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Abstract

This note describes a measurement of sin® 6y based on the charge asymmetry
in the reaction pp — Z° — ete~. Using 250 Z° candidates we find sin’fw =
0.231 4 0.016 (stat) £ 0.002(sys), after QED corrections. Systematic errors and ra-
diative corrections to the asymmetry are found to be small. Renormalization effects in
the interpretation of sin? @y depend strongly on the top mass and can be large. This

result is consistent with world average value of sin® fy, both with and without radiative
corrections.

1 Introduction

In the Standard Model of electroweak interactions [1], the neutral current is described as

a mixture of the weak isospin and electromagnetic currents, with “mixing angle” 8y, as
shown below:

IO = I8 —din B d M. (1)
The weak isospin component of the neutral current leads to a parity violating V — A form

for the neutral current interaction, which is then slightly modified by the electromagnetic
current. The vertex factor for the neutral interaction is given by
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where the vector and axial vector fermion couplings g& and g£ are given by

gl =T} —2Qssin’0w g} =T} (3)

taking T)"? and @y to be the third component of weak isospin and the charge of the fermion,
respectively. Due to the V — A form of the interaction, the Z° couples more strongly to
left-handed fermions and right—handed antifermions. Using helicity and angular momentum
conservation arguments similar to those used for charged current processes, one finds that
in ff — Z° — f'f' interactions the outgoing fermion (antifermion) is preferentially emitted



in the direction of the incoming fermion (antifermion). This implies that there will be a
charge asymmetry in the decay angular distribution of the Z°, and furthermore that the
magnitude of this asymmetry depends on the values of the vector and axial vector couplings
of the Z°. In the Standard Model, the vector and axial vector couplings themselves depend
only on sin?fy and the (known) values of charge and isospin, and so one can infer a
value for sin? fyy from a measurement of the charge asymmetry in 70 decays. We propose,
then, to determine sin? Ay from a measurement of the dielectron angular distribution in
pp — Z0 — ete~ events at CDF.

At lowest order, both photon exchange and Z° exchange contribute to electron pair
production in hadronic collisions; the Feynman diagrams for these processes are shown in
Figure 1. A calculation based on these diagrams gives the cross section [2, 3]

do f 1 1 il _(ra2Q? 9 4
— = Ng Ld%ﬁ dmquq(a:a,s]q(a:b,s}{—q-% (14 cos“ @) (4)

B aQqGFM%(é - M%)
2vV2((8 - M2)% + M3T%)
GEM33
167((3 — M%)% + M2T%]

x [((95)* + (92 ((99)* + (9%)*)(1 + cos® ) + 8gfrglagysg’y cos 9]}

[9¥90(1 + cos? é) + 2959% cos 9]

where § is defined to be the angle between the outgoing electron and incoming quark (or
outgoing positron and incoming antiquark) in the rest frame of the electron pair. Note
that Né is a color factor, ¢(z,,8) and §(zp,8) are the quark distribution functions in the
proton and antiproton, and the sum is over quark species. The first and third terms in the
cross section are due to photon exchange and Z° exchange, respectively, while the second
term arises from the quantum mechanical interference of these two subprocesses. Each term
has a symmetric component proportional to (1 + cos?6), and both the Z° and interference
terms have antisymmetric components proportional to cos . While the interference term
is important in the charge asymmetries seen away from the Z°, its contribution to the
cross section near the Z peak is small (of order 1% of the total cross section). We wish to
emphasize that the asymmetry seen in pp — ete™ events at the Z° resonance is a feature
of the Z° couplings to fermions, and is not merely an interference effect.

A useful quantity is the forward—-backward asymmetry at the Z° resonance, Ayp, defined
by
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The asymmetry in pp — ete™ is a function of both the quark couplings and the lepton
couplings to the Z9. Unlike the purely leptonic asymmetry measurements soon to be made



at LEP, a measurement of Apg at CDF is an indirect measurement of the Z° couplings to
light quarks. Furthermore, we note that the vector coupling to leptons is very near zero for
sin? yy values near 0.25, and so the expected asymmetry for interactions involving leptons
is small. The purely leptonic asymmetries at LEP involve two factors of this small coupling
constant, and so are expected to be significantly smaller than the quark-lepton asymmetries
observed at CDF. At CDF, however, collisions involve protons, not bare quarks. Since the
u-type and d-type quark couplings to Z°’s are different, the observed asymmetry is sensitive
to the flavor content of the protons. The expected asymmetries are therefore a function
of the structure functions of the proton. Figure 2. shows the asymmetry as a function of
sin? @y for u-type and d-type quarks. In the region near sin?fw = 0.230, the u and d
quark asymmetries are nearly equal, and so we expect that the observed asymmetry will
not depend strongly on the u to d quark ratio.

Finally, we note that when higher order diagrams are included, both the observed asym-
metry and the precise definition of sin? @y will change. Some of the higher order diagrams
are asymmetric in their own right, and their contributions to do'/d cos § must be calculated.
Furthermore, when higher order effects are included, values for sin?fy determined from
different physical processes get different corrections and are no longer directly comparable
[4]. In particular, the value of sin? §y determined from the charge asymmetry is not directly
comparable to the value determined by 1 — M@, /M2 until higher order corrections are made
and a particular form for sin? fyy is adopted.

2 Measuring cosf

There are a number of factors which are of importance in measuring cos@. First, recall that
0 is defined to be the angle between the outgoing electron and incoming quark (or outgoing
positron and incoming antiquark) in the Z° rest frame. Since this definition requires us to
differentiate between the electron and the positron, we must be able to measure the charge
of at least one of the electrons in the event. This requires that at least one of the electrons
is produced in the central region and leaves a well reconstructed track in the drift chamber.

Next, 8 is properly defined by the quark and antiquark directions. In practice, we
know the directions of the protons and antiprotons only; we assume that the initial quark
is moving in the proton direction and the initial antiquark is moving in the antiproton
direction. While this is always true for interactions involving valence quarks, it is wrong
half the time for interactions in which both quarks come from the Fermi sea. Since the sign
of cos 6 is mismeasured for half of the sea-sea interactions, the sea-sea interactions give a
symmetric “background” contribution to the angular distribution. Any determination of
sin? @y from the asymmetry, then, will depend on the sea—sea contribution, and therefore
on the proton structure functions. The total observed asymmetry for EHLQ 1 structure
functions is shown in Figure 2. The effect of the symmetric sea-sea contribution is to reduce
the observed asymmetry.

Finally, due to QCD effects such as initial state gluon bremsstrahlung, the Z%’s are
produced with varying amounts of transverse momentum, Pr. When a Z° is produced with



non-zero Pr, the proton and antiproton directions are not collinear in the rest frame of
the dileptons, and so the quark directions are not completely determined; the quarks can
only be said to be travelling in approximately the direction of the proton or antiproton,
and the approximation gets worse as Pp increases. Since the initial quark directions are
ill-defined, cos@ can no longer be precisely measured. One must therefore define a new
Z axis in the dilepton rest frame to take the place of the quark direction when making
angular measurements. Several definitions have been proposed [5], among them the helicity
frame in which the 2 axis is taken along the recoil direction of the Z, and the Gottfried—
Jackson frame in which the # axis is taken along the proton direction. We choose to use
the method of Collins and Soper [6], in which the 2 axis is taken to be the bisectrix of the
proton and minus the antiproton directions. In effect, the Collins—Soper definition divides
the Pr contribution equally between the quark and antiquark, and possesses the feature
that Z reduces to the (known) quark direction in the limit Pr — 0. All of these definitions
are approximations which begin to break down at high values of Pr. We thus expect that
the cos@ distribution will be smeared somewhat by the high Pr events. The size of this
smearing and its effect on our result is discussed in Section 8.

3 Data Sample

The data sample is taken from the electron mini-DST’s made by Production (ELMO00 and
ELMO01). We make the energy corrections contained in the ELENCR [7] routine and re-
calculate strip quantities with STRFIX [8]. We make fiducial cuts using the latest version
of FIDELE [9], and track related quantities are calculated using beam constrained tracks.
We require the events to pass the Electron-12 trigger. The normal range of bad runs was
excluded. For the asymmetry analysis we require each event to have one high quality CEM
electron with a second good electron anywhere in the detector. The electron quality cuts
shown in Table 1. We find 303 events which pass these dielectron cuts. A plot of dielec-
tron invariant mass for these events is shown in Figure 3. The Z° peak is prominent, and
backgrounds appear to be low. We take as our Z° sample the 250 events in the range
75 GeV < Mg < 105 GeV. A plot of dn/dcosf for events satisfying the above electron
quality and mass cuts is shown in Figure 4. There are more events with positive values
of cosf than negative values, as expected. Further, the dn/dcosl? distribution has the
parabolic shape predicted by the cross section calculated previously. Note that the geo-
metrical acceptance of the CDF detector falls off as | cos 6| approaches 1.0, and so we see a
reduced number of events in the outermost bins of Figure 4.

We estimate the background for this data sample using the method developed by Kearns
et.al. [10] for the ¢ - B analysis. Using the maximum isolation and the invariant mass
distributions, and assuming a background flat in maximum isolation and mass, we estimate
6 + 3 events due to non-dielectron backgrounds. We take the estimate of 0 Z° — 7F7~
events from the R paper.



Require one tight CEM electron:

By > 15 GeV
Elp < 15
LSHR < .20
thr:‘p < 15
|Az] < 1.5 cm
|Az] < 3.0 cm

Iso(r=4) < .10

Require one additional electron:

If CEM electron:

Ey > 15 GeV
Elp < 15
Iso(r=4) < .10

If PEM electron:
Ey > 15 GeV

Xixa < 20

VTPC occupancy < 0.5 cm
HAD/EM < .05
Iso(r=.4) < .10

If FEM electron:
E; > 15 GeV

E f ront/ Etotat > 6
HAD/EM < .05
Iso(r=4) < .10

Table 1: Electron quality cuts



4 Acceptance issues

We use a Monte Carlo event generator and a simple detector simulation to determine the
acceptance. The detector geometry and electron Ep cut are easily simulated. To simulate
the electron quality cuts, we accept and reject events based on the measured efficiencies of
the cuts rather than attempt a full simulation of the detector. The efficiencies used are

€cemcighty = 0.850 £ .025
€cEM(loose) = 0.891 £ .023
eppm = 0.931 £ .021
erem = 0.957 & .025

The efficiencies for the PEM and FEM cuts are taken from the ¢- B analysis of Reference

been determined in the same fashion as those in Reference [10], but with the cuts listed in
Table 1.

We calculate the cos f~dependent acceptance using generation-level 4-vectors from the

ISAJET 6.22 Monte Carlo [11], using EHLQ]1 structure functions. The steps in the accep-
tance calculation are as follows.

1. Generate pp — ete™ events

2. Make histogram of dn/d cosf using generated quantities for events with 756 GeV <
Mee < 105 GeV

3. Smear the event vertex with oyertex = 30.0 cm
4. Extrapolate the electron 4-vectors to the detector.

5. Make fiducial cuts on the extrapolated position consistent with those made on the
data.

6. Smear the electron energy by the calorimeter resolutions:
CEM op/E = 0135/YE + .007
PEM og/E = 028/vVE + .002
FEM og/E = 028/VE + .002
7. Make the E; cut on each electron (15 GeV).

8. Discard electrons in each detector based on the combined efficiencies for the electron
quality cuts given above

9. Make histogram of dn/d cos# using smeared quantities for events passing the above
acceptance cuts and having 75 GeV < M¢e < 105 GeV
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10. The cos § dependent acceptance is defined to be the bin—by—bin ratio of the histogram
of step 9 and the histogram of step 2

Since the acceptance is symmetric with respect to cos@ at the generator level, we have
combined histogram bins in a symmetric fashion in order to increase the statistical accuracy
of our acceptance measurement. A plot of acceptance versus cos 0 is shown in Figure 5.
The acceptance is fairly flat in the region |cos8| < 0.9, but falls due to the CEM—PEM
crack and fiducial cuts near |cosd| = 0.25 and due to the PEM-FEM crack and fiducial
cuts near |cosf| = 0.6. The acceptance is significantly reduced for |cos| > 0.9 for two
reasons. First, the Ep’s of the electrons in events with large values of cos § tend to peak at
low values, due to simple kinematics (E7 ~ Esinf), and so we lose a large number of these
events due to the Ep cut. Second, the requirement that one of the electrons be loca,tec} in
the central region reduces the geometric acceptance for events with large values of cos 6.

Finally, we note that if we simply exchange the identities of the electron and positron
in any dielectron event, the event topology remains unchanged while cosf changes sign. If
the detector acceptance depends only on the event topology and not on the charges of the
electrons, then the acceptance must be independent of the sign of cos §, and must therefore
be symmetric with respect to cos. Also, if we exchange the sign of 7 for each electron
in the event (i.e. exchange east for west), then cos again changes sign. If the detector
acceptance is east—west symmetric, then the acceptance is again independent of the sign
of cos&‘ and must be symmetric with respect to cosf. In order for the acceptance to be
asymmetric in cos, the acceptance must be charge dependent, and the charge dependence
must vary as a function of 7). The effect of an asymmetric acceptance is discussed in Section

6.

5 Determining sin® 0y

We use three methods to determine sin? 8y and App from the dn/d cos § distribution. Below
we examine each of these methods, paying particular attention to the acceptance measured

in the previous section. We will represent the lowest order cross section of Equation 4 by
the simple form

88 — A1 4By Beosd (6)
dcosf

where A and B are functions of sin? fy and include integrations over structure functions and
kinematic variables. It is convenient for what follows to describe the detector acceptance
by a function ¢(cos? 9) which is explicitly symmetric in cos 6.

5.1 Negative log likelihood fit

Our method of choice for measuring sin? @y is a negative log likelihood fit to dn/d cosd. A
disadvantage of the log likelihood fit is that there is no information about the quality of the



fit. A major advantage, however is that the log likelihood minimization is independent of
acceptance if the acceptance is symmetric in cos 6.

To use the log likelihood method we begin with a normalized probability distribution
function derived from the cross section of Equation 7:

P(sin® 8y, cos ) = g- ((1 + cos® ) + B/A cos 0) (7)

Note that all dependence on sin” fy is now contained in the B/A term. The acceptance is

incorporated into the analysis by defining a new acceptance—corrected probability function
which includes the acceptance function €(cos? ):

P'(sin? 8y, cos §) = %I\J’e(cms2 8) ((1 + cos®) + B/ A cos fj) (8)
where NV is a normalization factor given by

N—l

1 . 2 5 1 & & n
g / e(cos® )(1 4 cos? f)d cos 6 + % f ¢(cos®0)A/B cos fd cos 8 (9)
-1 -1

3 ! 24 9z 3
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Note that N is independent of sin? fyy. This acceptance—corrected function now describes

the angular distribution measured with our detector and electron quality cuts. Finally, the
likelihood, £, and the negative log likelihood for a given data sample is defined by

L = 1-[3\2'6,-((:032 é)Pg(sin2 O, cos §) (10)

—InL = - Zln(;"'«’eg((:r}s2 8)) — Zln P;(sin? By, cos 0) (11)

Once the data sample has been determined, the term Y In Ne(cos? §) is a constant, inde-
pendent of sin fyy, and so does not affect the minimization of —In £. For the negative log
likelihood fit, then, the parameter estimation is independent of the acceptance.

We use the log likelihood method to fit the measured angular distribution to the form
of the cross section given in Equation 4 and extract sin? @y directly. We find sin? fw =
0.232+ 0.016 (stat). One can also fit the angular distribution to a simple parabolic form,

it - = (14 cos? §) + Bcos b (12)
dcosf

and extract the forward-backward asymmetry from the fitted value of 3 using

- %ﬁ. (13)

Using this prescription, we find Apg = 0.047 4 0.059 (stat).
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5.2 Binned * fit

The second method for measuring sin?fy is a binned y? fit to an acceptance corrected
histogram of dn/dcosf. The advantage of the x? method is that the value of x? gives
some insight into the quality of the fit. This method, however, depends explicitly on the
acceptance measured in Section 4. The measured distribution is corrected bin-by-bin by
dividing the measured distribution by the acceptance factors measured in Section 4 and
shown in Figure 5. We note that the corrections to the contents of the outermost bins are
relatively large, and so small fluctuations in the contents of these bins can have a large
effect on the distribution after the corrections are applied. We therefore exclude the two
outermost bins from the x? fit.
Fitting directly to the form of the cross section, we extract sin? Oy = 0.234 + 0.017

(stat) with a x? of 8 for 28 degrees of freedom. Fitting to the simple parabolic form of
Equation 13 we find App = 0.041 +0.064 (stat), with a x? of 8 for 28 degrees of freedom.

5.3 Event Counting

The third method is direct measurement of Apg obtained simply by counting events. We
adopt the definition

TR
S 0> <
AFBldires = 22920 __cosl<0 (14)

Nccsé)ﬁ + Ncosé(ﬂ

This method of determining the asymmetry is also acceptance dependent, and so we cal-
culate the asymmetry by first forming a bin-weighted histogram, and then summing the
corrected bin contents. As with the binned x2, we get the best results if we exclude the
bins nearest | cos 6] = 1.0. We must therefore correct our result to conform to the definition
of App given in Equation 6. We extract a value for sin? fy by comparing the acceptance-
corrected measured value of App with the values predicted by given values of sin?fyy and
a particular choice of structure functions.

Using this direct method we find Arg = 0.061 + 0.069 (stat) after corrections. We use
this result to determine sin? By = 0.228 + 0.019 (stat).

5.4 Summary of results

The results of the three methods are given in Table 2. The various values of sin? Oy show
good agreement, as do the statistical errors. The negative log likelihood is the preferred

method for determining sin? fw, because it is independent of the acceptance measurement,
and it is the log likelihood value which we will quote below.

6 Systematics

There are several potential sources of systematic error on the asymmetry measurement,
arising from both physics effects and detector effects. Below we discuss each in turn and
estimate the size of these systematic effects.



Sumary of Fit Results
CDF PRELIMINARY
Method sin” Oy AFB x?%/d.of.
Log likelihood | 0.232 4 0.016 | 0.047 £ 0.059
Binned y* 0.234 £ 0.017 | 0.041 £ 0.064 8/28
Direct count | 0.228 4-0.019 | 0.061 + 0.069

Table 2: Results of the various parameter determinations

Systematic fit studies
Method sin® Oy AFB
Log likelihood | 0.232 + 0.018 | 0.050 + 0.059
Binned x* | 0.2334+0.018 | 0.051 £ 0.061
Direct count | 0.232 £ 0.020 | 0.052 £ 0.068

Table 3: Mean and sigma of fits to multiple Monte Carlo data samples

6.1 Fitting systematics

We use a toy Monte Carlo to investigate possible biases in the fitting procedures. 500 data
samples were generated according to a parabolic distribution. Each data sample contains
236 “events” which have been “accepted” based on the cos § acceptance shown in Figure 5.
We fit each sample, and make a distribution of the results. The mean of the distribution
should agree with the input of the Monte Carlo, and the sigma of the distribution should
agree with the statistical error on our real data sample. The results of these studies are given
in Table 3. The means agree well with the Monte Carlo input parameters of sin? iy = 0.231
and App = 0.053. The sigmas are comparable to those found for our data sample and shown
in Table 2. We believe, then that our various methods of determining sin? By and App are
not substantially biased.

6.2 Detector Effects

Since we use calorimeter cluster energies and centroids to measure the electron 4-vectors,
the accuracy with which we can determine cosf will be determined by the finite position
and energy resolution of the detector. The position resolution of the calorimeter elements
directly impacts on the measurement of cos f. In order to estimate the effect on sin? yy due
to the finite position resolution of the calorimeters, we generated several (~ 100) 5pb~! data
samples with the ISAJET Monte Carlo, and imposed fiducial and Ep cuts. The generated
electron 4-vectors were then smeared separately in x and y (R¢ and z for the Central
calorimeter) with a resolution of 2 cm at the face of each calorimeter. A value for sin? Oy
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was then determined for each smeared data sample and then compared with the unsmeared
value for the same sample. The values of sin? @y change by less than 0.0001 due to the
finite position resolution of the detector.

Energy resolution and energy scale effects affect the cosf measurement via the boost
into the rest frame of the electron pair. In order to estimate the size of the effect due to
the energy resolution of the calorimeter elements, the Monte Carlo generated data samples
were smeared by the energy resolutions listed in Section 4. A value for sin?fy was then
determined for each smeared data sample and then compared with the unsmeared value for
the same sample. The values of sin? i change by less than 0.0001 due to the finite energy
resolution of the detector.

Energy scale changes were investigated by multiplying the Monte Carlo 4-vectors by
detector-dependent scale factors. We note first that global energy scale changes do not
affect the cos @ values, and so only energy scale differences were investigated. In the first
test all the gas calorimeter energies were multiplied by 1.05. This 5% scale change causes the
values of sin? fyy to change by less than 0.0001. In the second test all the West calorimeter
energies were multiplied by 1.05. Again, we find that the values of sin? 6y change by less
than 0.0001.

We conclude, then, that the detector resolutions have a negligible effect on the final

result. The systematic error due to errors in the determination of the calorimeter energy
scales is also negligible.

6.3 Background

If the background in the data sample is small and symmetric in cos, the observed asym-
metry is described by the simple relation

AFBlobserved = AFBltrue ' (1 = 3): (15)

where z is the fraction of background events in the sample. Using this relation and the
estimate of 643 non-dielectron background events from Section 3, we find that the observed

forward-backward asymmetry is reduced by a relative 2.4%, and the measured value of
sin? @y must be increased by 0.0006.

6.4 Charge Dependencies

It was argued in Section 4 that the acceptance is symmetric in cos @ if the detector is either
charge-blind, or east-west symmetric. We assume that the calorimeters are charge inde-
pendent, and can therefore introduce no charge asymmetry. There may, however, be charge
and 7 dependent biases in the tracking quantities due to imperfections in the construction
of the CTC, and so the size of these effects must be quantified.

The Electron-12 trigger has been measured to be 98.6% efficient [12]. From this, one can
derive an upper limit on the shift in the asymmetry caused by charge dependencies in the
trigger. If one assumes that the events which fail the trigger all have cos values with the
same sign, then the asymmetry would be increased or decreased by 0.009. This implies a
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systematic error of 0.004 on sin® 6yy. In fact, though, the situation is very much better than
this. Any bias in the trigger or tracking will be due to physical imperfections in the central
detector and therefore will depend on the physical position of a central electron. For any
given central electron, the sign of cosd can change depending on the second electron in the
event. Any bias in cosf due to the the central electron, then, is washed out by the second
electron. A reliable estimate of the possible bias due to the trigger inefficiency therefore
requres a Monte Carlo simulation. Using the ISAJET event generator, and assuming a
central electron efficiency which depends linearly on the product of charge and detector 7,
one finds that the systematic error on sin® 6y is less than 0.001. This value is an upper
limit which is currently limited by the statistics of the Monte Carlo sample, and is expected
to improve.

The track reconstruction efficiency has been shown by Alain Gauthier to be 99.86%
efficient, based on a study of cosmic rays. Assuming all the events which fail have cos 0 values
with the same sign, one derives an upper limit of 0.003 on the change in the asymmetry,
and and a systematic error on sin? 8y of 0.001. Using the Monte Carlo and assuming the
inefficiency is linear in the product of charge and detector n for central electrons, one finds
the systematic error on sin® fyy is limited by the Monte Carlo statistics at 0.001.

Craig Blocker has found similar results [13]. We conclude that the systematic error on
App and sin? fyy due to biases in the trigger and tracking is very small.

6.5 Structure Functions

The exact functional form used in the fits depends on the relative contributions of u-
type and d-type valence and sea quark production. While we use a reasonable choice for
the proton structure functions in our calculation of sin? @y, there are uncertainties in the
structure function parametrizations, particularly at small z where the structure functions
are not well-measured. In order to estimate the systematic error due to structure function
uncertainties we have fit the data using several structure function parametrizations [14].
The results of the log likelihood fits are shown in Table 4, along with the u-type/d-type
ratio and the ratio of sea-sea to valence interactions. We take the systematic error to be
half the spread of the fitted values. The systematic error due to structure functions, then,
is 0.00035

7 Comparisons with previous studies

A preliminary value for sin? @y from the forward-backward asymmetry has already been
presented at several conferences and workshops [15]. The data for this preliminary study

were taken from the Z_.CAND.PRO_5.1 data file, and have been selected with the following
cuts:

1. Ep > 15 GeV for both electrons

2. one central (|| < 1.0) electron cluster with associated 3-D track and ratio of cluster
energy to track momentum, E/P < 2.0.
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Log-Likelihood Fit Results
1988-1989 Data
CDF PRELIMINARY
Parametrization | sin®fw | Error | u/d Ratio | Sea/Valence
EHLQ 1 0.2321 | 0.0159 2.34 0.23
EHLQ 2 0.2321 | 0.0159 2.29 0.24
DO 1 0.2322 | 0.0163 1.58 0.30
DO 2 0.2316 | 0.0168 1.54 0.34
DFLM 1 0.2323 | 0.0158 2.09 0.24
DFLM 2 0.2322 | 0.0159 2.09 0.25
DFLM 3 0.2318 | 0.0159 2.16 0.25
MRSE 0.2322 | 0.0162 1.79 0.28
MRSB 0.2320 | 0.0162 1.96 0.27

Table 4: Fit results for various structure function parametrizations

3. lateral and longitudinal shower profiles consistent with an electron shower
(i.e. Lshr < 0.5, |Az| < 5cm in the CEM, x3,3 < 20, xi)mh < 20 in the PEM, and
E front/ Etotal > .6 in the FEM)

4. Fiducial cuts made with FIDELE

The asymmetry measurement was made using only the 276 events in the mass range
76 GeV < Mee < 106 GeV, and yielded the value sin? 66y = 0.216 + 0.015. We must now
determine if this result is consistent with the results obtained in Section 5. The comparison
of these two results is complicated by the fact that the two data samples are not indepen-
dent, but overlap to a large degree; of the 250 events in the Production sample used in the
current analysis, 208 are also contained in the sample obtained from Z_.CAND.PRO_5_1. It
is not enough, then, to say that the two results agree within their statistical errors. We
must account for the overlap in the samples when comparing the results.

We use our toy Monte Carlo to address the overlap issue. We generate pairs of data
samples, one element having 250 events and the other having 276 events, with 208 over-
lapping events. We thus duplicate the conditions in our two data samples. We then fit
each sample of the pair, and compare the results. The difference between the fitted values
of sin?@y from the pairs of Monte Carlo samples should have a distribution peaked at
zero, and the sigma of this distribution should be an indication of the expected spread in
the sin? @y results from our real data samples. Using 200 pairs of data samples, we find
the distribution of differences has a mean of 0.000 as expected and a sigma of 0.010. The
difference between the results of our two data samples is thus a 1.6 sigma effect.

One may now ask whether there is a systematic difference in the two data samples. To
address this question, one of us (E.K.) applied the electron cuts listed in Table 1 to the
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Z.CAND.PRO.5.1 data sample, and compared event by event with the production sample.
In the mass region 75GeV < M, < 105GeV, there were 15 events in the Z_CAND.PRO_5_1
sample which were not in the production sample. Of these, 10 were absent because produc-
tion did not process the raw data tape containing the event, and the remaining 5 did not
pass the Electron-12 trigger.

We believe, then, that there are no large systematic differences between the production
and Z-CAND.PRO_5.1 data samples. The difference in the production and Z.CAND.PRO_5_1
results are statistical differences, and the two results are consistent to within 1.6 sigma.

8 Radiative Corrections

There are many higher order diagrams which contribute to inclusive dielectron production
in pp collisions. The QCD diagrams shown in Figure 6 produce dielectrons with non-zero
transverse (to the beam direction) momentum, Pr. The order a® electroweak contributions
to g§ — e*e~(v) shown in Figure 7 are also a source of dielectron events. These higher or-
der processes have a significant effect on the angular distribution of the dielectrons and the
determination of sin? . Initial state QCD radiation smears the cos § values reconstructed
from the electron 4-vectors, while the forward-backward asymmetry in ete™ — ptu~
interactions at LEP can be approximately doubled by higher order QED processes [4],
Furthermore, when higher order weak corrections are included, the values of sin? Oy deter-
mined from different physical processes require/acquire different corrections, and care must
be taken in comparing different measurements of sin? fyy.

The higher order corrections divide themselves naturally into QCD, QED, and weak
corrections. The QCD corrections are independent of the electroweak corrections and can
be treated separately. The electroweak corrections are more complex, and must be treated
within the framework of a renormalization scheme. The on-shell renormalization scheme
proposed by Marciano and Sirlin [17] and described in Reference [18] uses the fermion
masses, @, Mz, Mw, and Mgiggs as input parameters, and has the property that the
QED diagrams are separable as a class. In this renormalization scheme, the QED sector
is separately renormalizable, and QED quantities can be calculated independently of the
remaining weak corrections. In the on-shell renormalization scheme, sin? @ is not an
independent parameter, but is most naturally defined in terms of the W and Z° masses, by

{ (16)

sin? =1 - —%¢.

In the subsequent sections, the effects of each of the different categories of higher or-
der corrections on the forward—backward asymmetry and the interpretation of sin® fw are
examined. The object of these correction procedures is first to account for higher order con-
tributions to the measured asymmetry, and then to derive a value for a commonly accepted
definition of sin? @y based on the corrected asymmetry.
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8.1 QCD Corrections to the Asymmetry

The scattering angle § is defined to be the angle between the outgoing electron and incoming
quark (or outgoing positron and incoming antiquark) in the rest frame of the electron pair.
The initial quark directions, however, are not always well-defined in pp collisions. Due to
the higher order QCD processes shown in Figure 6, Z”s are produced with varying amounts
of transverse momentum, Pp. When a Z° is produced with non-zero Pr, the proton and
antiproton directions are not collinear in the rest frame of the dielectrons, and so the quark
directions can not be completely determined; the quarks can only be said to be travelling in
approximately the direction of the proton or antiproton, and the approximation gets worse
as Pr increases. Since the initial quark directions are ill-defined, cos# can no longer be
precisely measured.

In practice, a new % axis is defined in the dielectron rest frame to take the place of
the quark direction when making angular measurements. Several definitions for this axis
have been proposed [5], among them the helicity frame in which Z is taken along the recoil
direction of the Z°, and the Gottfried—Jackson frame in which 2 is taken along the proton
direction. The definition used in this analysis is that of Collins and Soper [6], in which the
Z axis is taken to be the bisectrix of the proton and minus the antiproton directions. In
effect, the Collins-Soper definition divides the Pp contribution equally between the quark
and antiquark, and has the property that Z reduces to the quark direction in the limit
Ppr— 0.

All of these definitions of cos @ are approximations which begin to break down at high
values of Pr. The cos@ distribution will be smeared somewhat by the high Pr events, and
the measured asymmetry will be smaller than the true asymmetry due to this smearing.
The size of this effect can be determined from the QCD corrected angular distribution.

There are several calculations of the differential cross section for Z° production and
decay which include the diagrams of Figure 6, and incorporate the Collins—Soper definition
of cos fcg explicitly [5, 6, 19]. Reference [19] gives the result ! (for Z%s only)

T = {0+ P + ) an

X[(1 + cos® cs + 2 Ag(1 - 3cos® 6cs)))

+89%9%909%(1 — As3) cos 9(;-5}

where 3% is the measured Z° Pr spectrum. Ag and A3 are functions of Py and reduce to
0 as Pr — 0. Plots of Ag and As, taken from Reference [19], are shown in Figure 8. From
this cross section a sin? @y independent, Pr dependent multiplicative correction factor for
the asymmetry can be derived. Integrating Equation 6.2 over cosf to find the measured

"The cross section also depends on ¢, where ¢ is the azimuthal angle of the outgoing electron defined with
respect to the plane containing the proton and antiproton in the rest frame of the electron pair. Equation
6.2 has been integrated over ¢ to remove this dependence.
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asymmetry, one derives

do
A easured = = ey — 3
FB| Measured AFB|PT—0/dPT (1— A3) dPr (18)

where Apg|pr=o is the forward-backward asymmetry at Py = 0.

The measured Z° Pp spectrum can be parametrized by a modified form of the Pp
spectrum used in the ISAJET Monte Carlo. The data and the parametrization are shown
in Figure 9[20]. Convolving the measured Pr spectrum with (1— A3) as shown in Equation
6.3, the QCD corrections are found to reduce the measured asymmetry by a relative 1%.
This implies that the measured value of sin? fy must be increased by 0.0003.

8.2 QED Corrections to the Asymmetry

The order a® QED contributions to ¢g§ — ete=(v) are shown in groups IIL, IV, V, VI,
and IX of Figure 7. They consist of all the graphs having an additional photon and the
fermion loop correction to the photon propagator. To order a®, the cross section has
contributions from (1) the lowest order diagrams (which are of order a?), (2) the interference
between the lowest order diagrams and the diagrams having a photon or fermion loop
(virtual diagrams), and (3) the diagrams having a real photon emitted from the initial or
final fermions (Bremsstrahlung diagrams). The Bremsstrahlung diagrams have a 3-body
final state, in contrast to the two-body final state of lowest order and virtual diagrams. The
total cross section for ¢gg — eTe™(7), then, is given by the sum of the two-body and three-
body cross sections. Both the 2-body and 3-body cross sections are infrared divergent.
These divergences cancel when the two cross sections are added, and so the total cross
section is infrared—finite.

The bremsstrahlung contribution can be divided into a “soft” part and a “hard” part
by a cutoff k0 in the energy of the emitted photon. The soft photons are not resolved
by the detector, and appear as part of the electron shower in the calorimeter. This soft
bremsstrahlung contribution is indistinguishable from a 2-body final state, and so it can be
calculated analytically and added to the virtual cross section. The sum of the virtual and
soft Bremsstrahlung contributions is infrared finite, as is the remaining hard Bremsstrahlung
cross section.

The hard Bremsstrahlung photons are potentially very energetic, and can be produced
at large angles to their parent fermions. The hard photons, then, can interact independently
with the detector. Furthermore, the higher order soft contributions change the dielectron
angular distribution in a non—trivial way, and thus the QED corrections to the asymmetry
will depend on the detector geometry and acceptance. Because of these inherent detector
dependences, the QED corrections are best studied with a Monte Carlo event generator
which includes both hard and soft corrections, and a detector simulation.

8.2.1 Soft QED Corrections

The soft portion of the order a® QED cross section has been calculated by many authors for
ete™ — ff(y) at LEP and SLC, but has been largely ignored for ¢ — ff(7). This being
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the case, the LEP/SLC results are time-reversed to get predictions for ¢¢ — ete™ (7).
The matrix elements for the virtual diagrams are invariant under time reversal, and so
the published results can be used without change. The soft Bremsstrahlung contributions
differentiate between initial and final state radiation, and require a little more care.

The soft corrections used in the current analysis have been taken from Reference [2].
The authors include all the diagrams in groups III, IV, V, VI and IX of Figure 7, and
include the contribution of soft photons to all orders in a by exponentiation of the leading
logarithms of the soft Bremsstrahlung terms as described in Reference [21].

In the LEP calculations, the soft initial state Bremsstrahlung corrections incorporate

terms of the form i

M? — (s — 4EK) (19)

where M? = M% —iMzI'z, E is the energy of the electron beams in the LEP accelerator,
and s is the square of the center of mass energy of the machine. The term (s — 4Ek) is
interpreted as the effective Q? of the interaction after initial state Bremsstrahlung. Terms
of this form enter the cross section in multiplicative scale factors and in a correction to
the phase of the Z° resonance. The “prescription” for converting these terms to a form
usable for ¢q¢ — eTe™ interactions is to interpret E as the energy of the outgoing electrons
in the center of mass frame, and s as the square of the dielectron invariant mass. The
effective Q2 of the interaction before final state Bremsstrahlung is then (s + 4Ek). To
convert the LEP calculations to pp calculations, one must change the sign of the k term in
the Bremsstrahlung coefficients, and to change the interpretation of s.

The forward-backward asymmetry is corrected in different ways by each of the types of
QED diagrams. The virtual vertex corrections and the fermion loop corrections to the pho-
ton propagator can be absorbed into a renormalization of the photon coupling to fermions.
This is an s dependent correction which affects both the symmetric and antisymmetric parts
of the cross section and leaves the asymmetry unchanged.

The soft initial state Bremsstrahlung correction is an s dependent, multiplicative cor-
rection to the cross section which has no effect on the asymmetry. The soft final state
Bremsstrahlung contribution has a multiplicative part which does not change the asymme-
try, but it also affects the phase angle of the Z° resonance, which can affect the asymmetry.
In the presence of soft final state brem, the Z° line shape grows a “shoulder” on the low mass
side of the resonance, as shown in Figure 10. The shoulder is due to events produced on
resonance which then radiate a photon as they decay; the reconstructed dielectron invariant
mass of these events is decreased by the photon radiation. The asymmetry of the events in
the ‘shoulder region is characteristic of resonance production, and is larger than expected.
This can be seen in Figure 11, where the the forward-backward asymmetry is plotted as a
function of Mee. The size of this effect increases as k? increases.

The initial and final state Bremsstrahlung diagrams have different charge conjugation
parities [22], and so the interference between these diagrams will contribute to the charge
asymmetry. The size of the correction to the asymmetry from the radiative Z° diagrams
is found to vary strongly with the cutoff % [23]; it is small for large values of k° (§AFB =~
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0.00zatx® = 0.1) but blows up when &° is very small (k° < 10~%).

The QED box diagrams have an additional virtual photon propagator, and therefore
have different charge conjugation parities from the lowest order diagrams with which they
interfere. The box diagrams, then, also contribute to the observed charge asymmetry. The
contribution is small (6App ~ 0.00z) and is independent of sin? 8y and x°.

It is convenient to show the QED corrections as a function of the charge asymmetry,
Ac, where the charge asymmetry is defined by

do do
- d cos 0 |+ cosd dcos B |- cosd
ho= i ng =, )
dcosf +cosf dcos @) cosd

This can be understpod as a differential form of the forward-backward asymmetry Apg;
integrating over cosf, one finds

1 A
- =£ Ac deosd. (21)

The corrected and uncorrected charge asymmetries on resonance for uii — ete™, dd —
ete™, and pji — ete~ are shown in Figure 12. The dashed lines show tree level calculations,
while the solid lines include all the soft QED corrections evaluated at k% = 0.01. The size
of the QED corrections depends on the sign and magnitude of the initial fermion’s charge.
The corrections depend on cos f in a complicated way, and so the total QED correction will
depend on the acceptance of the detector and the analysis cuts.

8.2.2 Hard Corrections and the Radiative Monte Carlo

Hard photon emission smears the measured dielectron quantities; initial state Bremsstrahlung
can disturb the reconstruction of cos § by adding a small amount of transverse momentum,

and final state Bremsstrahlung can directly affect the energy and direction of outgoing elec-

trons. Unlike the soft corrections, which can either increase or decrease the asymmetry

depending on the charges of the fermions in the interaction, the hard corrections always

decrease the measured asymmetry by smearing the cos @ distribution. Since hard photons

emitted in the process ff — ete 7 can interact in the detector and affect the measurement

of electron quantities and #, a proper treatment of the hard photon contribution requires a

Monte Carlo event generator and a detector simulation.

The Monte Carlo generator used in this analysis is a modified version of the generator
developed for the CDF Z° mass analysis [24]. It is based on the hard Bremsstrahlung calcu-
lations of [25] and includes the soft corrections of [2]. The hard Bremsstrahlung calculation
includes only final state radiation. Hard initial state radiation has little effect on Z° produc-
tion, and collinear photons from initial state radiation generally escape undetected down
the beampipe. Large angle radiation from the quarks can produce transverse momentum
Pp, which can affect the reconstruction of the final state in the manner described above for
the QCD corrections. This effect is very small for photons, and is ignored in this analysis.
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The Monte Carlo generates the proper 2 and 3 body angular distributions using a
rejection method, and then weights each event by the convolution of the cross section with
parton distribution functions. Since the angular part of the cross section is generated
separately, the weight needs only account for the Q? dependence of the cross section. For
the 2-body state, the cross section used in the weight is the soft QED cross section evaluated
at cosf = 0. For the 3- —body state, the cross section used is the lowest order cross section
evaluated at cos§ = 0 multiplied by &} (:cu) where 6% (nn) is the probability of producing
a photon with energy fraction greater tha.n k%, and is derived by integrating the photon
spectrum from k° to 1. Forms for the photon spectrum and 6} (h.ﬂ) are given in Reference
(25].

The Monte Carlo event generation proceeds as follows:

1. Values for z; and 29, the fractional momenta of the quarks, are generated, and the
resulting invariant mass is checked against the desired mass limits.

2. The event is assigned, with equal probability, to one of 4 possible production processes:
(a) u quark from the proton, % quark from the antiproton, (b) d quark from the
proton, d quark from the antiproton, (c) @ quark from the proton, v quark from the
antiproton, and (d) d quark from the proton, d quark from the antiproton. A weight
is then calculated based on the parton distribution functions for u or d quarks and
the fractional momenta calculated previously.

3. The event is chosen, with equal probability, to have a 2-body or 3—-body final state.

4. The angular distribution of the outgoing particles is generated with a rejection proce-
dure . For 2-body final states, the angular distribution of Reference [2] is used, while
3-body final states are generated according to the distribution of Reference [25].

5. A weight for the event is calculated from the cross section as a function of Q2?, as
described above.

6. The overall weight for the event is calculated from the product of the the weight from
the parton density functions and the weight from the cross section.

The final state 4-vectors and the event weight are the input for the detector simulation.
The detector simulation must include the geometric features of the detector and the resolu-
tions of the various detector elements, and must also be able to simulate the effects of the
Bremsstrahlung photons. Moreover, it must be fast; the QED corrections require several
million events to be simulated in order to achieve the desired statistical accuracy.

The detector simulation used in this analysis is a modified form of the simulation used to
determine the acceptance. 2-body final states are simulated the same manner as the events
used in the acceptance calculations. For the 3-body final states, the photon showers in the
calorimeter and the effect of the photon on the electron measurement becomes important.
For photons emitted at very small angles to the electron, the electron and photon showers are
indistinguishable. The “electron” will be accepted by the analysis cuts, and the total energy
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measured by the calorimeter is the sum of the electron and photon energies. For photons
with small energies, the effect of the photon on the electron measurement is small. The
electron will pass the analysis cuts, and the photon will have little effect on the electron’s
energy or direction. For photons having an intermediate energy emitted at a moderate
angle with respect to the electron, the effect of the photon is less clear. Electrons with
energetic photons very near by may fail a shower shape cut like the strip x? in the CEM or
the 3 x 3 x? in the PEM. Events with separated electron and photon showers may fail the
isolation cut.

To study these effects, 20000 events were generated and fully simulated with the CDF-
SIM simulation package. The simulated events were then passed through the electron
selection cuts used in this analysis. Using these simulated events, the photon angles and
energies which still allow the electrons to pass the selection cuts can be identified. The
available photon phase space can be parametrized, and the parametrization used quickly
to accept or reject events. Figure 13 shows a plot of the photon—electron angle versus the
fractional energy of the photon for electrons in the PEM which pass all of the selection cuts.
Photons emitted at angles larger than 0.4 radians are outside the R = 0.4 isolation cone
and have no effect on the electron measurement. Photons emitted at angles less than 0.4
radians, but having energies less than 10% of the electron’s energy will also pass the isola-
tion cut. Photons having energies larger than 10% of the electron energy must be emitted
closely enough to the electron that the clustering routine will see only one electromagnetic
cluster. Furthermore, the photon’s energy must be low enough or its angle small enough
that it pass the shower shape cuts. In general, as the photon’s energy increases, the angle
must decrease in order for the electron to pass the electron quality cuts. In the central
region, the electron must also pass an E/P cut of 1.5. The photon energy, then, can never
be greater than half of the electron’s energy. The forbidden regions for photon emission in
energy—angle space are shown in Figure 13.

The fast simulation of 3-body decays proceeds in the same fashion as the 2-body simu-
lation, but with two extra steps: (1) if the photon is in the forbidden region of energy—angle
space, the event is cut, and (2) if the photon is within +1 calorimeter 7 segment and within
+1 calorimeter ¢ segment in the gas calorimeters, the photon and electron 4-vectors are
summed to arrive at the measured “electron” 4-vector.

8.2.3 QED Results

The radiative Monte Carlo was used to calculate the forward-backward asymmetry for
various values of sin? fyy, assuming k° = 0.01. The results of these calculations is shown in
Figure 14. The solid line shows the lowest order prediction for the asymmetry, assuming
EHLQ 1 structue functions. The effect of the higher order QED diagrams is to reduce the
observed asymmetry by a small amount, independent of sin?fyy. A fit to the Monte Carlo
data yields the result

ArB|QED = AFB|Born — 0.0055 . (22)
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The fit is indicated by the dashed curve in Figure 14. After removing the QED contribution
to the asymmetry from the measured asymmetry, one arrives at the QED corrected results
Arp = 0.053 and sin? Oy = 0.231.

The size of the QED corrections depends on the value of k%, as discussed above. The
value chosen for k7, 0.01, is representative of the resolution of the detector and of various
threshold cuts in the data collection and analysis procedures, but there is considerable
latitude in the choice of k?. The systematic error on the QED contribution to the asymmetry
associated with k¥ was estimated using the radiative Monte Carlo. The forward-backward
asymmetry was calculated at sin? 6y = 0.230 using various values of k°. Figure 15 shows
the calculated asymmetry versus k%. The systematic error is chosen to be half the total
spread in Apg. This yields systematic errors of 0.0054 for App and 0.0014 for sin? Oy

8.3 Weak Corrections

The order a® weak corrections to ¢q§ — ete™ are shown in groups VII, VIII, XI and XIII
of Figure 7. These include the box and vertex diagrams having additional weak bosons
as well as the fermion loop corrections to the weak boson propagators. As with the QED
corrections, the vertex and propagator corrections can be absorbed into a renormalization
of the Z° coupling to fermions and leave the asymmetry unchanged, while the box diagrams
contribute to the measured asymmetry. Unlike the QED corrections, though, the renormal-
ization of the Z° couplings is of more interest than the (small) changes in the asymmetry
from the additional box diagrams. A renormalization of the Z° couplings to fermions im-
plies a renormalization of sin® @y, in which case both the value of sin? @y and its precise
definition may change.

In order to perform a meaningful calculation of the weak corrections, one must choose
both a definition for sin? @y and a renormalization scheme. For the asymmetry analysis,
the on-shell renormalization scheme proposed by Marciano and Sirlin [17] and documented
in Reference [18] is used. In this renormalization scheme sin®fy not an independent pa-
rameter, but is defined, to all orders in perturbation theory, by

2
sin? Ow|pms =1 — %"g— (23)

VA
This is not the most convenient definition of sin? @y for an analysis of Z° data. The W
mass has a rather strong (quadratic) dependence on the mass of the top quark, due to the
t—b loop contribution to the W self energy shown in Figure 16, while the Z° mass (and
other Z° observables) depend only weakly on the top mass. When determining sin? vy
from one of the Z° observables, one must incorporate the m; dependence of My into the
calculation. As a result, sinms will also have a quadratic dependence on the top mass.
Most of the existing measurements of sin? @y have been made using the Marciano-Sirlin
definition sin?fyy|as, however, and so for purposes of comparison with these results the

Marciano-Sirlin definition is used in the asymmetry analysis.

The order a® weak cross section is calculated in Reference [18] for ete™ — ff. As with
the virtual QED diagrams, the matrix elements for the weak diagrams are invariant under
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time reversal, and so the results of [18] can be used directly to calculate the corrections to
qq — eTe™. By integrating the corrected cross section numerically over structure functions,
@2, and cos @ one can calculate the forward-backward asymmetry for given values of the
fermion masses, the Higgs mass, and the masses of the W and Z°.

To calcula,te the value of sin2 Ow|as as a function of the mass of the top quark, we solve
iteratively for the value of sin? Ow|ams which generates the observed asymmetry. A plot of
sin” | as versus top mass is shown in Figure 17. This result can be compared to the value
of sin? @ |ars determined directly from the W and Z masses, sin? fyy|ars = 0.230+0.008[26].
The agreement is very good up to large top masses (my ~ 200 GeV).

9 Asymmetries away from the Z°

The 4Z interference term in the cross section of Equation 4 has an antisymmetric term,
which can lead to observable asymmetries away from the region of the Z° resonance. Indeed,
these asymmetries have been reported by many ete~ experiments [27]. A distinguishing
characteristic of the interference term is that it changes sign as one moves through the Z°
pole. One thus expects that the asymmetry will also change sign as one moves through the
Z.

We have divided our data sample into three mass regions, and have calculated the
asymmetry in each. In the region 60 < Mee < 75 GeV, we find 5 events with cosé > 0
and 8 events with cos# < 0. Using the event counting method described in Section 5 and
ignoring acceptance effects we find Apgleo-75 = —0.23+0.27. In the region Mee > 105 GeV,
we find 10 events with cos@ > 0 and 1 event with cosf < 0, yielding the value App|io5— =
0.75 + 0.23. Note that no background subtraction has been made in these two regions;
Kearns et. al. estimates that there are of order 3 background events in the lower region. In
the region of the Z° we have measured Apg|75-105 = 0.047 4 0.059. We plot these values for
the asymmetry versus the average mass in each mass region in Figure 18. The solid line is
the theoretical prediction from Equation 4, assuming EHLQ1 structure functions. We see
that the asymmetry does indeed change sign as one passes through the Z, and agrees well
with the theoretical prediction.

While the agreement between experiment and theory is good away from the Z, it is
difficult to extract any additional information from this region. The asymmetric term in
the interference contribution to the cross section contains only the axial couplings of the
fermions to the Z°; the contribution of the vector couplings is symmetric and is small when
compared to the photon contribution. Thus, no additional information on the value of
sin? fyy is contained in the asymmetries away from the Z°. Furthermore, it is believed
that a new neutral gauge boson will be best investigated through studies of the dilepton
invariant mass distribution (28], rather than through its effects on the Z° asymmetry. The
agreement in the asymmetry away from the Z° pole does, however, lend confidence to the
measurement of the asymmetry at the Z° itself
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10 Conclusions

We have measured the value sin? fyy = 0.23140.016 (stat)=+0.002 (sys) from a fit to the an-
gular distribution of electron pairs in Z° events, and have removed the contribution of higher
order QED diagrams. The largest source of systematic error is the x” dependence of the
QED corrections. We can directly compare this value of sin?fyy with other measurements
derived from the Z° asymmetry. Using 33 selected Z° — ete~ and Z° — p*u~ events, UA1
has measured sin® @y = 0.2470:03[29]. More recently, the L3 collaboration has combined
measurements of the partial width of Z° decays into leptons, I'y, and the forward—backward
asymmetry in Z° — ptu~ and Z° — 77~ decays to derive values for the couplings g{,
and g4. L3 finds g, = 0.00 £ 0.07, and ¢ = —.515 £ 0.015 [30]. Using the definitions
for the coupling constants in terms of sin? Oy given in Equation 3, the L3 measurement
becomes sin? @y = 0.26 + 0.07. After weak corrections, our value of sin? Ow|ms agrees well
with that obtained from the measurement of the W and Z masses, up to large top masses
(my ~ 200 GeV).

We have investigated the possibility of using the asymmetry in pp — ete™ to directly
measure the Z° couplings to quarks. The asymmetry we measure depends on six different
fermion couplings: the vector and axial vector couplings to both u—type and d-type quarks,
and the couplings to electrons. We therefore would need five measurements or constraints
in addition to the asymmetry measurement in order to derive values for all of the couplings.
Using so much additional information to derive these values trivializes the process some-
what, and little new information is extracted from the asymmetry measurement. It is most
appropriate simply to conclude that the asymmetry measurement, which depends strongly

on the quark couplings, is in very good agreement with the Standard Model predictions and
the world average value for sin? fyy.
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Figure 1: Lowest order Feynman diagrams for pp — ete™
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Figure 2: Asymmetry as a function of sin? . The dotted curve shows the u-type asym-
metry while the dashed curve shows the asymmetry for d-type quarks. The solid curve is
the observed asymmetry for EHLQ 1 structure functions.
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Figure 3: Dielectron invariant mass
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Figure 4: Uncorrected cos @ distribution
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Figure 5: Acceptance as a function of cos
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Figure 6: Next order QCD diagrams
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Figure 7: Diagrams contributing to ¢§ — e*e™. Taken from Reference [16]
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Figure 8: A° and A®, for 630 GeV (solid) and 2 TeV (dash) taken from Reference [19).
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Figure 9: Measured Z° transverse momentum and fit
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Figure 10: Invariant mass with and without soft QED corrections
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Figure 11: Asymmetry with and without soft QED corrections
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Figure 12: Charge asymmetries before (dashed) and after (solid) QED corrections
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Figure 13: Photon angle versus fractional momentum of photon for electrons passing quality
cuts
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Figure 14: Asymmetry versus sinfy with QED corrections
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Figure 15: Asymmetry versus ’
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Figure 16: t-b loop in renormalized W propagator
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Figure 17: sin?8yy|ys, derived from the forward-backward asymmetry
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Figure 18: The forward-backward asymmetry as a function of invariant mass
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