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Following our recent work on the cosmological constant problem, in this letter we make a specific
proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated
by a deep analogy between the blackbody radiation problem, which led to the development of
quantum theory, and the cosmological constant problem, for which we have recently argued calls
for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy
is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss
observational consequences of such a picture of dark energy and constrain the distribution function.
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1. Dark energy and new physics

Our universe is approximately four dimensional de Sitter space with a cosmological constant
Λ � 10−47 GeV4 [1–3]. The Planck mass, MPl � 1019 GeV, however, supplies the natural scale
for a quantum theory of gravitation. Explaining the origin of the small dimensionless number
Λ/M4

Pl as the cosmological constant problem [4]. The cosmological constant problem concerns
physics at both ultraviolet and infrared energy scales. In the ultraviolet, the cosmological con-
stant computes the energy density of the vacuum. In the infrared, the cosmological constant
determines the large-scale structure of spacetime.

Recently, we have turned the cosmological constant problem around to argue the exis-
tence of a quantum version of the equivalence principle that allows the gauging of the geo-
metric C P

n structure of the canonical quantum theory in much the same way that the Lorentz
group is gauged to the general diffeomorphism group in going from special to general rela-
tivity [5]. Crucially, the gauging is in the configuration space of the quantum mechanics, not
in spacetime. This provides a framework for a theory of quantum gravity consistent with uni-
tarity and the principle of holography [6–12]. Locally the physics is Matrix theory in a flat
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background [13]. The obstruction to patching the flat backgrounds together is the cosmolog-
ical constant. This is a statement of the non-decoupling of physics in the ultraviolet and the
infrared in quantum gravity.

According to our proposal [5], the vacuum energy densityΛ is dynamical and fluctuates
around zero (this value is fixed by diffeomorphism invariance in the configuration space of
the quantum theory). This is to say, the cosmological constant is a random variable from the
point of view of the effective classical Lagrangian. (We adopt the perspective that although
critical string theory is ten-dimensional, only four of the dimensions are large. The details of the
physics of the compact directions do not matter for present purposes.) In the Einstein-Hilbert
action, the cosmological constant term appears as a multiplier of the volume of spacetime:

SEH ⊃ Λ
∫
d4x

√−g = ΛV. (1.1)

Using the large volume approximation of the nonlinear Wheeler-de-Witt equation, we regard
Λ and V as conjugate quantities that realize an uncertainty relation:

ΔΛΔV∼�. (1.2)

The vacuum energy density that is measured is the fluctuation ΔΛ about the expected value
Λ = 0. The notion of conjugation is well defined, but approximate in our scheme. (For a detailed
discussion of the relation between Λ and V , see [7, Appendix 3]. Also, for work in a similar
spirit, see [14–19].)

The smallness of the measured cosmological constant relies on the largeness of the ob-
served spacetime. We motivate the largeness of observed V through a gravitational see-saw
[5, 20–25]. The scale of the vacuum energy is set by the balancing of the scale of cosmological
supersymmetry breaking with the Planck scale. The UV/IR correspondence inherent to this
argument depends crucially on the spacetime uncertainty relations of Matrix theory [26–29].
In perturbative string theory, modular invariance on the worldsheet translates in target space
to the spacetime uncertainty relation:

ΔTΔXtr∼�2s∼α′. (1.3)

Here, T is a timelike direction, and Xtr is a spacelike direction transverse to the lightcone. In
Matrix theory this becomes a cubic relation:

ΔTΔXtrΔXlong∼�3Pl, (1.4)

where Xlong is the longitudinal direction. In the generalized quantum theory,

�Δs∼MPlΔT. (1.5)

The distance Δs on the configuration space is a real quantity—this is true even in ordinary
quantum theory—and is proportional to the modulus of the square of the overlap between
states, which is a real quantity. This can be estimated as usual by the Euclidean path integral:
ds∼e−Seff , where Seff denotes a hard-to-compute-from-first-principles low-energy (Euclidean)
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effective action for thematter degrees of freedompropagating in an emergent (fixed) spacetime
background, we obtain a gravitational see-saw formula:

ΔXtrΔXlong∼eSeff�2Pl. (1.6)

(We stress that the effective action can be written in the Euclidean signature because we are
considering the distances between states in the configuration space of the generalized quantum
theory. The Lorentzian nature of the effective spacetime background comes from a particular
limit used in Matrix theory to reproduce the Lorentzian asymptotic flat space.) The product
of the ultraviolet cutoff (the maximal uncertainty in the transverse coordinate) and the in-
frared cutoff (the maximal uncertainty in the longitudinal coordinate) is thus exponentially
suppressed compared to the Planck scale. The midenergy scale is related to a supersymmetry
breaking scale.

We expect that the fluctuation about the zero value is biased towards the positive sign by
supersymmetry breaking. It is therefore our generic expectation that the vacuum energy ought
to scale as m8

susy/M
4
Pl, which is consistent with the cosmology of the present de Sitter epoch.

(See also [30].) The considerations presented here and explored to date in our prior work [5,
6, 9] are, however, thermodynamic in nature. As well, a more refined statistical analysis is
necessary in order for us to explore the fluctuations aboutΛ = 0 and their possible observation.

In this article we consider possible effects of the new physics outlined above on the fine
structure of dark energy. In particular we argue that one can speak about the spectrum of dark
energy governed by a very specific distribution which embodies both its quantum and classical
aspects. This fine structure of dark energy should, in principle, have observable effects.

2. Blackbody radiation and dark energy: an analogy

Wemotivate our discussion of the spectral distribution of dark energy by an illuminating anal-
ogy with the problem of black body radiation (and specific heats) in prequantum physics. In
that case there is a (1/2)kBT contribution to the energy for each independent degree of free-
dom:

dE =
∑
n

(
1
2
kBT

)
, (2.1)

where n is an abstract index that labels the degrees of freedoms. This should be compared to
the cosmological constant which counts degrees of freedom in the vacuum. Heuristically, we
sum the zero-point energies of harmonic oscillators and write

Evac =
∑
→
k

(
1
2

�ω→
k

)
, (2.2)

where, unlike the fixed temperature T ,ω→
k
=
√
|→k |2 +m2. The divergence of the blackbody dE is

the ultraviolet catastrophe that the Planck distribution remedies. Quantummechanics resolves
the over counting. In askingwhy the vacuum energy is so small, we seek to learn how quantum
gravity resolves the over counting of the degrees of freedom in the ultraviolet. (Similarly, in
the infrared, the proper formulation of quantum theory of gravity should resolve the stability
problem (“why doesn’t the Universe have a Planckian size?”), once again in analogy with the
resolution of the problem of atomic stability offered by quantum mechanics.)
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This analogy between blackbody and the vacuum energy problems extends even further.
(i) The total radiation density of a blackbody at a temperature T is given by the Stefan-

Boltzmann law:

u(T) = σT4. (2.3)

This is to be compared with the quartic divergence of the vacuum energy,

Evac∼E4
0, (2.4)

E0 being the characteristic energy cutoff, for bosons, or fermions separately, up to a sign differ-
ence. We disregard, for the moment, the cancellation that happens in supersymmetric theories
which leads to a quadratic divergence. This is appropriate in that, as noted above, in our pro-
posal supersymmetry should be broken by new curvature effects in the generalized quantum
theory, which we term cosmological breaking of supersymmetry.

(ii) From adiabaticity, we obtain the Wien displacement law:

ωR = constant,
ω

T
= constant, (2.5)

where R is the size of the blackbody cavity andω the angular frequency. This is to be compared
with the uncertainty relation (1.2), which tells us that ΔΛΔV∼�.

More precisely, fluctuations in the volume of spacetime are fixed by statistical fluctua-
tions in the number of degrees of freedom of the gauged quantummechanics. In Matrix theory,
the eigenvalues of the matrices denote the positions of D0-branes which give rise to coherent
states in gravity. Off-diagonal terms inMatrix theory break the permutation symmetry and ren-
der the D0-branes distinguishable. Therefore, to enumerate the degrees of freedom, we employ
the statistics of distinguishable particles (which will be of central importance in what follows).
The fluctuation is given by a Poisson distribution, which is typical for coherent states. The
fluctuation of relevance for us is in the number of Planck sized cells that fill up the configura-
tion space (the space in which quantum events transpire), that is to say in four-dimensional
spacetime:

Ncells∼ V

�4Pl
=⇒ ΔNcells∼

√
Ncells =⇒ ΔV∼

√
V �2Pl, (2.6)

and thus

ΔΛ
√
VGN∼1, (2.7)

where V is the observed spacetime volume and GN is the four-dimensional Newton constant
[5]. This discussion highlights a tension between global and local holography. The expectation
of global holography is that the degrees of freedom should scale as

Λ∼ 1
R2GD

, (2.8)

whereGD is theD-dimensional Newton constant [31]. In the special caseD = 4 this is precisely
the conclusion of (2.7). Therefore that tension is resolved in the case that is observationally
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relevant. Our gauging of quantum theory inherits holographic scaling fromMatrix theory. The
compatibility of local and global holography in general dimensions remains an open question
in this framework.

The Stefan-Boltzmann law andWien’s law are implicated in the derivation of the Planck
distribution for blackbody radiation. If the analogy holds, what does this say for vacuum en-
ergy? A natural question to ask here is whether there is a universal energy distribution for
dark energy. If so, what is its nature and what are the observational consequences? Here we
will start with an assumption that there is such a distribution, which is natural from the point
of view of the new physics advocated in the previous section. We investigate the nature of such
a distribution and consider its observational consequences.

3. M-theory and Wien distribution

According to our proposal [5–7, 9], M-theory is background independent Matrix theory. The
infinite momentum limit of M-theory is equivalent to theN → ∞ limit of coincident D0-branes
given by U(N) super-Yang-Mills gauge theory [13]. In particular, Matrix theory gravitons are
bound states of D0-branes and the gravitational interaction, and thus the geometry of space-
time, is contained in the open string dynamics, viz. the quantum fluctuations of matrix degrees
of freedom. D0-branes obeyU(∞) statistics. Infinite statistics [32–38] can be obtained from the
q = 0 deformation of the Heisenberg algebra:

aia
†
j − qa†

j ai = δij , ai

∣∣0〉 = 0. (3.1)

(The cases q = ±1 correspond to Bose and Fermi statistics; q = 0 is the so called Cuntz alge-
bra [39] corresponding to infinite statistics.) In particular, the inner product of two N-particle
states is

〈
0
∣∣aiN , . . . , ai1a

†
j1
, . . . , a†

jN

∣∣0〉 = δi1j1 , . . . , δiNjN . (3.2)

Thus any two states obtained from acting with the same creation and annihilation operators in
a different order are mutually orthogonal. The partition function is

Z =
∑
states

e−βH. (3.3)

Off-diagonal terms in Matrix theory break the permutation symmetry and render the D0-
branes distinguishable. Thus there is no Gibbs factor.

Strominger has argued that charged extremal black holes obey infinite statistics [33]. This
argument relies crucially on the classical diffeomorphism invariance that we must generalize
in the full quantum discussion. Let us first recall Strominger’s reasoning.

Assuming that the quantum state of each black hole is a functional on the space of closed
three-geometries, consider the statistics of two black holes connected by a wormhole. Black
hole exchange amounts to swapping the ends of the connecting wormhole. In quantum grav-
itational systems, the wave function should be invariant under all diffeomorphisms that are
asymptotically trivial and deformable to the identity. However, the exchange of charged ex-
tremal black holes creates a different three-geometry. This implies that the interchange is not a
diffeomorphism, and the wave function is not bound by any particular symmetry property un-
der the exchange. Thus the wave function for many similarly charged black holes is a function
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of each black hole’s position, and the black holes are rendered distinguishable. This is similar
to the wave function of many identical particles each with a different internal state. Treating
the black holes as particles we note that they can be in any representation of the symmetric
group. Thus we are led to conclude that these types of black holes obey infinite statistics.

This analysis is centered around the invariance of the wave function under spacetime
diffeomorphisms and is carried out semiclassically. Thus standard notions of spacetime are ap-
plicable. In the proposed background independent Matrix theory, spacetime diffeomorphisms
emerge from the diffeomorphisms of the underlying quantum phase space. That D0-branes
obey infinite statistics is in some sense an analogous phenomena. In both cases the solitonic
objects possess differing internal states. This implies the exchange operator is not a diffeo-
morphism. If the exchange of the D0-branes is not a diffeomorphism of the quantum phase
space, the D0-branes are rendered distinguishable. The appearance of infinite statistics is cru-
cially tied to the gauging of the unitary group. In our proposal regarding the general geometric
quantum theory all representations of the permutation group (and not only the symmetric and
antisymmetric) are allowed and appear on equal footing. This motivates the appearance of in-
finite statistics in the gauged quantummechanics. (Wemust emphasize that solitonic objects in
string theory do not generically obey infinite statistics. It is the requirement of diffeomorphic
invariance on the space of quantum states, whose elements are D0-branes, that is central to the
manifestation of infinite statistics here.)

It was noted by Greenberg [32] that any theory of particles obeying infinite statistics pos-
sesses a form of nonlocality. The number operator for example is nonlocal and nonpolynomial
when written in terms of field operators:

Ni = a†
i ai +

∑
m

a†
ma

†
i aiam +

∑
m1,m2

a†
m1a

†
m2a

†
i aiam2am1 + · · · . (3.4)

This nonlocality does not affect the formulation of a consistent non-relativistic theory. Cluster
decomposition, the CPT theorem, and a version of Wick’s theorem are still valid, and the spin
statistics theorem implies that particles obeying infinite statistics can be of any spin. A quan-
tum theory with infinite statistics remains unitary. However, there does not exist a consistent
second quantized local field theory. The presence of nonlocality while appearing to be a lia-
bility may in fact be a virtue. Because there is not a well-defined local field theory, effective
field theory arguments will miss the possibility that dark energy is associated with quanta of
infinite statistics.

Recently in [40], a holographic model of spacetime foam was considered. It was argued
that this type of spacetime foam implies the existence of a type of dark energy quanta obeying
infinite statistics. This is intriguing as this was conjectured using a different formalism from
the current proposal.

If we consider the various instances in which infinite statistics play a role (i.e., black
hole physics, Matrix theory, holographic spacetime foam, as well as our formulation of a back-
ground independent Matrix theory), we note a common feature. In each of these the holo-
graphic principle [41, 42] is central. Holographic theories possess a manifestly nonlocal qual-
ity in that the internal degrees of freedommust know something about the boundary. Thus the
nonlocality present in systems obeying infinite statistics and the nonlocality present in holo-
graphic theories may be related. (This was also argued in [40].) Perhaps the presence of infinite
statistics in quantum gravitational systems is indicative of a holographic view of spacetime.
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The central point of this letter is that the spectral distribution of dark energy that follows from
infinite statistics is the familiar Wien distribution. First recall that in the context of the black body
radiation, the Wien distribution may be expressed as

ρW = αν3e−β(ν/T), (3.5)

where ν is the linear frequency (ω ≡ 2πν). Note that the Boltzmann factor, required by infinite
statistics, is already present. The prefactor αν3 is energy times the phase space factor, which
is responsible for the compatibility of this distribution with the Stefan-Boltzmann law. Thus
a quantum Boltzmann distribution, which is what infinite statistics represents, is captured by
the Wien distribution. Recall, however, that there is a semiclassical character to the distribu-
tion function (i.e., photons are treated as ultra-relativistic, distinguishable particles). This is, of
course, nothing but the classical limit (hν � kBT) of the Planck distribution.

From here, the entropy of an ideal gas governed by theWien distribution (as well known
from Einstein’s pioneering paper on photons [43, 44]) is

S(ν, V, E) − S
(
ν, V0, E

)
=

E

βν
ln

V

V0
. (3.6)

Finally, the dispersion of energy is purely quantum, that is, particle-like, which is another cru-
cial remark of Einstein:

〈
ε2
〉
= hνρWdν. (3.7)

By analogy, for the dark energy spectral function, we have

ρDE
(
E, E0

)
= AE3e−B(E/E0), (3.8)

ρvac =
∫E0

0
dE ρDE

(
E, E0

)∼6A
B4

E4
0, (3.9)

with A, B universal constants, and E0∼10−3 eV, which corresponds to the observed cosmologi-
cal constant. The integrated energy density is proportional to E4

0, as it must be. This Wien-like
spectral distribution for dark energy is thus the central prediction of a detailed analogy be-
tween the blackbody radiation and dark energy. This in turn is rooted in our new viewpoint
on the cosmological constant problem as summarized in the introduction to this letter. The
constants A and B are in principle computable in the framework of the background indepen-
dent Matrix theory, but that computation is forbidding at the moment. We will therefore only
concentrate on global features of this viewpoint on the fine structure of dark energy. Also, the
precise dispersion relation of the dark energy quanta (ultimately determined by the degrees
of freedom of Matrix theory within the framework of the generalized quantum theory that we
have proposed) is not relevant for the general statistical discussion of possible observational
signatures presented below.

Vacuum energy (i.e.,
∑

→
k
(1/2)�ω→

k
) has negative effective pressure. TheWien and Planck

distribution share a common prefactor, which is the reason why we argue that at low energies
our proposal is consistent with the positive cosmological constant, the dark energy being mod-
eled as vacuum energy. From the effective Lagrangian point of view, the positive cosmological
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constant accounts for the accelerated expansion. At short distances, we have a radically differ-
ent situation. The pressure in this scenario is positive and set by the scale of E0. The proposed
dark energy quanta that are physically responsible for such an effective view of the cosmolog-
ical constant have a strange statistics fixed by symmetry requirements, and which has certain
parameters that should be bounded by observation. The generalized geometric formulation of
quantum theory we are talking about is nonlinear in the space of quantum states. That is why
the dark energy quanta are different from traditional quanta. We visualize the quanta as associ-
ated with the open string degrees of freedom of the proposed background independent Matrix
theory. These open string degrees of freedom would be ultimately responsible for the dynam-
ics of the vacuum energy. In this regard, please note that many phenomenological models of
dark energy—the phantom, the tachyon, the Chaplygin gas models, and so forth (please con-
sult the review [45], e.g.)—are based on the Dirac-Born-Infeld action describing the effective
open string degrees of freedom. We do not wish to tie our discussion to any of these particular
models because they are not fully justified as quantum theories, but we wish to point out that
the negative pressure can be realized in such models based on the dynamics of open strings.
A useful comparison is the following. For photons in the CMBR there exists a vacuum contri-
bution and then the usual Planck distribution. Ours is a completely analogous claim: we have
the vacuum part and the distribution of the quanta which constitute the vacuum. The only
difference here is that the quanta are unusual and the distribution is unusual due to the infinite
statistics invoked.

To summarize, in accordance with our view of the cosmological constant problem, we
think of dark energy as vacuum energy. Just as in the case of a photon gas, the Wien distribu-
tion for vacuum energy exhibits both a classical and a quantum nature. In Matrix theory, the
degrees of freedom, in the infinite momentum frame, are nonrelativistic and distinguishable
D0-branes whose dynamics are obtained from a matrix quantum mechanics. The UV/IR cor-
respondence at the heart of Matrix theory (and holographic theories in general) encodes the
essential dualism of the cosmological constant problem: vacuumdegrees of freedom determine
the large-scale structure of spacetime.

With this in mind, the natural question to ask about this hypothesis is the following.
Can this dark energy Wien distribution, or its other consequences be directly observed? (We
thank Nemanja Kaloper for characteristically incisive questions and a very generous sharing
of information pertaining to this crucial issue.)

4. Possible observational consequences

Direct observation of the Wien distribution for dark energy from calorimetry, that is, the ana-
logue of measurements of the CMBR, is probably impossible, given the gravitational nature
of Matrix theory degrees of freedom. We mention some more practical tests that one might be
able to make of our proposal.

(i) Recently, a possibility for a direct observation of dark energy in the laboratory
has been discussed in the literature [45–47]. The idea is simple and fascinating. One sim-
ply relies on identifying dark energy as the quantum noise of the vacuum, as governed by
the fluctuation-dissipation theorem. For example, by assuming that vacuum fluctuations are
electromagnetic in nature, the zero point energy density is given by the phase space fac-
tor of the Planck distribution (the same as the one discussed above in the case of the Wien



Vishnu Jejjala et al. 9

distribution). The integrated expression, which formally diverges if cut off by the observed
value of dark energy, E0, would correspond to the cutoff frequency:

νDE∼1.7 × 1012 Hz. (4.1)

The present experimental bound [45–47] is around νmax∼6 × 1011 Hz.
In attempting to set a bound on the fluctuation in the vacuum it is crucial to note that

because in our proposal there is a fluctuation in the dark energy spectrum there must be a
time-dependent quantity present in the spectrum of the quantum noise measurement. The
sensitivity of the experiment at the current maximum frequency 6 × 1011 Hz would clarify the
nature of the proposed Wien distribution function if it were directly observable. However,
as indicated in [45], the characteristics of any distribution in the vacuum energy spectrum
would not be directly observed in the quantum noise experiments. So despite the existence of
a Wien distribution the observed cutoff would still be relatively hard. We instead suggest that
a fluctuation in the value of the cutoff, which we equate with fluctuations in vacuum energy,
would be more readily observed, in spite of the fact other characteristics of the distribution are
not.

If our proposal is correct, and the dark energy is endowed with its own spectral distri-
bution of the Wien type, then there is a window around the νDE determined by the fluctuations
δE0 of dark energy around E0. The present maximum frequency can be viewed as a bound
on the possible fluctuation δE0. The theoretical value of this fluctuation is tied to the precise
value of the parameters in the Wien distribution, which are determined by the underlying new
physics. In particular, our analysis will enable us to determine information about the universal
constant which we refer to as B.

The fluctuation in the dark energy distribution (3.8) is

δρDE

ρDE
=
BE

E2
0

δE0. (4.2)

We have as well

δE2 =
〈
E2〉 − 〈E〉2 = 4E2

0

B2
, (4.3)

where

〈
Ea〉 =

∫∞
0 dEEa ρDE

(
E, E0

)
∫∞
0 dE ρDE

(
E, E0

) . (4.4)

The observed vacuum energy is given as
∫νDE

0
dν ρν =

πh

c3
ν4DE. (4.5)

Now, we identify δEwith the fluctuation of the vacuum energy around E0. The energy density
corresponding to the maximum observed frequency should bound the fluctuation of E0. This
implies

δE = δE0 =
2E0

B
≤ E0

(
1 − νmax

νDE

)
. (4.6)
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Inserting the current observational bound, νmax and the value νDE noted above, yields the fol-
lowing bound on the B:

B � 3.1. (4.7)

Now, taking E0∼10−3 eV, we find

δE0 � 6.47 × 10−4 eV, (4.8)

We should make one further observation regarding this computation. Ideally, we should have
computed the fluctuations after we have determined the underlying microscopic degrees of
freedom. We have instead employed the standard fluctuation theory in statistical thermody-
namics, where the distribution, as determined by general principles, is used for the compu-
tation of the fluctuation in the canonical manner. This is the only approach that is technically
available at the moment, but a more detailed computation is in principle possible using the
open string degrees of freedom directly.

(ii) The Greisen-Zatsepin-Kuzmin (GZK) bound provides a theoretical upper limit on
the energy of cosmic rays from distant sources [48, 49]. In the usual GZK setup a CMBR photon
is scattered off a proton producing positively charged or neutral pions (plus a neutron or a
proton), thus degrading the incoming proton’s energy. The rough estimate of the energy cutoff
is the threshold when the final products are both at rest. Neglecting the split between proton
and neutron masses one gets from simple kinematics:

Ethreshold ∼
(
mp +mπ

)2 −m2
p

4Eγ
∼ 5 × 1019 eV. (4.9)

Note that Eγ ∼ 6.4×10−4 eV, from the temperature of Tγ = 2.7K, and there are on average in one
cm3 400CMBR photons. This depletion occurs on distances of O(10)Mpc. Recently, the GZK
cutoff was observed by the Pierre Auger Observatory [50] which found a suppression in the
cosmic ray spectrum above 1019.6 eV at six sigma confidence.

We now consider the interaction of high energy cosmic rays with the proposed dark
energy distribution for which there should be an analogous GZK effect. To explore the ram-
ifications of this, we consider the same type of scattering as above but with the dark energy
quanta in place of the CMBR quanta. Thus the specific interaction being considered is the scat-
tering of a nucleon off of a “dark energy quantum” that results in pion production. On general
grounds (energy, momentum, and current conservation) this process is not forbidden for any
obvious reason. We expect that there is a small amplitude for this type of process because the
coupling for the interaction responsible for this effect should be quite small. We assume that
over cosmological distances the effect could nevertheless be observable.

In our case, the modification of the corresponding GZK formula, comes from a simple
replacement of Eγ by E0 + δE, which implies

Ethreshold � 1
4E0

[(
mp +mπ

)2 −m2
p −

δE

E0

((
mp +mπ

)2 −m2
p

)]
. (4.10)

If the fluctuation in the dark energy distribution is too great the analogous GZK cutoff con-
sidered here would fall below that of the standard cutoff and would be observed as an unex-
plained suppression in the cosmic ray spectrum. No such suppression has been detected. Thus
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we may use the observed cosmic ray spectrum to further constrain the fluctuation in the dark
energy distribution. Taking as our lower bound the observed standard GZK cutoff and making
use of (4.10)we find

δE � 4.37 × 10−4 eV. (4.11)

This is a similar but more stringent bound than the one provided by quantum noise measure-
ments, (4.8). It is worth noting that these two bounds were derived from unrelated physical
phenomena but are of the same order of magnitude. This suggests a level of consistency in the
proposal for dark energy quanta presented above.

We will briefly make note of other possible observational consequences of a distribution
for the dark energy in the CMBR. The Sunyaev-Zel’dovich (SZ) effect [51–53] is a combination
of thermal, kinematic, and polarization effects that distort the CMBR spectrum. The effect is
an inverse Compton scattering process that serves to decrease the intensity of the Rayleigh-
Jeans part of the spectrum by shifting it to higher frequency and to increase the intensity of
the Wien part. It is crucial that the effect is redshift independent. The natural questions, in our
context, are the following. Are there consequences of the SZ effect if dark energy has a spectral
distribution? Does the redshift independence still apply with a distribution?

Similarly, the Sachs-Wolfe effect [54] correlates anisotropies in the CMBR to density fluc-
tuations. In the case of a flat, matter dominated Friedmann-Robertson-Walker (FRW) universe,
the effect of density fluctuations on the gravitational potential at the surface of last scattering
is related to the temperature fluctuations by

δT

T
= −1

3
Φ. (4.12)

Because the potential Φ is sensitive to the local matter density at recombination, it is difficult
to know how to analyze the consequence of having a distribution in the dark energy.

5. Outlook: dark energy versus dark matter

To summarize, we have argued that dark energy has a fine structure embodied in a very partic-
ular energy distribution of aWien type. This distribution is compatible with the statistics of the
underlying quantum gravitational degrees of freedom we have argued are relevant for a new
viewpoint on the cosmological constant problem. We have presented a preliminary discussion
of possible observational implications of the dark energy spectral distribution relevant in the
laboratory.

This new point of view offers other theoretical perspectives. For example, in view of
some intriguing phenomenological scaling relations found in studies of dark matter [55, 56],
which are apparently sensitive to the vacuum parameters, such as the cosmological constant, it
is natural to ask whether within our discussion one can get both dark energy and dark matter
in one go. In Matrix theory, the open string degrees of freedom (without which we would not
have infinite statistics) could thus be responsible for dark energy, and the D0-brane quanta
attached to the open strings could provide natural seeds of large scale structure, that is, dark
matter, especially when treated as nonrelativistic degrees of freedom fixed to a background.
This would also imply that infinite statistics is relevant for dark matter as well. It is intriguing
that in the formal studies of infinite statistics one finds nonlocal expressions for the canonical
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fermion and boson operators in terms of Cuntz algebra (i.e., infinite statistics) operators. Could
this mean that the standard model matter is just a collective excitation around the dark matter
condensate?

Of course, such thoughts are even more speculative at this point than the argument pre-
sented in this letter. Apart from the possible experimental tests of the dark energy spectral dis-
tribution discussed in this letter, the stringent constraints placed by the early Universe physics
(e.g., the details of nucleosynthesis) as well as the constraints imposed by the large scale struc-
ture (crucially dependent on dynamics of dark energy) are perhaps obvious places where fur-
ther investigations of our proposal should be directed. The interpretation of the naı̈ve ther-
modynamic evaluation of the effective pressure, which is positive for these nonlocal nonlinear
“quanta,” is simply an open problem, but not one that is unique to this model or excluded by
data. We intend to address these issues in future work.
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