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Martin Schlichenmaier

Abstract. Krichever–Novikov type algebras are generalizations of the Witt,
Virasoro, affine Lie algebras, and their relatives to Riemann surfaces of ar-

bitrary genus. We give the most important results about their structure,
almost-grading and central extensions. This contribution is based on a se-

quence of introductory lectures delivered by the author at the Southeast Lie

Theory Workshop 2012 in Charleston, U.S.A.

1. Introduction

The Witt algebra and its universal central extension the Virasoro algebra re-
spectively are in some sense the simplest non-trivial examples of infinite dimensional
Lie algebras 1. Nevertheless, they already exhibit a very rich algebraic theory of rep-
resentations. Furthermore, they appear prominently as symmetry algebras of quite
a number of systems with infinitely many independent degrees of freedom. Their
appearance in Conformal Field Theory (CFT) [4], [105] is well-known. But this is
not their only application. At many other places in- and outside of mathematics
they play an important role.

The algebras can be given by meromorphic objects on the Riemann sphere
(genus zero) with possible poles only at {0,∞}. For the Witt algebra these objects
are vector fields. More generally one obtains its central extension the Virasoro
algebra, the current algebras and their central extensions the affine Kac-Moody
algebras. For Riemann surfaces of higher genus, but still only for two points were
poles are allowed, they were generalised by Krichever and Novikov [56], [57], [58]
in 1986. In 1990 the author [77], [78], [79], [80] extended the approach further to
the general multi-point case.

These extensions were not at all straight-forward. The main point was to in-
troduce a replacement of the graded algebra structure present in the “classical”
case. Krichever and Novikov found that an almost-grading, see Definition 5.1 be-
low, will be enough to allow for the standard constructions in representation theory.
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In [79], [80] it was realized that a splitting of the set A of points where poles are
allowed, into two disjoint non-empty subsets A = I ∪ O is crucial for introduc-
ing an almost-grading. The corresponding almost-grading was explicitly given. A
Krichever-Novikov (KN) type algebra is an algebra of meromorphic objects with
an almost-grading coming from such a splitting. In the classical situation there is
only one such splitting (up to inversion) possible, Hence, there is only one almost-
grading, which is indeed a grading.

From the algebraic point of view these KN type algebras are of course infinite
dimensional Lie algebras, but they are still defined as (algebraic-)geometric objects.
This point of view will be very helpful for further examinations.

As already mentioned above the crucial property is the almost-grading which
replaces the honest grading in the Witt and Virasoro case. For a number of repre-
sentation theoretic constructions the almost-grading will be enough. In contrast to
the classical situation, where there is only one grading, we will have a finite set of
non-equivalent gradings and new interesting phenomena show up. This is already
true for the genus zero case (i.e. the Riemann sphere case) with more than two
points where poles are allowed. These algebras will be only almost-graded, see e.g.
[81], [29], [30].

Quite recently the book Krichever–Novikov type algebras. Theory and applica-
tions [91] by the author appeared. It gives a more or less complete treatment of
the state of the art of the theory of KN type algebras including some applications.
For more applications in direction of integrable systems and description of the Lax
operator algebras see also the recent book Current algebras on Riemann surfaces
[102] by Sheinman.

The goal of the lectures at the workshop and of this extended write-up was
to give a gentle introduction to the KN type algebras in the multi-point setting,
their definitions and main properties. Proofs are mostly omitted. They all can be
found in [91], beside in the original works. KN type algebras carry a very rich
representation theory. We have Verma modules, highest weight representations,
Fermionic and Bosonic Fock representations, semi-infinite wedge forms, b − c sys-
tems, Sugawara representations and vertex algebras. Due to space limitations as
far as these representations are concerned we are very short here and have to refer
to [91] too. There also a quite extensive list of references can be found, includ-
ing articles published by physicist’s on applications in the field theoretical context.
This review extends and updates in certain respects the previous review [89] and
has consequently some overlap with it.

It is a pleasure for me to thank the organisers Iana Anguelova, Ben Cox, Eliz-
abeth Jurisich, and Oleg Smirnov of the Southeast Lie Theory Workshop 2012 in
Charleston, for the invitation to this very inspiring activity. Particular thank goes
also to the audience for their lively feed-back. I acknowledge partial support by
Internal Research Project GEOMQ11, University of Luxembourg, and in the frame
of the OPEN scheme of the Fonds National de la Recherche (FNR) with the project
QUANTMOD O13/570706.

2. A Reminder of the Virasoro Algebra and its Relatives

These algebras are in some sense the simplest non-trivial infinite dimensional
Lie algebras. For the convenience of the reader we will start by recalling their
conventional algebraic definitions.
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2.1. The Witt algebra. The Witt algebraW , sometimes also called Virasoro
algebra without central term, is the Lie algebra generated as vector space by the
basis elements {en | n ∈ Z} with Lie structure

(2.1) [en, em] = (m− n)en+m, n,m ∈ Z.

The algebra W is more than just a Lie algebra. It is a graded Lie algebra. If
we set for the degree deg(en) := n then

(2.2) W =
⊕
n∈Z
Wn, Wn = 〈en〉C.

Obviously, deg([en, em]) = deg(en) + deg(em).
Algebraically W can also be given as Lie algebra of derivations of the algebra

of Laurent polynomials C[z, z−1].

Remark 2.1. In the purely algebraic context our field of definition C can be
replaced by an arbitrary field K of characteristics 0. This concerns all cases in this
section.

2.2. The Virasoro algebra. For the Witt algebra the universal central ex-
tension is the Virasoro algebra V. As vector space it is the direct sum V = C⊕W.
If we set for x ∈ W, x̂ := (0, x), and t := (1, 0) then its basis elements are ên, n ∈ Z
and t with the Lie product 2.

(2.3) [ên, êm] = (m− n)ên+m +
1

12
(n3 − n)δ−mn t, [ên, t] = [t, t] = 0,

for all n,m ∈ Z. By setting deg(ên) := deg(en) = n and deg(t) := 0 the Lie
algebra V becomes a graded algebra. The algebra W will only be a subspace,
not a subalgebra of V. But it will be a quotient. Up to equivalence of central
extensions and rescaling the central element t, this is beside the trivial (splitting)
central extension the only central extension of W.

2.3. The affine Lie algebra. Given g a finite-dimensional Lie algebra (e.g.
a finite-dimensional simple Lie algebra) then the tensor product of g with the as-
sociative algebra of Laurent polynomials C[z, z−1] carries a Lie algebra structure
via

(2.4) [x⊗ zn, y ⊗ zm] := [x, y]⊗ zn+m.

This algebra is called current algebra or loop algebra and denoted by g. Again
we consider central extensions. For this let β be a symmetric, bilinear form for g
which is invariant (e.g. β([x, y], z) = β(x, [y, z]) for all x, y, z ∈ g). Then a central
extension is given by

(2.5) [x̂⊗ zn, ŷ ⊗ zm] := ̂[x, y]⊗ zn+m − β(x, y) ·mδ−mn · t.

This algebra is denoted by ĝ and called affine Lie algebra. With respect to the
classification of Kac-Moody Lie algebras, in the case of a simple g they are exactly
the Kac-Moody algebras of affine type, [47], [48], [68].

2Here δlk is the Kronecker delta which is equal to 1 if k = l, otherwise zero.
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2.4. The Lie superalgebra. To complete the description I will give introduce
the Lie superalgebra of Neveu-Schwarz type. The centrally extended superalgebra
has as basis (we drop theˆ)

(2.6) en, n ∈ Z, ϕm, m ∈ Z +
1

2
, t

with structure equations

(2.7)

[en, em] = (m− n)em+n +
1

12
(n3 − n) δ−mn t,

[en, ϕm] = (m− n

2
) ϕm+n,

[ϕn, ϕm] = en+m −
1

6
(n2 − 1

4
) δ−mn t.

By “setting t = 0” we obtain the non-extended superalgebra. The elements en
(and t) are a basis of the subspace of even elements, the elements ϕm a basis of the
subspace of odd elements.

These algebras are indeed Lie superalgebras. For completeness I recall their
definition here.

Remark 2.2. ( Definition of a Lie superalgebra). Let S be a vector space which
is decomposed into even and odd elements S = S0̄ ⊕ S1̄, i.e. S is a Z/2Z-graded
vector space. Furthermore, let [., .] be a Z/2Z-graded bilinear map S ×S → S such
that for elements x, y of pure parity

(2.8) [x, y] = −(−1)x̄ȳ[y, x].

Here x̄ is the parity of x, etc. These conditions say that

(2.9) [S0̄,S0̄] ⊆ S0̄, [S0̄,S1̄] ⊆ S1̄, [S1̄,S1̄] ⊆ S0̄,

and that [x, y] is symmetric for x and y odd, otherwise anti-symmetric. Now S is a
Lie superalgebra if in addition the super-Jacobi identity (for x, y, z of pure parity)

(2.10) (−1)x̄z̄[x, [y, z]] + (−1)ȳx̄[y, [z, x]] + (−1)z̄ȳ[z, [x, y]] = 0

is valid. As long as the type of the arguments is different from (even, odd, odd) all
signs can be put to +1 and we obtain the form of the usual Jacobi identity. In the
remaining case we get

(2.11) [x, [y, z]] + [y, [z, x]]− [z, [x, y]] = 0.

By the definitions S0 is a Lie algebra.

3. The Geometric Picture

In the previous section I gave the Virasoro algebra and its relatives by purely
algebraic means, i.e. by basis elements and structure equations. The full importance
and strength will become more visible in a geometric context. Also from these
geometric realization the need for a generalization as obtained via the Krichever–
Novikov type algebras will become evident.
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3.1. The geometric realisations of the Virasoro algebra. One of its
realization is as complexification of the Lie algebra of polynomial vector fields
V ectpol(S

1) on the circle S1. This is a subalgebra of V ect(S1), die Lie algebra
of all C∞ vector fields on the circle. In this realization the basis elements are

(3.1) en := −i exp inϕ
d

dϕ
, n ∈ Z ,

where ϕ is the angle variable. The Lie product is the usual Lie bracket of vector
fields.

If we extend analytically these generators to the whole punctured complex
plane we obtain en = zn+1 d

dz . This gives another realization of the Witt algebra as

the algebra of those meromorphic vector fields on the Riemann sphere S2 = P1(C)
which are holomorphic outside {0} and {∞}.

Let z be the (quasi) global coordinate z (quasi, because it is not defined at
∞). Let w = 1/z be the local coordinate at ∞. A global meromorphic vector field
v on P1(C) will be given on the corresponding subsets where z respectively w are
defined as

(3.2) v =

(
v1(z)

d

dz
, v2(w)

d

dw

)
, v2(w) = −v1(z(w))w2.

The function v1 will determine the vector field v. Hence, we will usually just write
down v1 and in fact identify the vector field v with its local representing function
v1, which we will denote by the same letter.

For the Lie bracket we calculate

(3.3) [v, u] =

(
v
d

dz
u− u d

dz
v

)
d

dz
.

The space of all meromorphic vector fields constitute a Lie algebra.
The subspace of those meromorphic vector fields which are holomorphic outside

of {0,∞} is a Lie subalgebra. Its elements can be given as

(3.4) v(z) = f(z)
d

dz

where f is a meromorphic function on P1(C), which is holomorphic outside {0,∞}.
Those are exactly the Laurent polynomials C[z, z−1]. Consequently, this subalgebra
has the set {en, n ∈ Z} as basis. The Lie product is the same and the subalgebra
can be identified with the Witt algebra W. The subalgebra of global holomorphic
vector fields is 〈e−1, e0, e1〉C. It is isomorphic to the Lie algebra sl(2,C).

Similarly, the algebra C[z, z−1] can be given as the algebra of meromorphic
functions on S2 = P(C) holomorphic outside of {0,∞}.

3.2. Arbitrary genus generalizations. In the geometric setup for the Vira-
soro algebra the objects are defined on the Riemann sphere and might have poles at
most at two fixed points. For a global operator approach to conformal field theory
and its quantization this is not sufficient. One needs Riemann surfaces of arbitrary
genus, Moreover, one needs more than two points were singularities are allowed 3.
Such a generalizations were initiated by Krichever and Novikov [56], [57], [58], who
considered arbitrary genus and the two-point case. As far as the current algebras

3The singularities correspond to points where free fields are entering the region of interaction
or leaving it. In particular from the very beginning there is a natural decomposition of the set of

points into two disjoint subsets.
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Figure 1. Riemann surface of genus zero with one incoming and
one outgoing point.

Figure 2. Riemann surface of genus two with one incoming and
one outgoing point.

are concerned see also Sheinman [96], [97], [98], [99]. The multi-point case was
systematically examined by the author [77], [78], [79], [80], [81] [82], [83], [84].
For some related approach see also Sadov [76].

For the whole contribution let Σ be a compact Riemann surface without any
restriction for the genus g = g(Σ). Furthermore, let A be a finite subset of Σ.
Later we will need a splitting of A into two non-empty disjoint subsets I and O, i.e.
A = I ∪O. Set N := #A, K := #I, M := #O, with N = K +M . More precisely,
let

(3.5) I = (P1, . . . , PK), and O = (Q1, . . . , QM )

be disjoint ordered tuples of distinct points (“marked points”, “punctures”) on the
Riemann surface. In particular, we assume Pi 6= Qj for every pair (i, j). The
points in I are called the in-points, the points in O the out-points. Occasionally we
consider I and O simply as sets.

Sometimes we refer to the classical situation. By this we understand

(3.6) Σ = P1(C) = S2, I = {z = 0}, O = {z =∞},
and the situation considered in Section 3.1.

The following figures should indicate the geometric picture. Figure 1 shows the
classical situation. Figure 2 is genus 2, but still two-point situation. Finally, in
Figure 3 the case of a Riemann surface of genus 2 with two incoming points and
one outgoing point is visualized.

Remark 3.1. We stress the fact, that these generalizations are needed also in
the case of genus zero if one considers more than two points. Even there in the case
of three points interesting algebras show up.
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P1

P2

Q1

Figure 3. Riemann surface of genus two with two incoming points
and one outgoing point.

3.3. Meromorphic forms. To introduce the elements of the generalised al-
gebras we first have to discuss forms of of certain (conformal) weights. Recall that
Σ is a compact Riemann surface of genus g ≥ 0. Let A be a fixed finite subset of Σ.
In fact we could allow for this and the following sections (as long as we do not talk
about almost-grading) that A is an arbitrary subset. This includes the extremal
cases A = ∅ or A = Σ.

Let K = KΣ be the canonical line bundle of Σ. Its local sections are the
local holomorphic differentials. If P ∈ Σ is a point and z a local holomorphic
coordinate at P then a local holomorphic differential can be written as f(z)dz
with a local holomorphic function f defined in a neighbourhood of P . A global
holomorphic section can be described locally in coordinates (Ui, zi)i∈J by a system
of local holomorphic functions (fi)i∈J , which are related by the transformation rule
induced by the coordinate change map zj = zj(zi) and the condition fidzi = fjdzj .
This yields

(3.7) fj = fi ·
(
dzj
dzi

)−1

.

A meromorphic section of K, i.e. a meromorphic differential is given as a collec-
tion of local meromorphic functions (hi)i∈J with respect to a coordinate covering
for which the transformation law (3.7) is true. We will not make any distinction
between the canonical bundle and its sheaf of sections, which is a locally free sheaf
of rank 1.

In the following λ is either an integer or a half-integer. If λ is an integer then
(1) Kλ = K⊗λ for λ > 0,
(2) K0 = O, the trivial line bundle, and
(3) Kλ = (K∗)⊗(−λ) for λ < 0.
Here K∗ denotes the dual line bundle of the canonical line bundle. This is the
holomorphic tangent line bundle, whose local sections are the holomorphic tangent
vector fields f(z)(d/dz).

If λ is a half-integer, then we first have to fix a “square root” of the canonical line
bundle, sometimes called a theta characteristics. This means we fix a line bundle
L for which L⊗2 = K. After such a choice of L is done we set Kλ := KλL := L⊗2λ.
In most cases we will drop the mentioning of L, but we have to keep the choice in
mind. The fine-structure of the algebras we are about to define will depend on the
choice. But the main properties will remain the same.

Remark 3.2. A Riemann surface of genus g has exactly 22g non-isomorphic
square roots of K. For g = 0 we have K = O(−2), and L = O(−1), the tautological
bundle, is the unique square root. Already for g = 1 we have four non-isomorphic
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ones. As in this case K = O one solution is L0 = O. But we have also other bundles
Li, i = 1, 2, 3. Note that L0 has a nonvanishing global holomorphic section, whereas
this is not the case for L1, L2 and L3. In general, depending on the parity of the
dimension of the space of globally holomorphic sections, i.e. dim H0(Σ, L), one
distinguishes even and odd theta characteristics L. For g = 1 the bundle O is an
odd, the others are even theta characteristics. The choice of a theta characteristic
is also called a spin structure on Σ [3].

We set

(3.8) Fλ(A) := {f is a global meromorphic section of Kλ |
f is holomorphic on Σ \A}.

Obviously this is a C-vector space. To avoid cumbersome notation, we will often
drop the set A in the notation if A is fixed and/or clear from the context. Recall
that in the case of half-integer λ everything depends on the theta characteristic L.

Definition 3.3. The elements of the space Fλ(A) are called meromorphic
forms of weight λ (with respect to the theta characteristic L).

Remark 3.4. In the two extremal cases for the set A we obtain Fλ(∅) the
global holomorphic forms, and Fλ(Σ) all meromorphic forms. By compactness
each f ∈ Fλ(Σ) will have only finitely many poles. In the case that f 6≡ 0 it will
also have only finitely many zeros.

Let us assume that zi and zj are local coordinates for the same point P ∈ Σ.
For the bundle K both dzi and dzj are frames. If we represent the same form f
locally by fidzi and fjdzj then we conclude from (3.7) that fj = fi · c1 and that
the transition function c1 is given by

(3.9) c1 =

(
dzj
dzi

)−1

=
dzi
dzj

.

For sections of Kλ with λ ∈ Z the transition functions are cλ = (c1)λ. The corre-
sponding is true also for half-integer λ. In this case the basic transition function of
the chosen theta characteristics L is given as c1/2 and all others are integer powers

of it. Symbolically, we write
√
dzi or (dz)1/2 for the local frame, keeping in mind

that the signs for the square root is not uniquely defined but depends on the bundle
L.

If f is a meromorphic λ-form it can be represented locally by meromorphic
functions fi. If f 6≡ 0 the local representing functions have only finitely many zeros
and poles. Whether a point P is a zero or a pole of f does not depend on the
coordinate zi chosen, as the transition function cλ will be a nonvanishing function.
Moreover, we can define for P ∈ Σ the order

(3.10) ordP (f) := ordP (fi),

where ordP (fi) is the lowest nonvanishing order in the Laurent series expansion of
fi in the variable zi around P . It will not depend on the coordinate zi chosen. The
order ordP (f) is (strictly) positive if and only if P is a zero of f . It is negative if
and only if P is a pole of f . Moreover, its value gives the order of the zero and pole
respectively. By compactness our Riemann surface Σ can be covered by finitely
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many coordinate patches. Hence, f can only have finitely many zeros and poles.
We define the (sectional) degree of f to be

(3.11) sdeg(f) :=
∑
P∈Σ

ordP (f).

Proposition 3.5. Let f ∈ Fλ, f 6≡ 0 then

(3.12) sdeg(f) = 2λ(g − 1).

For this and related results see [85].

4. Algebraic Structures

Next we introduce algebraic operations on the vector space of meromorphic
forms of arbitrary weights. This space is obtained by summing over all weights

(4.1) F :=
⊕
λ∈ 1

2Z

Fλ.

The basic operations will allow us to introduce finally the algebras we are heading
for.

4.1. Associative structure. In this section A is still allowed to be an arbi-
trary subset of points in Σ. Mostly, we will drop the subset A in the notation. The
natural map of the locally free sheaves of rang one

(4.2) Kλ ×Kν → Kλ ⊗Kν ∼= Kλ+ν , (s, t) 7→ s⊗ t,
defines a bilinear map

(4.3) · : Fλ ×Fν → Fλ+ν .

With respect to local trivialisations this corresponds to the multiplication of the
local representing meromorphic functions

(4.4) (s dzλ, t dzν) 7→ s dzλ · t dzν = s · t dzλ+ν .

If there is no danger of confusion then we will mostly use the same symbol for the
section and for the local representing function.

The following is obvious

Proposition 4.1. The space F is an associative and commutative graded (over
1
2Z) algebra. Moreover, A = F0 is a subalgebra and the Fλ are modules over A.

Of course, A is the algebra of those meromorphic functions on Σ which are holo-
morphic outside of A. In case that A = ∅, it is the algebra of global holomorphic
functions. By compactness, these are only the constants, hence A(∅) = C. In case
that A = Σ it is the field of all meromorphic functions M(Σ).

4.2. Lie and Poisson algebra structure. Next we define a Lie algebra
structure on the space F . The structure is induced by the map

(4.5) Fλ ×Fν → Fλ+ν+1, (e, f) 7→ [e, f ],

which is defined in local representatives of the sections by

(4.6) (e dzλ, f dzν) 7→ [e dzλ, f dzν ] :=

(
(−λ)e

df

dz
+ νf

de

dz

)
dzλ+ν+1,

and bilinearly extended to F . Of course, we have to show the following
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Proposition 4.2. [91, Prop. 2.6 and 2.7] The prescription [., .] given by (4.6)
is well-defined and defines a Lie algebra structure on the vector space F .

Proof. It is a nice exercise to show that the expressions on the right hand
side in (4.6) transform correctly as local representing functions for λ+ ν + 1 forms.
That the Jacobi identity is true follows from direct calculations, see the above
reference. �

Proposition 4.3. [91, Prop. 2.8] The subspace L = F−1 is a Lie subalgebra,
and the Fλ’s are Lie modules over L.

Proof. For illustration we supply the proof. For λ = ν = −1 we get as weight
of the Lie product λ+ ν + 1 = −1, hence the subspace is closed under the bracket
and a Lie subalgebra. For e ∈ L and h ∈ Fλ the Lie module structure is given by
e . h := [e, h] ∈ Fλ. The Jacobi identity for e, f ∈ L and h ∈ Fλ reads as

(4.7) 0 = [[e, f ], h] + [[f, h], e] + [[h, e], f ] = [e, f ] . h− e . (f . h) + f . (e . h).

This is exactly the condition for Fλ being a Lie module. �

Definition 4.4. An algebra (B, ·, [., .]) such that · defines the structure of an
associative algebra on B and [., .] defines the structure of a Lie algebra on B is called
a Poisson algebra if and only if the Leibniz rule is true, i.e.

(4.8) ∀e, f, g ∈ B : [e, f · g] = [e, f ] · g + f · [e, g].

In other words, via the Lie product [., .] the elements of the algebra act as
derivations on the associative structure. The reader should be warned that [., .] is
not necessarily the commutator of the algebra (B, ·).

Theorem 4.5. [91, Thm. 2.10] The space F with respect to · and [., .] is a
Poisson algebra.

Next we consider important substructures. We already encountered the subal-
gebras A and L. But there are more structures around.

4.3. The vector field algebra and the Lie derivative. First we look again
on the Lie subalgebra L = F−1. Here the Lie action respect the homogeneous
subspaces Fλ. As forms of weight −1 are vector fields, it could also be defined as
the Lie algebra of those meromorphic vector fields on the Riemann surface Σ which
are holomorphic outside of A. For vector fields we have the usual Lie bracket and
the usual Lie derivative for their actions on forms. For the vector fields we have
(again naming the local functions with the same symbol as the section) for e, f ∈ L

(4.9) [e, f ]| = [e(z)
d

dz
, f(z)

d

dz
] =

(
e(z)

df

dz
(z)− f(z)

de

dz
(z)

)
d

dz
.

For the Lie derivative we get

(4.10) ∇e(f)| = Le(g)| = e . g| =

(
e(z)

df

dz
(z) + λf(z)

de

dz
(z)

)
d

dz
.

Obviously, these definitions coincide with the definitions already given above. But
now we obtained a geometric interpretation.
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4.4. The algebra of differential operators. If we look at F , considered
as Lie algebra, more closely, we see that F0 is an abelian Lie subalgebra and the
vector space sum F0 ⊕ F−1 = A ⊕ L is also a Lie subalgebra. In an equivalent
way this can also be constructed as semidirect sum of A considered as abelian Lie
algebra and L operating on A by taking the derivative.

Definition 4.6. The Lie algebra of differential operators of degree ≤ 1 is de-
fined as the semidirect sum of A with L and is denoted by D1.

In terms of elements the Lie product is

(4.11) [(g, e), (h, f)] = (e . h− f . g , [e, f ]).

Using the fact, that A is an abelian subalgebra in F this is exactly the definition
for the Lie product given for this algebra. Hence, D1 is a Lie algebra.

The projection on the second factor (g, e) 7→ e is a Lie homomorphism and we
obtain a short exact sequences of Lie algebras

(4.12) 0 −−−−→ A −−−−→ D1 −−−−→ L −−−−→ 0 .

Hence A is an (abelian) Lie ideal of D1 and L a quotient Lie algebra. Obviously L
is also a subalgebra of D1.

Proposition 4.7. The vector space Fλ becomes a Lie module over D1 by the
operation

(4.13) (g, e).f := g · f + e.f, (g, e) ∈ D1(A), f ∈ Fλ(A).

4.5. Differential operators of all degree. We want to consider also dif-
ferential operators of arbitrary degree acting on Fλ. This is obtained via some
universal constructions. First we consider the universal enveloping algebra U(D1).
We denote its multiplication by � and its unit by 1.

The universal enveloping algebra contains many elements which act in the same
manner on Fλ. For example, if h1 and h2 are functions different from constants
then h1 · h2 and h1 � h2 are different elements of U(D1). Nevertheless, they act in
the same way on Fλ.

Hence we will divide out further relations

(4.14) D = U(D1)/J, respectively Dλ = U(D1)/Jλ

with the two-sided ideals

J := ( a� b− a · b, 1− 1 | a, b ∈ A ),

Jλ := ( a� b− a · b, 1− 1, a� e− a · e+ λ e . a | a, b ∈ A, e ∈ L ).

By universality the Fλ are modules over U(D1). The relations in J are fulfilled as
(a� b) · f = a · (b · f) = (a · b) · f . Hence for all λ the Fλ are modules over D.

If λ is fixed then the additional relations in Jλ are also true. For this we
calculate

(4.15)

(a� e) . f = a · (e . f) = ae
df

dz
+ λaf

de

dz
,

(a · e) . f = (ae)
df

dz
+ λf

d(ae)

dz
= (ae)

df

dz
+ λfe

da

dz
+ λfa

de

dz

λ(e . a) · f = λ ef
da

dz
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Hence,

(4.16)
(
a� e− a · e+ λ(e . a)

)
. f = 0.

Consequently, for a fixed λ the space Fλ is a module over Dλ.

Definition 4.8. ([36, IV,16.8,16.11] and [9]) A linear map D : Fλ → Fλ is
called an (algebraic) differential operator of degree ≤ n with n ≥ 0 if and only if

(1) If n = 0 then D = b, the multiplication with a function b ∈ A.
(2) If n > 0, then for a ∈ A (considered as multiplication operator)

[D, a] : Fλ → Fλ

is a differential operator of degree ≤ (n− 1).

Let Diff(n)(Fλ) be the subspace of all differential operators on Fλ of degree ≤ n.
By composing the operators

Diff(Fλ) :=
⋃
n∈N0

Diff(n)(Fλ)

becomes an associative algebra which is a subalgebra of End(Fλ).
Let D ∈ D and assume that D is one of the generators

(4.17) D = a0 � e1 � a1 � e2 � · · · � an−1 � en � an
with ei ∈ L and ai ∈ A (written as element in U(D1)).

Proposition 4.9. [91, Prop. 2.14] Every element D ∈ D respectively of Dλ of
the form (4.17) operates as (algebraic) differential operator of degree ≤ n on Fλ.

In fact, we get (associative) algebra homomorphisms

(4.18) D → Diff(Fλ), Dλ → Diff(Fλ) .

In case that the set A of points where poles are allowed is finite and non-empty the
complement Σ \ A is affine [39, p.297]. Hence, as shown in [36] every differential
operator can be obtained by successively applying first order operators, i.e. by
applying elements from U(D1). In other words the homomorphisms (4.18) are
surjective.

4.6. Lie superalgebras of half forms. Recall from Remark 2.2 the defini-
tion of a Lie superalgebra.

With the help of our associative product (4.2) we will obtain examples of Lie
superalgebras. First we consider

(4.19) · F−1/2 ×F−1/2 → F−1 = L ,
and introduce the vector space S with the product

(4.20) S := L ⊕ F−1/2, [(e, ϕ), (f, ψ)] := ([e, f ] + ϕ · ψ, e . ϕ− f . ψ).

The elements of L are denoted by e, f, . . . , and the elements of F−1/2 by ϕ,ψ, . . ..
The definition (4.20) can be reformulated as an extension of [., .] on L to a

super-bracket (denoted by the same symbol) on S by setting

(4.21) [e, ϕ] := −[ϕ, e] := e . ϕ = (e
dϕ

dz
− 1

2
ϕ
de

dz
)(dz)−1/2

and

(4.22) [ϕ,ψ] := ϕ · ψ .
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We call the elements of L elements of even parity, and the elements of F−1/2

elements of odd parity. For such elements x we denote by x̄ ∈ {0̄, 1̄} their parity.
The sum (4.20) can also be described as S = S0̄⊕S1̄, where Sī is the subspace

of elements of parity ī.

Proposition 4.10. [91, Prop. 2.15] The space S with the above introduced
parity and product is a Lie superalgebra.

Remark 4.11. The choice of the theta characteristics corresponds to choosing
a spin structure on Σ. For the relation of the Neveu-Schwarz superalgebra to the
geometry of graded Riemann surfaces see Bryant [17].

4.7. Jordan superalgebra. Leidwanger and Morier-Genoux introduced in
[61] a Jordan superalgebra in our geometric setting. They put

(4.23) J := F0 ⊕F−1/2 = J0̄ ⊕ J1̄.

Recall that A = F0 is the associative algebra of meromorphic functions. They
define the (Jordan) product ◦ via the algebra structures for the spaces Fλ by

(4.24)

f ◦ g := f · g ∈ F0,

f ◦ ϕ := f · ϕ ∈ F−1/2,

ϕ ◦ ψ := [ϕ,ψ] ∈ F0.

By rescaling the second definition with the factor 1/2 one obtains a Lie anti-algebra
as introduced by Ovsienko [72]. See [61] for more details and additional results on
representations.

4.8. Higher genus current algebras. We fix an arbitrary finite-dimensional
complex Lie algebra g. Our goal is to generalize the classical current algebra to
higher genus. For this let (Σ, A) be the geometrical data consisting of the Riemann
surface Σ and the subset of points A used to define A, the algebra of meromorphic
functions which are holomorphic outside of the set A ⊆ Σ.

Definition 4.12. The higher genus current algebra associated to the Lie alge-
bra g and the geometric data (Σ, A) is the Lie algebra g = g(A) = g(Σ, A) given as
vector space by g = g⊗C A with the Lie product

(4.25) [x⊗ f, y ⊗ g] = [x, y]⊗ f · g, x, y ∈ g, f, g ∈ A.

Proposition 4.13. g is a Lie algebra.

Proof. The antisymmetry is clear from the definition. Moreover

[[x⊗ f, y ⊗ g], z ⊗ h] = [[x, y], z]⊗ ((f · g) · h).

As A is associative and commutative summing up cyclically the Jacobi identity
follows directly from the Jacobi identity for g. �

As usual we will suppress the mentioning of (Σ, A) if not needed. The elements
of g can be interpreted as meromorphic functions Σ→ g from the Riemann surface
Σ to the Lie algebra g, which are holomorphic outside of A.

Later we will introduce central extensions for these current algebras. They will
generalize affine Lie algebras, respectively affine Kac-Moody algebras of untwisted
type.
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For some applications it is useful to extend the definition by considering differ-
ential operators (of degree ≤ 1) associated to g. We define D1

g := g ⊕ L and take
in the summands the Lie product defined there and put additionally

(4.26) [e, x⊗ g] := −[x⊗ g, e] := x⊗ (e.g).

This operation can be described as semidirect sum of g with L and we get

Proposition 4.14. [91, Prop. 2.15] D1
g is a Lie algebra.

4.9. Krichever–Novikov type algebras. Above the set A of points where
poles are allowed was arbitrary. In case that A is finite and moreover #A ≥ 2 the
constructed algebras are called Krichever–Novikov (KN) type algebras. In this way
we get the KN vector field algebra, the function algebra, the current algebra, the
differential operator algebra, the Lie superalgebra, etc. The reader might ask what
is so special about this situation so that these algebras deserve special names. In
fact in this case we can endow the algebra with a (strong) almost-graded structure.
This will be discussed in the next section. The almost-grading is a crucial tool for
extending the classical result to higher genus. Recall that in the classical case we
have genus zero and #A = 2.

Strictly speaking, a KN type algebra should be considered to be one of the above
algebras for 2 ≤ #A <∞ together with a fixed chosen almost-grading induced by
the splitting A = I ∪O into two disjoint non-empty subset, see Definition 5.1.

5. Almost-Graded Structure

5.1. Definition of almost-gradedness. In the classical situation discussed
in Section 2 the algebras introduced in the last section are graded algebras. In the
higher genus case and even in the genus zero case with more than two points where
poles are allowed there is no non-trivial grading anymore. As realized by Krichever
and Novikov [56] there is a weaker concept, an almost-grading, which to a large
extend is a valuable replacement of a honest grading. Such an almost-grading is
induced by a splitting of the set A into two non-empty and disjoint sets I and O.
The (almost-)grading is fixed by exhibiting certain basis elements in the spaces Fλ
as homogeneous.

Definition 5.1. Let L be a Lie or an associative algebra such that L = ⊕n∈ZLn
is a vector space direct sum, then L is called an almost-graded (Lie-) algebra if

(i) dimLn <∞,
(ii) There exists constants L1, L2 ∈ Z such that

Ln · Lm ⊆
n+m+L2⊕

h=n+m−L1

Lh, ∀n,m ∈ Z.

The elements in Ln are called homogeneous elements of degree n, and Ln is called
homogeneous subspace of degree n.

If dimLn is bounded with a bound independent of n we call L strongly almost-
graded. If we drop the condition that dimLn is finite we call L weakly almost-graded.

In a similar manner almost-graded modules over almost-graded algebras are
defined. We can extend in an obvious way the definition to superalgebras, respec-
tively even to more general algebraic structures. This definition makes complete
sense also for more general index sets J. In fact we will consider the index set
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J = (1/2)Z in the case of superalgebras. The even elements (with respect to the
super-grading) will have integer degree, the odd elements half-integer degree.

5.2. Separating cycle and Krichever-Novikov pairing. Before we give
the almost-grading we introduce an important structure. Let Ci be positively ori-
ented (deformed) circles around the points Pi in I, i = 1, . . . ,K and C∗j positively
oriented circles around the points Qj in O, j = 1, . . . ,M .

A cycle CS is called a separating cycle if it is smooth, positively oriented of
multiplicity one and if it separates the in-points from the out-points. It might have
multiple components. In the following we will integrate meromorphic differentials
on Σ without poles in Σ \A over closed curves C. Hence, we might consider the C
and C ′ as equivalent if [C] = [C ′] in H1(Σ \ A,Z). In this sense we can write for
every separating cycle

(5.1) [CS ] =

K∑
i=1

[Ci] = −
M∑
j=1

[C∗j ].

The minus sign appears due to the opposite orientation. Another way for giving
such a CS is via level lines of a “proper time evolution”, for which I refer to [91,
Section 3.9].

Given such a separating cycle CS (respectively cycle class) we define a linear
map

(5.2) F1 → C, ω 7→ 1

2πi

∫
CS

ω.

The map will not depend on the separating line CS chosen, as two of such will be
homologous and the poles of ω are only located in I and O.

Consequently, the integration of ω over CS can also be described over the spe-
cial cycles Ci or equivalently over C∗j . This integration corresponds to calculating
residues

(5.3) ω 7→ 1

2πi

∫
CS

ω =

K∑
i=1

resPi(ω) = −
M∑
l=1

resQl(ω).

Definition 5.2. The pairing

(5.4) Fλ ×F1−λ → C, (f, g) 7→ 〈f, g〉 :=
1

2πi

∫
CS

f · g,

between λ and 1− λ forms is called Krichever-Novikov (KN) pairing.

Note that the pairing depends not only on A (as the Fλ depend on it) but also
critically on the splitting of A into I and O as the integration path will depend on
it. Once the splitting is fixed the pairing will be fixed too.

In fact there exit dual basis elements (see (5.9)) hence the pairing is non-
degenerate.

5.3. The homogeneous subspaces. Given the vector spaces Fλ of forms
of weight L we will now single out subspaces Fλm of degree m by giving a basis of
these subspaces. This has been done in the 2-point case by Krichever and Novikov
[56] and in the multi-point case by the author [77], [78], [79], [80], see also Sadov
[76]. See in particular [91, Chapters 3,4,5] for a complete treatment. All proofs of
the statements to come can be found there.
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Depending on whether the weight λ is integer or half-integer we set Jλ = Z
or Jλ = Z + 1/2. For Fλ we introduce for m ∈ Jλ subspaces Fλm of dimension
K, where K = #I, by exhibiting certain elements fλm,p ∈ Fλ, p = 1, . . . ,K which

constitute a basis of Fλm. Recall that the spaces Fλ for λ ∈ Z+ 1/2 depend on the
chosen square root L (the theta characteristic) of the bundle chosen. The elements
are the elements of degree m. As explained in the following, the degree is in an
essential way related to the zero orders of the elements at the points in I.

Let I = {P1, P2, . . . , PK} then we have for the zero-order at the point Pi ∈ I
of the element fλn,p

(5.5) ordPi(f
λ
n,p) = (n+ 1− λ)− δpi , i = 1, . . . ,K .

The prescription at the points in O is made in such a way that the element fλm,p
is essentially uniquely given. Essentially unique means up to multiplication with
a constant4. After fixing as additional geometric data a system of coordinates zl
centered at Pl for l = 1, . . . ,K and requiring that

(5.6) fλn,p(zp) = zn−λp (1 +O(zp))(dzp)
λ

the element fn,p is uniquely fixed. In fact, the element fλn,p only depends on the
first jet of the coordinate zp.

Example. Here we will not give the general recipe for the prescription at the
points in O. Just to give an example which is also an important special case, assume
O = {Q} is a one-element set. If either the genus g = 0, or g ≥ 2, λ 6= 0, 1/2, 1
and the points in A are in generic position then we require

(5.7) ordQ(fλn,p) = −K · (n+ 1− λ) + (2λ− 1)(g − 1).

In the other cases (e.g. for g = 1) there are some modifications at the point in O
necessary for finitely many m.

Theorem 5.3. [91, Thm. 3.6] Set

(5.8) Bλ := { fλn,p | n ∈ Jλ, p = 1, . . . ,K }.

Then (a) Bλ is a basis of the vector space Fλ.
(b) The introduced basis Bλ of Fλ and B1−λ of F1−λ are dual to each other

with respect to the Krichever-Novikov pairing (5.4), i.e.

(5.9) 〈fλn,p, f1−λ
−m,r〉 = δrp δ

m
n , ∀n,m ∈ Jλ, r, p = 1, . . . ,K.

In particular, from part (b) of the theorem it follows that the Krichever-Novikov
pairing is non-degenerate. Moreover, any element v ∈ F1−λ acts as linear form on
Fλ via

(5.10) Φv : Fλ 7→ C, w 7→ Φv(w) := 〈v, w〉.

Via this pairing F1−λ can be considered as restricted dual of Fλ. The identification
depends on the splitting of A into I and O as the KN pairing depends on it. The full

4Strictly speaking, there are some special cases where some constants have to be added such
that the Krichever-Novikov duality (5.9) is valid.
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space (Fλ)∗ can even be described with the help of the pairing in a “distributional
interpretation” via the distribution Φv̂ associated to the formal series

(5.11) v̂ :=
∑
m∈Z

K∑
p=1

am,pf
1−λ
m,p , am,p ∈ C .

The dual elements of L will be given by the formal series (5.11) with basis ele-
ments from F2, the quadratic differentials, the dual elements of A correspondingly
from F1, the differentials, and the dual elements of F−1/2 correspondingly from
F3/2.

It is quite convenient to use special notations for elements of some important
weights:

(5.12)
en,p := f−1

n,p, ϕn,p := f−1/2
n,p , An,p := f0

n,p,

ωn,p := f1
−n,p, Ωn,p := f2

−n,p.

In view of (5.9) for the forms of weight 1 and 2 we invert the index n and write it
as a superscript.

Remark 5.4. It is also possible (and for certain applications necessary) to
write explicitely down the basis elements fλn,p in terms of usual objects defined
on the Riemann surface Σ. For genus zero they can be given with the help of
rational functions in the quasi-global variable z. For genus one (i.e. the torus case)
representations with the help of Weierstraß σ and Weierstraß ℘ functions exists. For
genus ≥ 1 there exists expressions in terms of theta functions (with characteristics)
and prime forms. Here the Riemann surface has first to be embedded into its
Jacobian via the Jacobi map. See [91, Chapter 5], [78], [81] for more details.

5.4. The algebras.

Theorem 5.5. [91, Thm. 3.8] There exists constants R1 and R2 (depending
on the number and splitting of the points in A and on the genus g) independent of
λ and ν and independent of n,m ∈ J such that for the basis elements

(5.13)

fλn,p · fνm,r = fλ+ν
n+m,rδ

r
p

+

n+m+R1∑
h=n+m+1

K∑
s=1

a
(h,s)
(n,p)(m,r)f

λ+ν
h,s , a

(h,s)
(n,p)(m,r) ∈ C,

[fλn,p, f
ν
m,r] = (−λm+ νn) fλ+ν+1

n+m,r δ
r
p

+

n+m+R2∑
h=n+m+1

K∑
s=1

b
(h,s)
(n,p)(m,r)f

λ+ν+1
h,s , b

(h,s)
(n,p)(m,r) ∈ C.

This says in particular that with respect to both the associative and Lie struc-
ture the algebra F is weakly almost-graded. In generic situations and for N = 2
points one obtains R1 = g and R2 = 3g.

The reason why we only have weakly almost-gradedness is that

(5.14) Fλ =
⊕
m∈Jλ

Fλm, with dimFλm = K.

If we add up for a fixed m all λ we get that our homogeneous spaces are infinite
dimensional.
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In the definition of our KN type algebra only finitely many λ are involved,
hence the following is immediate

Theorem 5.6. The Krichever-Novikov type vector field algebras L, function al-
gebras A, differential operator algebras D1, Lie superalgebras S, and Jordan super-
algebras J are all (strongly) almost-graded algebras and the corresponding modules
Fλ are almost-graded modules.

We obtain with n ∈ Jλ

(5.15)
dimLn = dimAn = dimFλn = K,

dimSn = dimJn = 2K, dimD1
n = 3K .

If U is any of these algebras, with product denoted by [ . ] then

(5.16) [Un,Um] ⊆
n+m+Ri⊕
h=n+m

Uh,

with Ri = R1 for U = A and Ri = R2 otherwise.
For further reference let us specialize the lowest degree term component in

(5.13) for certain special cases.

(5.17)

An,p ·Am,r = An+m,r δ
p
r + h.d.t.

An,p · fλm,r = fλn+m,r δ
p
r + h.d.t.

[en,p, em,r] = (m− n) · en+m,r δ
p
r + h.d.t.

en,p . f
λ
m,r = (m+ λn) · fλn+m,r δ

p
r + h.d.t.

Here h.d.t. denote linear combinations of basis elements of degree between n+m+1
and n+m+Ri,

Finally, the almost-grading of A induces an almost-grading of the current al-
gebra g by setting gn = g⊗An. We obtain

(5.18) g =
⊕
n∈Z

gn, dim gn = K · dim g.

5.5. Triangular decomposition and filtrations. Let U be one of the above
introduced algebras (including the current algebra). On the basis of the almost-
grading we obtain a triangular decomposition of the algebras

(5.19) U = U[+] ⊕ U[0] ⊕ U[−],

where

(5.20) U[+] :=
⊕
m>0

Um, U[0] =

m=0⊕
m=−Ri

Um, U[−] :=
⊕

m<−Ri

Um.

By the almost-gradedness the [+] and [−] subspaces are (infinite dimensional) sub-
algebras. The [0] spaces in general not. Sometimes we will use critical strip for
them.

With respect to the almost-grading of Fλ we introduce a filtration

(5.21)

Fλ(n) :=
⊕
m≥n

Fλm,

.... ⊇ Fλ(n−1) ⊇ Fλ(n) ⊇ Fλ(n+1) ....
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Proposition 5.7. [91, Prop. 3.15]

(5.22) Fλ(n) = { f ∈ Fλ | ordPi(f) ≥ n− λ,∀i = 1, . . . ,K }.

This proposition is very important. In case that O has more than one point
there are certain choices, e.g. numbering of the points in O, different rules, etc.
involved in defining the almost-grading. Hence, if the choices are made differently
the subspaces Fλn might depend on them, and consequently also the almost-grading.
But by this proposition the induced filtration is indeed canonically defined via the
splitting of A into I and O.

Moreover, different choices will give equivalent almost-grading. We stress the
fact, that under a KN algebra we will always understand one of introduced algebras
together with an almost-grading (respectively equivalence class of almost-grading,
respectively filtration) introduced by the splitting A = I ∪O.

6. Central Extensions

Central extension of our algebras appear naturally in the context of quantiza-
tion and regularization of actions. Of course they are also of independent mathe-
matical interest.

6.1. Central extensions and cocycles. For the convenience of the reader
let us repeat the relation between central extensions and the second Lie algebra
cohomology with values in the trivial module. A central extension of a Lie algebra

W is a special Lie algebra structure on the vector space direct sum Ŵ = C ⊕W .
If we denote x̂ := (0, x) and t := (1, 0) then the Lie structure is given by

(6.1) [x̂, ŷ] = [̂x, y] + ψ(x, y) · t, [t, Ŵ ] = 0, x, y ∈W ,

with bilinear form ψ. The map x 7→ x̂ = (0, x) is a linear splitting map. Ŵ will be a
Lie algebra, e.g. will fulfill the Jacobi identity, if and only if ψ is an antisymmetric
bilinear form and fulfills the Lie algebra 2-cocycle condition

(6.2) 0 = d2ψ(x, y, z) := ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y).

Two central extensions are equivalent if they essentially correspond only to the
choice of different splitting maps. A 2-cochain ψ is a coboundary if there exists a
linear form ϕ : W → C such that

(6.3) ψ(x, y) = ϕ([x, y]).

Every coboundary is a cocycle. The second Lie algebra cohomology H2(W,C) of
W with values in the trivial module C is defined as the quotient of the space of
cocycles modulo coboundaries. Moreover, two central extensions are equivalent if
and only if the difference of their defining 2-cocycles ψ and ψ′ is a coboundary. In
this way the second Lie algebra cohomology H2(W,C) classifies equivalence classes
of central extensions. The class [0] corresponds to the trivial central extension. In
this case the splitting map is a Lie homomorphism. To construct central extensions
of our algebras we have to find such Lie algebra 2-cocycles.

Clearly, equivalent central extensions are isomorphic. The opposite is not true.
In our case we can always rescale the central element by multiplying it with a
nonzero scalar. This is an isomorphism but not an equivalence of central extensions.
Nevertheless it is an irrelevant modification. Hence we will be mainly interested in
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central extensions modulo equivalence and rescaling. They are classified by [0] and
the elements of the projectivized cohomology space P(H2(W,C)).

In the classical case we have dim H2(W,C) = 1, hence there are only two
essentially different central extensions, the splitting one given by the direct sum
C ⊕W of Lie algebras and the up to equivalence and rescaling unique non-trivial
one, the Virasoro algebra V.

6.2. Geometric cocycles. The defining cocycle

(6.4)
1

12
(n3 − n)δ−mn

for the Virasoro algebra is very special. Obviously it does not make any sense in
the higher genus and/or multi-point case. We need to find a geometric description.
For this we have first to introduce connections.

6.2.1. Projective and affine connections. Let (Uα, zα)α∈J be a covering of
the Riemann surface by holomorphic coordinates with transition functions zβ =
fβα(zα).

Definition 6.1. (a) A system of local (holomorphic, meromorphic) functions
R = (Rα(zα)) is called a (holomorphic, meromorphic) projective connection if it
transforms as

(6.5) Rβ(zβ) · (f ′β,α)2 = Rα(zα) + S(fβ,α), with S(h) =
h′′′

h′
− 3

2

(
h′′

h′

)2

,

the Schwartzian derivative. Here ′ denotes differentiation with respect to the coor-
dinate zα.

(b) A system of local (holomorphic, meromorphic) functions T = (Tα(zα)) is
called a (holomorphic, meromorphic) affine connection if it transforms as

(6.6) Tβ(zβ) · (f ′β,α) = Tα(zα) +
f ′′β,α
f ′β,α

.

Every Riemann surface admits a holomorphic projective connection [40],[38].
Given a point P then there exists always a meromorphic affine connection holo-
morphic outside of P and having maximally a pole of order one there [80].

From their very definition it follows that the difference of two affine (projec-
tive) connections will be a (quadratic) differential. Hence, after fixing one affine
(projective) connection all others are obtained by adding (quadratic) differentials.

6.2.2. The function algebra A. We consider it as abelian Lie algebra. Let C be
an arbitrary smooth but not necessarily connected curve. We set

(6.7) ψ1
C(g, h) :=

1

2πi

∫
C

gdh, g, h ∈ A.

6.2.3. The current algebra g. For g = g ⊗ A we fix a symmetric, invariant,
bilinear form β on g (not necessarily non-degenerate). Recall, that invariance means
that we have β([x, y], z) = β(x, [y, z]) for all x, y, z ∈ g. Then a cocycle is given as

(6.8) ψ2
C,β(x⊗ g, y ⊗ h) := β(x, y) · 1

2πi

∫
C

gdh, x, y ∈ g, g, h ∈ A.
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6.2.4. The vector field algebra L. Here it is a little bit more delicate. First we
have to choose a (holomorphic) projective connection R. We define

(6.9) ψ3
C,R(e, f) :=

1

24πi

∫
C

(
1

2
(e′′′f − ef ′′′)−R · (e′f − ef ′)

)
dz .

Only by the term coming with the projective connection it will be a well-defined
differential, i.e. independent of the coordinate chosen. It is shown in [80] (and
[91]) that it is a cocycle. Another choice of a projective connection will result in
a cohomologous one. Hence, the equivalence class of the central extension will be
the same.

6.2.5. The differential operator algebra D1. For the differential operator algebra
the cocycles of type (6.7) for A can be extended by zero on the subspace L. The
cocycles for L can be pulled back. In addition there is a third type of cocycles
mixing A and L:

(6.10) ψ4
C,T (e, g) :=

1

24πi

∫
C

(eg′′ + Teg′)dz, e ∈ L, g ∈ A,

with an affine connection T , with at most a pole of order one at a fixed point in O.
Again, a different choice of the connection will not change the cohomology class.
For more details on the cocycles see [83], [91].

6.2.6. The Lie superalgebra S. Here we have to take into account that it is not
a Lie algebra. Hence, the Jacobi identity has to be replaced by the super-Jacobi
identity. The conditions for being a cocycle for the superalgebra cohomology will
change too. Recall the definition of the algebra from Section 4.6, in particular that
the even elements (parity 0) are the vector fields and the odd elements (parity 1) are
the half-forms. A bilinear form c is a cocycle if the following is true. The bilinear
map c will be symmetric if both x and y are odd, otherwise it will be antisymmetric:

(6.11) c(x, y) = −(−1)x̄ȳc(x, y).

The super-cocycle condition reads as

(6.12) (−1)x̄z̄c(x, [y, z]) + (−1)ȳx̄c(y, [z, x]) + (−1)z̄ȳc(z, [x, y]) = 0.

With the help of c we can define central extensions in the Lie superalgebra sense.
If we put the condition that the central element is even then the cocycle c has to
be an even map and c vanishes for pairs of elements of different parity.

By convention we denote vector fields by e, f, g, ... and -1/2-forms by ϕ,ψ, χ, ..
and get

(6.13) c(e, ϕ) = 0, e ∈ L, ϕ ∈ F−1/2.

The super-cocycle conditions for the even elements is just the cocycle condition for
the Lie subalgebra L. The only other nonvanishing super-cocycle condition is for
the (even,odd,odd) elements and reads as

(6.14) c(e, [ϕ,ψ])− c(ϕ, e . ψ)− c(ψ, e . ϕ) = 0.

Here the definition of the product [e, ψ] := e . ψ was used.
If we have a cocycle c for the algebra S we obtain by restriction a cocycle for

the algebra L. For the mixing term we know that c(e, ψ) = 0. A naive try to
put just anything for c(ϕ,ψ) (for example 0) will not work as (6.14) relates the
restriction of the cocycle on L with its values on F−1/2.
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Proposition 6.2. [88] Let C be any closed (differentiable) curve on Σ not
meeting the points in A, and let R be any (holomorphic) projective connection then
the bilinear extension of

(6.15)

ΦC,R(e, f) :=
1

24πi

∫
C

(
1

2
(e′′′f − ef ′′′)−R · (e′f − ef ′)

)
dz

ΦC,R(ϕ,ψ) := − 1

24πi

∫
C

(ϕ′′ · ψ + ϕ · ψ′′ −R · ϕ · ψ) dz

ΦC,R(e, ϕ) := 0

gives a Lie superalgebra cocycle for S, hence defines a central extension of S. A
different projective connection will yield a cohomologous cocycle.

A similar formula was given by Bryant in [17]. By adding the projective con-
nection in the second part of (6.15) he corrected some formula appearing in [12].
He only considered the two-point case and only the integration over a separating
cycle. See also [54] for the multi-point case, where still only the integration over a
separating cycle is considered.

In contrast to the differential operator algebra case the two parts cannot be
prescribed independently. Only with the same integration path (more precisely,
homology class) and the given factors in front of the integral it will work. The
reason for this is that (6.14) relates both.

6.3. Uniqueness and classification of central extensions. The above in-
troduced cocycles depend on the choice of the connections R and T . Different
choices will not change the cohomology class. Hence, this ambiguity does not
disturb us. What really matters is that they depend on the integration curve C
chosen.

In contrast to the classical situation, for the higher genus and/or multi-point
situation there are many essentially different closed curves and hence many non-
equivalent central extensions defined by the integration.

But we should take into account that we want to extend the almost-grading
from our algebras to the centrally extended ones. This means we take deg x̂ := deg x
and assign a degree deg(t) to the central element t, and still we want to obtain
almost-gradedness.

This is possible if and only if our defining cocycle ψ is “local” in the following
sense (the name was introduced in the two point case by Krichever and Novikov in
[56]). There exists M1,M2 ∈ Z such that

(6.16) ∀n,m : ψ(Wn,Wm) 6= 0 =⇒ M1 ≤ n+m ≤M2.

Here W stands for any of our algebras (including the supercase). Very important,
“local” is defined in terms of the almost-grading, and the almost-grading itself
depends on the splitting A = I ∪O. Hence what is “local” depends on the splitting
too.

We will call a cocycle bounded (from above) if there exists M ∈ Z such that

(6.17) ∀n,m : ψ(Wn,Wm) 6= 0 =⇒ n+m ≤M.

Similarly bounded from below can be defined. Locality means bounded from above
and from below.

Given a cocycle class we call it bounded (respectively local) if and only if
it contains a representing cocycle which is bounded (respectively local). Not all
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cocycles in a bounded class have to be bounded. If we choose as integration path
a separating cocycle CS , or one of the Ci then the above introduced geometric
cocycles are local, respectively bounded. Recall that in this case integration can
be done by calculating residues at the in-points or at the out-points. All these
cocycles are cohomologically nontrivial. The theorems in the following concern the
opposite direction. They were treated in my works [83], [84], [88]. See also [91]
for a complete and common treatment.

The following result for the vector field algebra L gives the principal structure
of the classification results.

Theorem 6.3. [83], [91, Thm. 6.41] Let L be the Krichever–Novikov vector
field algebra with a given almost-grading induced by the splitting A = I ∪O.
(a) The space of bounded cohomology classes is K-dimensional (K = #I). A
basis is given by setting the integration path in (6.9) to Ci, i = 1, . . . ,K the little
(deformed) circles around the points Pi ∈ I.
(b) The space of local cohomology classes is one-dimensional. A generator is given
by integrating (6.9) over a separating cocycle CS, i.e.

(6.18) ψ3
CS ,R(e, f) =

1

24πi

∫
CS

(
1

2
(e′′′f − ef ′′′)−R · (e′f − ef ′)

)
dz .

(c) Up to equivalence and rescaling there is only one non-trivial one-dimensional

central extension L̂ of the vector field algebra L which allows an extension of the
almost-grading.

Remark 6.4. In the classical situation, Part (c) shows also that the Virasoro
algebra is the unique non-trivial central extension of the Witt algebra (up to equiv-
alence and rescaling). This result extends to the more general situation under the
condition that one fixes the almost-grading, hence the splitting A = I ∪O. Here I
like to repeat the fact that for L depending on the set A and its possible splittings
into two disjoint subsets there are different almost-gradings. Hence, the “unique”
central extension finally obtained will also depend on the splitting. Only in the two
point case there is only one splitting possible. In the case that the genus g ≥ 1
there are even integration paths possible in the definition of (6.9) which are not
homologous to a separating cycle of any splitting. Hence, there are other central
extensions possible not corresponding to any almost-grading.

The above theorem is a model for all other classification results. We will always
obtain a statement about the bounded (from above) cocycles and then for the local
cocycles.

If we consider the function algebra A as an abelian Lie algebra then every
skew-symmetric bilinear form will be a non-trivial cocycle. Hence, there is no hope
of uniqueness. But if we add the condition of L-invariance, which is given as

(6.19) ψ(e.g, h) + ψ(g, e.h) = 0, ∀e ∈ L, g, h ∈ A

things will change.
Let us denote the the subspace of local cohomology classes by H2

loc, and the
subspace of local and L-invariant cohomology classes by H2

L,loc. Note that the
condition is only required for at least one representative in the cohomology class.
We collect a part of the results for the cocycle classes of the other algebras in the
following theorem.
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Theorem 6.5. [91, Cor. 6.48]

(a) dim H2
L,loc(A,C) = 1,

(b) dim H2
loc(L,C) = 1,

(c) dim H2
loc(D1,C) = 3,

(d) dim H2
loc(g,C) = 1 for g a simple finite-dimensional Lie algebra,

(e) dim H2
loc(S,C) = 1,

A basis of the cohomology spaces are given by taking the cohomology classes of the
cocycles (6.7), (6.9), (6.10), (6.8), (6.15) obtained by integration over a separating
cycle CS.

Consequently, we obtain also for these algebras the corresponding result about
uniqueness of almost-graded central extensions. For the differential operator algebra
we get three independent cocycles. This generalizes results of [2] for the classical
case.

For result on the bounded cocycle classes we have to multiply the dimensions
above by K. For the supercase with odd central element the bounded cohomology
vanishes.

For g a reductive Lie algebra and the cocycle L-invariant if restricted to the
abelian part, a complete classification of local cocycle classes for both g and D1

g can
be found in [84], [91, Chapter 9]. See also the examples below. Note that in the
case of a simple Lie algebra every symmetric, invariant bilinear form β is a multiple
of the Cartan-Killing form.

I like to mention that in all the applications I know of, the cocycles coming
from representations, regularizations, etc. are local. Hence, the uniqueness or
classification result above can be used.

7. Examples and Generalizations

7.1. Examples: sl(n) and gl(n). For illustration we give the cocycles for
the important special cases sl(n) (which is a simple algebra) and the case of gl(n)
(which is reductive but not semisimple). We will study the current and the affine
algebras, the differential operator algebras, and their central extensions.

7.1.1. sl(n). This is the Lie algebra of trace-less complex n×n matrices. Up to
multiplication with a scalar the Cartan-Killing form β(x, y) = tr(xy) is the unique
symmetric invariant bilinear form. It is non-degenerate.

Proposition 7.1. [91, Prop. 9.47] (a) Every local cocycle for the current al-
gebra sl(n) is cohomologous to

(7.1) γ(x(g), y(h)) = r
tr(xy)

2πi

∫
CS

gdh, r ∈ C.

(b) Every L-invariant local cocycle equals the cocycle (7.1) with a suitable r.
(c) Every local cocycle for the differential operator algebra D1

sl(n) is cohomologous

to a linear combination of (7.1) and the standard local cocycle (6.18) for the vector
field algebra. In particular, no cocycles of pure mixing type exists.
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7.1.2. gl(n). This is the Lie algebra of all complex n× n-matrices. Recall that
gl(n) can be written as Lie algebra direct sum

(7.2) gl(n) = s(n)⊕ sl(n) ∼= C⊕ sl(n).

Here s(n) denotes the n × n scalar matrices. This decomposition is the decompo-
sition as reductive Lie algebra into its abelian and semisimple summands.

After tensoring with A we obtain

(7.3) gl(n) = s(n)⊕ sl(n) ∼= A⊕ sl(n).

Proposition 7.2. [91, Prop. 9.48] (a) A cocycle γ for gl(n) is local and re-
stricted to s(n) is L-invariant if and only if it is cohomologous to a linear combi-
nation γ′ of the following two cocycles

(7.4)

γ1(x(g), y(h)) =
tr(xy)

2πi

∫
CS

gdh,

γ2(x(g), y(h)) =
tr(x)tr(y)

2πi

∫
CS

gdh.

(b) If the cocycle γ of (a) is L-invariant then γ is equal to a linear combination
r1γ1 + r2γ2 of the cocycles (7.4)
(c) dim H2

loc(gl(n),C) = 2.

Proposition 7.3. [91, Prop. 9.49] (a) Every local cocycle γ for D1
gl(n) is coho-

mologous to a linear combination of the cocycles γ1 and γ2 of (7.4), of the mixing
cocycle

(7.5) γ
(m)
S,tr,T (e, x(g)) =

tr(x)

2πi

∫
CS

(
ẽg′′ + T ẽg′

)
dz,

and of the standard local cocycle ψ3
CS ,R

for the vector field algebra, i.e.

(7.6) γ = r1γ1 + r2γ2 + r3γ
(m)
S,tr,T + r4ψ

3
CS ,R + coboundary,

with suitable r1, r2, r3, r4 ∈ C.
(b) If the cocycle γ is local and restricted to gl(n) is L-invariant, and r3, r4 6= 0
then there exist an affine connection T ′ and a projective connection R′ holomorphic
outside A such that γ = r1γ1 + r2γ2 + r3γS,tr,T ′ + r4γ

L
S,R′ .

(c) dim H2
loc(D1

gl(n),C) = 4.

7.2. The genus zero and three-point situation. For illustration let us
consider the the three-point KN type algebras of genus zero. We consider the
Riemann sphere S2 = P1 and a set A consisting of 3 points. Given any triple of 3
points there exists always an analytic automorphism of P1 mapping this triple to
{a,−a,∞}, with a 6= 0. In fact a = 1 would suffice. Without restriction we can
take

I := {∞}, O := {a,−a} .
Due to the symmetry of the situation it is more convenient to take a symmetrized
basis of A (with k ∈ Z)

(7.7) A2k := (z − a)k(z + a)k, A2k+1 := z(z − a)k(z + a)k ,

for L (with k ∈ Z)

(7.8) V2k := z(z − a)k(z + a)k
d

dz
, V2k+1 := (z − a)k+1(z + a)k+1 d

dz
,
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and for the −1/2-forms

(7.9) ϕ2k−1/2 := (z−a)k(z+a)k(
d

dz
)−1/2, ϕ2k+1/2 := z(z−a)k(z+a)k(

d

dz
)−1/2 .

Also we inverted the grading. By straight-forward calculations we obtain for the
algebras the following structures.

The function algebra.

(7.10) An ·Am =

{
An+m, n or m even,

An+m + a2 ⊗An+m−2, n and m odd.

The vector field algebra.

(7.11) [Vn, Vm] =


(m− n)Vn+m, n,m odd,

(m− n)
(
Vn+m + a2Vn+m−2), n,m even,

(m− n)Vn+m + (m− n− 1)a2Vn+m−2, n odd, m even.

The current algebra.

(7.12) [x⊗An, y ⊗Am] =

{
[x, y]⊗An+m, n or m even,

[x, y]⊗An+m + a2[x, y]⊗An+m−2, n and m odd.

The structure equations for the superalgebra look similar and can be easily
calculated.

The central extensions can be given by determining the cocycle values by cal-
culating the residues of the integrand at ∞. For example the local cocycle ψ1

CS
for

the function algebra calculates as (see [30, A.13 and A.14])

(7.13)
1

2πi

∫
CS

AndAm =


−nδ−nm , n, m even,

0, n, m different parity,

−nδ−nm + a2(−n+ 1)δ−n+2
m , n, m odd.

The affine algebra is now given as the almost-graded central extension ĝβ,S of the
current algebra given by the cocycle

(7.14) ψ2
CS ,β(x⊗An, y ⊗Am) = β(x, y) · 1

2πi

∫
CS

AndAm = β · ψ1
CS .

Three-point sl(2,C)-current algebra for genus 0.
Given a simple Lie algebra g with generators and structure equations the relations
above can be written in these terms. An important example is sl(2,C) with the
standard generators

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
.
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We set en := e ⊗ An, n ∈ Z and in the same way fn and hn. Recall that the
invariant bilinear form β(x, y) = tr(x · y). We calculate

[en, fm] =

{
hn+m, n or m even,

hn+m + a2hn+m−2, n and m odd,
(7.15)

[hn, em] =

{
2en+m, n or m even,

2en+m + 2a2en+m−2, n and m odd,
(7.16)

[hn, fm] =

{
−2fn+m, n or m even,

−2fn+m − 2a2fn+m−2, n and m odd.
(7.17)

For the central extension we obtain

(7.18) [en, fm] =

{
hn+m − nδ−nm , n or m even,

hn+m + a2hn+m−2 − nδ−nm − a2(n− 1)δ−n+2
m , n and m odd.

For the other commutators we do not have contributions to the center.

7.3. Deformations. As the second Lie algebra cohomology of the Witt and
Virasoro algebra in their adjoint module vanishes [87], [27], [28] both are formally
and infinitesimally rigid. This means that all formal (and infinitesimal) families
with special fiber these algebras are equivalent to the trivial one. If we consider
the examples of Section 7.2 parameterized by a variable a, then they are non-
trivial (even locally non-trivial) families which have themselves as special elements
for a = 0 the classical algebras. The geometric context is clear: the two points
a and −a move together. By Fialowski and Schlichenmaier [29], [30], [31] the
above algebras and similar families of algebras on tori, were used to exhibit the
fact, that e.g. the Witt and Virasoro algebra despite their formal rigidity allow
non-trivial algebraic-geometric deformations. This is an effect that cannot appear
in the finite-dimensional algebra setting. For families on tori see the above quoted
results, respectively [91, Chapter 12]. See also [78], [13], [15], [19] [24], [74].

7.4. Genus zero multi-point algebras – integrable systems. Already
the Witt and Virasoro algebra in genus zero with two points where poles are al-
lowed are mathematically highly interesting objects which have e.g. a non-trivial
representation theory. If we remain on the Riemann sphere but now allow more than
two poles we obtain an even more demanding mathematical theory. For the multi-
point case the related systems are important. For example the classical Knizhnik-
Zamolodchikov models of Conformal Field Theory (CFT) are of this type, see e.g.
[53]. Integrable systems show up.

Due to the connection between CFT and statistical mechanics it is not a surprise
that the genus zero multi-point Krichever–Novikov algebras turn out to be related
to algebras appearing in statistical mechanics. For example the Onsager algebra
appears as subalgebra of the three-point, g = 0, sl(2,C)-Krichever–Novikov algebra.
In this context see e.g. the work of Terwilliger and collaborators [41], [5], [46].

For the genus zero multi-point situation quite a number of publications ap-
peared. Some references are [78], [29], [30], [31], [14], [16], [86], [1], [21].

From the point of view of symmetries of integrable systems the concept of auto-
morphic Lie algebras shows up. It was e.g. developed by Lombardo, Mikailov, and
Sanders in [64], [65], [66]. Invariant objects under finite subgroups of PGL(2,C),
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the symmetry group of the Riemann sphere, are studied. Of course, there are re-
lations to the g = 0, multi-point Krichever–Novikov type algebras. Chopp [20]
obtained some results for the genus one multi-point setting.

7.5. Toroidal Lie algebras. The path of generalization starting from the
classical picture as taken by Krichever–Novikov goes from genus zero to higher
genus. There is another path by considering instead of the classical algebra of
Laurent polynomial C[z−1, z] as starting point, the algebra generated by several
“Laurent variables”. This generalization is in the context of current algebras quite
natural, as there the finite-dimensional Lie algebra can be tensorized by an arbitrary
commutative algebra. The algebras obtained in this way are called toroidal algebras.
They correspond to increasing the dimension instead of the genus. A short collection
of references and names is given by Bermann, Billig, Buelk, Cox, Futorny, Hu,
Jurisich, Kashuba, Penkov, Szmigielski, Xia, Yokunuma, [8], [18], [35], [6], [7],
[22], [10], [25], [69], [70], [107].

7.6. Other generalizations of KN type algebras. We considered geomet-
ric vector fields, respectively differential operators. Donin and Khesin [26] showed
that also pseudo-differential symbols could be treated via some Krichever–Novikov
like objects.

Furthermore there are discretized and q-deformed Krichever–Novikov type alge-
bras. In the definition of the KN vector field algebra the differential can be replaced
by a difference operator assuming that we have a geometric situation appropriate
to this discretization. See e.g. Meiler and Ruffing [73], [67].

Such discretizations are related to q-deformed versions of the Krichever–Novikov
vector field algebra - again for special geometric cases. In some sense the struc-
ture equations are deformed by expressions depending on a formal parameter q.
One does not obtain Lie algebras anymore, but q-Lie algebras. The q-Witt and
q-Virasoro algebras are of certain importance in the context of integrable systems.
One might guess that the same will be the case for the q-deformed Krichever–
Novikov vector field algebra. See e.g. the references Kuang [60], Oh and Singh
[71].

8. Lax Operator Algebras

Recently, a new class of current type algebras appeared, the Lax operator
algebras. As the naming indicates, they are related to integrable systems [101].
The algebras were introduced by Krichever [55], and Krichever and Sheinman [59].
Here I will report on their definition. See the book [102] of Sheinman for more
details.

Compared to the KN current type algebra we will allow additional singularities
which will play a special role. The points where these singularities are allowed are
called weak singular points. The set of such points is denoted by

(8.1) W = {γs ∈ Σ \A | s = 1, . . . , R}.

Here let g be one of the classical matrix algebras gl(n), sl(n), so(n), sp(2n). We
assign to every point γs a vector αs ∈ Cn (respectively ∈ C2n for sp(2n)). The
system

(8.2) T := {(γs, αs) ∈ Σ× Cn | s = 1, . . . , R}
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is called Tyurin data.

Remark 8.1. In case that R = n · g and for generic values of (γs, αs) with
αs 6= 0 the tuples of pairs (γs, [αs]) with [αs] ∈ Pn−1(C) parameterize semi-stable
rank n and degree n g framed holomorphic vector bundles as shown by Tyurin
[106]. Hence, the name Tyurin data.

We consider g-valued meromorphic functions 5

(8.3) L : Σ → g,

which are holomorphic outside W ∪A, have at most poles of order one (respectively
of order two for sp(2n)) at the points in W , and fulfill certain conditions at W
depending on T . To describe them let us fix local coordinates ws centered at γs,
s = 1, . . . , R. For gl(n) the conditions are as follows. For s = 1, . . . , R we require
that there exist βs ∈ Cn and κs ∈ C such that the function L has the following
expansion at γs ∈W

(8.4) L(ws) =
Ls,−1

ws
+ Ls,0 +

∑
k>0

Ls,kw
k
s ,

with

(8.5) Ls,−1 = αsβ
t
s, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs.

In particular, if Ls,−1 is non-vanishing then it is a rank 1 matrix, and if αs 6= 0
then it is an eigenvector of Ls,0. The requirements (8.5) are independent of the
chosen coordinates ws.

It is not at all clear that the commutator of two such matrix functions fulfills
again these conditions. But it is shown in [59] that they indeed close to a Lie
algebra (in fact in the case of gl(n) they constitute an associative algebra under
the matrix product). If one of the αs = 0 then the conditions at the point γs
correspond to the fact, that L has to be holomorphic there. If all αs’s are zero
or W = ∅ we obtain back the current algebra of KN type. For the algebra under
consideration here, in some sense the Lax operator algebras generalize them. In
the bundle interpretation of the Tyurin data the KN case corresponds to the trivial
rank n bundle.

For sl(n) the only additional condition is that in (8.4) all matrices Ls,k are
trace-less. The conditions (8.5) remain unchanged.

In the case of so(n) one requires that all Ls,k in (8.4) are skew-symmetric. In
particular, they are trace-less. Following [59] the set-up has to be slightly modified.
First only those Tyurin parameters αs are allowed which satisfy αtsαs = 0. Then,
(8.5) is changed in the following way:

(8.6) Ls,−1 = αsβ
t
s − βsαts, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs.

For sp(2n) we consider a symplectic form σ̂ for C2n given by a non-degenerate
skew-symmetric matrix σ. The Lie algebra sp(2n) is the Lie algebra of matrices X
such that Xtσ+σX = 0. The condition tr(X) = 0 will be automatic. At the weak
singularities we have the expansion

(8.7) L(ws) =
Ls,−2

w2
s

+
Ls,−1

ws
+ Ls,0 + Ls,1ws +

∑
k>1

Ls,kw
k
s .

5Strictly speaking, the interpretation as function is a little bit misleading, as they behave
under differentiation like operators on trivialized sections of vector bundles.
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The condition (8.5) is modified as follows (see [59]): there exist βs ∈ C2n, νs, κs ∈ C
such that
(8.8)
Ls,−2 = νsαsα

t
sσ, Ls,−1 = (αsβ

t
s + βsα

t
s)σ, βs

tσαs = 0, Ls,0 αs = κsαs.

Moreover, we require αtsσLs,1αs = 0. Again under the point-wise matrix commu-
tator the set of such maps constitute a Lie algebra.

It is possible to introduce an almost-graded structure for these Lax operator
algebras induced by a splitting of the set A = I ∪O. This is done for the two-point
case in [59] and for the multi-point case in [90]. From the applications there is
again a need to classify almost-graded central extensions.

The author obtained this jointly with O. Sheinman in [95] for the two-point
case. For the multi-point case see [90]. For the Lax operator algebras associated to
the simple algebras sl(n), so(n), sp(n) it will be unique (meaning: given a splitting of
A there is an almost-grading and with respect to this there is up to equivalence and
rescaling only one non-trivial almost-graded central extension). For gl(n) we obtain
two independent local cocycle classes if we assume L-invariance on the reductive
part. Both in the definition of the cocycle and in the definition of L-invariance a
connection shows up.

Remark 8.2. Recently, Sheinman extended the set-up to G2 [103] and more-
over gave a recipe for all semi-simple Lie algebras [104].

9. Fermionic Fock Space

9.1. Semi-Infinite forms and fermionic Fock space representations.
Our Krichever-Novikov vector field algebras L have as Lie modules the spaces Fλ.
These representations are not of the type physicists are usually interested in. There
are neither annihilation nor creation operators which can be used to construct the
full representation out of a vacuum state.

To obtain representation with the required properties the almost-grading again
comes into play. First, using the grading of Fλ it is possible to construct starting
from Fλ the forms of weight λ ∈ 1/2Z, the semi-infinite wedge forms Hλs.

The vector spaceHλ is generated by basis elements which are formal expressions
of the type

(9.1) Φ = fλ(i1) ∧ f
λ
(i2) ∧ f

λ
(i3) ∧ · · · ,

where (i1) = (m1, p1) is a double index indexing our basis elements. The indices are
in strictly increasing lexicographical order. They are stabilizing in the sense that
they will increase exactly by one starting from a certain index, depending on Φ.
The action of L should be extended by Leibniz rule from Fλ to Hλ. But a problem
arises. For elements of the critical strip L[0] of the algebra L it might happen that
they produce infinitely many contributions. The action has to be regularized (as
physicists like to call it), which is a well-defined mathematical procedure.

Here the almost-grading has his second appearance. By the (strong) almost-
graded module structure of Fλ the algebra L can be embedded into the Lie algebra
of both-sided infinite matrices

(9.2) gl(∞) := {A = (aij)i,j∈Z | ∃r = r(A), such that aij = 0 if |i− j| > r },
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with “finitely many diagonals”. The embedding will depend on the weight λ. For
gl(∞) there exists a procedure for the regularization of the action on the semi-
infinite wedge product [23], [50], see also [51]. In particular, there is a unique

non-trivial central extension ĝl(∞). If we pull-back the defining cocycle for the

extension we obtain a central extension L̂λ of L and the required regularization

of the action of L̂λ on Hλ. As the embedding of L depends on the weight λ
the cocycle will depend too. The pull-back cocycle will be local. Hence, by the
classification results of Section 6.3 it is the unique central extension class defined
by (6.9) integrated over CS (up to a rescaling).

In Hλ there are invariant subspaces, which are generated by a certain “vacuum
vectors”. The subalgebra L[+] annihilates the vacuum, the central element and the
other elements of degree zero act by multiplication with a constant and the whole
representation state is generated by L[−] ⊕ L[0] from the vacuum.

As the function algebra A operates as multiplication operators on Fλ the above
representation can be extended to the algebra D1 (see details in [80], [91]) after one
passes to central extensions. The cocycle again is local and hence, up to coboundary,
it will be a certain linear combination of the 3 generating cocycles for the differential
operator algebra. In fact its class will be

(9.3) cλ[ψ3
CS ] +

2λ− 1

2
[ψ4
CS ]− [ψ1

CS ], cλ := −2(6λ2 − 6λ+ 1).

Recall that ψ3 is the cocycle for the vector field algebra, ψ1 the cocycle for the
function algebra, and ψ4 the mixing cocycle. Note that the expression for cλ appears
also in Mumford’s formula [85] relating divisors on the moduli space of curves.

For L we could rescale the central element. Hence essentially, the central exten-

sion L̂ did not depend on the weight. Here this is different. The central extension

D̂1
λ depends on it. Furthermore, the representation on Hλ gives a projective rep-

resentation of the algebra of Dλ of differential operators of all orders. It is exactly
the combination (9.3) which lifts to a cocycle for Dλ and gives a central extension

D̂λ.
For the centrally extended algebras ĝ in a similar way fermionic Fock space

representations can be constructed, see [100], [93].

9.2. b – c systems. Related to the above there are other quantum algebra
systems which can be realized onHλ. On the spaceHλ the forms Fλ act by wedging
elements fλ ∈ Fλ in front of the semi-infinite wedge form, i.e.

(9.4) Φ 7→ fλ ∧ Φ.

Using the Krichever-Novikov duality pairing (5.4) and by contracting the elements
in the semi-infinite wedge forms the forms f1−λ ∈ F1−λ will act on them too. For
Φ a basis element (9.1) of Hλ the contraction is defines via

(9.5) i(f1−λ)Φ =

∞∑
l=1

(−1)l−1〈f1−λ, fλil〉 · f
λ
(i1) ∧ f

λ
(i2) ∧ · · · f̌

λ
(il)
.

Here f̌λ(il) indicates as usual that this element will not be there anymore.

Both operations create a Clifford algebra like structure, which is sometimes
called a b− c system, see [91, Chapters 7 and 8].
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9.3. Vertex algebras. From b− c systems it is not far to describe the math-
ematical notion of a global operator field. Furthermore, it is possible to describe
operator product expansions also in the Krichever–Novikov setting. Above we
discussed fermionic representations. In physics also bosonic representations are
needed. From the physicists’ point of view vertex operators give a “boson-fermion
correspondence”.

For the mathematical background of vertex algebras in the classical genus zero
setting see [48], [52], [34], [49]. We will not recall their definition here. Let me
only say, that there is a state-field correspondence fulfilling certain axioms.

It has to be pointed out that vertex algebras do not only play a role in field the-
ory. They were also crucial in understanding the Monster and Moonshine phenom-
ena which refers to the fact that the dimensions of the irreducible representations
of the largest sporadic finite group, the monster group, show up in the coefficients
of the q-expansion of the elliptic modular function j. This was first seen experi-
mentally and later explained with the help of representations of a certain vertex
algebra which was related to the monster. The j-function appears as graded di-
mension of a representation of this vertex algebra. The details can be found in [34].
Also with the help of vertex algebras representations of Kac-Moody algebras can
be constructed.

To construct vertex algebras in higher genus there are different strategies. One
is by some kind of semi-local approach very much in the spirit of Tsuchiya, Ueno
and Yamada [105]. An example is given by Zhu [108]. Another direction is based
on an operadic approach. See for example Huang and Lepowsky [42], [43], [44],
[45]. Also there is a sheaf theoretic approach due to Frenkel and Ben-Zvi [32], [33].

A mathematical treatment via the Krichever–Novikov objects which stays very
close to the axiomatic treatment in genus zero is given by Linde [62], [63]. Strictly
speaking, he does it only for the two-point case. His objects, as they are formulated
in terms of the KN basis, should extend to the multi-point situation too. The details
are not yet done.

A physicists approach via Krichever–Novikov objects in the context of explicit
types of field theories and their special properties is given by Bonora and collabo-
rators [11], [75]. For a general use of KN type algebras in Quantum Field Theory
by physicists see [91, Section 14.5]. There an extensive list of names and references
can be found.

10. Sugawara Representation

In the classical set-up the Sugawara construction relates to a representation
of the classical affine Lie algebra ĝ a representation of the Virasoro algebra, see
e.g. [48], [51]. In joint work with O. Sheinman the author succeeded in extending
it to arbitrary genus and the multi-point setting [92]. For an updated treatment,
incorporating also the uniqueness results of central extensions, see [91, Chapter
10]. Here we will give an extremely rough sketch.

We start with an admissible representation V of a centrally extended current
algebra ĝ. Admissible means, that the central element operates as constant ×
identity, and that every element v in the representation space will be annihilated
by the elements in ĝ of sufficiently high degree (the degree depends on the element
v).
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For simplicity let g be either abelian or simple and β the non-degenerate sym-
metric invariant bilinear form used to construct ĝ (now we need that it is non-
degenerate). Let {ui}, {uj} be a system of dual basis elements for g with respect

to β, i.e. β(ui, u
j) = δji . Note that the Casimir element of g can be given by

∑
i u

i.
For x ∈ g we consider the family of operators x(n, p) given by the operation of
x⊗An,p on V . We group them together in a formal sum

(10.1) x̂(Q) :=
∑
n∈Z

K∑
p=1

x(n, p)ωn,p(Q), Q ∈ Σ.

Such a formal sum is called a field if applied to a vector v ∈ V it gives again a formal
sum (now of elements from V ) which is bounded from above. By the condition of
admissibility x̂(Q) is a field. It is of conformal weight one, as the one-differentials
ωn,p show up.

The current operator fields are defined as 6

(10.2) Ji(Q) := ûi(Q) =
∑
n,p

ui(n, p)ω
n,p(Q).

The Sugawara operator field T (Q) is defined by

(10.3) T (Q) :=
1

2

∑
i

:Ji(Q)J i(Q): .

Here : ... : denotes some normal ordering, which is needed to make the product of
two fields again a field. The standard normal ordering is defined as

(10.4) :x(n, p)y(m, r): :=

{
x(n, p)y(m, r), (n, p) ≤ (m, r)

y(m, r)x(n, p), (n, p) > (m, r)

where the indices (n, p) are lexicographically ordered. By this prescription the
annihilation operator, i.e. the operators of positive degree, are brought as much as
possible to the right so that they act first.

As the current operators are fields of conformal weights one the Sugawara
operator field is a field of weight two. Hence we write it as

(10.5) T (Q) =
∑
k∈Z

K∑
p=1

Lk,p · Ωk,p(Q)

with certain operators Lk,p. The Lk,p are called modes of the Sugawara field T or
just Sugawara operators.

Let 2κ be the eigenvalue of the Casimir operator in the adjoint representation.
For g abelian κ = 0. For g simple and β normalized that such the longest roots
have square length 2 then κ is the dual Coxeter number. Recall that the central
element t acts on the representation space V as c · id with a scalar c. This scalar
is called the level of the representation. The key result is (where x(g) denotes the
operator corresponding to the element x⊗ g)

Proposition 10.1. [91, Prop. 10.8] Let g be either an abelian or a simple Lie
algebra. Then

(10.6) [Lk,p, x(g)] = −(c+ κ) · x(ek,p . g) .

6For simplicity we drop mentioning the range of summation here and in the following when
it is clear.
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(10.7) [Lk,p, x̂(Q)] = (c+ κ) · (ek,p . x̂(Q)) .

Recall that ek,p are the KN basis elements for the vector field algebra L.
In the next steps the commutators of the operators Lk,p can be calculated. In

the case the c+κ = 0, called the critical level, these operators generate a subalgebra
of the center of gl(V ). If c + κ 6= 0 (i.e. at a non-critical level) the Lk,p can be
replaced by rescaled elements L∗k,p = −1

c+κLk,p and we we denote by T [..] the linear
representation of L induced by

(10.8) T [ek,p] = L∗k,p.

The result is that T defines a projective representation of L with a local cocy-
cle. This cocycle is up to rescaling our geometric cocycle ψ3

CS ,R
with a projective

connection 7 R. In detail,

(10.9) T [[e, f ]] = [T [e], T [f ]] +
cdim g

c+ κ
ψ3
CS ,R(e, f)id.

Consequently, by setting

(10.10) T [ê] := T [e], T [t] :=
cdim g

c+ κ
id .

we obtain a honest Lie representation of the centrally extended vector field algebra

L̂ given by this local cocycle. For the general reductive case, see [91, Section 10.2.1].

11. Application to Moduli Space

This application deals with Wess-Zumino-Novikov-Witten models and Knizhnik-
Zamolodchikov Connection. Despite the fact, that it is a very important application,
the following description is very condensed. More can be found in [93], [94]. See
also [91], [102]. Wess-Zumino-Novikov-Witten (WZNW) models are defined on
the basis of a fixed finite-dimensional simple (or semi-simple) Lie algebra g. One
considers families of representations of the affine algebras ĝ (which is an almost-
graded central extension of g) defined over the moduli space of Riemann surfaces
of genus g with K + 1 marked points and splitting of type (K, 1). The single point
in O will be a reference point. The data of the moduli of the Riemann surface
and the marked points enter the definition of the algebra ĝ and the representation.
The construction of certain co-invariants yields a special vector bundle of finite
rank over moduli space, called the vector bundle of conformal blocks, or Verlinde
bundle. With the help of the Krichever Novikov vector field algebra, and using the
Sugawara construction, the Knizhnik-Zamolodchikov (KZ) connection is given. It is
projectively flat. An essential fact is that certain elements in the critical strip L[0]

correspond to infinitesimal deformations of the moduli and to moving the marked
points. This gives a global operator approach in contrast to the semi-local approach
of Tsuchia, Ueno, and Yamada [105].
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