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ABSTRACT

A large class of experiments consists of measuring the parameters of physical models. In these experiments, the goal is to learn about these
parameters as accurately and, often, quickly as possible. Adaptive experiment design works by yielding instrument control to Bayesian-
based algorithms that alter instrument settings based on potential information gain about the parameters. By actively learning from data in
real-time where to measure instead of determining instrument settings a priori, striking improvements in experiment efficiency are possible.
Here, two new algorithms that improve upon previous implementations of adaptive experiment design are introduced. The first algorithm
focuses on learning the model parameters that matter the most. The second algorithm considers the expense of a measurement and priori-
tizes information that can be gained at a lower cost. We demonstrate the remarkable improvement in efficiency and sensitivity that these
algorithms provide for quantum sensing, specifically magnetometry, with nitrogen-vacancy centers in diamond. Most notably, we find an
almost fivefold improvement in magnetic field sensitivity.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0251881

I. INTRODUCTION

Adaptive experiment design exploits accumulated measure-
ment data to create efficient measurement strategies.1–7 The impact
of adaptive experiment design tends to be most significant in
experiments that are slow and noisy. An important example of
current interest is quantum sensing with solid-state point defects.
Quantum sensing with optically active solid-state point defects is a
rapidly developing technology, as these point defects or “color
centers” have technical and practical advantages over atomic
systems. Nitrogen-vacancy (NV) centers in diamond are one of the
most well-studied color centers, with sensitivity to magnetic fields,
electric fields, strain, and temperature.8 Despite the exciting pros-
pects of diamond-based quantum sensors, the conventional readout
process, which is based on spin-dependent photon emission, has
poor fidelity at room temperature. Even the best setups have readout
fidelities, a measure of confidence, of �0.01 for NV ensembles,
which sets the sensitivity two orders of magnitude below the spin-
projection limit.9 As a result, measurements are repeated many times

(upward of 104–106), leading to time-consuming experiments and
limited sensitivity.

Here, we demonstrate improvements in the efficiency and
sensitivity of quantum sensing using adaptive experiment design.
A core concept in adaptive experiment design is the utility func-
tion, which estimates the benefit of a measurement as a function
of the proposed instrument setting. Recently, improved algo-
rithms for calculating the utility function, typically a computa-
tionally cumbersome task, have been introduced.2,10 We expand
on this work by honing the utility function for specific experi-
mental goals. First, we recognize that some parameters in the
experiment are more important than others. We reason that
adaptive design strategies can be made more efficient by
de-emphasizing instrument settings that inform about nuisance
parameters and instead focus resources on determining valuable
parameters. Second, we consider the case where each measure-
ment setting has a varying expense, such as time, and minimizing
the overall cost of an experiment is desirable.
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Previous works have shown how adaptive methods can
improve the sensitivity of NV-based relaxometry3 as well as
improve the sensitivity to the decoherence, dephasing, and decay
times.7 Arshad et al.7 showed that adaptive algorithms (in their
case, based on the Fisher information) can be implemented directly
on hardware via a microcontroller for very fast computation.
Our work here complements and builds upon these works by
(1) making fast decisions in software for easy implementation and
(2) further honing the adaptive algorithms for the desired outcome.

In this work, we describe utility algorithms adapted to the two
aforementioned cases and present testing of these algorithms using
both simulations and laboratory experiments. Section II reviews the
theoretical background for utility calculations and then presents the
adaptations for de-emphasizing nuisance parameters and incorpo-
rating economic expenses into setting decisions. Section III
describes the laboratory measurement system using NV centers in
diamond and the basics of quantum sensing. Section IV contains
the main results of the paper, where we compare the behavior of
the algorithms across several core quantum sensing experiments.
All algorithms used in this work are described in the Appendix.

II. BACKGROUND

A. Adaptive experiment design

The measurement runs of interest are sequences of epochs.
Each epoch involves a design or setting selection d, data collection,
and interpretation of the resulting data. We use Bayesian methods
to interpret the data in terms of the parameters θ of parametric
model f ,

y ¼ f (θ, d)þ ζ , (1)

where ζ is the experimental noise. Bayesian inference operates on
the probability distribution of the parameters P(θ), which is a more
general method than considering just the values and uncertainties
of the parameters. In a typical measurement, the parameter distri-
bution will become narrower, corresponding to shrinking
uncertainties.

The algorithms used in adaptive experiment design rely on
finding the setting combination likely to make the most progress
toward an experiment goal. The utility function, U(d0), is an esti-
mate of the progress to be made as a function of the proposed
setting combination, d0. In general, d0 can be n-dimensional, but in
typical experiments, it may exist as one or two instrument settings,
such as power, frequency, or time. An adaptive measurement
epoch consists of locating the maxima of the utility and subse-
quently taking measurements at its argument d0, updating the
model parameter distributions using the new data, and recalculat-
ing the utility. By repeating this process, one makes efficient mea-
surements by maximizing the information gain.2,10 Shortly,
adaptive experiment design uses incoming data to actively make
good decisions. In traditional measurements, the instrument set-
tings are determined a priori, data points are collected, and then,
the data are fit to the model to estimate the model parameters. All
experiment optimization relies on prior knowledge in this case.

The utility function can be represented by the difference or
distance between two distributions—the current parameter

distribution P(θ) (the prior) and that which is predicted given a
proposed measurement using setting design d0 and yielding
outcome y0, P(θjy0, d0) (the posterior).

The goal of the design task is to pick a setting that is likely to
move us closer to the goal of narrow parameter distributions. It is
convenient to quantify “narrowness” with the information entropy
of the distribution,

H ¼ �
ð
P(x) ln P(x)dx: (2)

Changes in the information entropy (our “narrowness”) are calcu-
lated using the Kullback–Leibler divergence:

DKL(d
0, y0) ¼ �

ð
P(θjy0, d0) ln P(θ)

P(θjy0, d0)
� �

dθ: (3)

The Kullback–Leibler divergence quantifies how much information
about P(θ) is contained in P(θjy0, d0), that is, the mutual informa-
tion between the two distributions.11 Note that if the prior and pos-
terior are equivalent, the argument of the logarithm is unity, and the
mutual information is zero, meaning no progress would be made
with that setting. The setting d0 that produces the greatest mutual
information (on average) is likely to make the most progress.

In order to rewrite Eq. (3) in a usable form for a utility func-
tion, the posterior can be expressed using the Bayes rule as

P(θjy0, d0) ¼ P(y0jθ, d0)
P(y0jd0) P(θ): (4)

This transformation eliminates the need to calculate posterior dis-
tributions. Equation (3) becomes

DKL(d
0, y0) ¼ �

ð
P(y0jθ, d0)

P(y0)
Pn(θ) ln

P(y0)
P(y0jθ, d0)
� �

dθ: (5)

Averaging over potential measurement outcomes, y0, yields the
utility function,

U(d0) ¼ �
ð
DKL(y

0, d0)P(y0jd0)dy0, (6)

where

P(y0jd0) ¼
ð
P(y0jθ, d0)P(θ)dθ: (7)

Substituting Eq. (7) in Eq. (6),

U(d0) ¼
ð
P(θ)

ð
P(y0jθ, d0) ln P(y0jθ, d0)dy0dθ

�
ð
P(y0jd0) ln P(y0jd0)dy0: (8)

In the above expression, P(y0jd0) represents the measurement
outcome at d0, whereas P(y0jθ, d0) represents variations in the
outcome due to noise (i.e., if θ and d0 are held constant the only
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variation in outcome will be due to noise). Note that Eq. (8) can be
rewritten using Eq. (2) as

U(d0) ¼ Hy0 jd0 (d0)�
ð
Hy0 jθ,d0 (θ, d0)P(θ)dθ: (9)

The first term in Eq. (9) is the information entropy, including
experimental noise and the parameter distributions. The second
term is the information entropy of the experimental noise, averaged
over the parameters, θ. A simple interpretation is that an optimal
measurement is where the variation in the outcome y is greatest
due to the underlying model parameters with respect to the experi-
mental noise.

Furthermore, if we assume that the model parameters are nor-
mally distributed with variance ν, then

H ¼ 1
2
ln 2πνð Þ þ 1

2
, (10)

and Eq. (9) becomes

U(d0) ¼ 1
2
ln 2πνθ(d

0)þ 2πνζ
� �� 1

2
ln 2πνζ )
� �

¼ 1
2
ln 1þ νθ(d0)

νζ

� �
, (11)

where νζ is the variance of the experimental noise and νθ(d0) is the
variance of the distribution of the outcomes, P(y0jd0, ζ ¼ 0)
without any noise, that is,

νθ(d
0) ; Var[P(yjd0, ζ ¼ 0)]: (12)

Recall that the variance of a distribution is determined by what is
not fixed (i.e., what does not appear after “j”). This means that
P(y0jd0, ζ ¼ 0) describes the variance in what we measure, y0, just
due to underlying model parameters, θ, which will be a function of
the setting d0. Again, we want select settings, d0, that will maximize
the utility and make our measurements more efficient. In Eq. (11),
it is clear that maximizing the utility comes from taking measure-
ments where the variance in outcomes due to the parameter distri-
bution νθ(d0) is the largest relative to the variance due to noise νζ .
Simply put, we want to measure where the outcome of the mea-
surement will tell us more about the underlying parameters. This
can also be thought of as measuring at a higher “information
signal-to-noise ratio (SNR).”

Equation (11) is also the same form as the variance approxi-
mation that was demonstrated to compute much faster than
Eq. (9), while retaining almost identical behavior.12 In this work,
the variance approximation is also used. The algorithm is outlined
in the Appendix.

B. Nuisance parameter algorithm

In practice, not all model parameters are equally important.
For instance, the ultimate goal of an experiment may be to ascer-
tain the frequency of an oscillation. However, the background level
or even amplitude of such oscillation may not be as important. The

above implementation of the utility function treats all of the param-
eters on equal footing, and as a result, resources are designed to be
spent almost equally on learning about each model parameter. If
resources can be diverted from learning about less important
parameters, even more efficient measurements are possible.

Suppose that for a given experiment, there are important
model parameters to infer, still labeled θ. However, there are other
model parameters that, while necessary for the model, are
physically irrelevant or otherwise unimportant. We call these other
“nuisance” parameters, f. Including the nuisance parameters
explicitly, the experimental model becomes

y ¼ f (θ, f, d)þ ζ: (13)

Now, we wish to construct a utility function that
de-emphasizes the nuisance parameters, f, such that parameters of
interest, θ, are prioritized. We begin by modifying the posterior, to
distinguish the nuisance parameters P(θjy0, d0)! P(θ, fjy0, d0).
Yet, since we are only concerned with the θ parameters, we can
marginalize the posterior distribution such that we remove depen-
dence on f,

P(θjy0, d0) ¼
ð
P(θ, fjy0, d0) df: (14)

Therefore, we can rewrite Eq. (6) as

Uf(d0) ¼
ð
P(y0jd0)

ð ð
P(θ, fjy0, d0) df

� ln

Ð
P(θ, fjy0, d0) df

P(θ)

� �
dθdy0: (15)

With an application of the Bayes rule,

P(θ, fjy0, d0) ¼ P(y0jθ, f, d0)
P(y0)

P(θ, f), (16)

the utility function becomes

Uf(d0) ¼
ð
P(y0jd0)

ð
P(y0jθ, f, d0)P(θ, f)

P(y0jd0) df

� ln

Ð P(y0 jθ, f, d0)P(θ, f)
P(y0 jd0) df

P(θ)

 !
dθ: (17)

After rearranging,

Uf(d0) ¼
ð ð ð

P(y0jθ, f, d0)P(θ, f) df

� ln

Ð
P(y0jθ, f, d0)P(θ, f) df

P(θ)P(y0jd0)
� �

dθdy0: (18)

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 137, 074401 (2025); doi: 10.1063/5.0251881 137, 074401-3

© Author(s) 2025

 02 M
arch 2025 10:26:28

https://pubs.aip.org/aip/jap


Noting that

ð
P(y0jθ, f, d0)P(θ, f)df ¼

ð
P(y0, θ, fjd0)df

¼ P(y0, θjd0) ¼ P(y0jθ, d0)P(θ), (19)

we can rewrite the utility as

Uf(d0) ¼
ð ð

P(y0jθ, d0)P(θ) ln P(y0jθ, d0)P(θ)
P(θ)P(y0jd0)

� �
dθdy0: (20)

Finally, rearranging,

Uf(d0) ¼
ð
P(θ)

ð
P(yjθ, d0) ln P(y0jθ, d0)

P(yjd0)
� �

dθdy0, (21)

then expanding,

Uf(d0) ¼
ð
P(θ)

ð
P(y0jθ, d0) ln P(y0jθ, d0)dy0dθ

�
ð
P(y0jd0) ln P(y0jd0)dy0: (22)

Comparing Eqs. (8) and (22), it is evident that the explicit
form of the utility function is the same whether or not nuisance
parameters are marginalized. The absence of the nuisance parame-
ters makes sense as we set out to only consider the information
entropy of parameters θ.

In Eq. (8), the leading term involves distributions of outcomes
when parameter values are given or fixed. In Eq. (22), the leading
term involves model distributions of outcomes y0 when θ values are
given, but the nuisance parameters, f, are not fixed. In the second
term of Eq. (22), the distribution of y0 includes the effects of both θ
and f parameters.

As before, if we use the approximation that the noise (ζ), θ,
and f are all normally distributed, we can re-express Eq. (22) as

Uf(d0) ¼ 1
2
ln 2πνθ(d

0)þ 2πνζ þ 2πνf
� �

� 1
2
ln 2πνζ þ 2πνf)
� �

¼ 1
2
ln

νθ(d0)þ νζ þ νf
νζ þ νf

� �
: (23)

We wish to emphasize that while the nuisance parameters have
been marginalized from the utility function, they will still be inferred
in the same process as the other parameters. Additionally, it should
be expected that nuisance parameters (f) that are highly correlated
with parameters of interest (θ) cannot be fully de-emphasized. That
is, throughout the experiment, instrument settings that contain rela-
tively more information about f that, in turn, inform about θ may
be chosen. This means that prior knowledge of parameter correla-
tions is not needed; it is “safe” to de-emphasize parameters that are
not of interest, no matter the underlying correlations. We should
expect potentially fewer gains in efficiency if there are strong

correlations in f and θ. In the Appendix, we outline the modified
algorithm for the case of nuisance parameters (Uf).

C. Expense algorithm

Suppose that for a given experiment, the associated expense of
taking a measurement varies with the setting d0. The expense could
be time or another type of resource. An example of a time expense
is when the setting is a time delay or if changing the setting results
in an overhead time (e.g., reprogramming an instrument). Here, we
wish to modify the utility function such that measurements that are
“cheaper” or faster are prioritized.

We take a direct weighting approach,

Uε(d0) ¼ U(d0)
ε(d0)

, (24)

where ε(d0) is the expense function describing the economic cost of
a proposed measurement design. Here, we distinguish this as an
expense function to avoid conflation with the cost function used
in machine learning. This formulation retains two fundamental
properties of mutual information: first, when the prior and pre-
dicted posterior distributions are the same, the utility equals 0, and
second, the utility should be non-negative. Equation (24) also has
an intuitive interpretation—selecting a setting is a benefit-to-cost
ratio. This approach has some precedence in weighted or “com-
pound” utility functions, which are typically weighted averages of
multiple utility functions to create a composite design with two or
more distinct objectives.4,6,13–15 However, unlike these methods, the
weight here is a function of the proposed design, d0, and is
imposed on a singular utility function. We would like to note that
other approaches that directly maximize sensitivity, which by defi-
nition consider the time expense of a measurement, such as those
by Caouette-Mansour et al.3 and Arshad et al.7 have demonstrated
great success.

Furthermore, our approach is compatible with any utility
function, including the aforementioned nuisance parameter utility
or various approximations.12 In general, it is expected to be prefera-
ble to combine the expense function with the nuisance parameter
algorithm such that the expense function does not preference learn-
ing about unimportant parameters just because they are “less
expensive.” The algorithm that combines the nuisance parameter
and expense approach (Uf,ε) is included in the Appendix.

III. METHODS

A combination of simulations and experimental measure-
ments was used to study the impact of the adaptive algorithms on
NV-based quantum sensing protocols. For the simulations, we
study the behavior of the setting selection and track parameter
uncertainties for a group of 100 experiment runs, under typical
noise levels for the Rabi, Ramsey, Hahn echo, and T1 sequences.
Similarly, for the experimental measurements, we record the setting
selection and parameter uncertainties as a function of time and
number of measurements for five individual runs per algorithm per
sequence. We represent parameter uncertainties as the width of the
parameter distributions, which we have approximated to be
Gaussian. We will, therefore, report the standard deviations.
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A. Nitrogen vacancy centers in diamond

The nitrogen-vacancy (NV) center in diamond is formed by a
substitutional nitrogen atom paired with a neighboring vacancy.
These defects are present at concentrations varying from a few hun-
dredths of a ppb to several ppm depending on the growth method
and treatment.16–18 Quantum sensing can be performed at the
single NV center level, as well as with ensembles of various sizes.
In general, the achievable spin-state contrast of NV ensembles (a
few percent) is much lower than that of a single NV (≃30%).19–22

When an electron is trapped in the defect (NV�), the NV
center becomes a S ¼ 1 electronic spin system. The NV center can
be initialized into the ground ms ¼ 0 spin state and read out via
spin-dependent photo-luminescence under optical pumping with
green light. After absorbing a green photon, an electron originating
in the ms + 1 state is more likely to decay through a secondary
spin non-conserving, non-radiative pathway—the inter-system
crossing (ISC).8 This secondary decay pathway forms the basis for
the initialization and readout of the NV center. When the green
laser light is first turned on, the spin state can be determined by
the relative number of red photons emitted. More photons imply
ms ¼ 0; fewer photons imply m ¼+1. When the laser is left on
for a longer time, the spin-mixing process eventually shuttles most
of the electrons into the ground ms ¼ 0 state resulting in an initial-
ized (polarized) spin state.

For the experimental measurements, our lab-built confocal
quantum diamond microscope was used. The diamond sample was
a chemical vapor deposition (CVD)-grown, single crystal with less
than 1 ppm of nitrogen (�0.5 ppb NV in the negatively charged
state).9,23,24 A bias magnetic field of a few mT was formed by two
permanent magnets aligned along one family of NV axes. The
sample was optically pumped with approximately 8 mW of 514 nm
laser light. The laser light was focused into the sample using a
100�, 0.7 N.A. objective lens (�2 μm3 confocal volume). The col-
lected photo-luminescence was redirected using a dichroic mirror,
passed through a pinhole at the focal plane, and then focused into
a fiber-coupled single photon counter. The microwave frequency
magnetic field was provided using a �1 mm outer diameter
shorted loop made from the �100 μm diameter inner conductor of
a stripped coaxial cable. Experiment control was implemented with
a programmable transistor–transistor logic (TTL) generator with a
300MHz time base, and the data acquisition was controlled using a
digital time-to-streaming converter. Python was used to control
hardware and implement the adaptive algorithms. Measurements at
each setting were repeated thousands of times, forming an epoch.
After each epoch, the parameter distributions and utility functions
were updated.

B. Quantum sensing

This work focuses on the core quantum sensing techniques of
the Rabi, Ramsey, Hahn echo, and T1 relaxometry sequences. We
briefly describe these measurements in the rest of the section.

The Rabi sequence gauges the strength of the microwave mag-
netic fields used to manipulate the spin states. In order to perform
other sensing experiments, the π=2 and π pulses must be calibrated
with a Rabi experiment. The Rabi pulse sequence begins with a
laser pulse that initializes the spins into the ms ¼ 0 state; then, an

on-resonance microwave pulse is applied for a duration of τ before
the laser is turned back on to read out the spin state. By scanning
over the microwave pulse duration, Rabi oscillations are revealed.
The time corresponding to the first minima (i.e., where ms ¼+1
depending on the resonance used) is the π pulse duration. The π=2
pulse duration corresponds to the time that it takes to transition
halfway to the other eigenstate, which here we have estimated as
half the length of the π pulse.

A Ramsey sequence is used for measuring DC or slowly varying
magnetic fields.8 The NV system is initially prepared in the ms ¼ 0
state with a green laser pulse. Then, it is put into a superposition with
either the ms ¼+1 state, 1ffiffi

2
p j0i þ j1ið Þ, using a π=2 pulse. Once in

the superposition, the magnetic field information is encoded in the
relative phase accumulated after a time τ, 1ffiffi

2
p j0i þ e�iωτ j1ið Þ. The

population is then mapped back to the ms ¼ 0 and ms ¼+1 states
after time τ using another π=2 pulse. By scanning over the delay time
τ, Ramsey fringes emerge, which are a result of the frequency detun-
ing of the microwave pulses from resonance, plus the contributions of
the DC or slowly varying field. The sensitivity of the Ramsey
sequence is limited by the dephasing time T*

2.
The Hahn echo sequence, which measures AC magnetic fields,

is similar to the Ramsey sequence but includes an additional π
pulse halfway between the initial and final π=2 pulses. The π pulse
rephases the spins, thus making the Hahn echo sequence insensi-
tive to DC fields and additionally, instead limited by the decoher-
ence time, T2, where T2 � T*

2.
8

The final type of sensing experiment studied here is relaxome-
try, which relies on detecting changes in the spin relaxation time.
The spin relaxation time, T1, describes how long the spin popula-
tion will remain out of thermal equilibrium. T1 is sensitive to any
transverse fluctuations at the spin transition frequency and is,
therefore, used in a wide variety of material and biological
applications.8,25–28 These experiments can be performed in a
variety of ways25 but generally rely on initially polarizing the NV
center into ms ¼ 0 spin state, and coherently transferring the popu-
lation to ms ¼+1 with a π pulse, and then allowing the system to
relax for a varied amount of time before reading out the spin
state.29

All pulse sequences described above are shown in Fig. 1.

IV. RESULTS AND DISCUSSION

A. Rabi

During a Rabi experiment the microwave (MW) pulse dura-
tion, τ, is scanned. Most often the Rabi experiment is used to cali-
brate the microwave pulses for other experiments as the location of
the first minima corresponds to the duration of the π pulse. It is
also a helpful way of measuring the resonant microwave strength.
The contrast measured as a function of MW pulse duration is

SRabi(τ) ¼ Ae�τ=T1ρcos(ωτ)þ b, (25)

where the decoherence time T1ρ (also known as T*
2(Rabi)) is

extended compared to the true T*
2 due to continuous driving and,

thus, is typically not the main parameter of interest. Therefore the
main parameter of interest is the Rabi frequency, ω, and the other
three parameters are set as nuisance parameters.
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The MW duration τ (on the order of 10–1000 ns) is much
shorter than the initialization and readout time (few μs per measure-
ment) or software time (hundreds of ms per epoch), so each setting
“costs” approximately the same. However, the amount of time to
reprogram the TTL generator for a new MW duration can be rela-
tively time-consuming (220 of the 320ms total software overhead,
where the utility calculation and parameter inference constitute less
than 1ms). It is, thus, more economical to repeat epochs at the same
value of τ to avoid reprogramming the TTL generator. These effects
are accounted for using the expense function:

εRabi(τ
0) ¼ NA(τ

0 þ tOH)þ tSW � tTTLδ(τ � τ 0), (26)

where NA represents the number of averages in an epoch, tOH is the
overhead time which includes laser initialization, readout and inter-
pulse delays (5 μs), tSW is the total software time per epoch (320ms,
as measured on our instrument), and tTTL is the time required to
reprogram for a new pulse delay (220ms). The delta function,
δ(τ � τ 0), incorporates a reduced expense if the MW duration is not
changed. Figure 2 shows a breakdown of how time is spent during
Rabi experiment and how considering the TTL reprogramming time
with an expense function leads to a dramatic increase in useful
experiment time as opposed to overhead.

Figure 3(a) shows the simulated impact of the standard adap-
tive (U , purple), nuisance parameter (Uf, light blue), and com-
bined nuisance parameter and expense (Uf,ε, pink) algorithms to
randomly selected settings (orange) for a Rabi experiment with an
SNR of 1. The combined power of the nuisance parameter and
expense algorithm results in the greatest increase in efficiency.
After 200 s, the uncertainty in the Rabi frequency is reduced by 43
% using this algorithm vs the randomly selected settings. Note that

in this work, we use randomly selected settings to represent non-
adaptive measurements without introducing scanning artifacts.

It is expected that the most information about ω is located
where jδSRabi=δωj is at a local maxima and where τ � T1ρ.

12 One
can see how setting selection is concentrated around these regions
by the nuisance parameter algorithm in Figs. 3(b) and 3(c).
Figure 3(d) shows how the inclusion of an expense function results
in epochs repeated at the same setting as a consequence of the
delta function in Eq. (26).

Complementary experiments were performed using the same
three algorithms and randomly selected settings. In Fig. 4, each Rabi
experiment was repeated five times for each of the four methods
and the uncertainty in the Rabi frequency was recorded after each
epoch. All methods were initiated with the following priors:
P(f ) ¼ uniform(2, 6)MHz, P(T*

2,Rabi) ¼ uniform(250, 1500) ns,
P(a) ¼ uniform(0:0075, 0:03), and P(b) ¼ normal(1, 0:01). All
experiments were allowed to run for 3min (wall clock). The final
mean uncertainty in the Rabi frequency at 3 min of total experiment
time was 0.061, 0.035, 0.030, and 0.022MHz, for randomly selected,
U , Uf, and Uf,ε, respectively. The best-performing adaptive algo-
rithm, Uf,ε, resulted in a 64% reduction in uncertainty in Rabi fre-
quency at 3 min. In other terms, this adaptive algorithm can
significantly reduce experiment time.

B. Ramsey

The Ramsey sequence is used to measure static or very slowly
varying magnetic fields.8,30,31 The Ramsey fringes depend on the

FIG. 1. Pulse sequences used in this work. All sequences use the same initiation
and acquisition pulses (green and red, respectively) and the arrows indicate the
scanned parameter, either delay or pulse duration. The MW pulses used in each
of the four sequences are shown individually in blue which are used for the
“signal” in contrast and visibility calculations [contrast ¼ (signal)=(background)
visibility ¼ (signal� background)=(signalþ background)]. Sequences are
repeated either without microwaves, denoted above with a dashed bottom (Rabi,
T1 relaxometry), or with microwave phase cycling, denoted above with +x
(Ramsey, Hahn echo) for the “background.”

FIG. 2. Representation of the average division of time during a 200 s Rabi
experiment (number of averages in an epoch, NA ¼ 6000) between the TTL
generator reprogramming time, other software time, the adaptive algorithm over-
head, which includes the updating parameter distributions, the laser pulse dura-
tion, and setting, here the microwave duration (MW). For “Random” on the left,
settings were randomly selected. Note that when randomly selecting settings,
we are still updating parameter distributions through the Bayesian inference after
each epoch. However, this amount of time is visually indiscernible. The average
number of epochs in 200 s was 567. For “Adaptive” on the right, settings were
selected using the nuisance parameter and expense algorithm, Uf,ε. The
average number of epochs in 200 s was 1215, just over twice the amount as
the “Random.” Note that this means that all categories of time besides the TTL
have approximately doubled. Similar behavior is seen in the Ramsey sequence.
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detuning of the microwave field from resonance, f ¼ f0 � fMW .
Hyperfine coupling to 14N leads to three resonances split by
jAkj ¼ 2:16MHz,32

SRamsey(τ) ¼ e�τ=T
*
2 (a1 cos 2π f þ Ak

� �
τ

� �
þ a2 cos 2πf τð Þ þ a3 cos 2π f � Ak

� �
τ

� �
)þ b: (27)

In general, there are two parameters of interest in Eq. (27)—the
dephasing time, T*

2, and the Ramsey frequency, f . The most infor-
mation about the parameters f and T*

2 will be where
jδSRamsey(τ)=δf j and jδSRamsey(τ)=δT*

2j, respectively, are at local
maxima near τ � T*

2. This means information about f and T*
2 is

“out-of-phase.”
Therefore, no improvements are expected with Uf over U if

both f and T*
2 are considered equally important for the same exper-

iment. Indeed, this is what we found (�5% decrease in σ f and
�5% increase in σT*

2
). However, rarely are f and T*

2 considered to
be equally important. Typically, T*

2 is used to characterize the sensi-
tivity of the diamond9,16,18,33 or determine the preferential sensing
time, τ � T*

2. The preferential sensing time is important when
Ramsey fringes are not mapped out, and instead, small changes

around a set point near maximum sensitivity (i.e., τ � T*
2) are mea-

sured. The latter approach of using “magnetometry curves” is
sometimes used to improve the efficiency as compared to mapping
out Ramsey fringes.8 In the case of mapping out Ramsey fringes for
magnetometry, high sensitivity to f is prioritized.

Figures 5 and 6 show the results when optimizing the adaptive
algorithm for T*

2 and f , respectively. All adaptive algorithms
showed tremendous improvement in efficiency as compared to the
randomly selected setting (orange), reaching the inverse square root
scaling limit much faster, that is where the sensitivity plateaus in
Fig. 6(d). There is a significant improvement in sensitivity by
de-emphasizing the nuisance parameters (purple vs light blue). The
inclusion of the expense function (pink) appears to further improve
the sensitivity, particularly after reaching the inverse square root
scaling limit.

Experimental results for the Ramsey sequence are shown in
Fig. 7. Each of the four protocols is run five times for 20 min each.
The MW pulses were applied 4MHz off-resonance to simulate
magnetic field sensing (�150 μT). The priors were the same as in
the simulations shown in Figs. 5 and 6. The uncertainty of f and the
T*
2 is recorded as a function of experiment time. At the end of

20min, the mean uncertainty of T*
2 was 223, 96, 85, and 70 ns for

FIG. 3. Simulated comparison of randomly selected settings (orange) vs the U (purple), Uf (light blue), and Uf,ε (pink) algorithms for a Rabi experiment with a
signal-to-noise ratio (SNR) of 1. For an SNR of 1, an epoch ¼ 6000 total averages, 3000 each for signal and background. Potential settings were chosen from 150 values
ranging from 0 to 1500 ns. The prior distribution of the Rabi frequency, ω=(2π), was a uniform distribution ranging from 2 to 6 MHz (true value 4.5 MHz). T1ρ prior distribu-
tion was uniform from 250 to 1500 ns (true value 900 ns). (a) The mean standard deviation of the Rabi frequency (f ) vs experiment time over 100 individual runs. The
shaded area corresponds to values within a 95% confidence interval. (b) The relative setting counts of U and Uε algorithms. Notice how Uf (light blue) is more selective
with the settings. (c) The model function and an example set of measurements using the Uf,ε algorithm. (d) The settings selected vs epoch when an expense function is
used. The additional expense of changing settings leads to epochs using repeated settings.
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the randomly selected settings (orange) and the U (purple), Uf

(light blue), and Uf,ε (pink) algorithms, respectively. Similarly, the
mean uncertainty of f was 0.0203, 0.0086, 0.0060, and 0.0046MHz,
respectively. The last of which represents an almost fivefold improve-
ment in sensitivity as compared to the randomly selected settings.

For magnetometry, the sensitivity is an important criterion that
describes the minimum detectable field within a certain amount of
experiment time. We define the sensitivity of the measurements as

η ¼ σ
ffiffiffiffiffiffiffiffi
ttotal
p

, (28)

where σ is the uncertainty and ttotal is the total experiment time.19,22

We wish to emphasize that the shot noise, spin-projection limited
sensitivity of the Ramsey is in general a function of the delay

time τ,8,9

η/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ þ tOH þ tSW=NA

τ2

r
1

e�τ=T*
2

� �
, (29)

where we have included the software time (per epoch) evenly distrib-
uted over each individual average. Note that as we are programming
our pulse generator as we go, we are explicitly including the pro-
gramming time in our sensitivity calculations. Software time is typi-
cally omitted from theoretical sensitivity considerations. Despite
sensitivity’s dependence on τ, theoretical limits are typically reported
using the minimum of this function where τ ¼ T*

2. It should, there-
fore, not be surprising that non-adaptive protocols that map out the
Ramsey fringes fail to meet the predicted sensitivity limit (see orange
curves in Figs. 6 and 7). Typically, magnetometry curves are used to

FIG. 4. Experimental data showing how adaptive algorithms are able to learn
about the Rabi frequency with fewer measurements even at an SNR of 1. The
settings were chosen from 150 values ranging from 0 to 1500 ns and the prior
distribution for the Rabi frequency, ω=(2π), was a uniform distribution from 2 to
6 MHz. The prior distribution for T1ρ was uniform from 250 to 1500 ns. (a)
Individual traces of uncertainty in the Rabi frequency vs epoch for five experi-
ments with randomly selected settings (orange) and the U (purple), Uf (light
blue), and Uf,ε (pink) algorithms. (b) Example setting selection with Uf,ε and
fitted model, which can be compared to Fig. 3(c).

FIG. 5. Simulations using randomly selected settings (orange) and the U
(purple), Uf (light blue), and Uf,ε (pink) algorithms for a Ramsey experiment
with an SNR of 1. In this case, learning the T *

2 was prioritized by
de-emphasizing all other model parameters for Uf and Uf,ε. Potential delay
settings were selected from 800 values ranging from 0 to 5000 ns. The prior
distribution of f was a uniform distribution ranging from 1.5 to 8 MHz (true value
4 MHz) and prior for T *

2 ranged from 250 to 1500 ns (true value 1000 ns).
(a) Example set of measurement using U and the ground truth (solid black
curve). (b) The mean standard deviation of T *

2 over 100 individual runs. The
bands represent a 95% confidence interval.
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help reach the minimum sensitivity; however, doing this requires
selecting a set point on the side of a Ramsey fringe where τ � T*

2,
8

which requires knowing T*
2 and to a high degree, an accurate estima-

tion of the magnetic field to be measured. The latter requirement
derives from the Ramsey being a phase-based measurement and to

avoid ambiguity, the resultant phase must be known within a range
of [� π=2, π=2). That is, magnetometry curves have an inherently
limited dynamic range.34 The optimization provided by adaptive
algorithms allows us to reach the minimum sensitivity, without

FIG. 6. Same as Fig. 5 but for Uε and Uε,f all parameters except for f were
de-emphasized. (a) Example experiment using Uε and the ground truth (solid
black curve). Note how the setting selections are slightly different from Fig. 5(a).
(b) The uncertainty in the Ramsey frequency as a function of time. (c) The sen-
sitivity to the magnetic field.

FIG. 7. Experimental uncertainty of (a) T *
2 (measured value 1160 ns) and (b) f

as a function of experiment time for the four experiment protocols at an SNR of
approximately 1. Each trace represents an individual experiment. (c) Sensitivity
achieved with each method. The solid gray line shows the sensitivity limit
without the adaptive overhead (&1 ms per epoch), and the dashed black line
shows the sensitivity limit, including the adaptive computational overhead. The
two limits are indistinguishable. The sensitivity is limited by the low intrinsic NV
density of our sample and the limitations of working in the regime where Rabi
frequency � hyperfine splitting � the detuning from resonance.
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knowing T*
2 or the magnetic field ahead of time. The ability of our

methods to optimize based on incoming data and not prior knowl-
edge or operator expertise is an enormous advantage for the adop-
tion of color centers beyond specialty lab settings.

C. Hahn echo

The Hahn echo sequence adds an additional “refocusing” π
pulse in the Ramsey sequence, which serves to rephase any coher-
ence lost due to inhomogeneous contributions from the local spin

FIG. 8. Simulated comparison of randomly selected settings (orange) and the
U (purple), Uf (light blue), and Uf,ε (pink) algorithms for a Hahn experiment
with an SNR of 3. Potential delay settings were selected from 750 values
ranging from 0 to 750 μs. The prior distribution of T2 was a uniform distribution
ranging from 350 to 650 μs (true value 500 μs) and the prior for p was a
uniform distribution from 0.5 to 3 (true value 1.4). (a) Example set of measure-
ments using the nuisance parameter algorithm with (pink triangles) and without
(light blue circles) an expense function and the ground truth (solid black curve).
A vertical offset was applied for clarity. (b) The mean standard deviation of T2
over 100 individual runs. The bands represent a 95% confidence interval
(c) Same as (b) but for p.

FIG. 9. Experimental results of the Hahn echo sequence with an SNR of 3.
Potential delay settings were selected from 750 values ranging from 0 to
750 μs. The prior distribution of the T2 was a uniform distribution ranging from
350 to 650 μs and the prior for p was a uniform distribution from 0.5 to 3. The
measured T2 was 455 μs with a p of 1.34. (a) Comparison of the settings
selected using Uf (light blue circles) and Uf,ε (pink triangles). The latter was
vertically offset for clarity. (b) The uncertainty in T2 as a function of experiment
time for U (purple), Uε (light blue), and Uf,ε (pink) adaptive algorithms vs ran-
domly selected settings (orange). Each trace represents an individual experi-
ment run. (c) Same as (b) but for p.
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bath, strain, and magnetic field gradients. Therefore, the decoher-
ence time, T2, is typically at least an order of magnitude larger than
the dephasing time, T*

2.
8,17,18,31 In general, the Hahn echo takes on

the form,

SHahn(τ) ¼ Ae� 2τ=T2ð Þp X
j

e� 2τ�jTRð Þ=TDð Þ2 þ b, (30)

where the delay τ is the time between the π=2 and π pulses. In
Eq. (30), the summation represents the echos due to 13C nuclear
spin procession, with revival and decay periods of TR and TD,
respectively. The revival and decay periods of the echos will be
dependent on the bias (DC) magnetic field and may or may not be
apparent due to the combination of field strength and the decoher-
ence time.35 The stretched exponential parameter p encapsulates
the different broadening mechanisms and can vary from 0.5 to 3
for ensembles.9,18,35 Note that T2 and p limit the minimum detect-
able magnetic field frequency, and the Rabi frequency limits the
maximum detectable frequency.

In AC magnetometry, the echo sequence works by creating a
filter centered on f ¼ 1=(2τ). When scanning over τ, the filter
rejects noise outside its bandwidth, therefore extending the coher-
ence time. Simultaneously, the spins become sensitive to magnetic
noise within the filter bandwidth. Therefore, if the frequency of the
AC magnetic field is unknown, τ is swept, and dips in the signal
are correlated to the frequency. Once the frequency is known, the

FIG. 10. Breakdown of time spent during a single epoch with a delay of 400 μs
where NA ¼ 12 000. Epoch time is dominated by the delay, which is the field
sensing time. This can be compared to the Rabi and Ramsey sequences in
Fig. 2 where overhead (software and TTL) dominate.

FIG. 11. Comparison of U (purple) and Uf,ε (pink) to randomly selected settings (orange) for a T1 experiment with an SNR of 3. The time was calculated with Eq. (26)
with NA ¼ 12000. The potential settings were 40 values ranging from 0 to 40 ms. T1 prior was uniform from 3 to 10 ms. The true values of the parameters were
T1 ¼ 7:5 ms, A ¼ 0:013, and b ¼ 0:0001. In the top row, the background, b, is assumed to be known (prior width 2:5� 10�4), and in the bottom row, it is assumed to
be less well known (prior width 2:5� 10�3). Settings selected for the first 200 epochs are shown in (a) and (c) where a vertical offset was applied for clarity. Note how in
(c) many more settings out at long delays are selected to learn about b. (b) and (d) The uncertainty in T1 as a function of time. The bands represent a 95% confidence
interval.
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delay is set to τ ¼ 1=(2f ), and changes in the signal can related to
the field amplitude.

Similar to the Ramsey, the optimal sensitivity is set by T2 and
p (i.e., τ � p�1=pT*

2), but τ must also be matched to the period (or
multiples of the period) of the AC magnetic field. Sequences incor-
porating dynamic decoupling such as the Carr–Purcell–Meiboom–
Gill (CPMG) or the XY8 can extend the coherence time by reject-
ing more noise by creating a narrower filter.8,9,31 Optimizing these
dynamic decoupling sequences to match the T2 for particular fields
of interest can be time-consuming using non-adaptive methods.
Here, we just study the Hahn echo, but the methods can be easily
extended to the CPMG and the XY8.

Unlike the Rabi and Ramsey sequences, the delay times in the
Hahn echo sequence are long enough that the expense of each
measurement can vary significantly. The expense function is now,

εHahn(τ
0) ¼ NA(2τ þ tOH)þ tSW � tTTLδ(τ � τ 0), (31)

where the factor of 2 accounts for the delays both before and after
the refocusing π pulse. Figure 10 shows the division of measure-
ment time during a single epoch.

The results of the simulations are shown in Fig. 8. Figure 8(a)
compares the setting selection of the nuisance parameter algorithm
with and without an expense function. For the Uf and Uf,ε, all
parameters except T2 and p were de-emphasized. Figures 8(b) and 8(c)
show the uncertainty of T2 and p as a function of time for all three
adaptive algorithms vs randomly selected settings.

Figure 9 shows the experimental behavior of the setting selec-
tion and the subsequent uncertainties in the T2 and p as a function
of experiment time for the various algorithms. For an SNR of 3
(NA ¼ 12 000), all adaptive algorithms show an improvement in
measurement efficiency. The most well-performing algorithm, the
combined nuisance parameter and expense algorithm, resulted in a
2.4 and 3.6-fold reduction in uncertainty in T2 and p, respectively,
at 30 min of experiment time. The average number of epochs
within 30 min of experiment time were 195, 437, 407, and 1280 for
the randomly selected, U , Uf, and Uf,ε, respectively. As expected,
the expense algorithm leads to the prioritization of shorter delays
as can be seen in the location of the pink vs purple data points in
Fig. 8 and Fig. 9(a).

Due to the fact that T2 and p are highly correlated and we
elected to consider both as key parameters of interest [i.e., we
de-emphasized all other model parameters in Eq. (30)] that
meant experiment time was split between learning about T2 and
p. An analysis using partial derivatives shows that information
about these parameters is located at different points in the setting
space, with information about p at shorter delays. Therefore, we
should expect more gains in p with the expense function. If,
instead, we de-emphasize p, then Uf,ε (pink) should instead
produce higher gains for T2. This is the exact behavior we
observed, and we have included these results in the
supplementary material.

D. T1 relaxometry

Typically, T1 is phonon-limited to several ms (&10 ms) unless
the NV centers are subjected to magnetic noise at frequencies near

their resonance.36–39 Therefore, T1 relaxometry is useful for sensing
very high-frequency signals (�100MHz) or paramagnetic
spins.8,25–28 As T1 can be quite long, this sequence poses as the
most time-consuming experiment. We assume a simple exponential
decay:

ST1 (τ) ¼ Ae�τ=T1 þ b: (32)

In Fig. 11, the simulated uncertainty in T1, as a function of
experiment time, is shown for an SNR of 3. U (purple) and Uf,ε

(pink) algorithms both show a substantial improvement over the
randomly selected settings (orange). In the case of a simple expo-
nential decay, all parameters are highly interdependent; that is, to
know T1, we must also know A and b. This means that we should
not expect the nuisance parameter approach to be as impactful as
in other sequences, such as the Rabi. However, the inclusion of the

FIG. 12. (a) Comparison of the settings selected by the U (purple diamonds)
and Uf,ε (pink triangles) to randomly selected settings (orange squares) for a
T1 experiment with an SNR of 3. A vertical offset was applied for clarity. (b) The
uncertainty in T1 as a function of time. Potential delay settings were selected
from 40 values ranging from 0 to 40 ms. The prior distribution of the T1 was a
uniform distribution ranging from 3 to 10 ms. The background was assumed to
be well known with a normally distributed prior with a standard deviation of
2:5� 10�4. The measured T1 was 7.5 ms.
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expense function can significantly improve the performance of nui-
sance parameter algorithm, depending on the parameter priors.

The background level b in Figs. 11(a) and 11(b) is assumed to be
relatively well-known and described with a normally distributed prior
with a standard deviation of 2:5� 10�4. In Figs. 11(c) and 11(d), the
background level is assumed to be less well-known and instead
described with a normally distributed prior with a standard deviation
of 2:5� 10�3. In the case where the background is well-known, the
similar behavior of the two adaptive algorithms can be understood as
in neither case time was spent learning about b. If, instead, the back-
ground was not as well-known, the behavior of the two adaptive
algorithms differ as U spends more time learning about b out at
long delays. The difference can be seen by comparing Figs. 11(a)
and 11(c). However, note in Fig. 11(d) that the T1 uncertainty is still
not as low as when the background was assumed to be well known in
Fig. 11(b).

The experimental results are shown in Fig. 12. In this case we
assume that the background level was well known [same as in
Figs. 11(a) and 11(b)]. Neither adaptive algorithm spends much
time a long delays [Fig. 12(a)] and one can see that the inclusion of
the expense function (pink) creates a slight preference for earlier
delays. Both adaptive algorithms perform approximately equally
well as expected in this case [Fig. 12(b)].

V. CONCLUSIONS AND OUTLOOK

In this work, we have demonstrated through simulations and
experiments how adaptive experiment design can make dramatic
improvements in the efficiency, and, thus, sensitivity, of quantum
sensing with NV centers in diamond. For optimal adaptive experi-
ments, it is important that the utility function adequately reflects
the underlying physical model, real experimental conditions, and
ideally, the experimental goals. We have introduced two new algo-
rithms that incorporate two types of experimental goals. The nui-
sance parameter algorithm is able to prioritize learning about
model parameters that matter the most. The expense algorithm
prioritizes measurements that can be performed faster or at lower
economic cost, which can lead to further improvements in effi-
ciency. Using these algorithms, we noted an almost fivefold
improvement in magnetic field sensitivity as measured with a
Ramsey sequence and reached the shot noise and spin-projection
limit without using a magnetometry curve, a method that typi-
cally requires initial optimization experiments and imparts
limited dynamic range.

Furthermore, these methods are easily transferable to
quantum sensing with other color centers, such as those in silicon
carbide, that suffer from much lower spin-state contrast as these
algorithms operate quite well even at an SNR of 1. They can also be
used to increase the sensitivity of emerging readout techniques
such as photoelectrically detected magnetic resonance.13,30 Future
work could also consider the use of these algorithms in wide-field
quantum sensing where the measurement outcome and the indi-
vidual parameter space is a n�m dimensional matrix, correspond-
ing to the pixels of a camera.

Finally, we wish to emphasize that these methods are broadly
applicable to other types of experiments beyond quantum sensing,

although they are particularly relevant for slow or noisy
experiments.

SUPPLEMENTARY MATERIAL

See the supplementary material for the additional simulations
of the Hahn echo sequence where the model parameter p is
de-emphasized in Uf and Uf,ε as mentioned in Sec. IV C.
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APPENDIX: PSEUDOCODE

ALGORITHM 1. Standard adaptive algorithm.

Input: Parameter distribution P(θ)
for Ns parameter samples θj drawn from P(θ) do

for all candidate designs, di do
Evaluate model yi;j  f (θj; di)

▷ reusing θj samples
end for

end for
for all candidate designs di do

Variance vθ;i  Var(yi;1 . . . yi;Ns ) over parameters
Variance of noise vη;i  Var[P(η)]
Calculate utility Ui  ln [1þ vθ;i=vη;i]=2

end for
Find max utility ibest  Argmax(Ui)

Output: corresponding setting dibest
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