, M.R.; Sayyari, Y. Entropy of iterated function systems and their relations with black holes and

Bohr-like black holes entropies. Entropy 2018, 20, 56. [CrossRef] [PubMed]

22. Xiang, L. A note on the black hole remnant. Phys. Lett. B 2007, 647, 207–210.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/248030a0
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevLett.85.5042
http://www.ncbi.nlm.nih.gov/pubmed/11102182
http://dx.doi.org/10.1016/j.physletb.2009.03.082
http://dx.doi.org/10.1016/j.aop.2010.11.015
http://dx.doi.org/10.1209/0295-5075/94/20002
http://dx.doi.org/10.1142/S0218271813410149
http://dx.doi.org/10.1007/s11434-014-0187-8
http://dx.doi.org/10.1007/s11433-016-0454-5
http://dx.doi.org/10.1016/S0019-9958(78)90275-9
http://dx.doi.org/10.1103/PhysRevA.96.012332
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://www.ncbi.nlm.nih.gov/pubmed/10055062
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://dx.doi.org/10.1007/JHEP05(2015)099
http://dx.doi.org/10.1016/j.physletb.2008.02.044
http://dx.doi.org/10.1142/S0217732305018025
http://dx.doi.org/10.1016/j.physletb.2009.06.004
http://dx.doi.org/10.1016/j.physletb.2008.09.005
http://dx.doi.org/10.1140/epjc/s10052-013-2665-6
http://dx.doi.org/10.3390/e20010056
http://www.ncbi.nlm.nih.gov/pubmed/33265144

	Introduction
	Parikh–Wilczek Model and Information Conservation
	Correlations without Quantum Correction
	Correlations with Quantum Correction
	Correlations in Black Hole Radiation and Information Conservation
	Discussion and Conclusions
	References

