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ABSTRACT: In the type IIB maximally supersymmetric pp-wave background, stringy ex-
cited modes are described by BMN (Berenstein-Madalcena-Nastase) operators in the dual
N = 4 super-Yang-Mills theory. In this paper, we continue the studies of higher genus free
BMN correlators with more stringy modes, mostly focusing on the case of genus one and
four stringy modes in different transverse directions. Surprisingly, we find that the non-
negativity of torus two-point functions, which is a consequence of a previously proposed
probability interpretation and has been verified in the cases with two and three stringy
modes, is no longer true for the case of four or more stringy modes. Nevertheless, the fac-
torization formula, which is also a proposed holographic dictionary relating the torus two-
point function to a string diagram calculation, is still valid. We also check the correspon-
dence of planar three-point functions with Green-Schwarz string vertex with many string
modes. We discuss some issues in the case of multiple stringy modes in the same transverse
direction. Our calculations provide some new perspectives on pp-wave holography.
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1 Introduction

The AdS/CFT correspondence [1-3] is a deep idea which relates two seemingly totally
different theories, namely string theory or supergravity on AdS background and the N' = 4
SU(N) super-Yang-Mills theory. Although the correspondence has found flourishing ap-
plications in many topics, the precise quantitative tests of the holographic dictionary are
mostly restricted to supersymmetry protected quantities in the supergravity approxima-
tion, such as the spectrum and correlation functions of BPS operators. Without an alter-
native effective method to handle string theory in the deeply stringy regime, a common
perspective is to simply take the super-Yang-Mills theory as a non-perturbative definition
of AdS string theory at any finite coupling and energy scale, assumed to be valid unless
otherwise convincingly explicitly contradicted.

A particularly interesting avenue for progress in the precise tests of the holographic
correspondence in the stringy regime is to take a Penrose limit [4] of the type IIB AdSs x



S® background. The geometry becomes a pp-wave background [5] with also maximal
supersymmetry

ds? = —Adztda — p2(F 2+ § 2 (da™)? + dir 2 + dif 2, (1.1)

where 7, ™ are light cone coordinates, 7, are 4-vectors, and the parameter p is propor-
tional to spacetime curvature as well as the Ramond-Ramond flux F 1934 = Flysg78 ~ -
The free string spectrum can be solved in the light cone gauge using Green-Schwarz formal-
ism similar to the flat space [6]. Berenstein, Maldacena and Nastase (BMN) proposed the
holographic dual operators in the gauge theory for the stringy states, a type of near-BPS op-
erators known as the BMN operators, and it was shown that the free string spectrum is re-
produced by the planar conformal dimensions of these BMN operators [7]. On the field the-
ory side, one takes a large R-charge limit, previously considered in the context of giant gravi-
tons, or D-branes in the AdS space in [8-11], and also in many subsequent literature e.g. [12—
15]. The calculations on the field theory side are perturbative in the large R-charge limit,
so the original strong-weak AdS/CFT duality becomes precisely testable in this setting.
The Penrose limit provides a new twist to the holography story. In the celebrated
AdS/CFT holographic dictionary in [3], the CFT lives at the boundary of a bulk AdS
space and its local operators couple to the boundary configurations of the AdS bulk fields.
However, although the pp-wave background (1.1) comes from a Penrose limit of the AdS
space, the geometry is rather different. As such, it is not clear how to directly apply
the standard AdS holographic dictionary, particularly in the situations with finite string
interactions. Our approach in some previous papers [16—20] is to consider another corner of
the parameter space in the BMN limit, focusing on the free gauge theory. In this case, the
string theory side becomes infinitely curved p ~ 0o, and strings are effectively infinitely long
and tensionless, but can still have finite string interactions. Most interestingly, since the
string spectrum is completely degenerate, the tensionless string can jump from one excited
state to another without energy cost through a quantum unitary transition. It turns out
that in this case the effective string coupling constant should be identified with a finite genus
counting parameter g := JWQ, where J is the large R-charge and scales like J ~ VN ~ oo
in the BMN limit. Some higher genus BMN correlators were first computed in [21, 22].
Since the full fledged holographic dictionary is no longer available in the pp-wave back-
ground, our pragmatic approach is to try to compute the physical quantities on both sides
of the correspondence and find potential non-trivial agreements. In this sense, a mismatch
with naive expectation is not necessarily a contradiction of the holographic principle. In-
stead, one should focus on finding aspects where the calculations from both side do match,
and try to give physical derivations or proofs of such mathematical coincidence. Besides the
free string spectrum originally considered in [7], some more tests of the pp-wave holography
are immediately clear. For example, the free planar three-point functions of BMN operator
should correspond to the Green-Schwarz light cone string field cubic vertex [23, 24] in the
infinitely curved pp-wave background [16, 25]. In the papers [17, 18], we further proposed
a factorization formula, where the free higher genus BMN correlators are holographically
related to string loop diagram calculations by pasting together the cubic string vertices
without propagator. More recently, we propose a probability interpretation of the BMN



two-point functions [19]. This also provides yet another interesting new entry of the pp-
wave holographic dictionary that the BMN two-point function does not naively correspond
to a quantum transition amplitude on the string theory side, but rather to its norm square.
A consequence of the probability interpretation is the non-negativity of BMN two-point
functions, which can be demonstrated for BMN operators with two stringy modes at any
genus, or three stringy modes at genus one. In this paper, we further test the non-negativity
conjecture for BMN operators with four and five stringy modes at genus one. Surprisingly,
it turns out this is no longer valid. Of course, as mentioned earlier, this is not necessarily
a contradiction of holographic principle according to our philosophy, but rather provide a
new perspective on the limitation of our probability interpretation.

Motivated by the results, we further check the factorization formula for the case of
four stringy modes and confirm that it is still valid. We also check that the correspondence
of planar three-point functions with Green-Schwarz string vertex is robust in the case of
many string modes. Our mixed test results for this case shall motivate potential physical
explanations which might shed new light on the still mysterious holographic principle.

In some potentially related interesting recent developments, Gaberdiel and Gopakumar
et al. study string theory on a AdSs background, dual to a symmetric product CFT [26—
28], with ideas dating back to some early papers e.g. [29]. Although the technical details
are rather different, there appears to be some common features with our works that the
strings are tensionless and the dual CFT is free. To our knowledge, in various special
situations where the higher genus string amplitudes can be systematically computed, our
setting by far most resembles the usual critical superstring theory on flat spacetime, with
of course still certain notable simplifications that in our case there is no continuous light
cone or transverse momentum due to the infinite curvature and Ramond-Ramond flux in
the background.

The paper is organized as the followings. In section 2 we review some notations and
previous results, with an emphasis on the real and symmetric properties of the two-point
functions. In section 3 we calculate the torus two-point functions of BMN operators with
four string modes with the notations of some standard integrals. We also compute the
case five string modes for the generic situations of mode numbers with no degeneracy. In
both cases we discover that they are not alway non-negative. In section 4 we perform
the one-loop string calculations and confirm that the factorization formula for the case of
four string modes is still valid. In section 5 we check the correspondence of planar three-
point functions with Green-Schwarz string vertex with many string modes. In section 6
we consider the situations of multiple string modes in the same transverse direction. We
conclude with some discussions in section 7.

2 The reality of higher genus two-point functions with more stringy
modes

Let us first introduce some notations for the higher genus two-point functions, and review
some previous results. The integral formula is naively complex and we perform a more
careful analysis of its reality property. The string vacuum state in the pp-wave geometry



is described by a dual vacuum BMN operator with large R-charge O’/ = Tr(Z”), where
Z = %(df’—i—i(f)ﬁ) is a complex scalar field in the SU(IN) adjoint representation, constructed
from two of the six real scalar fields in the N' = 4 SU(N) super-Yang-Mills theory. We take
the BMN limit J ~ v'N ~ oo with ¢ := JWQ finite, and focus on free gauge theory. As in
the previous papers, our notation omits the universal spacetime factors in the correlators.
The stringy states with bosonic excited modes in the eight transverse directions are
constructed by inserting the four remaining real scalars ¢! and four covariant derivatives
Dy where I = 1,2, 3,4 into the string of Z’s with phases. For example, the BMN operators
up to four scalar oscillator modes are the followings
1

VJN/

1
T /NI

07 = Trz7, o] Tr(¢'Z7),

271'7/ml

J I 7l 1 Io 7 J—I1
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O{m = Z e J e J e J
1,M2,M3,myq) 1 13
N7+4J3 l1,l2,13=0

x Tr(¢t Zh g2 Zla—l g3 Zla—l2 i 7T =la),
Here one can use the cyclicity of the trace to move one scalar to the starting position
for convenience, the mode numbers >, m; = 0 in the case of three and four modes. The
operators are properly normalized to be orthonormal at the genus zero or planar level.
The convention is that the first operator O corresponds to the closed string vacuum state,
and the positive and negative modes in the other operators represent the left and right
moving stringy excited modes, while the zero modes are supergravity modes representing
discretized momenta in the corresponding traverse direction. The construction ensures
only operators satisfying closed string level match conditioning are non-vanishing. As a
consequence, the stringy excited states have at least two oscillator modes with opposite
signs. Analogously, we can add more stringy modes and denote the properly normalized
BMN operator O,
Unless otherwise specn‘ied, we use this notation to denote k different string modes.

i1 ma,e m,, With the closed string level matching condition Zle my = 0.

The free two-point functions at higher genus h > 1 are computed by dividing the
string of Z’s up to n < 4h segments and Wick contracted according to a permutation of
(1,2,---,n). We only consider cyclically inequivalent permutations where no two neigh-
boring numbers are Consecutive. The contributions of such Feynman diagrams of genus

h are proportional to So the dominant contributions come from those of the max-

2h'
imal number of segmerjljts n = 4h and we can neglect the other cases n < 4h which are
suppressed in the large R-charge limit. Furthermore, in the BMN limit, the contributions
are proportional to % = ¢*", confirming the finite parameter g as the genus counting
parameter therefore the effective string coupling constant with our restriction to free gauge
theory. We should note that a generic permutation of (1,2,--- ,4h) can give Feynman dia-

gram with genus higher than h. A useful rule to select genus h permutations is to generate
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Figure 1. The torus diagram.

them by string diagrams with A loops [18]. It is known that there are (4;;:11) ! such genus h

permutations [30]. For example, at genus one there is only one such permutation, and can
be generated by a one-loop string process (1234) — (12)(34) — (2143). The field theory
torus diagram is depicted in figure 1. Please note that we denote the genus as h because

the usual symbol g has been used as the effective string coupling.

Once the string of Z’s is Wick contracted with Z’s, we can add scalar insertions and
contract them along the lines of Z’s to preserve the genus of the Feynman diagram. In
the BMN limit each scalar insertion gives an integral with the corresponding phases. For
example, the free torus two-point function can be written as

~NJ J
<O(m1,m2,-~-,mk)O(nl,n2,~-~,nk)>t01‘u5 (22)

2 1
= gZ/ dxldxgda:gdx45(x1 + X9 +a:3+a;4—1)
0

k oo, T1+22 o 1—x4 o 1 omi
XH(/ +e ﬂzni(ac3+a:4)/ +e wzni($4—x2)/ +e ming (ra+x3) )dyle wi(ni—m;)y;
- 1VWO0 T T

1 1+x2 1—x4

1 z1 '
= 92/ d$1d$2d$3d$4(5(.%'1 +xo+x3+ T4 — 1) / dyke%"z(”k—mk)yk
0 0

k-1 1— 1
XH</x1+e27rmi(mg+m4)/x1+x2+627rmi(m4—12)/ x4+€—27rini(zg+$3)/ )dyie%ri(ni—mi)yi’
i=1 0 x1 x 1—x4

1t+x2

where in the second equality we use the cyclicity to put the one string mode into one of
the four segments which have the same contribution since there is only one cyclically in-
equivalent permutation for the torus diagram. This breaks the symmetry between different
modes but would be sometimes convenient for calculations.

By definition the correlator is invariant under a complex conjugate and exchange of
modes. We can perform a more careful analysis. We take the complex conjugate in the



first formula in (2.2), and change the integration variables y; — 1 — y;,i = 1,2,--- , k and
X1, X2, T3, T4 —> T4,T3, %2, x1. After a simple calculation, also using the closed string level
matching condition, one can check the formula remains the same. So the torus two-point
function is purely real and symmetric.

The analysis for higher genus A > 2 is somewhat more complicated. When the k’s
string mode runs through 4h segments as in the first equality in (2.2), generically they
correspond to multiple cyclically inequivalent permutations if we fix the k’s string mode in
the first segment as in the second equality in (2.2). To illustrate, we consider the case of
genus two, which have 21 cyclically inequivalent permutations. These 21 permutations are
divided into 4 groups

1. (14732865), (17548362), (18643725), (14875326), (15837642), (18472653),

15428736), (17625843),

( ) ( )
( ) ( )
2. (15387426), (15842763), (16528473), (17362854), (17438625), (14863275),
( ) ( )
( ) ( )
)

(2.3)
16483752), (18537264),

14325876), (14765832), (18365472), (18725436),
4. (16385274).

Here we have use the cyclicity to always put 1 into the first place in the permutations.
Each group of permutations is generated by running a particular string mode through 8
segments. A convenient rule is to start with a permutation, subtract each element by 1
(with 1 replaced by 8), then cyclically move 1 to the first position. One can repeat this
operation until the original permutation reappears. The permutations of each group have
the same multiplicity with respect to the string diagrams in the factorization formulas [18].
The contribution of each group to the genus 2 two-point function is real. However, the
contribution of each individual permutation may be complex if we fix one particular, e.g.
the k’s, string mode to be in the first segment as in the second equality in (2.2). The
permutations can then be further classified by some permutations whose contributions are
real, and some other pairs where each pair consists of two permutations whose contributions
are complex conjugate to each other. In our case, there are 5 self-conjugate permutations
and 8 pairs of conjugate permutations as the followings

Self conjugate : (18365472), (14325876), (14875326), (17625843), (16385274),
Conjugate pairs : {(14765832), (18725436)}, {(15837642), (18643725)},
((16483752), (18537264)}, {(17548362), (18472653)}, (2.4)
((14863275), (15387426)}, {(14732865), (15428736)},
[(17438625), (15842763)}, {(17362854), (16528473)}.

The conjugate pairs always fall into the same group in (2.3). We can similarly perform
the change of integration variables y; — 1 — y;,4 = 1,2,--- .k and reverse the order of
8 segments as in the torus case to show that the two contributions of each pair in (2.4)
are complex conjugate to each other. This also provides a convenient rule for computing
the conjugate permutation. One fixes 1 in the first position, then replace the 7 remaining



numbers by a — 10 — a and reverse their order, i.e. the conjugate of the permutation
(1,a1,az,--- ,ay) is simply (1,10 — a7, 10 — ag,- -+ , 10 — ay).

Since a conjugate pair of permutations should have the same genus in our case, we
expect this argument similarly works out at higher genus so the two-point functions are

always real and symmetric

(o Oy s i) 'h = (O o Yhs

mi,ma, - ,mg) " (n1,ne, (m1,ma, - ;mg) ™~ (n1,n2, ng) (2.5)
(ord ot =10} ot ) '
(m1,ma, mg)~ (n1,ng, - ng)/h (n1,n2, ng) "~ (my,ma, myg)/ b

An interesting formula, as discussed in [19], is to sum over one set of string modes

~J J I G YL )
kz <O(m1:m27"’7mk)0(n17n27“':nk)>h - m (2.6)
> imy =0
This can be also easily derived using the Poisson resummation formula Y00 e?™n —

o
p=—00

to delta function constrain, and is independent of the remaining set of string modes. One

d(z — p). The resulting integral after the summation can be easily performed due

can thus sum up all genus contributions with a proper normalization by the all-genera
formula of vacuum correlator
0 —
D(my,ma, ymy),(n1,n2, - ng) = Qsingh(g) ]§)<O{m1,m2,---,mk)OE]m,nz,---,nk)>h‘ (2.7)

Then the matrix element is real and looks like a probability distribution

Z D(myma, - my),(n1,n2, ) = L. (2.8)
25:1 ng=0

To interpret the matrix element (2.7) as a probability, it needs also to be non-negative.
In order to keep the nice normalization relations (2.6), (2.8), we can not simply add some
non-uniform phase factors to the BMN operators, so the signs of two-point functions can
not be trivially changed and have physical relevance. Since the string coupling constant g
can be arbitrary, one may expect each correlator in the sum should be non-negative if such
interpretation is valid. For the case of two string modes k = 2, it can be easily shown that
the correlators are indeed non-negative since the two string modes have opposite sign [19].
For the case of three string modes, one can also explicitly check that at the torus two-point
function is always non-negative. For example, the torus two-point functions for generic
case with no degeneracy in mode numbers is [18§]

2 3 9
<O(Jm1 m2 ms)O{m ng n3)>torus = g ) Zé—l( i 1)2 ’
s 5 312, 327T i=1 (mz — ’]’LZ)

(2.9)

which is manifestly positive. These properties strongly suggest a new entry of the pp-wave
holographic dictionary

P(mi,ma, my),(n1,nz, o ng) = ‘<m17 ma,--- ,mk|f](g)\n1,n2, T 7nk>|27 k=23, (2‘10)



where the states |nj, ng, -+ ,ng) denote the orthonormal BMN states of free string theory,
while the operator U (g) describes the quantum unitary transition between the tensionless
strings. As discussed in [19], the higher point functions are vanishing in the BMN limit and
are regarded as virtual processes, so a single string can not actually decay into multi-strings
through a finite physical process. In this sense the single strings form a complete Hilbert
space ZZf_lnkZO [ny,ng, - ,ng)(ni,ng, -+ ,ng| = 1.

In the next section 3 we will calculate the cases of torus two-point functions with
more than 3 string modes. It turns out the results are not always non-negative. Therefore
we are currently restricting our probability interpretation and the proposed holographic
dictionary (2.10) to the situations with no more than 3 (different) string modes.

3 The calculations of torus two-point functions

In this section we provide some details of the calculations of the integral formula (2.2) for
k = 4,5 string modes, generalizing previous results. First we introduce some standard
integrals. For the case of kK = 5, we only compute a generic case, where no degeneracy of
string modes appears in the standard integrals. It turns out that this is actually simpler
than the case of four modes and we consider it first. We then study the case of k = 4
modes in more details, and provide the universal result in terms of the standard integrals,
which are valid for all cases including degeneracy.

3.1 Some standard integrals

The following standard integral, appeared in e.g. [18, 22|, is very useful for calculating
higher genus correlators,

1 .
I(uy,ug, -+ ,uy) = /0 dry---dryd(v1 + -+ xp — 1)62”’(“1’”1+"‘“T”T) (3.1)

Here It is clear that the integral is unchanged if we add an integer to all the arguments. If
some of the u;’s are identical, one uses the following notation
I(a1,~--,ar)(u17u27 o 7u’r‘) = ](Ul, UL, U2, U2yt Uyttt 7u’r‘)7 (32)

where a;’s are integers representing the numbers of the u;’s in the right hand side, and for
a; = 0 we can just eliminate the corresponding argument. The integral can be calculated
by the following recursion relation

2772('&1 o uj)I(a17“' 7a7') (ul’ U, - - ,Uy-) = I(dl,"' ,aj—l,'“ ,ar)(ula U,y -+ 7u'l’)
_I(al,---’ai,L._,’ar)(U1,U2, T 7ur), (33)

If u; # u; then this equation can be used to reduce the number of arguments, but the
relation is also valid and both sides are zero when u; = w;. From the recursion relation
one can obtain the formulas for the integral

r ) 1
I(UI,U2,...ur> — ZeQWluiH-77 (34)
P ks 2mi(u; — uj)
(0/Oui)*
I(a1+1,--- ,ar+1) (ur, - up) = H WI(Ub C L Up), (3.5)
i=1 v



where the u;’s are different. We note we have used the i symbol for both the pure imaginary
number and the product index, which are easy to distinguish and should not cause con-
fusion. In our calculations, the arguments wu;’s will be always integers, so the exponential
functions will be simply 1 in the end results.

3.2 Five modes: the generic case

For the case of five distinct string modes, at least one of the modes is covariant derivative
Dj. The structures of free field two-point functions are the same as the cases of scalar
field insertions, as also implied by supersymmetry. So we can simply apply the integral
formula (2.2) regardless of the type of string modes.

Using the reality of the integral (2.2), it turns out the calculations are especially simple
for the generic situation with no degeneracy. First we assume m; # n; for all i’s. Then the
y;’s integrals can be performed

J J
<O(m17m27 ms)O(n1,n2,--~ ,n5)>t0rus (3'6)
2 1
. g 2mi(ns—ms)T1
= dr1drodrsdrsd +x2+ 23+ —1 STMS)TL ]
Tt ) Aertestrstnd(on o o= )

% H[e%ri(ni—mi)xl 14+ 6—27rimi(a:1+a:2) _ eZwi(—mixl—nixz) + eQﬂi(—niazz—f—mim)
o e?ﬂ'i[(ni—mi)zl—mix2+nix4] + 6—2m’n2(x2+:z:3) o e?ﬂ'i(ngxl—i-mgm)].

So this calculation becomes some standard 4-dimensional integrals. Due to the factor of %,
we only need to compute the imaginary part of the integrals because of the reality of the
result. This is quite simple for the 4-dimensional case. For example, suppose the integers
u; # u; for any ¢ # j, some results of the standard integrals are

I(u1,u2,u3,us) =0,

1
1(2’1’1)(111, ug, US) = _47T2(U1 _ UQ)(Ul — ’LL3) ’
1
Ii31)( ) = 1 :
(3,1) Uy, u2) = 47T2(u1 _ U2)2 47T(u1 - U/Q)’
1
Iy(u) = &

We see that most results are real and the only imaginary contribution appears in I(3 ).
Assuming no further degeneracy among the mode numbers, we can check that the only
contributions to the I(3 ) type integral come from taking [ = 1,2, 3,4 factor(s) e2mi(ni—ms)
and the 5 — [ factor(s) of —1 in the integrand in (3.6). The result is quite simple

2

~J J _ 9
Ot ms) Ol o) Jeorws = G778 —m@-)

Aoy

21 'Ll]z+1

—my —m;+nj—my;



We can compute the result for some random mode numbers, and find that it can be either
positive or negative.

The calculations actually work similarly for the cases of any odd number of stringy
modes, providing a simpler method for obtaining the result for the case of three generic
stringy modes with no degeneracy in (2.9).

3.3 Four modes

We use the second equality in (2.2) which fixes the 4th string mode in the first segment,
namely 0 < y4 < 1. It turns out there are 20 cases where we can put the positions
of remaining string modes y; 23, up to some permutation symmetries. We write the 8-
dimensional integrals in the standard form and list these 20 cases in the followings.

1. The variables 0 < y1, Y2, y3,y4 < 1. The permutations of indices 1,2, 3,4 give 4! = 24
such integrals. Without loss of generality we consider 0 < y; < y2 < y3 < y4 < T71.
After dissecting the integral, the contribution is

I ,1,5)(ng — My, ng —my +ng —m3, —n1 +my,0). (3.9)

2. The variables 0 < 95 < y3 < y4 < 21 < y1 < x1 + x3. There are 3! -3 = 18
similar integrals by counting the choice of y; and permutations of indices 2, 3,4. The
contribution is

I292,1,1)(=m1, —n1,0, —m1 + ng — my, —n1 — ng + ma). (3.10)

1Ly Lty

3. The variables 0 < yo < y3 < yg < 1 < 1 + 22 < Y1 < 1 + T2 + x3. There are also
3!'- 3 = 18 similar integrals by counting the choice of y; and permutations of indices
2,3,4. The contribution is

1(2,2,1,1,1,1)(711 —mq,0, —m1,ni,me — ng,ny — My + ng — my). (3.11)

4. The variables 0 < yo < y3 < y4 < 1 < 1 + 22 + 23 < y; < 1. There are also
3!- 3 = 18 similar integrals by counting the choice of y; and permutations of indices
2,3,4. The contribution is

1(2,2,2,1,1)(7”17 ny,0,n1 + ng —mg,my +mo — n2)- (3~12)

5. The variables 0 < y3 < Y4 < 21 < y1 < y2 < x1 + x2. There are 3 -2 -2 = 12
similar integrals by counting the choice of y3 and exchange of indices between 3,4
and between 1,2. The contribution is

1(2,2,2,1,1)(—7711 —mg, —n1 — ng,0, —n1 — mg, m3 + n4). (3‘13)

6. The variables 0 < y3 < ys < 1 < 21+ 22 < y1 < Yo < x1 + 2 + x3. There are also
322 = 12 similar integrals by counting the choice of y3 and exchange of indices
between 3,4 and between 1,2. The contribution is

Iipo10,1,0) (01 +n2 —my —ma,0,n1 + ng, —my — ma,ng — ma, —n3 +mg). (3.14)
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10.

11.

12.

13.

14.

The variables 0 < y3 < y4 < 1 < 21 + 22 + 23 < y1 < y2 < 1. There are also
322 = 12 similar integrals by counting the choice of y3 and exchange of indices
between 3,4 and between 1,2. The contribution is

I(2,2,2,1,1)(”1 + ng, my + ma,0,mq + na, —n3z — my). (3.15)

The variables 0 < y3 < y4 < x1 < y1 < T1 + T2 < Y2 < x1 + T2 + x3. There are also
3-2-2 = 12 similar integrals by counting the choice of y3 and exchange of indices
between 3,4 and between 1,2. The contribution is

I(ma,na, —m1, —n1, ma + N2, —my + na, Mg — Ny, Mo + Ny + M3 + ny). (3.16)

The variables 0 < y3 < ys < 11 < y1 < 1+ 22 < 11 + 22 + 3 < yo < 1. There
are also 3 -2 -2 = 12 similar integrals by counting the choice of y3 and exchange of
indices between 3,4 and between 1,2. The contribution is

I(mg,n2, —my,—n1,0,mg — ny,ny — My, ng — my + ng — my). (3.17)

The variables 0 < y3 < yq4 < x1 < 1+ 22 < y1 < 21+ 22+ 3 < y2 < 1. There
are also 3 -2 -2 = 12 similar integrals by counting the choice of y3 and exchange of
indices between 3,4 and between 1,2. The contribution is

I(mg,ng, —my, —n1, —m1 — ny, Mg — ny,ng — My, Mo +mgz +ng +nyg).  (3.18)

The variables 0 < y4 < 21 < y1 < Y2 < y3 < x1 + x2. There are 3! = 6 similar
integrals by counting the permutations of indices 1,2,3. The contribution is

Ii2291,1)(m4;n4,0,n3 + 1y —m3z, m1 +my —nq). (3.19)

The variables 0 < y4 < 1 < x1 + 22 < Y1 < Y2 < y3 < x1 + x2 + x3. There are
also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The

contribution is

T(2,2,1,1,1,1) (4 — ma, 0,04, =My, —ny +m1,n3 + 14 — M3z — Mmy). (3.20)

The variables 0 < y4 < 1 < 1+ T2 + 23 < y1 < Y2 < y3 < 1. There are also 3! =6
similar integrals by counting the permutations of indices 1,2, 3. The contribution is

1(2,2,2,1,1)(—7714, —n4,0, —=my —m3 + nz, —ng +m —nq). (3.21)
The variables 0 < y4 < 1 < y1 < y2 < 21 + 22 < y3 < x1 + x2 + x3. There are

also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(m4, ng, —ms, —ng, 0, my — N3, ng — m3, M1 + myg + ng + 7’L4). (3.22)
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15.

16.

17.

18.

19.

20.

The variables 0 < y4 < 1 < y1 < Y2 < 1+ 22 < 1 + 22+ 23 < y3 < 1. There
are also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(ms,ng,0,ms + my, ng + ng, —m1 — Mg, M3 + my + n3). (3.23)

The variables 0 < yy4 < 1 < yz3 < x1+ 22 < Y1 < Y2 < x1 + x2 + x3. There are
also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(my,ng,0,m3 4+ my,n3 + ng, =01 — Mg, mz +mg +ng,n3 +n4 +my).  (3.24)

The variables 0 < yy < x1 < x1+ 22 < y1 < Y2 < 1 + 22+ 23 < y3 < 1. There
are also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(—my, —n4,0,m1 + ma,n1 + na, o + my, my +ma —ng,ny +no —my).  (3.25)

The variables 0 < yy < 1 < ys < 1+ 22 < 21+ 22+ 23 < y1 < y2 < 1. There
are also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(—m3, —n3,0,m1 +ma,n1 + ng,my + ng,ny + ng —maz, my +mg —ng). (3.26)

The variables 0 < yy < x1 < 21+ 22 < yzs < x1+ 22+ 23 < y1 < y2 < 1. There
are also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(mg, ng, —mgq, —n4, 0, N3 — My, m3 — ng, M1 + mg + ng + 713). (327)

The variables 0 < yy < x1 < y1 < 1+ 22 < Y2 < 21 + 22+ 3 < y3 < 1. There
are also 3! = 6 similar integrals by counting the permutations of indices 1,2,3. The
contribution is

I(mg, ng, —my, —ni, mg+ms—ny, mg+ms+ng, na +ns+mag,ng +ng—my). (3.28)
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The 20 cases of integrals can be organized into 10 types of integrals, so that the total
contribution to can be more succinctly written as

(O s ms) Ol g ma) orus (3.29)
= 92 Z [1(1,1,1,5) (ng —my,n; —m; +nj —my, —ng +my,0)
(4.4,k,0)
+122,2,1,1) (=i, =i, 0, —=m; +nj —mj, —n; —ng +my)
+112,2,2,1,1) (MM, 0,m — nj +m, mg +ny —my)
+1(22,2,1,1)(Mi +my,m;+n5,0,m; +nj, —mg —ny)
+1221,1,1,1) (n; —m;,0,n4, —my, —nj +mj,n; —m; +ng —my,)

+1(mi,ni, —my, —n;,0,m; —nj,m; —m;,ng —m; -+ ng —mg)

2

+9g Z I991.1,1,1) (i +nj—mi—my,0,n;+nj, —m; —mgj,n; —mg, —ng +mg)
(4:5) > (k,0)
2

+g Z I(mg, g, —mj, —ng,m; +n; +my, m; +n; +ng, m; +my —nj,n; +n—m;).
(i,4,k)

10
=¢*> I
k=1

We provide some explanations of the notations. For later convenience we denote the 10 type
of integrals by I,k =1,2,--- 10, according to the order as written in the above equation,
which should not be confused with labels of transverse space direction in the pp-wave
geometry. The first 8 types of integrals are summed over the 24 permutations (i, j, k, 1) of
1234. The notation (i, j) <> (k,l) in Iy denotes we sum only once if two permutations are
related by exchanging (i,j) <> (k,l). This can be achieved e.g. by specifying 1 € {i,k} in
the permutations. The last integral 1o is summed over the 6 permutations (i, j, k) of 123.
Of the 10 types of integrals, the I; comes from case 1 in the above enumeration, the Is from
combining cases 2 and 13, the I3 from combining cases 4 and 11, the 14 from combing cases
5 and 7, the I5 from combing cases 3 and 12, the I from combining cases 9, 14 and 19, the
I7 from combing cases 10, 15 and 16, the I from combining cases 8, 17 and 18, the Iy from
case 6, the I1g from case 20. Although the last two integrals Iy, I19 are not summed over
the full 24 permutations of 1234, it is easy to show they are also permutation symmetric
using the closed string level matching conditions and the invariance of the standard integral
under a shift of all arguments by an integer.

We can perform the calculations using a compute program. The calculations are
straightforward for a given set of mode numbers. An expression for the generic case where
there is no further degeneracy in the arguments in (3.29) can be obtained but it is too
long to write down here. We can check some special cases. For example, when two modes
my = ng = 0, this reduced to the case of three string modes considered in [18]. Another
special case is when m; = 0 and n; # 0, then the result identically vanishes, consistent
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with the conservation of discrete momentum in the transverse direction.

The total contribution (3.29) is always real, although each individual integral can be
complex. Computing the results for some random mode numbers, we find that the result
can be either positive or negative. We can provide some potentially helpful empirical
observations about the signs of the torus two-point functions. However for now there
seems no particular strong motivation to warrant a thoroughly rigorous analysis. In the
followings we assume all m;,n;, i = 1,2, 3,4 are non-zero.

1. If two pairs of mode numbers are the same, e.g. m; = n;,© = 1,2, then the torus
two-point functions are most likely positive. There may be some exceptions. For
example, in the case (m;,n;) = (—10,—10), (—10,—-10), (1,10),(19,10),i = 1,2, 3,4,
the torus two-point function is negative. If all mode numbers are the same, i.e.
m; = n;,t = 1,2,3,4, then we have not found an example of negative torus two-point
function.

2. For m; # n;,i = 1,2,3,4, the sign of torus two-point function is most likely the
same as [[i;(m; — n;). There are also some exceptions. For example, in the case
(m4i,n;) = (8,5),(2,—6),(—5,—6),(—5,7),i = 1,2,3,4, the torus two-point function
is positive. This phenomenon can be explained from the previous method in the case
of five modes in (3.6). In the case of four modes we need to now pick up the real
parts in the integrals (3.7). Only two terms give the last integral with completely
degenerate arguments. So the result can be roughly written as

2
_ q 1
o/ o/ = (+> 3.30
< (m1,ma,ma,ma) (nl’m’ng’n4)>torus (2m)4 H?:l(mi —n;) \3 ( )
where the --- denotes some correction terms which are inverse squares of non-zero
integers from mode numbers and also suppressed by a factor of 272, so their absolute
values are most likely small comparing to %

4 The factorization formula

Since we have now discovered a new phenomenon in the case of more than three string
modes that the BMN torus two-point functions can be negative, it is worthwhile to test
the other proposals for the holographic dictionary, in particular the factorization formulas
in [17, 18]. This also serves as a check of the somewhat complicated calculations in the
previous section 3. In this section we focus on the case of four string modes.

4.1 Planar three-point functions

First we shall calculate the relevant free planar three-point functions, which correspond to
the string vertices. There are 3 ways to distribute the 4 scalar insertions as the long string
is cut into two short strings with J; = xJ and Jy = (1 — z)J number of Z’s (0 < x < 1).
The field theory diagrams are depicted in figure 2. We integrate over the positions of
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O1 P2 P3 Oa o1 P2 P3 o O1 P2 3 4

Jl J2 J1 J2 Jl JZ

o0=a)J o (1-2)J

mi,ma2,mz,ma) 7 (n1,n2,m3)(1,2,3) ~ (0)4 < O(ml ma,ms, m4)O( n1m)(, 2>O(*n2,nz)<s.4)

o/ 00-2)J < < O(J Oa:J

< O(ym ma,ma,ma) U (n1,n2,n3,m4)

Figure 2. The planar three-point diagrams.

insertions with the BMN operators (2.1) and compute the results

<OJ OJ1 OJ2>

mi,m2,m3,m4 " k1,k2,k3,ka
:9W/xﬁdy‘e_zm(mi—’;i)yi:gxg(l_w);ﬁsin(wmim)
VI oz i=1 ' J ey m(miz—k;)’

(07 okhk%kgoh )

mi1,m2,Mm3,mq

_ 9 —omi(m;— o~ 2mimays __@ 3 sin(mm;x) | sin(mmyx)
iz l/ del ] [/ dys ’ } T Ll_[l W(mzxkzz)l ™
(o] 0{ 0%

mi1,m2,ma3,mq

[fo dy1dype™ 27rz(m1+ )yle—Qﬂz(mQ—* ]U’ dysdyse” 2m(m3y3+l(y3 a:))6727ri(m4y4 l(y4 ac))
= Jx(1—ux)
p 3 [T, sin(mm;x)
_ T 4.1
VI T e R st — B) (ma(1—) + D ma (1= 2) 1) -

For the simplicity of notation, we do not label the specific string modes in the operators with
the implicit understanding that the string modes appearing in the same order in O and O
operators are the same. We note that the integral formulas are valid for any mode numbers,
but the integrated results in the above equation may not be valid in some special cases where
the denominator vanishes, e.g. some m; = k; = 0. In those cases one needs to do the integral
separately. As in the cases with less stringy modes, the three-point functions are always
suppressed by a factor v/J, so they are vanishing or “virtual” in the BMN limit J ~ co.

4.2 One-loop string diagram calculations

There are also 3 string one-loop processes corresponding to the torus two-point functions,
depicted in figure 3. In the BMN limit, the sum over the operator length becomes integral
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O(k17k27k3;k4)

J

O(m1,m2,m3,m4) (n1,m2,n3,n4)

S1

O(k1 k2,k3) (iy ig,i5)

(0] J
(m1,ma,m3,ma) O(nla77«27n3~,n4)

S2

O(k:1

k2)11 J2

O(mlam2~m31m4) O(nla’”2an37"4)

S3

(1—z)
O(ks k4)]3 Jja

Figure 3. The one-loop string diagrams.

Z 1 =J fo dx. We denote the contributions S7,.S2,.53 as the followings

J J Jo nJ
Sl J dw Oml7m27m37m40ki7k27k37k40 ><Ok‘17k2,k‘37k40 2Onlvn2vn3vn4>
0
E ;=0
J J:

SQ J/ dx Z Z m117m127m137m14 Okll7k2,k3002><0 k2yk30 On117n127nl37n14> (42)

4= 12 k;=0

~J1

So=7 [0S Oy Ok OO, 0% O )

12=2k,l=—00

where (i1,12,13,44) in S is a cyclic permutation of (1234) and (iz,43,i4) in S3 is a cyclic
permutation of (234).

There are two methods for the computations of the equations in (4.2). The first method
is to directly sum over the integrated results in (4.1), then perform the x integral. One need
to use some summation formulas, which is mostly straightforward. But this method needs
to deal with degenerate special cases separately. The second method, discussed in [18] for
the case of two string modes, is to directly use the integral formulas for planar three-point
functions and sum over the intermediate modes first. This can be done using the Poisson
summation formula. The resulting integrals with delta function constrains can then be
converted to the standard integrals in section 3.1. The second method works universally
with any string mode numbers without the need to deal with degenerate cases separately,
but the careful dissections of integral domains are also quite complicated.

Since the sums and integrals here are always convergent, the two methods are equiv-
alent. The first method was used in the case of three string modes in [18]. However, in
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our current case of four string modes, the calculations become too complicated to obtain
analytic answers in some steps. In any case, the explicit results are quite long and compli-
cated to provide useful physical insight, so it is better to use the second method and write
the contributions as the standard integrals in section 3.1. We also use the first method
complementarily to perform some numerical tests of the results.

Summing over the intermediate string modes, we find the integral formulas for string
loop diagram contributions

3 +o0
1=a" [0 ayae | [ TLanaesioinon] {H > ok vt =t —wﬂ ,
0 i=1pi=—o0
1 z 3
Sy 292/0 da l/ﬁ deidyil [/ dy4dy4} H Z 5(yi — yi + y3 — s — pix)
=1 i=1p;=—00
4 , 3
. e2mzi:1(niyi—mz‘yi) 4 Z(Z o 4)7
i=1
1 z 2 1 4 +oo
Sy = 92/ dx l/ deidyél l/ deidyél [ S S -yt ye—vh— i)
0 0 =1 T =3 p1,pa=—00
4 , 4
0y — Y3+ ya — yy — p2(l — x))] 2 iz (MYimmY) 1 N7 43 2), (4.3)
=3

where the contributions in Ss, S3 have some extra terms which are simply related to the
explicit expression by permutations of indices. After carefully dissecting the integral for-
mulas, with details explained in the appendix A, we find that the contributions can be
transformed into the 10 types of integrals in (3.29). Specifically, the results are

S1=g*2L + I+ I3+ 1),
Sy = g* (I + I3 + 2I5 + 21 + I + Ig), (4.4)
S3 = g*(Is + +1I7 + Is + 2y + 2110).

So we confirm an entry of the holographic dictionary of factorization formulas

10

2<6{m1mmsm)o{m,n%nm))mm = S1+ 82+ 83 =2¢>Y I (4.5)
=1

5 Comparison with light cone string field cubic vertex

In this section we compare the planar three-point functions with many string modes with
the Green-Schwarz light cone string field cubic vertex, generalizing the earlier paper for
the case of two string modes [16]. The bosonic part of the Green-Schwarz cubic string field
vertex can be described by |V) = E,|0), where the operator

2 8 00
E, ~ exp Z; Z NS’fn iy | - (5.1)

r=1 m,n=—00
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We provide some explanations of the notations. The indices r = 1,2, 3 labels the three
strings, with the convention that » = 3 string has the largest light cone width which is the
sum of those of r = 1,2. The bosonic operator aﬂ(r) creates the r’s string state in the I’s
transverse direction with BMN mode number m. The Neumann matrix encodes the string
interactions. Its element Nf;l?;l = 0 for any m,n, and it has a symmetry N5 = Np7,.
Since the number of string modes in the 3rd long string is the sum of those of the two
r = 1,2 short strings, we only need to include the Ngfn type of matrix elements. This
corresponds to the calculations of free planar BMN three-point functions where the string
modes are contracted between a long string and the two short strings.

The Neumann matrix elements were computed in the pp-wave background [25] and
becomes much simplified in the infinite curvature limit [16]. We denote the light cone width
of the two short strings as x and 1 — x, corresponding to the relative lengths of the two
short operators in the free planar three-point function. The relevant matrix elements in
the infinite curvature limit are

3,1 3,2
Noo = Vv, Ny = V11—,

N%}HZM7 Ng2 = V1 len(”f”), for (m, n) % (0,0),
(mx —n) w[m(1 —x) — n|

(5.2)

We should note that we use a different convention for the basis of the bosonic creation
operators from the literature [16, 25]. Due to the different conventions, there are also
some sign differences in the Neumann matrix elements with the literature. The current
convention is most convenient from the field theory perspective.

In the study of superstring field theories in flat space [23, 24|, besides the cubic vertex,
there are other important physical quantities, such as the prefactor and the higher order
contact interactions. This is further studied in the pp-wave background and the dual field
theory in e.g. [31, 32]. With our specialization to the infinite curvature limit, the tensionless
strings do not have an effective action description. So in our case it seems that at tree
level, the cubic vertex |V') is the only remaining relevant finite physical object to consider.

Suppose three BMN operators Oy, Oz, O3 correspond to three string states [1),|2), |3),
then the planar three-point functions are related to the string vertex

(030102)  _ (1]2|3|V)
<OJO§J01(12—3U)J> - %) ) (5.3)

where |0) is the string vacuum state, and the normalization factor of BMN vacuum corre-
lator is simply

x(l—x)'

( ) 7 (5.4)

The right hand side of (5.3) can be computed by expanding the bosonic operator (5.1) to
appropriate order and extract the relevant Neumann matrix elements. For example, for
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the case of four string modes, the BMN operators correspond to the string states as

Ov{n,mg,ms my afﬁj(?,)aIQT(S)afg;r(:g)aiﬂ(?,)‘0>7
O3 e ks == s (1) %1 1) B (1) Tk 1) 0
Okl,kg,k3 - aiﬂl)aiﬂl aﬁ’;f 10), (5.5)
o’ k= ah;l(l)aﬂ)lm OJll Annd QIBZT(Q)“%)’O%
072 — |0), O <= ag}[0).

We can expand the exponential operator (5.1) to 4th order and compute planar three-point
functions with the usual commutation relation of creation and annihilation operators. The
only non-vanishing contributions come from the 4th order which provides the same numbers
of creation operators as those of the annihilation operators. The results are

J gvz(l —x)
<OJ ! OJ2> H m“k; 9

mi1,m2,m3,m4 Ok1,k2,k3,k4 \/j

0} b0l = 90 (H ) Ve 59
=1

m1,me,m3,ma " kq,ka k3 ma,0

(O amsmsim O 3O} = ij%“ NN N2,
This agrees with the field theory results (4.1) using the Neumann matrix elements in (5.2).
One can also check the case of three string modes previously computed in [18] and various
degenerate cases. Of course, as we mentioned, the planar three-point functions are vanish-
ing in the BMN limit J ~ oo and regarded as virtual processes, but their ratios with the
vacuum correlator are finite and meaningfully related to the Neumann matrix elements.

It is not difficult to see that the Neumann matrix elements in (5.2) simply correspond to
the integrations of the positions of relevant string mode with phases in the BMN operators
with proper normalization, using the closed string level matching condition in the long
3rd string to cancel out an overall phase. We infer that although the physical setting
has at most eight string modes of distinct directions, the mathematical structure of the
holographic dictionary (5.3) is quite robust and survives even in a hypothetical situation
with any number of different string modes, i.e. not just valid for I =1,2,---8.

The analysis here also provides another perspective on the reality condition of higher
genus two-point functions discussed in section 2. Since the Neumann matrix elements are
all real, the planar three-point functions are also always real. If the factorization formulas

g. (4.5) are correct, the higher genus two-point functions can be computed from string
diagrams and must be real.

6 Some issues with multiple string modes in the same transverse direc-
tion

Since we have now studied BMN operators with many string modes, it is appropriate to
consider the situation of multiple modes in the same transverse direction. To our knowledge,
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this situation has not been much discussed in the literature. Naively, the corresponding
BMN operators can be similarly constructed, using the same scalar field (or covariant
derivative) going through the string of Z’s with multiple sums with phases, with possibly
a different normalization discussed below.

For simplicity we consider BMN operators with only the 4 scalar field insertions. First
we introduce some notations, if multiple string modes correspond to the same direction, we
use a square bracket to enclose the mode numbers. For example, the BMN operator with
two identical scalar fields is denoted O[]_ T and the BMN operator with three string
ma,ma],ms)* The closed
string level matching condition is still the same that all mode numbers should sum to

modes where two of them have the same direction is denoted O{[

zero. Since the scalar fields in the square bracket are exchangeable, e.g. the operators

and O{[mg ma],mg) AT€ the same, we can choose to order the mode numbers in

J
([m1,m2],ms) ms3
the square bracket, e.g. in a non-decreasing order.

However, this brings a subtle issue. We recall that the chiral primary operators with
lowest dimension in a short multiplet of A/ = 4 super-Yang-Mills theory are constructed
by the 6 real scalars in the SO(6) symmetric traceless representation, see e.g. the re-
view [33, 34]. They are BPS operators whose conformal dimensions are protected by
supersymmetry. When a real scalar appears multiple times, an operator may no longer
be chiral primary. For example, the operator Tr((qﬁl )2), known as the Konishi operator,
is not a chiral primary operator, since it is not traceless in the SO(6). The conformal
dimension of this operator would grow at least as (g%, N )% On the other hand, the BMN
vacuum operator Tr(Z”) is a chiral primary operator since a power of the complex scalar
Z is automatically traceless in the SO(6).

In the original calculations of planar anomalous conformal dimensions of the BMN

operator O/ [7], one used the fact that for m = 0, the operator O[‘{ o is a chiral primary

m,m

operator whose conformal dimension is not corrected by gauge interactions. So one only
needs to compute the mode number m-dependent part which is perturbative in an effective

gauge coupling constant \' = 2 %/}/2’ N, a small parameter in the BMN limit. In this sense the
BMN operators of distinct scalar field insertions with non-zero modes are “near BPS” oper-
ators. As mentioned, if we put two identical real scalars into the string of Z’s, the zero mode
operator, namely O[{),O], is no longer a chiral primary operator. There may be large (field
theory) quantum corrections to the m-independent part of its conformal dimension. So in
this case the calculations of planar conformal dimension is no longer reliable. We are not

aware a simple natural fix which also matches the expectations from the string theory side.

In any case, we may hope by restricting ourselves to free gauge theory, this issue with
large quantum gauge corrections does not cause problems. We shall retest our earlier results
for the cases involving BMN operators with multiple identical scalar fields. We find that the
comparison with Green-Schwarz light cone string field cubic vertex [16] and factorization
formula [17, 18] still go through smoothly. However, the probability interpretation [19]
begins to encounter an issue in the case of three scalar field insertions with two of them
identical.
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First we consider the case of two identical scalar fields. The BMN operators are

27'rzml

(et Zl¢t 277, m >0,

J
O[_mvm] / J+2 Z €
(6.1)

OJ ¢IZI¢IZJ l
) Z )
where ¢! is any one of 4 remaining real scalars. We only need to consider m > 0 since the
negative m gives the same operator. The zero mode has an extra normalization factor /2
to keep them orthonormal at the planar level.

We consider the comparison with string field vertex in section 5. As an example we

compute the vertex amplitude with three string states aél(J{)\O% 62(;)\0>, Ij;fn(g) L2 |0> We
have an extra contribution if the directions are the same I = Is, namely,
I T a2t 1 I
(Olag(r) a0z =@ Im@| V) J N2 0N h#1 (6.2)
(0[V) NE;ON?’ + NOOND2 o I =D,

The extra contribution for I; = Iy also appears in the extra contraction for identical scalar
fields in the field theory calculations. So the comparison of BMN three-point functions
with cubic string vertex is still valid in the case of multiple modes in the same direction.

The factorization formula also works in this case. We note that with the extra con-
traction due to identical scalars, for m,n # 0 we have the formula

<Of]—m,m]06]10J2> <O{m mOJ1 OE)]Z>7
(OF O, O”) = (O, moiln 2072 +(07,, Ol 0%, (6.3)
<O[£m,m]0[] >t0rus - < —m,m —n n>t0rus + <O£m mOr{ n>t0rus>

where J = J; + Jo and the three-point functions without label are planar. Using the
fact (07, mOg 03?) = (Of, _, O3 0F?), (02, , 0%, ,072) = (O, _,,0:'_,0”2) and the
factorization formula for the case of two different modes [18, 19], we can write the analogous
formula for the current case

J—1 oo

J J Ja )]
<O[ mm}o[ n,n]torus = Z Z (0 mmO[ e 2><O[ kk]O 2O )

J1=1k=0
(6.4)

J

5
Z -m m]OO 06]2><OE)]1 O(L)]QOJ n n]>
Ji=1

We note that the difference is that we only need to sum over k£ > 0 and the second sum is
over J; < Js since the scalars in the two operators O()] L and O(‘)I2 are the same. The formula
for case of m,n = 0 is much simpler and also works in this case, taking into account the
normalization in (6.1).

The calculations with more stringy modes are similar based on the experience. So
we conclude that as long as the comparison with cubic string vertex and the factorization
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formula are valid in the case of many different string modes, then identifying some of the
modes as the same shall not cause problems.

Now we consider the probability interpretation for two and three string modes. Iden-
tifying some modes to the same apparently does not change the non-negativity of the cor-
relators. So we only need to consider the normalization relation. For the case two string
modes in the same direction we still also have the normalization relation similar as (2.6)

> AR,

where we now only need to sum over non-negative integer k. The formula is valid for both
m = 0 and m > 0 since the zero mode decouple from non-zero modes.

However, the normalization relation encounters a problem in the case of three string
modes with two of them in the same direction. The BMN operators are the followings

J 2mimoly  2mimgly

o} e T e T Tr(ptzhiptzlhg2 7277, (6.6)

C
mmalms) = /NTRS g A
1,62=

Comparing to the case of three different modes (2.1), we add a normalization constant which
isc=1ifm; <moandc= % if m1 = mg, so that the operators are orthonormal at the

planar level. Again we compute the sum over one set of mode numbers. Suppose my < ms,

~NJ J _ ~NJ J
Z <O([m1,m2],m3)0([n1,nz},ng,))h - Z <O(m1,mg,mg)O(nl,ng,n3)>h
n1<ns m#En2 (6.7)

~J J
+ \/§ Z<O(m1,m2,m3)0(n,n,n3)>h‘

Unlike the case of two string modes, the second term does not generally vanish. So because
of the v/2 factor, we can not combine the sums into a nice formula like (2.6).

7 Conclusion

The SO(8) rotational symmetry of the transverse directions in the pp-wave back-
ground (1.1) is broken by the Ramond-Ramond flux into SO(4) x SO(4), where the bosonic
string modes are described differently by covariant derivatives and scalar field insertions
in the dual CFT. As such, it is reasonable to expect our proposed entries of pp-wave holo-
graphic dictionary, e.g. (2.10), (4.5), (5.3), to face some challenges with more than four
distinct string modes as the infinite Ramond-Ramond flux in our setting shall separate
the two types of string modes. However, it is rather surprising that even for the case of
four string modes, the torus two-point function can be negative, so the probability in-
terpretation may no longer valid. Of course, since the two-point function is always real
and symmetric, the arguments in [19] are still valid that it can not be naively identified
with a quantum transition amplitude on the string theory side, which would then violate
fundamental principle of unitarity. It would be interesting to provide a reasonable expla-
nation, or improve the proposed holographic dictionary (2.10) to include this case of four
string modes.
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On the other hand, we confirm that the factorization formulas e.g. (4.5) are still valid
for the case of four string modes, while the comparison with cubic string vertex (5.3) is
seen to be straightforwardly applied to any hypothetical number of string modes, not even
restricted by the eight dimensions of transverse directions in the pp-wave background.

We also discuss the situation with multiple string modes in the same direction. In
this case the BMN operators are no longer “near-BPS”, and there are potentially large
quantum corrections on the field theory side if one turns on the gauge coupling. We check
that the mathematical structures in the factorization formula and comparison with cubic
string vertex, e.g. (4.5), (5.3), are robust and remain valid in this situation as we stay in free
gauge theory. However, the proposed probability interpretation (2.10) again seems rather
fragile and further breaks down in the case of three string modes because of a problem
with normalization, though it still holds up in the case of two string modes due to the
decoupling of the zero mode with non-zero modes.

It is interesting to further explore aspects of the pp-wave holographic dictionary. For
example, in the case of three string modes, the non-negativity of torus two-point functions
can be shown by explicit calculations, where there are numerous degenerate cases to deal
with separately. One may ask whether there is a universal formalism which can deal with
all cases regardless of mode number degeneracy and may also generalize to higher genus
h > 2. It is also interesting to check whether the factorization formulas are still valid in the
case of more than four string modes or further in a hypothetical situation of any number of
(different) string modes. Without a significant improvement of mathematical tools, the cal-
culations are much more complicated. In any case, it seems worthwhile to push forward with
the laborious endeavor for the purpose of a better understanding of pp-wave holography.

As mentioned in [20], the probability interpretation of two-point function implies the
string perturbation series is convergent. In this sense, the holographic higher genus calcula-
tions are not asymptotic perturbative expansions as familiar in most examples of quantum
theories, but may in principle provide exact complete string amplitudes valid for any string
coupling. If no new non-perturbative effect is discovered in the future, then perhaps we
have luckily found a rare example of perturbatively complete string theory, at least for the
case of two string modes and very likely also for the case of three distinct string modes
pending more tests of non-negativity at higher genus h > 2. In the cases of four or more
string modes, the torus two-point functions are no longer always non-negative. One can
nevertheless similarly follow the method in [20] to give an upper bound on the higher
genus two-point functions and show that the genus expansions remain convergent. For
small string coupling and two different sets of mode numbers, the torus contribution is
dominant, so the total two-point function could certainly be negative and is no longer a
probability distribution although they can be still similarly normalized to sum to unity. It
would be desirable to better understand the physical meaning of the two-point function on
the string theory side of the correspondence in this situation.
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A Some calculational details of the one-loop string integrals

We will convert the formulas for one-loop string diagrams (4.3) into the 10 types of integrals
in (3.29). In the calculations, some cases are simply related to others by a transformation
(ms,n;) — (—n;, —m;). It is helpful to first list the action of the transformation on the
integrals

I; invariant, ¢=1,4,5,6,9,10,

(A1)
I & Ig, I7 <~ Ig.

We discuss the dissection of the multi-dimensional integral domain in many cases, and
introduce some positive variables z’s and z2’s such that they sum to one.

A.1 S; contribution

We assume integral variables y) > y4. The other case is related by switching yj <> y4 and
the transformation (m;,n;) — (—n;, —m;). We have 0 < y; + v} — ya4 < 2z. In this case
first we write 1 — z = fol_r dz7dzgd(z7 + zg — (1 — x)). Then the variables z7, zg do not
appear in the exponent. There is always an argument 0 with at least multiplicity two in
the standard integral. We define z4 = x — y}j, 25 = y4 and discuss various cases.

.z <y +y) —ya < 2z,i=1,2,3. The delta function constrains fix y, = y; + yj —
ya —x,i = 1,2,3. Without loss of generality we assume y; > yo > y3. We change
integration variables z; = © — y;,1 = 1,2,3, @ = 23+ 24 + 25 + 26, 23 = 25 + 22,
29 = 2b + 21. The integral is then

1 8 8
/ dzdzhdz; lH dzil ) <z1 + 25 + 25 + Z 2 — 1)
0 i=4 i=4
% e2milma(zatze)+na(z1+25)+(natn1—mi)zy+(ma+ma—n3z) 2]
= 1(2,2,2,1,1)(77147 n4,0,m3 + my — nz,ng +ny —my).

This is a Is type integral.

2. v <yityy—vys <2x,i=2,3and 0 < y1 +y) —ys < x. The delta functions constrain
Y = yityyi—ya—z,i = 2,3, and v} = y1+y,—ys. Without loss of generality we assume
y2 > y3. We change variables z; = . — y;,i = 2,3, 2 = 23+ 24 + 25 + 26, 23 = 25 + 29.
We have 1 < z4 4+ z5 and this further divides into two sub-cases.

(a) y1 < z5. Then we define y; = 21,25 = 2{ + z1. The delta function constrain is
d(z1 + 22+ 25 + z4 + 2L + z6 — x). The exponents is now

e2mil(n1+na)(21422)+(m1+ma)(24+26) +(—n3—ma) 25 +(mi+na)zg] (A.3)
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(b)

The integral is (292 1,1)(m1 + M4, N1 + 14,0, m1 + N4, —n3 — msa), which is a Iy
type integral.

25 < Y1 < z4+ z5. Then we define 21 = y; — 25, 24 = 2, + 21. The delta function
constrain is 0(z1 + z2 + 25 + 2 + 25 + 26 — =). The exponents is

627ri[(7u+n4)(Z2+25)+(m1+m4)(ZQ+Z6)+(_"13_m2)Zé+(m4+n1)zl] . (A4)

The integral is I(2 99 1.1)(m1 + ma, n1 +n4,0,mq +ny, —ng — msz), which is also
a Iy type integral.

3.r <ys+y,—vys <2x,and 0 < y; +y) —ys < x,i = 1,2. The delta functions
constrain y5 = y3 +y) —ys — x, and y, = y; + yj — ya,¢ = 1,2. Without loss of

generality we assume y; < y2. Define variables z3 = x — y3, 2 = 23+ 24 + 25 + 2. We

have y; < z4 + 25,7 = 1,2 and this further divides into three sub-cases.

()

y1 < y2 < z5. Then we define y1 = 21,20 = yo — y1, 25 = zé + 21 + z9. The delta
function constrain is § (z1 + 290+ 23+ 24 + zg + zg — a:) The exponents is

e2mil—na(21423) —m3(2a+26)+(—n3+mi1—n1)z2+(—ma+na—ma)zg] (A.5)

The integral is I(32 9 1,1)(=m3, —n3,0, =m3 + ng —myg, —n3 +mq — n1), which is
a I, type integral.

Y1 < z5 < Yo < 24 + 2z5. Then we define y1 = 21,20 = Yo — 25,25 = zg + 21,24 =
29 + zj. The delta function constrain is d(z1 + 22 + 23 + 2 + 25 + 26 — ). The
exponents is

egm‘[_n?,(z1+z3)—m3(zz’l+za)+(—m3+n2—m2)z2+(—n3+m1 —n1)zf] . (AG)

The integral is I(599 1,1)(—=m3, —n3,0, —m3 +ng —ma, —n3 +my — n1), which is
also a Is type integral.
25 < Y1 < Y2 < z4+25. Then we define 21 = y1 —25, 20 = Yo —y1, 24 = 21+22+2}.
The delta function constrain is 0(z1 + 22 + 23 + 2, + 25 + 26 — ). The exponents
is

e2mil—na(23+25)—m3 (2} +26)+(—ma+n2—ma)z2+(—n3+ma—na)z1] (A.7)
The integral is I(3991,1)(—m3, —n3,0, —m3 + ng — ma, —n3 +mgq — ny), which is
also a Iy type integral.

4.0 < yi+yy —ya < z,i = 1,2,3. The delta functions constrain y, = y; + yj —

ya,t = 1,2,3. Without loss of generality we assume y; < yo < y3. Define variables

T = z4+ 25 + 26. We have y; < z4 + 25,7 = 1,2,3 and this further divides into four

sub-cases.

(a)

y1 < y2 < y3 < z5. Then we define 21 = y1,20 = y2 — Y1,23 = Y3 — ¥2,25 =
2L + 21+ 29+ z3. The delta function constrain is §(z1 + 22+ 23+ 24 + 25 + 26 — ).
The exponents is

e2mil(m1—n1)z2+(n3+na—ma—ma)zz+(—matna)zg] (A.8)
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The integral is I(5,171’1)(0, mi —ni, —my + ng,ng + ng —ms — my), which is a I;
type integral.

(b) 11 < y2 < 25 < Y3 < z4 + 25. Then we define 21 = y1,20 = Y2 — 1,23 =
Y3 — 25,25 = 25 + 21 + 22,24 = 2y + z3. The delta function constrain is §(z; +
zo+ 23+ 24 + 25 + 26 — x). The exponents is

eQm‘[(m1—m)22+(—m3+N3)23+(n3+N4—m3—m4)zg] _ (A.Q)

The integral is I(5 1 1,1)(0,m1 — n1, —m3 + n3, n3 +ng — m3 — my), which is also
a I type integral.

(¢) y1 < 25 < y2 < ys < z4 + 25. Then we define 21 = y1,20 = Y2 — 25,23 =
Ys — Y2,25 = 25 + 21,24 = 2 + 22 + z3. The delta function constrain is §(z; +
2o+ 23+ 24 + 25 + 26 — x). The exponents is

e2m‘[(m1 —n1)zt+(—m3z+n3)z3+(n2+nz—ma—ms)z2] _ (A. 10)

The integral is I(5 1 1,1)(0,m1 — n1, —m3 + n3, n2 + n3 — mz —mg), which is also
a I type integral.

(d) z5 < y1 < y2 < ys < z4 + 2z5. Then we define 21 = y1 — 25,22 = Y2 — y1,23 =
Y3 — Y2, 24 = 24 + 21 + 22 + z3. The delta function constrain is §(z1 + 22 + 23 +
z) + z5 + z6 — x). The exponents is

ean‘[(m4—n4)Z1+(—m3+n3)23+(n2+n3—mz—mrs)Zﬂ_ (A.ll)
The integral is I(51,1,1)(0, m4 — n4, —m3 + n3, ng +ng — mg — m3), which is also
a I1 type integral.

Summarizing the total contributions, taking into account various permutations of
indices, we find
S1=¢*2L + I + Iz + I). (A.12)

A.2 S5 contribution

We only need to consider the first expression for Sy in (4.3), and the others can be simply
obtained by permutations of indices. First we consider the integrals of y4,%). There are
two cases

1. yy > ys. We define variables z4 = y4 — x, 2} = yjy — ya,25 = 1 — yjj. There is a delta
function constrain §(z4 + 2 + 25 + @ — 1). The exponents of y4, yj variables become

627ri[(0)25 +ngza/+(ng—may)za+(na—ma)x) ] (A 13)

2. y) < ya. This is simply obtained from the above by switching ny — —mg, mgs — —ny.
delta function constrain §(z4 + 2 + 25 + 2 — 1) is the same. The exponent is now

eQwi[(O)Z5 —myzal+(na—myq)za+(nga—ma)x] ) (A 14)
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Next we consider the integrals of y;,yl,i = 1,2,3. We assume y5 > ys3, with the other
cases obtained by the transformation (A.1). We have 0 < y; + y4 —y3 < 2z,i = 1,2,. We
define 2z = = — y3, z3 = y3 and discuss various cases

l.x < yi +y5 —ys < 2x,9 = 1,2. The delta functions constrain y, = y; + y5 —
ys — x,i = 1,2. Without loss of generality we assume y; > y2. Define variables
zo = zh+ z1,@ = z1 + 25 + 23 + 25 + 2z¢. Including the factor e2mi(na—ma)z  the

exponents of y;,y,, i = 1,2, 3 variables become
e2mil(nz+na—ma)zi+(=nz—mi—ma)zp+(n3+n4)z3+(ms+ma)z5+msze] (A.15)
There are two contributions. Combining with equation (A.13) we have an integral
I(mg,ng, —my, —ng, —g — Ng, M3 — Ng, N3 — Mg, M3 +n3 +mg +ny), (A.16)
which is a Iy type integral, while combining with equation (A.14) we have an integral
I(ms,ng, —my, —ny4,0,mg — ng,n3 — Mg, N3 — M3 + Ny — Mmy), (A.17)
which is a I type integral.

2.2 <ya+ys —ys < 22,0 < y1 +y5 —ys < x. The delta functions constrain y) =
Y2 +y5 — Y3 — x,y) = y1 +y5 — y3. Define variables zo = & — ya, & = 29 + 23 + 25 + 2.
We have y; < z3 + 25, and discuss two sub-cases

(a) y1 < z3. Define variables z; = y1, 23 = 21 +#}. Including the factor 2™ (4—m4)z

the exponents of y;,y!,i = 1, 2,3 variables become

e2mil—n2z1+(mi+ns+n4) 2] +(—ma—n2)z2+(—ma—matna)zz+(—ma—ma)ze] (A.18)

There are two contributions. Combining with equation (A.13) we have an inte-
gral

I(m47 N4, —Mg, —N2, Mg + Ng, M4 — N2, Ng — M2, Mg +Ng +m1 + n3)7 (Alg)

which is a Ig type integral, while combining with equation (A.14) we have an
integral

I(my,ng, —ma, —n2,0,my — n2, g — Mg, my + ng + mq + n3), (A.20)

which is a I type integral.

(b) 23 < y1 < z3 + z5. Define variables z1 = y; — 23,25 = 21 + z|. Including the
factor e2(na—ma)z the exponents of Yi, Y, i = 1,2,3 variables become

e2mil(ma+ni+na)z1+(—ma—matna)zi+(—ma—n2)z2—n2z3+(—ma2—ma)ze] (A.21)

There are two contributions. Combining with equation (A.13) we have an inte-
gral

I(my,ng, —ma, —ng, Mg + Ny, My — N2, ng — Mo, Mg +ng +ms+ny), (A.22)
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which is a Ig type integral, while combining with equation (A.14) we have an
integral

I(m4, Nng, —Ma, —Na, 0, My — No, Ng — Mo, My + Ng + M3 + nl), (A.23)

which is a I type integral.

3. 0<yi+vys—ys < x,i=1,2. The delta functions constrain y, = y; +y5 — y3,7 = 1,2.

Without loss of generality we assume y; < yo2. Define variables x = z3 + 25 + 2. We

have y; < z3 + 24,7 = 1,2, and discuss three sub-cases

(a)

y1 < y2 < z3. Define variables 21 = y1, 22 = y2 — y1, 23 = Y2 + 25. Including the

2mi(na—my)

factor e ¥ the exponents of y;, y;, i = 1,2, 3 variables become

e27ri[(0)z1 +(m1—n1)z2+(n3+na—ma—ma)zy+(na—ma)zs—maze] . (A.24)

There are two contributions. Combining with equation (A.13) we have an inte-
gral

1(2,27171’171)(‘@4 —my,0,n4, —My, M1 — N1, N4 — My + N3 — mg), (A.25)

which is a I5 type integral, while combining with equation (A.14) we have an
integral

I(2291,1)(m4,n4,0,n4 + N3 — M3z, mg +mq —ny), (A.26)
which is a I3 type integral.

y1 < z3 < Y2 < z3 + 24. Define variables z1 = y1, 20 = ya — 23,23 = 21 + 21,25 =
zo + zb. Including the factor e2mi(na—ma)r  the exponents of Vi, yh i = 1,2,3
variables become

2mil(0)z1+(m1—n1)z] +(na+na—ma—ma)za+(na—ma)zy—maze] (A.27)

There are two contributions. Combining with equation (A.13) we have an inte-
gral

I(2’271’17171)(n4 — My, 0, Ng, —Myg, M1 — N1, N4 — My + Ny — mg), (A28)

which is a I5 type integral, while combining with equation (A.14) we have an
integral
I2.9,2,1,1) (M4, m4,0,n4 + g — ma, myg +m1 —n1), (A.29)

which is a I3 type integral.

23 < Y1 < ya < z3+25. Define variables z1 = y1 —z3, 20 = ya—y1, 24 = 21+22+25.

2mi(na—my)

Including the factor e ¥  the exponents of y;,y.,i = 1,2,3 variables

become
627ri[(m3 —n3)z1+(n2+ns—mo—my)ze+(na—ma)zh+(0)z3—my4 z6] ) (A?)O)
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There are two contributions. Combining with equation (A.13) we have an inte-
gral

Iio9.1,1,1,1) (N4 — My, 0,4, =y, m3 — N3, Mg — My + Nz — M2), (A.31)

which is a I5 type integral, while combining with equation (A.14) we have an
integral

I(2,2,2,1,1)(m47 n4,0,n4 + Ny — Mo, my + M3 — n3), (A.32)

which is a I3 type integral.

Summarizing the total contributions, taking into account various permutations of in-
dices, we find

Sy = g (Io + Is + 2I5 + 215 + I7 + Ig). (A.33)

A.3 S3 contribution

We only need to consider the first expression for S3 in (4.3), and the others can be simply
obtained by permutations of indices. First we consider the integrals of y;,y.,i = 3,4.
We assume yy > y4, with the other cases obtained by the transformation (A.1). Define
variables z4 = y4 — 2,2}, =1 — y}. We have = < y3 + yj — y4 < 2 — z. There are two cases
with a subdivision into a total of three cases

1. 1 <ys+yy—ys < 2—2x. The delta function constrain y5 = ys+y) —ys — (1 —z). We
define variable y3 =1 — 23,1 — 2 = 23+ 24 + 2} + 25. The exponents of y;, y},i = 3,4
variables become

e2minazs+(na—ms—ma)za—m3zy+(nz+na—ms)zs+(nz+na—mz—ma)z] (A.34)

2. x < y3+ Yy —ya < 1. The delta function constrain y5 = y3 + y4 — ya. We have
ys — x < z4 + zjj, which divides into two sub-cases

(a) y3 —x < z4. Define variables z3 = y3 — x,24 = z3 + 25. The exponents of
Vi, Yi, i = 3,4 variables become

627ri[(n3+n4—m3—m4)z;3+(n4—m4)zg+(0)zﬁl+(n3+n4)Z5+(n3+n4—m3—m4)x] . (A.35)

(b) z4 < y3 —x < z4 + 2. Define variables z3 = y3 — x — 24,2} = 23 + 25. The
exponents of y;,yi, i = 3,4 variables become

e2mil(n3—m3)z3+(0)25+(n3+na—ma—ma)zj+(na+na)zs+(n3+na—maz—ma)z] (A.36)

Next we consider the integrals of v;,y.,i = 1,2. We mainly consider y5 > y2 and the

results for y5 < ya can be simply obtained by transforming (m;,n;) — (—n;, —m;),i = 1,2.
We define 25, = x — y, 22 = y2. We have 0 < y1 + y4 — y2 < 2z and discuss some cases
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1. * < y1 + vh — y2 < 2x. The delta function constrain y] = y1 + v5 — y2 — z. Define
Y1 = — 21,T = 21 + 22 + 25 + z6. The exponents of y;,y,,i = 1,2 variables become

62m’[n2z1+(n2—ml—mg)zz—mlz§+(n1+n2—m1)26]‘ (A.37)
There are three contributions. Combining with equation (A.34) we have an integral
I(mg, ng, —mg, —n3, mi +ma+ng, ny +ng+mso, mi +msg —ns,ny +ng —ms), (A.38)

which is a 19 type integral, combining with equation (A.35) we have an integral
I(my,m1, —mg, —ng, —mg — N2, m1 — Na, N1 — M2, m1 +n1 +ms+ny), (A.39)
which is a I7 type integral, and combining with equation (A.36) we have an integral
I(mq,ny, —ma, —ng, —Mg — Ny, My — no, Ny — ma,mi +ny +mg +n3), (A.40)

which is also a I7 type integral.
2. We transform equation (A.37) by (m;,n;) — (—n;, —m;),i = 1,2, and get a factor

627”'[*771221+(*m2+n1+n2)22+n12§+(*m1*m2+n1)26] ) (A.41)

Again there are three contributions. Combining with equation (A.34) we have an
integral

I(my, ng, —ma, —ng2, m3+mag+ng, N3 +ng+maq, ms+mg —ng, n3+ng —ms), (A.42)
which is a 1o type integral, combining with equation (A.35) we have an integral
I(mg,ne, —my, —n1, —my — Ny, Mg — N1, N2 — mi,ma +ng +ms +ny), (A.43)
which is a I7 type integral, and combining with equation (A.36) we have an integral
I(mg,n2, —my, —ny, —my1 — n1,mg — Ny, Ny — My, Mg +ng +my +ng), (A.44)
which is also a I7 type integral.

3.0 < y1 +y5—y2 < x. The delta function constrain v} = y1 + v5 — y2. We have
y1 < 2 + 22 and discuss some sub-cases

(a) 0 < y1 < 2. Define 21 = y1,29 = 21 + 2}, 2 = 21 + 2] + 25 + 26. The exponents
of y;,yi,i = 1,2 variables become

627ri[(n1+n2—m1 —ma)z1+(n2—ma2)z]+(0) 25 +(n14+n2)z6] ) (A45)

There are three contributions. Combining with equation (A.34) we have an
integral

I(ms,ng, —my, —ng, =4 — N4, M3 — Ny, N3 — My, M3 + n3 +mq +nz), (A.46)
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which is a I type integral, combining with equation (A.35) we have an integral
I2211,1,1)(n3+n4—m3z—my,0,n3+nyg, —m3—my,ng—myg, —n1+my), (A.47)

which is a Iy type integral, and combining with equation (A.36) we have an
integral

I2211,1,1)(n3+n4—m3z—my,0,n3+nyg, —m3—my,n3—m3, —ni+mq), (A.48)

which is also a Iy type integral.

We transform equation (A.45) by (mg,n;) — (—n;,—m;),i = 1,2, and get a
factor
eQni[(n1+n2—m1 —ma)z1+(n2—ma)z;+(0)25+(—m1 _WQ)ZG]_ (A.49)

Again there are three contributions. Combining with equation (A.34) we have
an integral

I(ms3, ng, —ma, —na, m3 + nz,m3 — N4, N3 — M4, m3 +nz +mi +nz2), (A.50)
which is a Ig type integral, combining with equation (A.35) we have an integral
I(2291,1)(m1 +m2,n1 + n2,0,m1 + na, —my — n3), (A.51)

which is a I type integral, and combining with equation (A.36) we have an
integral

I292,1,1)(m1 +m2,n1 + n2,0,m1 + ng, —msz — n4), (A.52)

which is also a I type integral.
29 < Y1 < z2+25. Define variables 21 = y1 — 29,25 = 21+ 21, @ = 21+ 2] + 22+ 26.

The exponents of y;,y.,i = 1,2 variables become
e2mil(ni+na—mi—ma)zo+(n1—mi)z1+(0)21 +(n1+n2)z6] (A.53)
We notice this is just (A.45) with the index switch 1 +» 2. So we can simply

obtain the remaining results by index switching the last two sub-cases. Namely
we have one more type of I, Iy integrals, two more types of Iy, Iy integrals.

Summarizing the total contributions, taking into account various permutations of in-
dices, we find

S3 = 92(14 + +17 + Is + 21y + 2149). (A.54)
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