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1. INTRODUCTION 
This study deals with a simple model of non­

linear focusing having no immediate practical 
value, but, due to its simplicity permitting to 
carry out a fairiy complete analysis of all the 
fundamental properties of non-linear focusing. 
What is meant it is not merely the calculation 
of quantitative characteristics which depend 
greatly upon the choice of a magnetic field shape, 
but rather the corroboration of fundamental 
qualitative motions and the proof of the existence 
of main effects. 
First of all it is the corroboration of existence 

of steady motion, taking into account all the 
non-linear in z terms in equations of motion, as 
well as the corroboration of estimation according 
to which the regions of tolerable values of z and 
tolerable spread of ∆r amplitudes of γ-oscillations, 
generally speaking, are of the same order: 

z ~ ∆γ|I| 
In order to have in the first approximation of 

the disturbance theory at least one r-z-resonance 
in the middle of the stability region. We choose 
a non-linear Hz field of the fifth power. 
Stability of motion was investigated mainly 

numerically. In the region of main resonance 
on the coupling of oscillations an analytical stable 
solution is obtained as well. 
Then it is the corroboration of existence of effect 

of external autophasing at overlapping disturban­
ces of the type Hz = h • cos ω φ, where frequency 
ω coincides with a certain value of frequency of 
oscillations within the stability region. It should 
be shown by means of numerical calculations on 
a model that autophasing does lead to conserva­
tion of motion stability, when including adiabatic 
damping, and that small z oscillations do 
not account for this effect. 
And finally, the corroboration of existence of 

mutual autophasing of r-z-oscillations, appearing 
also in the absence of external disturbance in the 

resonance region of oscillations (3). This inte­
resting effect also leads to conservation of mo­
tion stability in the case of damping. The simp­
licity of the model permits to carry out a rigo­
rous analytical evidence of existence of the effect 
which is apparently impossible in more compli­
cated cases. The calculations, which were pre­
sented in original version of this report, are 
amitted here because of lack of space. 

2. THE FIRST REGION OF STABILITY 
The dependence of the magnetic field Hz (r) in 

the plane in the region of non-linear γ-oseillations 
is shown in Fig. 1.Here HO is the equilibrium 
field with respect to which the field Hz-Ho is 
symmetrical, R is the equilibrium radius so that 
cp = eHoR. The notation used is (see Fig. 1) 

ρ = r/b, ξ = z/B, H = Hc, Hξ(xi) = (Hz - Ho) He [1] 

Hσ = • (Hzmax ~ Ho), θ = φ 
√ R ∙ Hc 

, γ ≡ 
dr 

[2] Hσ = 
4 
• (Hzmax ~ Ho), θ = φ 

√ 
B 

∙ 
H o 

, γ ≡ dθ [2] 

is the azimuthal variable equal to 2 on one revo­
lution. In this notation the components of the 
field chosen are of the form 
Hξ(xi)(ρ,ξ) ≈ ρ - 5ρξ4 + 10ρ3ξ - ρ5 

[3] 
Hξ(ρ1ξ) ≈ ξ - 5ρ4ξ + 10ρ2ξ3 - ξ5 

The equations of motion in the same approxi­
mation as in (1) can be written in the form 

ρ" + αρ' + ρ - ρ5 = 5ρξ4 - 10ρ2ξ2 [4] 
ξ" + αξ' + (5ρ4 - 1) ξ = 10ρ2ξ3 - ξ5 [5] 

where α = p'/p in our case describes adiabatic 
damping. At α = 0 system [4], [5] has a conser­
ved Hamiltonian 
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Fig. 1 

Fig. 2 

Fig. 3 Fig. 4 

G = ρ'
2 + ξ'2 + ρ

2 - ξ2 
-

ρ6-ξ6 
+ 
5 

ρ2ξ2 (ρ2 - ξ2) [6] 
G = 

2 
+ 

2 
-

6 
+ 

2 ρ2ξ2 (ρ2 - ξ2) [6] 

If the right-hand side parts of [4] and [5] are 
discarded, the solution of the remaining equations 
are readily obtained analytically. In this appro­
ximation all the values of ξ appear to be per­
missible, if the amplitudes of ρ-oscillations are 
within the limits of 0.7987 ≤ ρmax ≤ 0,8323 the first 
region of stability (the other regions have not 
been studied); oscillations are of a strictly pe­
riodic character with the period of Φρ, and ξ is 
written in the form 

ξ = cf (2νθ) exp (2iµνθ) + KC [7] 

where C is the arbitrary constant, ν = π/Φρ, µ is 
the number of ξ oscillations per one half-period 
of ρ-oscillations. 
At µ = 0; 1/2; parametric resonances occur in 

the left-hand side of equation [5] which corres­
ponds to the left and right boundaries of the 
linear region of stability (see Figs. 2 and 3). In 
linear ξ approximation the motion ρ is described 
by two frequencies ν and µ, and the motion ρ by 
one frequency ν. In an accurate solution of 
complete system [4], [5] the boundaries of reso­
nances depend upon initial conditions for ξ, be­
sides there arise additional combination reso­
nances. The motion along ρ loses its strict 
periodicity which effects the stability of ξ oscil­
lations. Due to these effects only a limited phase 
volume of ξ oscillations is involved in the stable 
motion conditions. This is evident from Figs. 2 
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and 3 which differ from each other by the fact 
that Fig. 2 shows initial conditions containing 
ξ01 = 0; ρ01 = 0 while in Fig. 3 ξ0 = 0; ρ01 = 0. The 
dots and incircled dots indicate initial conditions 
under which the particles in motion remain 
within the boundaries — 0,3 ≤ ξ ≤ 0,3 during 100 
or 800 periods of ρ-oscillations, respectively; the 
crosses denote the initial conditions under which 
the particles break trough these boundaries beyond 
the number of periods of ρ-oscillations, shown 
near the sign. In these Figs. the is the dimension 
of the stability region in a linear approximation. 
The counting was tested by checking of G Hamiltonian 
with the accuracy of ∆G/G ≤ 5 ∙ 10-6. An 
analytical solution of equations [4] and [5] is 
given for the resonance region µ = ½ only (see 
paragraph 4); there is proved the existence of 
stable oscillations in this region. It is seen in 
Fig. 2 that nonlinearity may become beneficial: 
particles with small initial ξ0 ≥ 0.001, lying to the 
right of the linear region of stability, still remain 
within the stable motion conditions (numerical 
calculations for the same points, using the linear 
theory, show that these particles break through 
the above limits rather rapidly). 
Fig. 4 shows the stability region boundaries on 

the (ξ0, ξ01) place for different ρ0 and ρ01 = 0. To 
conclude this section it should be noted that, 
generally speaking, the permissible spread of ξ0 
must not considerably differ from that of ∆ρ0. 

3. EXTERNAL AUTHOPHASING 
Inclusion of the damping of α ≠ 0 oscillations 

leads to loss of stability in «time» ∆θ ~ ∆ρ/α, 
where ∆ρ is the width of stability region with 
respect to ρ, ρ ~ 1. 

Fig. 5 

Curves 1, 2 in Fig. 5 indicate the motion of 
points with coordinates ξ = ρ1 = 0 on a plane 
(ρmax, ξmax) at α = 10-4 (see also Fig. 6). 
The deviation of amplitude ρ from stability re­

gion at damping may be eliminated by means of 
external harmonic disturbance of the type 
∆Hξ = h ∙ cos (ωθ + β). This brings about a reso­
nance for such ρ1-oscillation whose frequency 
ν = ω/K, K is an integer. 
In the case of ξ ≠ 0 ρ oscillations fail to be 

strictly periodical and the accurate resonance 
is thus violated. Therefore, the conditions of 
autophasing should be examined accounting for 
non-linear ξ terms. 
Curve 3 in Fig. 5 shows the motion with initial 

values ρ0 = 0.823, ξ0 = 0.04 at α = 10-4, h = 3 ∙ 10-4, 
ω = 0.836, β = π. This is a typical picture of how 
phase oscillations take place near resonance va­
lues corresponding to ν→op = , where ν→op is the 
frequency of oscillations, accounting for ξ ≠ 0 
(passages of curve 3 between the «a» points is 
not shown in the graph. The calculation is fini­
shed after 250 oscillations). 
Only those points are shown in Fig. 5 for which 

ρ1 = ξ1 = 0; the figure at the end of the curve 
indicates the number of periods of oscillations 
passed by a particle. 

4. MUTUAL AUTHOPHASING 
Conservation of stability at damping is possi­

ble also without inclusion of a harmonic external 
force. If, for example, µ = ½ so that the fre­
quencies of and oscillations coincide, the ρ os­
cillations themselves play the role of that har­
monic force which autophases ρ-oscillations (3). 
In this case the inverse effect of oscillations upon 

Fig. 6 
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ξ oscillations is also of considerable significance 
so that autophasing is strictly mutual. 
Fig. 6 shows the motion of points ρ1 = ξ1 = 0 at 

α = 10-4 and the curves of Fig. 4 is repeated here 
for obviousness; figures near the curves indicate 
the number of periods of ρ-oscillations, passed 
by a particle. 
It should be noted that in actual more com­

plex fields Hz-Ho and at usually non-symmetric 
dependance of difference Hz-Ho of r the terms, 
containning Z2 in the right-hand part of the equation 

for r, do not produce resonance in the first 
region of stability; Z4 members produce reso­
nance only on the right-hand boundary of this 
region. For the mutual autophasing to be deve­
loped within the limits of the first region in the 
nonsymmetric field, it is necesary that strong 
terms with Z2k, K ≥ 3 should be present in the 
magnetic field. 
Thus, the calculations of our simple model 

of non-linear focusing confirm the fundamental 
principles of the theory. 
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DISCUSSION 

WIDERÖE: Was this calculation made for a machine with a 
straight section? 
MELEKHIN: Calculation was made with no straight section. 
C. BERNARDINI: Is it that a small electron model could be 
buildt on these lines? 
MELEKHIN: It seems to be possible and usefull. 
M. H. BLEWETT : Has a magnet model of this nonlinear type 
been built to see if field of this kind can be achieved with 
sufficient accuracy? 
MELEKHIN: It seems to me that no magnets of this type 
have been constructed. 

SYMON: One difficulty with non-linear focusing fields is the 
necessity to calculated orbits for very many resolutions to 
determine stability. We have cases when orbits uppear 
stable for 100.000 revolutions an then become unstable. Do 
you have any way of determining whether the orbits you 
have calculated for 100 revolutions were really stable for 
many revolutions? 
MELEKHIN: In fact this is the main question in the work. 
Anyway the instability region can be easily found in such 
a calculation. 


