Session VIII 451

FUNDAMENTAL PROPERTIES OF NON-LINEAR FOCUSING

V. V. Vecheslavov and Yu. F. Oriov

Institute of Nuclear Physics, Novosirbirsk and Physical Institute, Erevan (USSR).

(Presented by V. N. Melekhin)

1. INTRODUCTION

This study deals with a simple model of non-
linear focusing having no immediate practical
value, but, due to its simiplicity permitting to
carry out a fairly complete analysis of all the
fundamental properties of non-linear focusing,
What is meant it is not merely the calculation
of quantitative characteristics which depend
greatly upon the choice of a magnetic field shape,
but rather the corroboration of fundamental
qualitative motions and the proof of the existence
of main effects.

First of all it is the corroberation of existence
of steady motion, taking into account all the
non-linear in z terms in equations of motion, as
well as the corroboration of estimation according
to which the regions of tolerable values of z and
tolerable spread of Ar amplitudes of y-oscil-
lations, generally speaking, are of the same order:

z~ Ay |I]

In order to have in the first approximation of
the disturbance theory at least one r-z-resonance
in the middle of the stability region. We choose
a nondinear H. field of the fifth power.

Stability of motion was investigated mainly
numerically. In the region of main resonance
on the coupling of oscillations an analytical stable
solution is obtlained as well.

Then it is the corroboration of existence of effect
of external autophasing at overlapping disturban-
ces of the type H.=h - cos w ¢, where frequency
@ coincides with a certain value of frequency of
oscillations within the stability region. It should
be shown by means of numerical calculations on
a model that autophasing does lead to conserva-
tion of motion stability, when including adia-
batic damping, and that small z oscillations do
not account for this effect.

And finally, the corroboration of existence of
mutuw.] autophasing of r-z-oscillations, appearing
also. in the absence of external disturbance in the

resonance region of oscillations (3). This inte-
resting effect also leads to conservation of mo-
tion stability in the case of damping. The simp-
licity of the model permits to carry out a rigo-
rous analytical evidence of existence of the effect
which is apparently impossible in more compli-
cated cases. The calculations, which were pre-
sented in original version of this report, are
amitted here because of lack of space.

2. THE FIRST REGION OF STABILITY

The dependence of the magnetic field H.(r) in
the plane in the region of non-linear y-oscillations
is shown in Fig. 1. Here H. is the equilibrium
field with respect to which the field H-H. is
symmetrical, R is the equilibrium radius so that
cp =eH.R. The notation used is (see Fig. 1)

p =1/b,E = 2/B, H, =H,H_ = (H.— H)H.
€¢xi) [1]

5% ‘/_F: H. dr
Hu=“"(Hzmax*Ho),e:CP — Y = [2]
4 do

is the azimuthal variable equal to 2 on one revo-
lution. In this notation the components of the
field chosen are of the form
Ht(m(P, E) = p —'5pE" + 10p* & — p*
[3]
Hip &) =&~ 58 + 100’8 — &
The equations of motion in the same approxi-
mation as in (1) can be written in the form
P+ op’ + p —p° = 5pE' — 100" & [41
B+ ol + Gp' —1E=100"E ~ € [51

where @ =p’/p in our case describes adiabatic
damping. At « =0 system [4], [5] has a conser-
ved Hamiltonian
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If the right-hand side parts of [4] and [5] are
discarded, the solution of the remaining equations
are readily obtained analytically. In this appro-
ximation all the values of & appear to be per-
missible, if the amplitudes of p-oscillations are
within the limits of 0.7987 < pm. < 0,8323 the first
region of stability (the other regions have not
been studied); oscillations are of a strictly pe-
rtodic character with the period of ®p, and £ is
written in the form

& = cf (2v0) exp (2ipv0) + KC [7]
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Fig. 4

where C is the arbitrary constant, v =m/®p, p is
the number of & oscillations per one half-period
of p-oscillations,

At pw=10; 1/2; parametric resonances occur in
the left-hand side of equation [5] which corres-
ponds to the left and right boundaries of the
linear region of stability (see Figs. 2 and 3). In
linear € approximation the motion ¢ is described
by two frequencies v and u, and the motion p by
one frequency v. In an accurate solution of
complete system [4], [5] the boundaries of reso-
nances depend upon initial conditions for g, be-
sides there arise additional combination reso-
nances. The motion along p loses its strict
periodicity which effects the stability of £ oscil
lations. Due to these effects only a limited phase
volume of £ oscillations is involved in the stable
motion conditions. This is evident from Figs. 2
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and 3 which differ from each other by the fact
that Fig. 2 shows initial conditions containing
Ey=0; =0 while in Fig. 3 &.=0; p =0, The
dots and incircled dots indicate initial conditions
under which the particles in motion remain
within the boundaries — 0,3 <% < 0,3 during 100
or 800 periods of p-oscillations, respectively; the
crosses denote the initial conditions under which
the particles break trough these boundarizss teyond
the number of periods of p-oscillations, shown
near the sign. In these Figs. the is the dimension
of the stability region in a linear approximation.
The counting was tested by checking of G Hamil-
tonian with the accuracy of AG/G =5-10" An
analytical solution of equations [4] and [5] is
given for the resonance region p=1/2 only (see
paragraph 4); there is proved the existence of
stable oscillations in this region. It is seen in
Fig. 2 that nonlinearity may become beneficial:
particles with small initial & > 0.001, lying to the
right of the linear region of stability, still remain
within the stable motion conditions (numerical
calculations for the same points, using the linear
theory, show that these particles break through
the “above limits rather rapidly).

Fig. 4 shows the stability region boundaries on
the (&, &%) place for different e and p = 0. To
conclude this section it should be noted that,
generally speaking, the permissible spread of &
must not considerably differ from that of Ap.

3. EXTERNAL AUTHOPHASING

Inclusion of the damping of « = 0 oscillations
leads to loss of stability in « time» A0 ~ Ap/a,
where Ap is the width of stability region with
respect to p, p ~ 1.
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Curves 1, 2 in Fig. 5 indicate the motion of
points with coordinates §€=9'=0 on a plane
(Prmes, Ema) at &= 107" (see also Fig. 6).

The deviation of amplitude p from stability re-
gion at damping may be eliminated by means of
external harmonic disturbance of the type
AHE =h - cos (w0 +8). This brings about a reso-
nance for such proscillation whose frequency
v=w/K, K is an integer.

In the case of & =0 p oscillations fail to be
strictly periodical and the accurate resonance
is thus violated. Therefore, the conditions of
autophasing should be examined accounting for
non-linear & terms.

Curve 3 in Fig. 5 shows the motion with initial
values po = 0.823, £, =0.04 at « =10, h = 3 - 107%,
w = 0.836, § ==. This is a typical picture of how
phase oscillations take place near resonance va-
lues corresponding to v—>¢ = , where v— is the
frequency of oscillations, accounting for & =0
(passages of curve 3 between the «a» points is
not shown in the graph. The calculation is fini-
shed after 250 oscillations).

Only those points are shown in Fig. 5 for which
p' = &' = 0; the figure at the end of the curve
indicates the number of periods of oscillations
passed by a particle.

4. MUTUAL AUTHOPHASING

Conservation of stability at damping is possi-
ble also without inclusion of a harmonic external
force. If, for example, p = 1/2 so that the fre-
quencies of and oscillations coincide, the g o0s-
cillations themselves play the role of that har-
monic force which autophases p-oscillations (3).
In this case the inverse effect of oscillations upon

o N
ags \ Ny
‘ S
| AN
ags L LA
ool ~ — J*J SN
arsES g s £y
agy et
. 2{1 o ——‘\.4; ) v
T [ | T
age —
L4
vor Hnth wiaill )/
aq “ | P Ll !
a8 .85 as o835 Prmox
Fig. 6



454 Session VIII

E oscillations is also of considerable significance
so that autophasing is strictly mutual.

Fig. 6 shows the motion of paints ¢' =& =0 at
a = 10"* and the curves of Fig. 4 is repeated here
for obviousness; figures near the curves indicate
the number of periods of p-oscillations, passed
by a particle.

It should be noted that in actual more com-
plex fields H.-H. and at usually non-symmetric
dependance of difference H.-H. of r the terms,
containning Z’ in the right-hand part of the equa-

tion for r, do not produce resonance in the first
region of stability; Z' members produce reso-
nance only on the right-hand boundary of this
region. For the mutual’ autophasing to be deve-
loped within the limits of the first region in the
nonsymmetric field, it is necesary that strong
terms with Z*, K = 3 should be present in the
magnetic field.

Thus, the calculations of our simple model
of non-linear focusing confirm the fundamental
principles of the theory.
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DISCUSSION

WIDEROE: Was this calculation made for a machine with a
straight section?

MeLekHIN: Calculation was made with no straight section.
C. BernarDINI: Is it that a small electron model could be
buildt on these lines?

Meiekuin: It seems to be possible and usefull.

M. H. BLEweTT: Has a magnet model of this nonlinear type
been built to see if field of this kind can be achieved with
sufficient accuracy?

MeiexkHINg It seems to me that no magnets of this type
have been constructed.

Symon: One difficulty with non-linear focusing fields is the
necessity to calculated orbits for very many resolutions to
determine stability. We have cases when orbits uppear
stable for 100.000 revolutions an then become unstable. Do
you have any way of determining whether the orbits you
have calculated for 100 revolutions were really stable for
many revolutions?

MELEKHIN: In fact this is the main question in the work,
Anyway the instability region can be easily found in such
a calculation.



