IMPACT

symmetry 22

Article

Quantum Retarded Field Engine

Asher Yahalom

Special Issue

Symmetry and Asymmetry in Nature: From Quantum Physics to the Universe

Edited by
Dr. Valeriy Sbitnev and Prof. Dr. Markus Scholle



https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/3K66V61YC4
https://www.mdpi.com
https://doi.org/10.3390/sym16091109

symmetry

Article

Quantum Retarded Field Engine

Asher Yahalom 12

check for
updates

Citation: Yahalom, A. Quantum
Retarded Field Engine. Symmetry
2024, 16, 1109. https:/ /doi.org/
10.3390/sym16091109

Academic Editors: Valeriy Sbitnev,
Markus Scholle and Ignatios

Antoniadis

Received: 19 May 2024
Revised: 11 August 2024
Accepted: 14 August 2024
Published: 26 August 2024

Copyright: © 2024 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

1 Department of Electrical & Electronic Engineering, Faculty of Engineering, Ariel University,

Ariel 40700, Israel; asya@ariel.ac.il; Tel.: +972-54-7740294
Center for Astrophysics, Geophysics, and Space Sciences (AGASS), Ariel University, Ariel 40700, Israel

2
Abstract: Recent efforts to conceptually design a technologically meaningful electromagnetic retarded
engine indicated that this can only be done using the immense charge and current densities which
exist in the atomic scale. However, this scale cannot be described by Newtonian physics, and only a
quantum description will suffice to describe the dynamics of an electron on this scale properly. Here
we study the retarded field quantum engine and highlight the differences between the quantum and
the classical retarded engines. It is emphasized that the constituents of the retarded engine studied in
the current paper do not move in relativistic speeds, hence they are analyzed using un-relativistic
classical mechanics and un-relativistic quantum mechanics (Schrédinger’s equations). The retardation
effect is due to the finite propagation speed of the field and not the relativistic motion of the particles.

Keywords: retardation; quantum mechanics

1. Introduction

Special relativity, originating from Einstein’s seminal 1905 paper “On the Electrody-
namics of Moving Bodies” [1], is a theory that fundamentally reshapes our understanding
of space and time. Its development was spurred by empirical observations and Maxwell’s
equations of electromagnetism [2-5], which were refined by Oliver Heaviside in the 19th
century [6]. Maxwell’s equations notably imply that electromagnetic signals propagate at
the constant speed of light ¢ in vacuum, suggesting that light behaves as an electromagnetic
wave. Building on this, Albert Einstein [1,4,5] formulated special relativity, positing that
c represents the maximum achievable velocity in the universe. According to this theory,
nothing—whether an object, message, signal (even non-electromagnetic), or field—can
surpass the speed of light in a vacuum. This principle introduces the concept of retardation:
any change made by someone at a distance R from an observer will take at least a retar-
dation time of £ for the observer to become aware of it. Consequently, actions and their
reactions cannot occur simultaneously due to the finite propagation speed of signals.

Newton’s laws of motion comprise three fundamental principles that form the corner-
stone of classical mechanics. These laws delineate the connection between a body, the forces
acting upon it, and its resulting motion while introducing the concept of force into physics.
Initially formulated by Isaac Newton in his work “Philosophiae Naturalis Principia Mathe-
matica” (Mathematical Principles of Natural Philosophy) [7,8], first published in 1687, these
laws have enduring significance in physics. Of particular interest here is Newton’s third
law [9,10], which asserts that when one body exerts a force on the other body, the other
body concurrently exerts a force of equal magnitude but opposite direction on the first
body. This concurrent force cannot be accommodated with the principle of retardation,
because a change done in one subsystem cannot be possibly affect another subsystem
which is at a distant R before a duration of % passes. This was noted by [11] but without
emphasizing the importance of retardation in the third law violation.

In the beginning of the second quarter of the twentieth century the “new” quantum
mechanics was introduced [12]. Schrodinger suggested his famous quantum wave equation
and soon Pauli [13] and Dirac [14] suggested corrections, motivated by experiment and the
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desire to accommodate quantum and relativistic theories which imply symmetry under
the Lorentz transformations. This new formalism of mechanics rejected the concept of
force and embraces the concept of potential instead (scalar and vector electromagnetic
potentials). The gauge freedom in potential definition was thus connected to the (total)
phase freedom of the wave function. Of course the potentials themselves are derived from
electromagnetic theory and thus must be retarded.

It was clear that there must a connection between the classical and quantum levels of
reality, and indeed such a connection was suggested by Ehrenfest [15] formalism which
reintroduce the concept of force as an expectation value (to be discussed below) and also
by Bohm [16-18] and the realistic school of quantum mechanics which suggested that one
can write a Newton’s second law equation for a quantum particle that has a trajectory
(regardless if it is measured or not). However, one needs to add a nonlocal quantum force
to the electromagnetic forces in the Bohm formalism. As the quantum forces do not obey
Newton’s third law and moreover they do not depend on the separation distance between
particles and allow action at a distance in a very counterintuitive fashion. It follows that the
Bohmian approach to quantum mechanics leads to an even stronger violation of Newton’s
third law than retardation alone. We shall show below that Bohmian mechanics entails a
“quantum engine” that can self propel without interacting with environment, such a device
can be tested and validate (or invalidate) Bohmian mechanics. Finally we notice that the
connections between QED and Bohmian mechanics have been discussed in [19].

Newton’s third law stipulates that in a system unaffected by external forces, the total
sum of forces is zero. This principle has garnered numerous experimental confirmations,
solidifying its status as a fundamental tenet of the physical sciences. However, it’s evident
that action and reaction cannot occur simultaneously due to the finite speed of signal
propagation. Moreover, a quantum potential generates a force that does satisfy the classical
“third law”. Therefore, while Newton’s third law holds true in many practical scenarios
owing to the high velocity of signal propagation, and the macroscopic dimensions of
classical objects, it cannot be deemed entirely accurate in an exact sense. Consequently,
the total sum of forces within a system cannot remain zero at all times. And thus the
Newton’s first law demanding that a body will continue with the same velocity unless
affected by an external force is also not strictly satisfied.

Current locomotive systems typically rely on coupled material components, wherein
each component gains momentum equal and opposite to that gained by the other. A classic
example is a rocket, which expels gas to propel itself forward. However, relativistic effects
suggest an alternative type of propulsion system that involves both matter and field, rather
than two distinct material elements. Initially, it may seem that the material body gains
momentum, thus violating momentum conservation. However, it can be demonstrated [20]
that an equivalent amount of momentum is imparted to the field, ensuring total momentum
conservation. This phenomenon arises from Noether’s theorem, which asserts that systems
possessing translational symmetry conserve momentum. While individual components of
the system (matter or field) may not exhibit translational symmetry, the entire physical sys-
tem composed of both matter and field remains invariant under translations. Feynman [5]
elucidates a scenario involving two charges moving orthogonally, seemingly challenging
Newton'’s third law as the forces induced by the charges do not cancel each other. However,
this apparent contradiction is resolved by recognizing that the momentum gained by the
two-charge system is transferred to the field.

A retarded engine is characterized by a system where the material center of mass is
set in motion through the interaction of its constituent material components. These com-
ponents may either move relative to each other or be fixed within a rigid framework.
However, our focus lies solely on the motion of the center of mass. It's important to note
that a retarded engine enables motion along all three axes, including vertical movement.
Unlike conventional engines, it may lack moving parts and doesn’t require traditional fuel
consumption, thereby eliminating carbon emissions. Instead, it operates by consuming
electromagnetic energy, which can be conveniently supplied by sources like solar panels.
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This makes the retarded engine particularly well-suited for space travel, where a significant
portion of the spacecraft’s volume is typically allocated for fuel storage.

In our present study, we make the assumption that the medium’s magnetization and
polarization are negligible. Consequently, we do not take into account corrections to the
Lorentz force as proposed by Mansuripur [21]. Griffiths and Heald [22] highlighted that
Coulomb’s and Biot-Savart’s laws govern the configurations of electric and magnetic fields
exclusively for static sources. To extend the applicability beyond static scenarios, time-
dependent generalizations of these laws, as described by Jefimenko, have been utilized.
These generalized laws enable the investigation of Coulomb and Biot-Savart formulas in
dynamic contexts, stepping beyond the constraints of static conditions. This is true when
the sources (charge & current densities) are either classical or quantum.

In a previous study, we employed Jefimenko’s equation [4,23], to investigate the force
interaction between two current loops [24]. This research was subsequently expanded to
explore the forces between a current-carrying loop and a permanent magnet [25]. Since
the device operates for a finite duration, it acquires mechanical momentum and energy.
Consequently, the question arises whether we must relinquish the principles of momentum
and energy conservation. The issue of momentum conservation was addressed in prior
research [20]. Additionally, discussions in other studies delved into the exchange of
energy between the mechanical components of the retarded engine and the electromagnetic
field [26]. Notably, it was demonstrated that the total electromagnetic energy expenditure
exceeds the kinetic energy gained by the retarded motor by a factor of six. Furthermore,
these studies examined how energy might be radiated from the retarded engine device if
the coils are improperly configured.

In previous analyses, the assumption was made that the bodies under study were
macroscopically natural, implying an equal number of electrons and ions in every volume
element. However, later we relaxed this assumption and considered charged bodies [27].
Therefore, we investigated the implications of charge on the feasibility and behavior of a
potential electric retarded engine. This yielded much higher momentum and force than
a non charged motor, however, the limitations of dielectric breakdown resulted in a still
impractical devices.

The aforementioned limitations have led us to consider utilizing the high charge densi-
ties found at the microscopic scale [28], such as those present in ionic crystals. This concept
was explored in a prior publication, where we calculated the remarkably high charge
densities and current densities at the atomic level. Our findings indicated that an isolated
hydrogen atom, whether in a ground or excited state, does not yield momentum for a re-
tarded motor. However, this changes when the atom interacts with other atoms or particles,
or when the electron within the atom is in a non-eigenstate state. As a result, we proposed
two simplistic forms for a wave function that could potentially lead to advantageous gains
for a relativistic engine: a wave packet within a hydrogen atom and an eigenstate within a
simple molecule that introduces a static electric field with broken spherical symmetry.

Thus, to obtain a practical retarded engine it is needed to manipulate matter at sub-
atomic levels. In a previous paper [29] we investigated two ways of doing so one that
is related to free electrons and the other to confined electrons. While we started with
a classical description of the problem we could not and did not ignore the fact that on
the atomic level a quantum description is necessary. It was also shown that the quan-
tum effects are more significant for confined electrons in comparison with free electrons.
In [29] it was emphasized that the quantum retarded motor is very important for future
space transportation (and possibly ground transportation) and thus is both interesting
and meaningful.

We note that a single classical accelerating body is known to radiate an electromagnetic
field, and slows down at the same time (synchrotron radiation). This demonstrates transfer
of linear momenta and energy from the body to the electromagnetic field. However, for a
retarded engine effect, a single body (even if accelerating) will not suffice, a two-body
system is needed, and the retarded engine effect is concerned with the center of mass
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motion of this two-body system. This has been demonstrated already ten years ago [24]
and was never disputed in the scientific literature. Moreover, it was demonstrated again
for charged electromagnetic systems three year ago [27]. As in the single accelerating
body system also the two-body system exchanges linear momentum and energy with the
electromagnetic field, however, conditions were derived in which in the two-body system
the center of mass may accelerate (rather than decelerate as for the damping on a single
body system) and thus constitute a retarded engine.

We underline that the electromagnetic field is treated classically (and not by using
quantum electrodynamics (QED)), this is the standard method in atomic, molecular and
solid-state physics (and thus almost all chemistry and most of physics). The particles are
described by a wave function when treated quantum mechanically, while the field is treated
classically. Second quantization of wave function and quantization of the electromagnetic
field are usually only addressed in high energy physics and the theory of elementary
particles, which is not relevant to most physical systems and will not be discussed herer.
It is generally accepted that if the electric field does not surpass the Schwinger limit
(10'8 V/m), or the magnetic field is well below 4 x 10° T, QED can be safely ignored as we
do in the current work. Notice, however, that QED works also at low energy. A small shift
of the hydrogen energy levels (Lamb’s shift) is not described by classical electrodynamics
only by QED. Moreover, spontaneous emission [30] is believed to be described by QED
and not classical electrodynamics. Thus every phenomena described in the current paper
does not include those QED effects and any transfer of energy from the material part of the
system to the electromagnetic field is to be considered as a classical emission.

Previous papers relied on a classical description of a two body system, in which the
two bodies interacted through retarded electromagnetic fields. When quantum effects were
considered this was only done in the case of a classical system (the hydrogen nucleus)
interacting with a quantum system (the electron), in this case classical formulae were use
in which case the electron charge density and current density were derived from its wave
function (they were taken to be proportional to the probability density and probability
current density without any justification) and plugged into a classical force equation. In the
current paper we would like to discuss the case in which the two bodies interacting are both
quantum and wether it is justified to compare probability densities and charge densities.

We shall attempt two possible connections of the classical and quantum worlds, one
through the Ehrenfest theorem the other through the formalism of Bohm. Finally we shall
discuss the conservation of momentum showing that in either case the linear momentum
of a closed system will not be conserved, an effect which can be rectified in the macroscopic
level only through the concept of field momentum. Thus the total linear momentum of
matter and field is conserved but not the linear momentum of each separately.

To be clear the current paper does not present an alternative theory. All theories
discussed in the paper are well known. Those include classical electrodynamics, classical
mechanics, Schrodinger’s quantum mechanics and Bohm’s quantum mechanics. The pur-
pose of the paper is to study a retarded engine in the framework of those theories and
elucidate its properties. In all parts of the paper the field is described by classical elec-
trodynamics (not QED), however, we compare different theoretical representations of the
material part (classical mechanics, Schrodinger’s quantum mechanics and Bohm’s quan-
tum mechanics) and show the differences and similarities of the predictions those theories.
This is done without forming any apriori opinion on the validity (or invalidity) of any of
the theories.

2. Retarded Electromagnetic Fields
Electromagnetism is described by a set of the four Maxwell equations (in MKS units):

V-B=0 (1)

VxE=-9B  9=— )
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§Xﬁ:T+atD/ (4)

in which V has a standard meaning in vector analysis, E is the electric field, H is the

magnetic field, D is the displacement field and B the magnetic flux density. Also p is the

charge density, and ] is the current density. In electromagnetic theory the charge and current

densities are assumed to be given and cannot be determined from the theory itself. In the

following sections we shall try to derive them from both classical and quantum mechanics.
In vacuum we have simple relations between the electric and displacement fields:

D = ¢oF, ®)
in which g is the vacuum susceptibility. And also:

B = poH, 6)

in which pg is the vacuum permeability. Thus in vacuum we may write the last two
equations in a form that depends only on E and B:

v.E=F %
€0
- L - - O
V X B = poJ + po€odtE = po] + C—2atE, (8)

1
Vv Hogo
(Equations (1) and (2)) that do not depend on the charge and current densities (or the

medium) can be easily solved in terms of scalar ® and vector A potentials:

in which the velocity of light in vacuum is defined as: ¢ =

. The first two equations

E=—9;A—Vo. 9)
B=VxA. (10)

We can now solve Equations (7) and (8) for the scalar and vector potentials and obtain the
results [4] in terms of the retarded expressions:

bvid
®(%) = k/d%/Lx’tm), R

o - R
R ¥ —X, trot =t — = k= . (1D

47eg

. T( =
) =10 / d%’%. (12)

To obtain the above solutions we must demand that the scalar and vector potentials satisfy
the Lorentz gauge conditions:

= - 1

V.A+§at¢:o (13)
This is possible since we have gauge freedom in the choice of vector and scalar poten-

tials. The Lorentz gauge condition is guaranteed to be satisfied for all times due to
Equations (11) and (12) and since charge is conserved:

V- -J+dp=0 (14)

(See appendix A of [27]). The solutions for the electric field and magnetic flux density are
thus given by Jefimenko’s retarded fields [4,23,27] by inserting Equations (11) and (12) into
Equations (9) and (10):

=

25 T
E(f) = _k/d3 /% [(p(f/r tret) + (f)atp(f// tret))ﬁ"’ (1:) at](xR/t;’mf)] (15)
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B(x) = i% / d%’% X (T(f’, Eret) + (Ij)aj(z’, tm)>. (16)

The potentials can also be used to formulate the electromagnetic problem in a variational
form in which the action is given as:

Aem = /LEMdt, Lem = Le+ 1Ly, Ly = /d3x,£1:, L= /d3x'£1. (17)

In the above the Lagrangian density of the field is:

7ol L » B\ _1 2 2p2) _ 1 TP _ 2T A)2
Lr[A, @] = 2(80E - Vo) = Eeo(E —?B ) = Eeso((atAJFch) — A(V x A) )
(18)
And the Lagrangian density of the interaction is:
LIA®)=T-A-pd, (19)

if p and J do not depend on the electromagnetic potentials, this is true for a system of
classical particles but not in the quantum case to be discussed in the following sections.

We emphasize that electromagnetic theory does not suffice to determine what J and p
are, but is certainly sufficient to determine that the fields must be retarded.

3. The Classical Description

The classical picture of the world, describes it as the arena in which a very large
number (say N) of point particles interact. Modern physics recognizes only four possible
types of fundamental interactions: electromagnetic, gravitational, strong nuclear and weak
nuclear. The nuclear interactions are only important for processes which happen to occur
in the nucleus or in high energy processes, hence it is not important for chemistry, biology
and most of our daily life. Nevertheless the description of those interactions is Lorentz
invariant hence they suffer retardation non the less. We shall not consider this any further
in the current paper.

Hence we are left with two possible types of interaction electromagnetic and grav-
itational, the second is much weaker than the first and needs to be considered only for
astronomical bodies, thus we will also neglect gravity. We are left with only the electromag-
netic interaction. The effect of an electromagnetic field on the classical particle 7 is given
through the Lorentz force and Newton’s second law (we assume that the particle is not
relativistic that is its velocity is small with respect to c):

ml%l =L =g, (E(xl(t)rt) +7; X B<x1(t)rt))r ﬁz =i’ Ui = e (20)
In the above m; is the particle’s mass and g; is the particle’s charge. X; designates the
location of the particle with respect to the origin of an inertial frame, ¥; is the particle
velocity and aé; is the particles acceleration. The (retarded) fields E and B are evaluated
at the particles momentary location. A variational description of the above system can be
derived from the action:

A= [Lydt, L =L+ Ly 1)

In the above we have a sum of kinetic Lagrangian:

1 N
Ly =5 Y mv?. (22)
i=1
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and an interaction Lagrangian:

N —
Li=) g (A(fi(t),f) Ui — q’(fi(t)rf))- (23)
i

Notice, however, that according to Maxwell’s theory (Equations (17) and (19)) the interac-
tion Lagrangian should be written as:

L= [dxe = [@ () AF) - o) @) 9

To accommodate simultaneously those two forms, it seems that one should adopt the
following charge density and current density definitions:

N
pe(Zt) =Y q;8° (¥ — %(t)) (25)
i
. N
Je(%,t) = Z q:7:(£) % (% — (1)) (26)

in which 62 is a three dimensional Dirac delta function. Thus the classical world view
resolves the sources of the electromagnetic field. However, the price to be paid is intro-
ducing unphysical charge and current densities which become infinite at various points
of space in which the particles happen to be. This defies physical intuition that demands
that every physical quantity must be finite in every point of space. It also shows through
Equations (15) and (16) that the interaction of classical particles with each other is not im-
mediate but retarded. We conclude this section by reminding the reader that the total
classical action of field and particles is:

Ar = /LTdt,
Lt = Ly+Lj+Lf

N 11
= L
i=1

Smiv} + 4 (A(fi(t),t) - d)(a?i(t),t))] + %so / d3x’<E2 - c232).(27)

And thus the canonical momentum for each particle:
Peani = 5z = MiU; + in(fi(t)l t)z (28)
and the classical linear momentum for each particle:
Pl i = miv, (29)
are not the same unless A = 0.

4. The Quantum Description

A quantum description of an N particles system involves a complex wave function
Y (X1, %;...,XN, t) and solves the Schrodinger equation:

iho/¥ = HY, (30)

we will consider as in the previous section low velocity particles without spin. In the above
i = \/—1 is the imaginary number, and 7 is Planck’s constant divided by 27r. Generally
speaking ¥ cannot be written as a multiplication of functions of each ¥; separately (the
particles are generically correlated). Moreover, it is known that for an identical set of
particles the function must be either symmetric to interchange of particles (bosonic case)
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or antisymmetric to the interchange of particles (fermionic case). Some authors write the
hamiltonian H ([17] Equation (7.1.1)) in the form:

N 2
H=—y I

i=1

2 N o
4+ V t). 1
Zmivl +V(¥,X%..., XN, t) (31)

However, this form (which is rather abstract) hides the source of the interaction which as
we saw in the previous section is mainly electromagnetic. It also devoids the particle of
the possibility to interact with the magnetic field. Thus we shall write the Hamiltonian in
the form:

N
~ ~ 1 S T 2 -
H= Z i = Z |:—2 Py (th - 1q1-A(x1-, t)) + ql-@(x,-, t):| (32)
. , ;
which overcomes those objections.

In terms of the quantum Hamiltonian operator we may write a Lagrangian density in
the form:

1. o \ A
Lq=Fih(¥"9Y —a¥"¥) — ¥ AY. (33)

However, this density is a density in the 3N dimensional configuration space (not in the
standard three dimensional space). Defining the configuration space coordinate:

)? 4113?2- . ~/55N/ (34)

We may write:
A= [Lodt, L= [dNxL,. (35)

As we saw in the previous section the key to identifying the charge and current densities is
identifying the interaction terms in the Lagrangian, this is also true in the quantum case.
For this it will be useful to write the wave function in a “polar” form:

S

Y = qe'? = ge'7 (36)

Using this form we may write the quantum Lagrangian Equation (35) in the form:

L, = /d3NX —f: 2( Vi) - 1"S.e. Az, t)+iA2(z. £+ q,:0(%:, 1)
q - . = 2 mi 14) mi l¢ 17 zmi 17 9]1 1
hz

+ Zmi

(@ia)zl - hu28t<p}. (37)

in which we omitted some boundary terms that do not effect the equations. From the above
Lagrangian it is easy to see that the interaction term with the scalar potential takes the form:

N
Lp=—) / PN Xa2q,0(%;, 1) (38)
i=1
Introducing the reduced square amplitude:
BE ) = [V OXa?, BV = dN Xy, (39)

In which #3N=3X; is a volume element including all coordinates of configuration space
except the i coordinate. The Born propensity rule associates with a* a probability density
function such that [ d®¥Xa? = 1, thus in terminology of random variables theory 47 is a
marginal probability density function satisfying also: [ d°x;a? = 1.
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Now we may write:

N

Lyo = — /d3x giar (X, 1)®(X;,t) = — Z/dgx’qiaf(f',t)é(f’,t) (40)

i=1

In which the second equation one is due a change of the name of the integration variable.
Comparing Equation (40) with Equation (24) it follows that the quantum charge density
should be of the form:

N
f = qui(fc’, f), Pgi = qia%. 41)
i=1
For a single body this is just p; = ga* which justifies the quantum charge density used
in [28,29]. For a classical body one needs to take the limit:
a2(%t) = PE-x%(t) = pg(R ) = pe(Xh), (42)

the right limit follows only if all particles are classical. We notice that while the quantum
charge density is finite (and hence physical), the classical charge density is just a useful
mathematical construct that is used to simplify the calculations when one is far away from
the support of the reduced amplitude (“the location” of the particle).

The interaction term with the vector potential takes the following form:

N
— 3N +vy7 .2
LA'—El/d Xa
=

2
qih & Cd=on A 422
BT A5, 1) = 5o (m)]. )

Now this term is second order in A (as are also Lagrangians of classical Eulerian charged
fluids [31]). It follows from comparison with Equation (24) that the quantum current density
must be dependent on A. We also recall that the Maxwell field equations are obtained by
taking a variational derivative with respect to A of the electromagnetic Lagrangian hence
we compare the quantum and electromagnetic interaction terms when varied with respect
to A:

N
5Ly = Zqi/d?’NXaZ(sA(zi, ) - v i A(xl, . (44)
i=1
We now define the quantum velocity field:

?7,41'(5(,13) hV(]) qi (xl,t) VS qi (x,,)'
m; m;

(45)

One should notice that in the generic quantum case this velocity field depends on the
entire configuration space and not only on the coordinates of particle i, which is of course
connected to the inherent non-locality of quantum mechanics. Nevertheless, Bohm’s
interpretation of quantum mechanics [16,17] suggests that a quantum particle has a well
defined trajectory and the trajectory satisfies the differential equation:

d"éit) = 3,(X(1), ). (46)

for other interpretations of quantum mechanics (Copenhagen) this is just a vector field
with units of velocity. We emphasize that in order to obtain the trajectory in configuration
space one must evaluate 7,; along this trajectory. We may thus write the variation of the

quantum Lagrangian with respect to A as:

N
ilg =Y aq; / PNXa6A (%, t) - Byi(R 1), 47)
i=1
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We can now define a reduced quantum velocity:
Q3 (E)T (1) = [ N X (R, 07K, ). (48)
And write the variation as:
3 3y S 7
05 Lq Zqz/ d Xid; ( )Urqz( ir 5A xz/ /d ' Z Urqz // t) '5A(9_C'// t)' (49)
Maxwell theory demands that:
Sl = / By T(R) - 5A(F) (50)

this form is more general than Equation (24) which assumes implicitly that ] does not
depend on the vector potential which is not the quantum case. Comparing Equations (49)
and (50) suggests the following form of the quantum current density:

N
Tt](x ) Z 7]1( )/ Tqi = qiazzﬁrqi- (61)

This will reduce to the classical case only if the particle is localized a?(¥, ) — 62 (¥ — X;(t))
and the reduced quantum velocity takes a classical value. Notice, however, that wether the
charge and current densities are classical or quantum their electromagnetic effect on their
peers is retarded as follows from Equations (15) and (16). Moreover, we may write a total
quantum Lagrangian (describing both particles and field) in the form:

Ly =Ly + Ly. (52)

This signifies the fact that the quantum wave function despite its connection to episte-
mological constructs such as probability (Born propensity rules) is not less real than the
electromagnetic field as the field cannot be more real than its sources which are wave func-
tion derived quantities. We stress that charge and current densities are not directly related
to the particles coordinates even in Bohm’s interpretation, and writing classical type of
charge and current densities (containing delta functions) even with Bohm’s quantum veloc-
ity field will not lead to a correct coupling between the wave function and electromagnetic
field. The wave function although determined deterministically does not deterministically
determine the trajectory of a single quantum particle (only its tendency to move to specific
locations) and in this sense quantum mechanics is not deterministic, this is well known
result of the two slit experiment [17]. However, according to Bohm [16] this indetermin-
ism could be removed if we knew the location of the particle at any time ¢y, in that case
Equation (46) will tell us the location of the said particle in any future or past time using
our knowledge of the quantum mechanical wave function phase.

5. Fisher Information

The quantum Lagrangian of a single particle can be interpreted through Fisher infor-
mation as wad demonstrated in [31], however, this also true for a multiple particle system.
To see that rewrite L, given in Equation (37) in terms of the quantum velocity defined in
Equation (45):

3N N o1 5 - "o 2 2
Lq:/d X —Z a <2mivqi—0—qicb(xi,t)) —|—2mi(Via) —ha“osp 5. (53)

i=1
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According to [31,32] the Fisher information of a 3N dimensional random variable is:
- \2 N S \2
F =4 / N (Vxa) =4 / #NX (Via) (54)
i=1

Hence the Fisher information of the 3N dimensional random can be written as sum of
components each of the form:

= \2 N
F;i = 4/d3NX(Via) = Fr = ZFH (55)
i=1

In terms of the Fisher information components we may write the quantum Lagrangian in
the form:

N
Ly=— /d3NX{Za2<;miU§i +quI>(5c'i,t)> —l—hazat(p} -

i=1

N hZ

Y %Fﬁ. (56)

i=1 O Mi

In the case that the quantum system is composed of particles of identical mass m; = m (but
not necessarily of identical charge) the above expression can be written simply as:

2

N 1 , h
L, = _/d3NX{;a2<2mv§i +quI>(xi,t)) + ha*oip § — il (57)
1=

Although Equation (53) artificially looks like the fluid Lagrangian + Fisher information
of [31] (Equation (45)), it is remarkably different due to the inherent quantum correlations
encapsulated in the [ d®¥X symbol which requires taking an integral over all the 3N
dimensional configuration space and not over three dimensional space as the fluid analogy
might suggest. However, in the special case that the phase can be partitioned to a sum of
phases each dependent only on the coordinates of just one particle that is:

N
¢(X, 1) =) ¢i(%i,1) (58)

which is the case that the system wave function can be written as a multiplication of
(“independent”) single particle wave functions (but is more general). If Equation (58) holds
we may further simplify the Lagrangian. In this case:

S D . 1/ S
Uql'(X, t) = vrq,»(xi, t) = o (hvigl)i(xi, t) — in(xi, i’)) (59)
1
and we obtain:
- 5. 211 o H
Ly=-) /d Xl |:2mivrqi +q:9 (%, 1) +hat¢i] + g b (- (60)
i=1 1

The above can be written in terms of quantum three dimensional Lagrangian densities:

N 1 1 .
Lq = Z{/ d3xi£q,‘ — %Fli ’ [’qi = —Lll-z [21’”1‘03‘71- + quID(xl-, t) + Flat(Pz:l . (61)
i=1

In which £,; can be easily seen to be the Lagrangian density of a charged potential flow by
introducing the notations for mass density:

P = mia? (62)
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and flow potential:
higi

D, = —L. 63
o= (63)

Thus we obtain the potential flow Lagrangian density [31] in the form:

L, iz g,

,qu = —|00; + E(Vl/i — ﬁllA) + ECD 0i- (64)

Tem (F)

_dRew 1

We stress that in this case every particle is associated with its unique flow (there is no one
flow describing the dynamics of all particles). The particles are aware of one another only
through the electromagnetic field.

6. Retarded and Quantum Engines

For the purpose the current work an engine is a system that is able to move itself as a
whole. This motion will be described by the motion of the systems center of mass which is
defined as:

Il
M=

_ 1Y
Rem = — Z m;Xxi, M m;. (65)
M i=1

1

For classical and Bohmian particles it is meaningful to discuss the trajectories of the particles.
Hence we may write:

= 1
i

™=z

m;%;(t). (66)
1

The motion of a the classical center of mass can be written in terms of the motion of
the particles of the system:

Z

N 1 . N
= — Y m0i(t) = — ) Pai(t), = Pr=)_pPui(t) = Mimu(t). (67)
dt M]; %1 MZ 1 CclL1 ; cli

We can suppose without loss of generality that at t = 0, R, (0) is the origin of axes, that is
Rem(0) = 0, and that at the same initial time the engine is at rest that is @, (0) = 0. We shall
inquire, what are the conditions to put the system in motion. Those are obviously the
conditions for the acceleration of the center of mass at the same time t = 0 to be different
from zero: Iz

ﬁcm (t) = thm ’
For only in this case can we expect to have at future time a velocity different from zero
which will cause the engine to move. However:

a m(0) # 0. (68)

_ 1
=M

1

=1, L. (69)

M=

m;al(t)

™M=

alem(t)

1

Il
—_

in which we have used Newton’s second law. As the fundamental forces come about
through interactions (that is due the effect of one particle on another), it follows that:

N
F= ) F (70)
J=Lj#
Thus: N
1N N 4 zN-D o

i=1j=1,j#i all pairs (i,j) j#i
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Now according to Newton’s third law:
Fi=-F; (72)
And it follows that:
2lem(t) =0. (73)

So a closed system cannot move as a system, it needs an external force to cause motion.
However, as we require Lorentz invariance of any physical interaction, all interaction must
be retarded. And thus Newton third law can only be an approximation as was shown
previously [27]. The total force between two subsystems 1 and 2 in an electromagnetic
system calculated to second order in % ([27] Equation (81)):

. . . 1 . . o
FP = B2 FlA i%at / / B, d3x, {Z(pz&pl — 010102)R — (01]o + p2J1)R7|. (74)

Let us choose the two systems to be two classical particles with indices 1 and 2. Now
according to Equations (25) and (26) those particles are associated with charge and cur-
rent densities:

pa(%t) = @PER-F(),  palXt) =g (X - (1)),
Ja(@t) = @qor()SFE—x1(t),  Ja(Zt) = q20:(4)8 (¥ — %(t)). (75)

Plugging the above expression into Equation (74) will yield after some tedious but straight-
forward computations:

=02 =02 | =2
P o= B
o k A
51] = 3 qzlqz [(@¢1 + aés) + ((aéy + ata) - Rip)Rya],
C R12
B ¥ 7 5] B Ry
Rip(t) = X%(t) —x2(t),  Ria(t) =[R2(t), Rpp= Rz
= k — A — A o A — —
Fh=— leléz { [U% — 05— 3((01 “Rip)? = (7 Ru)z)} Rip +2Ryp x (T x T2) } (76)

obviously every two electromagnetically interacting particles i, j in a given system will
yield similar expressions, which must be summed through Equation (71) to obtain the
center of mass acceleration which is not null. Now according to our previous discussion for
the prevalent classical charged particle the most important force is electromagnetic while
other interactions (gravitational & nuclear) can be neglected (but must be also retarded).
We not that the force between any particles affecting the center of mass acceleration is
partitioned into a force which reduces slowly as a function of inter particle distances (that
is as R%z)' and a force which depends on velocities and reduces in a Coulomb way (that

is as Riz). As we assume slow moving particles this second contribution must be small.

12
The contribution to the total momentum of those two interacting particles is:

=2
B2 kq1q2 5\ b _ ﬁ
e

[(T1 + 2) + ((7h + T2) - R12)Rez), = Tem (1) (77)

T B 2C2R12

And again we stress that in order to obtain the correct center of mass velocity of a system
contributions from all interacting particles must be considered.

Now although it obvious that every conceivable system is a “retarded engine” in the
sense that its center of mass must move, in many systems this effect is rather small. In fact it
takes great care to design a retarded engine with a measurable effect [24,25,27-29]. We will
not give further examples of such devices, and refer the reader to the original literature.
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7. Bohm'’s Interpretation of Quantum Mechanics and Quantum Engines

We shall now study the motion of center of mass, in quantum mechanics as interpreted
by Bohm. We recall that in Bohm’s quantum mechanics each point particle has a trajectory
which can be calculated in principle by integrating Equation (46). Thus the center of mass
defined in Equation (66) is well defined and moves with a velocity:

I dR
UBcm (t) - =

i L = Y ma(n
== ~ iUgi (). (78)
Mi:1qu

in which 7;; is defined in Equation (45). To prove the existence of an engine we need to

show that provided that R, (0) = 0 and &p,,, (0) = 0, one may have: % li—o # 0 without
affecting the system externally. However:

N 47
deC’” S Z m; ;Zl. (79)

Hence we need to study the derivative of the quantum velocity of each particle in the system.
This is done through the Bohm representation of Schrodinger’s Equation (30) which relies on
a phase amplitude representation of the wave function given in Equation (36). Assuming
the Hamiltonian to be given in Equation (32), we can split the complex Schrodinger’s
Equation (30) into two real equations (see Holland [17] Equations (7.1.2) and (7.1.3) but
there without a vector potential):

0:a” +Zv a*Ty) =0 (80)
i=1

which according to the Born propensity rule is a probability conservation equation, and the
phase equation:

N Va1,
;S + Z ——7 + Smivy; +4iP; p = 0. (81)
This motivates the definition of the quantum potential:

h2 v2

(82)

Taking the V; of Equation (30) and making some tedious by straight forward manipulations
one arrived at the quantum version of Newton’s second law (compare to Equation (7.1.8)
of [17]):

dU;

i dt

—Fi=-V, Q+q1( (Zi/ ) + Tgi X B’(sc;-,t)). (83)

The quantum force Fqi can be partitioned into a part which is of a purely quantum origin
and an electromagnetic part:
F

qi — qul + ﬁqemi/ qqt = V iQ Pqemz = Eh( (xut) + 5111' X E(fi/t))- (84)

Inserting Equation (83) into Equation (79) will lead to:

decm

dt

Mz

i[—@iQJrqi(E(fi,t) + 5 x B(%,1)) ] (85)
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The above equation leads to the concept of the quantum engine. It is obvious that the first
term of the quantum force which is due to the quantum potential F;; cannot be written
generally as a sum of contributions in which each originates from a specific particle j:

N
Foqi # Z ‘F qqij (86)
=1
rather the quantum potential Q will depend in a complicated way on the wave function of
the entire system. In the case of a system of statistically independent (uncorrelated) particles:

N 2,
= Q=) Qi Qix,t)= —7,;,/ (87)

i=1

Il
e
2

in this case:

Fyi = —ViQ; (88)

thus it depends only on the location of the particle i and not on the location of any other
particle so Equation (86) can be written as:

™M=

ﬁqqi = ﬁqql]/ qqZ] =0 i# Jr quii = _ﬁin (89)

Il
-

j

It follows that this force will exist even for a system containing a single particle. This force
clearly does not confirm to Newton’s third law, as even in the uncorrelated case it appears
to be the action of the particle own wave function on its motion and does not take in most
cases the classical interaction form. It follows that if one carefully prepares a quantum
system (which means choosing initial conditions for the wave function and choosing the
Hamiltonian) making sure that the quantum forces add up constructively one can obtain a
quantum engine that is a self propelling system, even if retardation effects are negligible.
Moreover, in the quantum case one may write the sources of the electromagnetic field in
the forms given in Equations (41) and (51). As the expressions for the fields are linear in the
sources (see Equations (15) and (16)). We may write:

- N -
E@) = Y Eu(®)

R — R R 2871‘ ¥, tre
(pqz(x tret) + (C)atpqi(x ,tm)> R + (C) W(;Czt)l (90)

™
=
—
=
~—
I
|
=
\
U
@
7| =

. R R\ . -
Bi(X)= Ho /d3 /R3 (]q(x/,tret)+ <C)at]q(f’,tm)>. (91)

It follows that the following expression for the quantum force is permissible:

N
Fqi = Lyqi + Z qumij/ qumz] - %( q](xz/t) + Z_”qi X qu(fi, t)) (92)
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Thus we may rewrite Equation (85) in the form:
dz—)*ch 1 N 1 N N N |
= mate = | Lt L Feni
i=1 i=1 i=1j=1
1 N . . %(N_l) . .
= M Z( qqi T Pqemii) + (Pqemji + Pqemij) . (93)
i=1 all pairs (i,j) j#i

we notice two important facts. The first fact is that the (reduced) quantum wave function of
the particle may have an electromagnetic effect on the same particle, this does not happen in
the classical case. The second fact is that their is no reason to think the field force generated
by the sources associated with particle j will affect particle i in an opposite direction to the
field force generated by the sources associated with particle j when they affect particle i.
That is generically speaking:

qumij 7& _qum]’i/ i 7é ] (94)
The identity of Fye,;j and —fqemji will reappear only in the classical limit and the neglect of
retardation. Hence in the Bohm picture retardation is not needed to cause motion, one can
generate motion by a purely quantum effect.

8. The Copenhagen Interpretation of Quantum Mechanics and the Ehrenfest Theorem

While the classical and Bohm pictures of reality ascribe a trajectory to a point particle
the Copenhagen interpretation of quantum mechanics denies the existence of such a
trajectory. And even if such a trajectory does exist it cannot be calculated. Thus it is not
meaningful to discuss the trajectory of the center of mass either, because it is defined
through the trajectories of the composing point particles. From a more conservative
interpretations of quantum mechanics we can only discuss the attributes of the wave
function. For examples we may ask where is the wave function centered? Or in the
language of the theory of random variables, what is the expectation of the center of mass?
This will be given in the form:

< Row > (1) =< ¥ ()| Rem ¥ (t) >= / PVX (X, )2 Rem = / PNX2 (X, )Rom  (95)

The above expression can be easily written in terms of the expectation values of marginal
probabilities as follows:

N

Il
—_

1 N
< Rem > () = mi/dg’xialz(fi, 1) = M Zmi/d3x’a12(9_c”, )%’
i=1

m; < X; > (). (96)

2= ==
SN

Il
—_

In the classical limit: a?(¥',t) — 6°(¥' — %(t)) and thus < Rep > (£) = Rem(t).

The calculation of the temporal derivative of < Ry, > (t) is most easily done using
the Ehrenfest theorem [15,22]. The theorem asserts that for any quantum operator A, with
an expected value:

<Ay >= / PNXY ALY (97)
This equality remains true:

Tl e O o L < (A A] >, (Ao H = AH — A, ©8)
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The operators representing position and velocity of the particle 7, as defined in Griffiths’ [22]
work, are:

Xip = X, Tio = — (pzo qi (xu )) = mi (_ihﬁi - in(fi/ t)) 99)

in which the quantum momentum operator is associated with the canonical momentum
given in Equation (28) and not with the classical linear momentum defined in Equation (29).
Griffiths [22] derived a set of equations for a single particle without spin, his results
can be trivially generalized using the multi particle Hamiltonian given in Equation (32).
By substituting the aforementioned operators into the Ehrenfest theorem Equation (98):

d<%,> 1 . .~ 1 X . 1 .
T - % < [xllH} >= ﬁ < [xl/k:ZlHk} >= % < [qul] >=<0jp >
d < T > T, 1 ~ T, 1 o N
it T il JH - ) ai
yr <50 >+ < (B ] >= <at>+l.h<[vw,k:21 K] >
o7, 1 Lo
= < a;" >+ < [Tio, Hj]
- Zzn < Gy x B(T;t) — B(F; 1) X Gy > +ﬂ < E(@,t) > (100)
1 l

Written in terms of expectation values the quantum forces (defined in Equation (84))
disappear, and we are left with electromagnetic terms which bare a superficial similarity
to the classical Lorentz force. We recall that despite the superficial similarity of the above
equations to Newton's second law, they are not the same. In particular the familiar Lorentz
force form is only obtained when B is uniform over the reduced probability density support
of the particle i in which case:

d2<fi> ﬂ(

i ; < Tjy X B(Xj,t) > + < E(Xj,t) >). (101)

Moreover, even in the absence of a magnetic flux density, this is not identical to Newton’s
second law as generically:
< E(X;,t) ># E(<X; >,t), (102)

unless the electric field is linear in the coordinates. A straightforward calculation shows
that the expectation value of the velocity operator 7;, is identical to the expectation value
of the quantum velocity defined in Equation (45):

<y >= / PN X5y =< Ty > . (103)

This can also be written in terms of the reduced quantum velocity defined in Equation (48),
such that:

< Tjp >=< Ty >= / d3x;d*N"3X a2 Ui = /d3 )vml(x t) =< Tpgi > . (104)
The velocity of the quantum center of mass must be defined as:

d < Repm >

o (105)

Tygem (t) =
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And using Equations (96), (100), (104) and (105) we arrive at the result:
. 1Y d<z> 1Y .
Tpem(t) = — Y mi——"" ==Y "m; <Tj >
M= dt M=
1Y 1Y
= Mgmi<5qi>zﬁgmi<5mi>. (106)
1= 1=

The existence of a retarded quantum engine demands that an object at rest will move
without an external influence. In the quantum case this means that an object located say the
origin < Rey > (0) = 0 att = 0 and is at rest that is Tgem(0) = 0 will move due to internal
forces. Defining the acceleration of the quantum center of mass as:

@yem(t) =

(107)

we need to investigate if is possible to obtain ﬁqcm (0) # 0. Now according to Equation (106)
this can be answered by calculating the temporal derivative of the expectation value of
each velocity component and then calculating the weighted sum:

‘d<5io>
odt

SN

Il
—_

Wgem(t) =

m

2= ==

SN

Il
—_

1 —= - -
qi |:2 < TUjp X B(fi, i’) - B(fi, i’) X Ujp > + < E(fi,t) >:|. (108)

A somewhat lengthy but straight forward calculation leads to the following expression:

[~
I

Wgem(t) = Wi B = [ [p@EE) + ;@) x BE)]. 09

in which p;; is defined in Equation (41) and ﬁii is defined in Equation (51). Moreover, using
the definition of p; defined in Equation (41) and Tq defined in Equation (51) we obtain the
simple form:

e ﬁL‘i 7 3./ SINBN T (2 B

Bgon(t) = 2, Fiy= [ [0, @EF) + (%) < B@)). (110)
The expression qu is identical to the Lorentz force expression [4,27], except that the classical
charge and current densities are now replaced by their quantum analogues. In a closed
system the electric and magnetic fields are produces by the charge and current densities of
the same system, thus they satisfy Equations (90) and (91). Thus we write Equation (109) in
the form:

AR - NE g T e L B e
lgem(t) = i Y'Y Fgie Frgic = /dSX/ [Pqi(x,>Eqk(x/) + Joi () x qu(x/)]- (111)
i=1k=1

The double sum may be written in terms of pairs as follows (compare to Equation (93)):

N F(N-1)
1 = 2 = =
ﬁqcm(t) =M Z Frqii+ Z (FLq ij T Frq ]‘i) . (112)
i=1 all pairs (i,j) j#i

We notice that a quantum system can be propelled by the self interaction terms FLq i which
are absent in the classical picture, this has to do with the fact that charge and current
densities are extended in quantum systems which is not the case for classical point like
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charges. As to the pair contribution, they must vanish as in the classical case unless
retardation is taken into account, in this case the contribution is second order in % and takes
the form [27] (see also Equation (74)):

= 2}

[ g2l gl
FTLq ij FLq ij FLq ji

S A IO EAL YN RN EE:
(0qi (¥1)T3 (%) + pyj (%) T (1) R~ . (113)

9. Wheeler-Feynman Time-Symmetric Approach

The Wheeler-Feynman absorber theory [33,34], also known as the Wheeler-Feynman
time-symmetric theory, is named after its developers, physicists Richard Feynman and
John Archibald Wheeler. This theory of electrodynamics is a relativistic extension of
action-at-a-distance interactions between electron particles (and thus neglecting their true
quantum nature). It proposes that there is no independent electromagnetic field. Instead,
the entire theory is described by the Lorentz-invariant action S of particle trajectories
at(t), b*(7), - - -, defined as follows: The action S is given by:

Zmac/,/—dayda” + 2 Calh //davdb” (54 abyab"), (114)

a<b

where ab, = a, — by. In this equation, the first term represents the action of individual
particles with mass m, moving along their trajectories, while the second term accounts for
the interaction between pairs of point particles a and b with charges e, and ¢, incorporating
a four-dimensional delta function to ensure relativistic invariance. The four electromagnetic
potential is defined as:

AD () = ¢, / 5(xbyxb")db, (b) (115)

(vector potential of particle b at point x). The field tensor can be calculated as:
b b b
FY =3,40 — 9,47 (116)

Instead of being the retarded solution Equation (115) in the Wheeler-Feynman time-
symmetric approach is the time-symmetric half-advanced and half-retarded solution.
The same applies to the fields generated by the particles. Suppressing the indices we
may write Equation (116) as:

FO) = ;[Ffe} +Eg)] (117)

This field is present in the past as well as the future light cone of b.

Although the influence of a single charged particle, like particle b, is time-symmetric,
the collective influence of all particles in the universe, which are affected by the movement
of b, may not exhibit time symmetry. This was the main argument presented by Wheeler and
Feynman in their 1945 work. Wheeler and Feynman argued that when charge b is moved,
it creates a disturbance affecting all other charges in the universe. These charges then react.
To calculate this reaction in a static Minkowski universe with a uniform distribution of
electric charges, they developed a consistent method. They found that the reaction to the
motion of charge b can be determined accurately, yielding the following result:

b b
R = 2 [F( ') (118)

ret
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(b)

Therefore, a test particle near charge b experiences a net total field Ftol; , which is the sum of
the direct field F(*) and the reaction field R(). This total field can be expressed as:

FY) = F® L R®) = FY)

ret *

(119)

Therefore, for all practical purposes he Wheeler-Feynman time-symmetric approach allows
us to use retarded fields for any practical application in any system which does not contain
the entire universe but only a small subset. Thus even in this approach we are allowed to
use the retarded field expressions Equations (15) and (16) and the rest of our paper follows
just as before.

In the words of Wheeler & Feynman (page 3 of [33]): “Advanced actions appear
to conflict both with experience and with elementary notions of causality. Experience
refers not to the simple case of two charges, however, but to a universe containing a very
large number of particles. In the limiting case of a universe in which all electromagnetic
disturbances are ultimately absorbed it may be shown that the advanced fields combine in
such a way as to make it appear—except for the phenomenon of radiative reaction—that
each particle generates only the usual and well-verified retarded field. It is only necessary
to make the natural postulate that we live in such a completely absorbing universe to
escape the apparent contradiction between advanced potentials and observation.”

As we are not dealing with radiative reaction, we must accept the teachings of Wheeler
& Feynman, that each particle generates only the usual and well-verified retarded field.

10. Advanced Potentials

Despite the conclusions of the previous section, we shall analyze a retarded engine in
the case that there is no reaction force (given in Equation (118)), yet the Wheeler-Feynman
time-symmetric theory is assumed to be correct. The purpose of this exercise is to see
what changes are entailed in such a universe with respect to previous analysis as described
in [27]. This will require to concentrate on the clearly separated piece of Equation (118).
In the following we repeat the analysis of [27] with the required advanced potentials.

Consider the electric E and magnetic B fields which are generated by a charged body
1 and acts upon a charged body 2. Those bodies are composed of atoms, ions and free
electrons, so we may write the Lorentz force:

Fyn= /d3X2Pi2(E+Z7i2 x B) +/d3X2Pe2(E+ e» x B). (120)
We integrate over the entire volume of 2. p;; and p,., denote the charge density of the ions
and charge density of the electrons respectively, 7, and ¥, are the ion and electron velocity
fields. The total charge density is the sum of the ions and free electrons charge density, thus:
P2 = P2 + Pe2- (121)
The electric terms in the above force formula are added and we obtain:

By = /d?’xzpzﬁ + / d3x2pi25i2 x B+ / d3x2p3217€2 x B. (122)

We assume that the ions are at immobile such that: ¥;; = 0. It follows that:
ﬁ21 = / d3x2p2E + /dezpezz")'gz x B. (123)

Introducing the current density: Tz = Pe2Tep, We obtain:

Fy = / dx; (pzﬁ + o x B’). (124)
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Electric and magnetic fields can be expresses in terms of vector and scalar potentials [4]
as given in Equations (9) and (10). If the field is the result of a charge p; and current J;
densities in 1, we can calculate the retarded and advanced potentials [4]:

X1, t
P() = k [ Py L), (125)
Pugo(2) = k [y 1 Olat) gy R (126)
= g J1 (%, t
Ara(®) = 12 [ Py 1) % t) (127)
- L J1(%p,t
Ao (%n) = i% / o, [ o) L ado) (128)
Thus in the time-symmetric Wheeler & Feynman theory [33], we have:
- 1 - -
q)(x2) = E(quet(xZ) + qDadv(xZ))' (129)
_— 1/- . - N
A(%2) = 5 (At (B2) + Auio(%) ). (130)
Combining Equation (127) and Aadv with Equation (10), we arrive at:
S = S = J1(x,t
Bret(%2) = Vi, X Aret () = 22 /d3x1vf2 « (LGt ) (131)
47 R
e 2 - J1 (%, t
Budv(XZ) = vfz X Aadv(xZ) = Ko /delvEc’z X M . (132)
4 R
Such that the total magnetic field in the time symmetric theory is:
=, 1/- . - .
B(%) = 5 (Bret(xz) + Badv(xz))- (133)
However, notice that:
_ Th (%, t ~ To (%, t
Vs, X (1(%"”) =V, R x dg % . (134)
Since: ~
= R
Vz,R= R (135)
And: . . -
Ji(¥te) \ (X1 trer)  0ef1 (¥, tret)
JR < R = R2 Re . (136)
Hence: . .
- Xq,t R —— R\. - .
VJ‘Q X (W) = ﬁ X <]1(x1/tret) + <C>atll(xl/t}'€t))' (137)

Inserting Equation (137) into Equation (131), we arrive at Jefimenko’s equations [4,23] for
the retarded magnetic field:

S R - R\. -
Bret(xz) = i% /d3x1ﬁ X (]1(x1rtret) + (C)ath(xl/tret))‘ (138)
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For the same reason:

Ti (% R - R\. -
% X (W) = R3 X (Il(flrtadv) - (C>at]1(flrtadv)>~ (139)

<

and thus:
= R (-, R\, -,
Badz;(x2) = A%(_)( /d3xlﬁ X (]1(xlrtadv) - <C>at]1(x1/tadv)>~ (140)

The retarded electric field is the sum of two contributions given in Equation (9), one
contribution from the scalar potential and another from the vector potential:

E’ret = Ea ret 1 E)h rets Ea ret = _atgret/ E»b ret = _ﬁqueb (141)

Thus from Equation (127) we have:

= =2\ _ Mo 3 atTl(flrtret)
E, ret(XZ) T 4rx /d X1 R . (142)

And according to Equation (125):

= S = Xt
By () =~ [ ¥ (P, (193

The above equation can also be written as:

- . 1> N . - 1
Ep et (%) = —k/d3x1 {vazpl(xlrtret) +P1(x1/fret)va?zR]/ (144)
however: A .
| R A R
and also: X
= . . . R .
Viz,01(¥1, tret) = Vz, R Orp1 (%1, tret) |5, = zatpl (X1, tret)- (146)

It thus follows that:

S s R . R .

Ey ret(x2) = _k/d xlﬁ pl(xl/tret) + ; atpl(xlr tret) . (147)
Adding Eb et and E; ret, we derive Jefimenko's [4,23] retarded electric field:

= 1 . R . N
Eret(x2) = _k/da’xlﬁ |:<pl(xl/tret) + <C)atpl(xlrtret))R

+ (R)zatfl(flztret) )

- = (148)

A similar calculation will lead to the following advanced electric field:
L 5 1 B R B A
Eoao(¥2) = —k / dx1 73 || P1(F1 baao) — | 7 ) 901 (T tago) | R

+ (R>zat71(£1rtadv)1‘ (149)
c R
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The total time symmetric electric field is:

E() = 5 (Br(2) + Euol2)). (150)

Substituting Equations (133) and (150) into Equation (124), the Lorentz force of subsys-
tem 1 on subsystem 2 is derived.

Consider the charge density evaluated at a retarded time: p(¥', tret) = p(¥,t — &),
aasuming % is minute one can expand using a Taylor series around t:

o0 an bv14 R
(% ) = p(2, 1~ R = 37 HOD Ry, 151)

n! c

). (152)

A Taylor expansion is of sufficient accuracy only for an environment of ¢ which is unique to
the function involved, We thus have a convergence radius T}, different for each function.
Thus Equations (151) and (152) are accurate enough only in the domain [t — Tyax, t + Tyax)-
As we expand in % the expansion is accurate only for the range:

R < Ryax = ¢ Tinax- (153)

Thus we are limited to a near field approximation, however, as ¢ is a large, Ryx is quite large
for many systems. Inserting Equation (151) into Equation (125) we derive the expression:

. (t R
i) = K / Q) =k Y [ a0 g (-0

c
- k (—) [ @it R (154)
Similarly inserting Equation (152) into Equation (127) we obtain:
o Ja(t °° 1
At rer(¥2) = i%/d‘?’xl% = /d3xla L&, 1) ﬁ(—;)"
© 1 1\" Lo B
_ ﬁzom<_c> /d?’xla’fh(xl,t)R” ! (155)
As {2 = f;ﬁg = C% it follows that:
- N 1
Alrer(B2) = k) n'<_> /d3x13t Ji(z1, HR"!
n=0 """
= ki _t (1 / d3x10" 2] (X, )R 3 (156)
= m=-2)\ c t ’
Similar expressions can be obtained for the advanced potentials:
®ral) =k (7)) [ Pritenore (157)
A 2, = 1 1\" 3 n—=27 (3 n—3
Arato(@) =k Y, oo (42 ) [ @ndp (@, R (158)
= m=-2)'\ ¢
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We are now at a position in which we can calculate the time symmetric potentials. Thus ac-
cording to Equation (129) the scalar potential is:

(I)l(fz) =k Z ( ) /d3x18t Pl X, t )Rn_l. (159)

n=0, n even

This means that even terms in the potential are identical to similar terms in the retarded
theory while odd terms are null and thus are radically different from the predictions of the
retarded theory. Similarly for the vector potential of the time symmetrical theory we obtain:

o]

A] (X)) =k Z (7’1—12)' ('f'i) /dBJC]a?_ZT] (fl,t)Rn_?’. (160)

n=2, n even

The same conclusion holds here, again even terms in the time symmetric theory are the
same as in the standard retarded theory while odd terms are null and thus are radically
different. Electric and magnetic fields can be calculated from Equations (159) and (160).
However, before we continue we introduce G be the contribution of order C%, to some
quantity G:

G=Y G (161)
Thus
ey = K (N [ gy (v R ] (3
D (X) = o} +E ./d x10{p1(¥1,t)R""" forneven, &7 (¥;) =0fornodd. (162)

o 1\" -
Ag"}(fc'z) = o 52)' <+C> /d3x18f_2]1 (X1,t)R"™3  for n >=2and even
Ago] = A’gn] =0, for n odd. (163)
It now follows that:
2n] _ xlnl _
El’; = 7atAln —
k 1 3 n—17. n—3
“ E /d x19¢ " J1(¥1, £)R forn >= 2 and even
E% — EI" — 0, for n odd. (164)
and
- - k 1\" -
EE'Z] = —szé[”] = _n!<+c> /d3x18’fp1(5c’1,t)V~2R"*1 for n even,
Ell = 0 fornodd. (165)
Now:
VR =V, ROgR"™ = —(n —1)R"2R. (166)
thus we have for even n:
= k(n—1 1\" . A
Elrl — % (+C> / Bx197 1 (%1, )R"2R. (167)

Contribution of the zeroth order comes only from the scalar potential term of the electric
field, this is the Coulomb field:

EY = B = *k/d:” Tt xl’ R (168)
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similar result is thus obtained in both retarded [27] and time-symmetric theories. Odd
terms and hence first order terms are absent in the time-symmetric theory, however, it is
also absent in the retarded theory. Thus up to first order in % both theories give the same
predictions. The first term with both the scalar and vector potentials contributions to the
electric field is second order:

. ol = 1\? 1 oA e
B — EP 4 :k<c) /d3x1 [za%pl(xl,t)R—ath(xl,t)R 1 (169)

As % is small, it will in many cases suffice to consider up to second order terms and no
more. The reader is reminded that for even terms (the second order term included) both
time symmetric and retarded theories give identical results. Calculating the magnetic field
using Equations (10) and (163):

Ego] = Egn] =0, for n odd. (170)
However:
v@xwﬂh®JMWﬂ:v@W*waMﬁﬁ (171)
and also: -
Vi, R"3 =V RgR" 3 = (3—n) R"* R (172)
Thus we may write for even n:
n
Bl'(x,) = k((::_;))' (-i) / xR R x 92 (%,t) forn >=2. (173)
or more specifically:
302 1)\? O
B (%) = k(c> /d?’le*Z R x Ty (3, 1). (174)

The electric and magnetic fields expressions are now used to derive the force nth order
contribution taking advantage of Equation (124):

Byl = / @2 (02 () B (%2) + Jo(%2) x Bl (%2) ). (175)
For the zeroth order we deduce:
EO = / Papy(72) BV (7). (176)
Inserting Equation (168), we derive Coulomb’s force:
1?2[?] = —k'/ /d3x1d3x2p1 (fl)pZ(fc’z)%R = —fl[g]. (177)
This (quasi) static force satisfies Newton's third law:
) =By + g =0. (178)

All odd orders of the force are null in the time symmetric theory since all odd orders in the
fields are null in this theory. This includes the force which is first order in % being null, thus:
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V= = Fll —o, (179)

this is not different from the result of the retarded theory. Calculating the second order force
term, we first partition the force given in Equation (175) into electric and magnetic terms:

2 2|2 2
2[1] = F 2[113 +F Z[l]m
B = / Pxy p2(%) E (%)
B, = [@xh@ x5 (180)

Inserting Equation (169) into Equation (180), we derive the electric force:
= k 1 . .
Fg]e = (C2> / / Px1dx, [2p28%p112 — 020:1R 1] (181)

The magnetic force is obtained by substituting Equation (174) into Equation (180):

Pz[i]m = (Ck2> /./.d3x1d3xz Jo x (R_2R X Tl)

B < )//d3x | RIE Rk T (182)
Notice that,
RR=VgR™! (183)
which results in:
. k 7T L .
A = <c2) //d3x1d3x2 Rth]Z ~ (VR -Jz)] (184)

Inspecting the integral:

- 1. .
/dst VXZR /d3X2 lsz (%) - Evfz 2] (185)

Taking into account Gauss theorem and Equation (14), we arrive at:

. . . (T 1
/d3x2(Vf2R71) o= ]{dsz' <]1§> +/d3X2EatP2- (186)

The surface is encapsulating the volume, if the volume includes all space the surface will
be at infinity. If there currents at infinity are null:

[#n(@ar ) T = [ o, (187)

Inserting Equation (187) into Equation (184), we derive:

ﬁz[lm_( )//d3x & l Rl ]2 hatP

We notice that the second order is the lowest order for the magnetic field. The force is thus a
sum of two parts, one that satisfies Newton's third law, and one that does not. Calculating
the total electromagnetic force by adding Equations (181) and (188):

(188)
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72 2 =2
B - e,

:( >//d3x1d3x2l 020201812 — ¢ (02J1)R™ +x12h I

(189)

2

Introducing the notation R = #£7,. It is rather easy to calculate Flz] by exchanging the
indices 1 and 2:

-
(Ck2> //d3x1d3x2 Eplagpzfm — (o1 2)R™ + %1 TlR-Jz (190)
Adding Equations (189) and (190) and considering that £1p = —%1, it follows:
T 1‘:’[2] 2[1] =
<k2> / / @218, [ (020201 Pla%m)R—at(Psz-i-pzﬁ)Rl} (191)
Now as k = 12 and since:
p20701 — P10702 = O¢(p29t01 — P19102) (192)
It also follows that:
B = 100, [ [ @ndns | 3leadips = )R~ (pula-+ p2 TR Y| 199

Which is the same formula derived in the retarded theory [27]. Of course if we calculate
third order terms the time symmetric theory the calculations will yield null results, but this
will not be the case for the retarded theory. Thus in principle one can decide if the time
symmetric theory is correct by measuring this term. Notice, however, that taking into
account the reaction term of Wheeler & Feynman [33], the retarded theory is recovered and
again there are no means to distinguish between the two theories.

11. Conclusions

The current paper does not present an alternative theory. All theories discussed in
the paper are well known. Those include classical electrodynamics, classical mechanics,
Schrodinger’s quantum mechanics and Bohm’s quantum mechanics. The purpose of the
paper is to study a retarded engine in the framework of those theories and elucidate its
properties. In all parts of the paper the field is described by classical electrodynamics
(not QED), however, we compare different theoretical representations of the material part
(classical mechanics, Schrodinger’s quantum mechanics and Bohm’s quantum mechanics)
and show the differences and similarities of the predictions those theories. This is done
without forming any apriori opinion on the validity (or invalidity) of any of the theories.
Our main findings are:

1. A Bohmian system does not need retardation to self propel its center of mass. Al-
though the fact that the total momentum is not generically conserved in a Bohmian
system was already noted by Holland [17] the practical and technological implications
were not underlined.

2. The lack of linear momentum conservation in a classical mechanical system coupled
to an electromagnetic field was already noted by Feynman [5] for a two particles
system. Feynman correctly explained this lack of conservation by the transfer of
linear momentum from matter to the field. This result was expanded here to a N
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point particle system coupled to a retarded electromagnetic field. Thus supplying
a theoretical underpinning to the macroscopic description of a classical retarded
engine [27].

3. The same conclusion regarding the existence of a retarded engine is proved for a N
particle quantum system of the Schrédinger type. Using the Ehrenfest theorem we
were able to show that the expectation value of the center of mass will move due to
the retarded electromagnetic field. This is a new result, although atomic retarded
motors were considered before [28,29] the reasoning given in those previous papers
for the motion of center of mass was classical (using the Lorentz force and Newton's
classical equations of motion).

4. In a quantum system it seems that self propulsion is possible due to self electro-
magnetic interaction of the particle wave function with itself, this is not possible in
classical mechanics as a point particle cannot interact with itself (this can be shown by
explicitly solving the field equations for a point particle and showing that the field
vanishes in the 4D event in which the particle is located). This is another type of a
“quantum engine” that has arised from the current study.

5. The time-symmetric Wheeler-Feynman theory is studied here for the first time in the
context of a retarded motor. It is shown that such a theory if correct will not affect the
basic retarded engine effect which is second order but can have implications if third
order corrections are to be considered.

We have limited our study to spinless particles which move at slow velocities (with respect
to the speed of light in vacuum c), that is nonrelativistic particles. Of course the effects of
spin on a retarded engine deserve a separate discussion and so do relativistic particles of
both the classical and quantum types. This will require a deeper analysis of both the Pauli
and Dirac formalism and is left for future studies.

Finally we mention some quantitative results regarding quantum retarded engines
that were obtained in previous papers [28,29] and are repeated here for completeness (for
quantitative results of classical retarded engines see [27]).

A Wave Packet Retarded Quantum Engine
Assume an electron of mass ., with an associate wave packet of the form:

_oaLikx _J VPe 1< Ryax
P = AelK, A_{ oS R (194)

k" and g, are constant real numbers. Normalization dictates the following;:

_ 3 __
pe =R, (195)

47
The phase of the wave function is thus linear, and its amplitude is uniform inside a sphere
of radius R, and zero elsewhere.
The current density is calculated using Equation (51):

=
=
x

=
2

J= _7564) = —— & = —evp L for r < Ryax, v

, (196)

&
&
&

v is a quantity with velocity units.

We now calculate the force using Equation (113), in which system 1 is the (static)
proton and system 2 is an electron which is in a wave packet state as described. The much
heavier proton is modelled as a classical point charge situated at the origin:

p1 = ed® (%) (197)

It thus follows that the center of mass momentum of such a system will be:
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- — _ e -
B(t) = —f—i//deldez o R == _% /d3x2 fors . 198)

Plugging Equations (196) and (197) will result in:
= 1 . .
P(t) = EyoezvpcR%mXx. (199)

Taking into account the value of p. given in Equation (195) we derive:

=

3 1,
P(t) = S—Hyoezva;xx. (200)

Thus the momentum accumulated by a retarded motor is linear in the electron’s “velocity” v
and is proportional to the wave packet size R,y inversely. The maximal velocity generated
by this motor occurs when the engine is not loaded by any cargo:

P 3

Omax = ——

2 p—1
= R -.. 201
my 87Tmp HOE UKy ( )

the electron mass is neglected relative to the proton mass m,. Thus a wave packet of
the radius:
3upe’v

g 202
87Ty Vax (202)

Riypax =
is needed to obtain a velocity v, . We shall be considering a scenario where the velocity
v is close to the speed of light ¢, in order to have a larger R;y. It's important to note
that in real situations, a smaller R;;;x would likely be required to achieve the desired
speed. Additionally, for a relativistic electron, the Schrodinger equation isn’t appropriate;
instead, the Dirac equation should be used. The previous discussion on the relativistic
engine assumes that the engine’s components are moving slowly, with the relativistic
effects arising from the delay in the electromagnetic signal. However, if the components
themselves are moving at relativistic speeds, a different mathematical approach would be
required. With this in mind, we can make some preliminary observations: for a typical car
aiming to reach a maximum speed of 50 m /s (which is equivalent to 180 km/h), we obtain
the following results.

Rsp ~ 1.4 x 107" m = 0.26 ag (203)

thus the wave packet dimension is quarter of the bohr radius. Provided the hydrogen
retarded motor is to reach the velocity of v, = 11.2 km/s which is earth’s escape velocity
we obtain:

Rescape velocity ~ 6.1 x 1074 m ~ 1072 ag ~ 73 r, (204)

in which the proton charge radius is r, = 8.4 10~ m. At such high velocities, the wave
packet associated with the particle is comparable in size to a nucleus, rather than being on
the scale of an atom. If we consider the relativistic engine accelerating to the maximum
speed possible in a Lorentzian space-time for a particle that starts below the speed of light
(subluminal), we can conclude that this maximum speed would approach the speed of
light vy0¢ >~ c.

Riight speed =23 %107 m~3x1073r, (205)

thus the dimension of the wave packet is sub nuclear. The above result is highly inaccurate
as our analysis so far is essentially valid only for slow moving particles (with respect to the
speed of light).
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