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Abstract

Light nuclei with mass number of below 8 are considered to be produced by the so-called the Big-bang nucleosynthesis
(BBN) occurring in the early universe. Since BBN depends on various assumptions related to the origin of the universe
and the laws of fundamental interactions and elementary particles, those assumptions can be verified by comparing the
abundances of light isotopes calculated with BBN and the astronomically observed ones. Since the neutrons are the starting
materials of BBN together with protons, and also they are electrically neutral, they play a unique and critical roles in BBN. In
this paper status of the BBN analysis and experimental studies of the properties of neutrons relevant to BBN will be reviewed.
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Introduction

When did the Universe begin? How did the Universe begin?
Why was the Universe born? What is the fate of the Uni-
verse>—Those are the questions not only from cosmologists
but from rather general people, since they are closely related
to origins of the solar-system, the Earth, and lives. A hint to
those questions was obtained from the systematic observa-
tion of the red shift z of the distant galaxies as a function of
the distance R from the Earth. and the distance R of galaxies.
It was found that z shows a clear proportionality to R [1],
which is called the Hubble-Lemaitre law. It is the direct evi-
dence of the fact that our universe is expanding as suggested
from the solution of the Einstein’s equation for the universe.
Alpher [2] considered that the temperature and the density of
the early universe should be much higher than those of the
present, and light nuclei could be produced via the nuclear
reaction network shown by Fig. 1. Since the half-lives of
the isotopes with the mass number 8§ are too short to main-
tain nuclear reactions, it is not possible to produce heavier
elements in significant amounts. This process is called the
big-bang nucleosynthesis (BBN), and is considered to be
responsible for the origin of light elements up to lithium.
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Theory

The standard model of BBN assumes the following
conditions;

(1) isotropic and homogeneous matter distribution,

(2) general relativity,

(3) standard theory of electromagnetic and weak interac-
tions,

(4) neutrinos are light and stable, and

(5) number of species of light neutrinos is three.

These assumptions can be verified through the com-
parison of the abundances of light isotopes obtained from
the BBN calculations and the ones from astronomical
observations.

Figure 2 shows the comparison of the abundances of light
isotopes from the observations and the ones calculated with
the standard BBN model as a function of the baryon-to-
photon ratio 7, in units of 10'°, which is equivalent to the
baryon density at the epoch of BBN.

As can be found in Fig. 2, the observed abundances of
“He and D are well reproduced by the standard BBN cal-
culation with 7, determined by the observation of the fluc-
tuation of the cosmic-microwave background [3], which is
one of the pieces of evidence for the big-bang theory. On
the other hand, the observed abundance of “Li is more than
a factor of two smaller than the BBN calculation with the
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Fig. 1 Nuclear reaction network of the standard big-bang nucleosyn-
thesis
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Fig.2 Comparison of observed (colored boxes) and calculated (solid
curves) abundances of light isotopes. Y denotes the mass fraction of
“He. A gray band shows the region of the baryon-to-photon ratio Mo
determined from the WMAP observation of the fluctuation of cos-
mic-microwave background [3]

same value of 1, which is called the “lithium problem”,
suggesting that there should be some problem in either the
assumptions for the standard BBN, the data of the relevant
nuclear reaction rates, or the astronomical observations.

Experiment

To calculate the production yields of light isotopes in BBN,
reliable data of the thermal reaction rates of the relevant
nuclear reactions are required. The reaction rate depend-
ence of the production yields of the isotopes are studied in
Ref. [4], and it was found that the reaction rates of neutron
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B-decay, 'H(n,y)*H, *H(p,y)*He, *H(d,n)*He, *He(n,p)*H,
He(d,p)*He, *He(a,y)'Be, 'Be(n,p)’Li are influential for
the 'Li yield in the BBN calculation. The rates of those
reactions have recently been revisited experimentally. The
new data of the 3He(a,y)7Be [5] and 3He(d,p)“He [6] reac-
tions were found to agree with the previously adopted values
within the uncertainty of the evaluation. New measurement
of the 7Be(n,p)7Li reaction rate by the n_TOF collaboration
reported a 20-40% enhancement of the cross section near
the reaction threshold energy, but the "Li yield of the BBN
calculation is reduced by only 13%, which is not enough
to suppress the over production of ’Li in the BBN calcu-
lation [7]. For the 7Li(p,a)4He reaction, there has been a
large discrepancy between existing cross section data, but
the most recent result confirmed the evaluated nuclear data.
In addition, since the BBN yield of "Li is not sensitive to the
7Li(p,oc)‘lHe reaction rate, 10% change in the reaction rate
results in only 0.5% change in "Li yield, according to the
study of Ref. [4], the reaction is not relevant to the lithium
problem. The reaction rates of 7Be(a’,p)7Li and 7Be(d,pa)4He
were remeasured with the uncertainty of 30%, which gives
the lower limit of the ratio of 'Li production yield in BBN
to the observed 'Li abundance of 2.18 [8], suggesting the
lithium problem cannot be solved with the updated data.
Finally, the "Be(n,a)*He reaction rate was determined from
the measurements of the cross sections of the forward reac-
tion, i.e. the "Be(n,a)*He reaction [9] as well as the time-
reversed “He(a,n)’Be reaction [10], and the reaction rate was
found to be not sufficiently large to reduce the 'Li yield in
the BBN calculation to the level of the observed abundance.

Another important nuclear parameter is the life-time of
neutrons 7,, because it affects the production yields of light
isotopes by determining the initial ratio between the num-
bers of protons and neutrons and by changing neutron den-
sity during the BBN process [11]. So far, there has been a
discrepancy as large as 5o between the experimental data
of 7, measured with the storage method [12] and the beam
method [12] as shown in Fig. 4. Namely, in the storage
method, a known number n(¢#=0) of ultra-cold neutrons
(UCNs) are injected into a UCN bottle, and the number
n(t) of surviving UCN is measured after a certain time ¢.

n(t) _ _r
=0, = CXP < - ) On the

other hand, the decay method measures the decay rate R,
of a beam neutron by counting decay products and obtain

7, using the formula R, = ? = —Tl<1>n, where @, is the

incident neutron intensity. To solve the discrepancy
between two methods, an independent measurement will
be important. We are promoting an independent measure-
ment with the decay method at the J-PARC materials and
life-science experimental facility (MLF) [13]. Figure 3
shows a schematic view of the experimental setup [14].

7, is obtained from the formula
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Fig.3 Experimental setup of
the neutron life-time measure-
ment at J-PARC/MLF/BL05
[14]. The TPC consists of the
MWPC region on the top and
the drift region below
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Fig.4 Summary of the data of neutron lifetime #, including our
recent result (open circle, [14]). Open square shows the result with
UCN stored in a magnetic trap [15]

We introduce a cold neutron beam provided at the BLO5
beamline of MLF into a time-projection chamber (TPC). The
unique point of our method is that the intensity of the incom-
ing neutrons and their -decay rate are simultaneously meas-
ured by counting the emitted particles from the *He(n,p)*H
reaction and the neutron p-rays, respectively, and therefore
T, is determined with respect to the 3He(n,p)3H reaction
cross section which is known with the accuracy of about
0.13%. This method has an advantage that the systematic
errors such as the detection efficiencies and the solid angles
are canceled at the lowest-order approximation between the
measurements of the 3He(n,p)3H reaction and the neutron
-decay, which is essential for reliable determination of <,

As shown in Fig. 4, our recent result [14] of 7,=898
+ 10(stat.)+15718(syst.) s seems consistent with the previ-
ous values. After the publication of Ref. [14], the meas-
urement was continued, and the present statistical error in
7, achieved 1.5 s according to the ongoing analysis. 11 s
of the systematic error 15 s comes from the discrepancy

Beam catcher

Neutron beam bunch Drift region

Drift cathode

between measured and simulated pB-ray energy spectra due
to the influence of the unknown background. Its origin is
supposed to be the neutrons scattered by the gas, since the
intensity of the background depends on the gas pressure in
the TPC. From the energy distribution of the background,
it is likely to be due to the y-rays from (n,y) reactions. At
present the source materials of the capture y-rays are under
investigation.

Implications to elementary-particle physics

Discrepancy between the observed and calculated abun-
dances of primordial elements might suggest some exotic
physics beyond the standard model of elementary particles
and fundamental interactions. As a possible new physics,
the effect of the large-extra-dimension (LED) [16] was
recently considered in the BBN calculation [17-19]. The
LED model assumes that our world is (N+ 1) dimensional
space—time (bulk), consisting of ordinary three-dimensional
space (brane) and compact (N—3)-dimensional inner space,
and only graviton can propagate both spaces, which is suit-
able to solve the “hierarchy” problem, i.e. extreme weak-
ness of the gravitational interaction compared to the other
fundamental interactions as the consequence of the leakage
of the gravitational flux into the inner space. Because of the
additional degree of freedom in the inner space, the expan-
sion rate of the universe will be modified at the temperature
above the characteristic energy M* of the LED model of a
few ~a few ten TeV, affecting production yields of light ele-
ments in BBN. The effect of the extra dimensions to BBN
has been studied in Refs. [17-19], and it was found that the
dark radiation by the electric part of the five-dimensional
Weyl tensor can reduce the abundance of "Li without affect-
ing the abundances of *He and D. Those works considered
the case of the number 7 of extra dimensions is equal to one,
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but unfortunately n <2 scenarios with M*=a few ~a few ten
TeV have already been ruled out experimentally [20, 21].
Therefore, it is interesting to consider the BBN with n>3 as
well as to make the experimental verification of the case of
n>3. One of the predictions of the LED model is the devia-
tion from the inverse-square law of the gravity (ISL) at the
distance near the size of the inner space which corresponds
to the Compton wavelength A of the graviton in the inner
space. The gravitational force F(r) including the effect of
LED is approximately given as Eq. (1);

F(r) = —GMr'zm (1+aexp (—%)) )

where r is the distance between two test objects with masses
of M and m, G stands for the Newtonian constant of gravita-
tion, and a is the relative coupling constant of the LED grav-
ity with respect to G. Therefore, by experimentally searching
for the exponential term in Eq. (1), it is possible to verify the
LED model. So far ISL of the gravity has been tested via the
experiments of Cavendish type, i.e. by precisely measuring
the forces between two test objects with given separations in
the region of the distance down to a few micrometers. The
LED model suggests A <~ 100 nm in case of n=3, At such
a short distance, the previous experiments rapidly lose the
sensitivity due to the huge background by the intermolecular
force whose strength is inversely proportional to the sixth
power of the distance [23]. Since the strength of the intermo-
lecular force is proportional to the electric polarizabilities o
of the test objects, it can be drastically suppressed by replac-
ing one of the test objects with a neutron whose o is eighteen
orders of magnitude smaller than those of ordinally atoms
or molecules. The force between a neutron and another test
object can be studied by measuring the differential cross
section of the small-angle neutron scattering (SANS) [24].
For that purpose, we performed a precise measurement [25]
of SANS at the J-PARC/MLF/BLOS5 with use of noble gases
as the target whose form factors are well known.

Results and discussion

Figure 5 shows the summary of the upper limit to « obtained
by various experiments.

In Fig. 5, the curves denoted with Refs. [25] and [26]
are obtained using pulsed neutrons at J-PARC and con-
tinuous neutrons at the HANARO reactor, respectively,
and due to the difference in the velocity distribution of
the neutron beams, the obtained upper limits are different
from each other. The result of Ref. [27] was obtained by
means of the neutron interferometry, and thanks to its very
high sensitivity, the upper limit better than [25] and [26]
were obtained. Through those experimental efforts, the cur-
rent upper limit on a obtained with the experiments using
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Fig.5 Experimental constraint on the LED. Red curve (Haddock
et al.) is the result of the experiment at the J-PARC [25]. Other results
by Kamiya et al. [26] and Heacock et al. [27] are also shown. The
green-filled and light-blue-filled areas indicate the regions excluded
by previous experiments [28-31] and expected by the theory [22],
respectively

neutrons is still 5-6 orders of magnitude higher than the
theoretically expected region [22]. To improve the sensi-
tivity of the SANS method, we are going to use a target
made of nanoparticles in place of noble gas atoms. Since
the mass of a nanoparticle is typically 10° times larger than
that of a single atom, a large improvement in the sensitivity
is expected. It should be noted that background due to the
nuclear scattering is also enhanced with the same factor and
should be suppressed. For that purpose, we are developing
nanopowder made of null-matrix alloy [32] whose coherent
scattering length is reduced by mixing two elements having
opposite signs of the scattering lengths so as to cancel the
total coherent nuclear scattering. To design such a material,
accurate data of the scattering lengths of various isotopes
are indispensable.

Conclusions

The BBN analysis provides a unique opportunity to investi-
gate the origin of the universe and the fundamental laws in
nature. Since the neutrons play critical roles in BBN, it is
important to obtain accurate data of the fundamental prop-
erties of neutrons as well as of the neutron-induced nuclear
reaction rates.
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