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Abstract In the present article, A new class of singularity-
free charged anisotropic stars is derived in f (Q)-gravity
regime. To solve the field equations, we assume a particu-
lar form of anisotropy along with an electric field and obtain
a new exact solution in f (Q)-gravity. The explicit math-
ematical expression for the model parameters is derived by
the smooth joining of the obtained solutions with the exterior
Reissner–Nordstrom de-Sitter solution across the bounding
surface of a compact star along with the requirement that the
radial pressure vanishes at the boundary. We have modeled
four self-gravitating pulsar objects such as LMC X-4, PSR
J1903+327, PSR J1614-2230, and GW190814 in our current
study and predict the radii of these objects that fall between
8 and 10 km. Furthermore, the physical validity of the solu-
tion is performed for self-gravitating object PSR J1614-2230
with mass 1.97 ± 0.04 M� with radius 10 km. The solu-
tion successfully fulfills all the physical requirements along
with the stability and hydrostatic equilibrium conditions for
a well-behaved model. The non-metricity f (Q)-parameter
χ1 and electric charge parameter η play an important role
in the maximum mass of the objects. The maximum mass
increases when χ1 and η increase but a non-collapsing stable
object can be obtained when χ1 ≤ 0.0205 and η ≤ 0.0006.
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1 Introduction

A lot of undiscovered cosmic events and activities got
revealed theoretically with its marvelous enigmas and aston-
ishing features after the development of general relativity.
Although the general theory of relativity has been very effec-
tive in describing different cosmological and astrophysical
phenomena, it has some constraints in theoretical and obser-
vational studies regarding the Universe and various astro-
physical events. For example, singularities are often unavoid-
able in the framework of general relativity. Moreover, gen-
eral relativity is unable to give an adequate explanation for the
dynamics of galaxies, extra-galactic systems, and the cosmos
as a whole without considering the existence of dark matter
and dark energy. Recent astrophysical observations related
to GW170817 and GW190814 events have been obtained
with engaging outcomes by the LIGO-VIRGO collabora-
tion. This motivates the researchers to reassess their tech-
niques to model the compact objects participating in binary
mergers which act as sources of gravitational wave radiation.
Then again, the GW170817 event [1] is attributed to the coa-
lescence of two neutron stars of masses falling within the
range 0.86 − 2.26 Mȯ. Now, attaining stellar masses beyond
2 Mȯ in the framework of standard general relativity without
restoring to exotic matter or rotation proved to be a daunting
endeavor for the theorists, but their passion and dedication
plunged them deeper into the challenges.

In this situation, it would be compelling to delve into the
celestial world to explore the structural properties of astro-
physical objects or the important features of spacetime with
the help of observational data constraints studied and ana-
lyzed in the form of subtle refinement of conventional gravity
theory. Under these circumstances, questing for proper expla-
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nations to the mysteries of the Universe, various researchers
[2–5] have proposed different modified theories of gravity
mainly from a geometric perspective. In literature, one can
find some noteworthy modified theories of gravity such as
f (R) gravity [6–9], f (T ) gravity [10–12], f (R, T ) gravity
[13–16] which include a modified geometrical component
in the appropriate action. In a similar way, the nonmetric-
ity scalar Q can be chosen as the geometric basis to repre-
sent “symmetric teleparallel general relativity” (STGR) [17–
20] which is a different but analogous description of gravity.
Considering the gravitational Lagrangian to be the function
of nonmetricity Q, STGR can be extended to f (Q) gravity
[20,21]. In the present astrophysical study of compact stars,
we are motivated to utilize f (Q) gravity not only for its an
important historical background proposed in a research work
by Einstein [22] related to “Teleparallelism” or “teleparallel
gravity” but also for its huge application in cosmological
[23–27] and astrophysical [28–50] studies.

In the regime of f (Q)-gravity, there are various physically
plausible compact star models available in the literature [33–
36,46,47]. In a recent work [51], a stellar model representing
dark energy star in f (Q)-gravity proposed that the secondary
component of the GW190814 event could be a possible can-
didate for dark energy star. The speculation came from the
fact that the linear form of f (Q) can generate the dark energy
stars lie within the mass gap range i.e., 2.5-5 M�. Some fur-
ther researches [52,53] considering the non linear form of
f (Q) explored the possible existence of dark energy stars
with astrophysical implications related to the mass gap range.
In this case modified Chaplygin gas is considered under the
Krori–Barua (KB) spacetime being equated with the exterior
Reissner–Nordström space-time at the boundary to get the
solutions to the Einstein–Maxwell field equations in f (Q)-
gravity. In different aspect, some configurations of different
black holes developed in the context of f (Q)-gravity could
be of particular interest [32,48–50].

In general, stellar matter is considered to be an isotropic
fluid to construct stellar configurations of compact stars like
neutron star. Nevertheless the presence of various physical
phenomena such as superfluidity and superconductivity may
rise to the difference in pressure along radial and tangential
directions. This is termed as the local anisotropy in pres-
sure which can occur at least in some specific ranges of den-
sity [54,55] in the dense matter subject to complex nature
of strong interactions in the matter. Additionally, there are
some findings which can shed light on the origins of local
anisotroy. These findings include interactions with high mag-
netic field [56–63], nuclear interactions in relativistic regime
[64], condensate of pions [65], viscosity [66–69], superfluid
core [70–72] which may explain the mechanism of local
anisotropy in pressure in the stellar fluid. Undoubtedly, it
would be fascinating to study how stellar models will change
due to incorporation of anisotropy in the fluid. In one such

study considering the effect of anisotropy Bowers and Liang
[73] first developed solutions to anisotropic spheres in the
framework of general relativity. They have assumed neces-
sary conditions for instance quadratic vanishing of the central
anisotropy and nonlinear dependence of anisotropy on radial
pressure. Afterwards, the consideration of local anisotropy
becomes a realistic one in many astrophysical studies [74–78]
of compact objects. In fact, there are publications that unveil
the astounding effects of anisotropy on the structural and
observable properties of neutron star which include the max-
imum mass [79,80], moment of inertia [81], redshift [82],
tidal deformability [83–85] and non-radial oscillation [86].
Moreover, some unstable configurations can be stabialized
by anisotropy [87–89].

There is a new family of solutions [90,91] which rep-
resents compact stars with anisotropy in pressure and
quintessence dark energy component to sustain its stabil-
ity in framework of f (Q)-gravity. Moreover, a physically
anisotropic compact star configurations with inclusion of
quintessence can be constructed even in other modified theo-
ries of gravity such as in f (T )gravity [92]. Again, in f (R, T )

gravity theory one can find mathematically well behaved and
physically valid set of solutions [93–95] to the field equa-
tions to explore features of a compact star in embedding class
one spacetime. Furthermore, several studies on anisotropic
compact objects by Nashed and his collaborators in different
gravity theories can be found in literature [96–99].

Another important feature to the stellar fluids is the pres-
ence of electric field which was first highlighted by Rosse-
land [100] and subsequently by various researchers [101–
103]. Despite the fact that the astrophysical configurations
are in general electrically neutral, recent researches [104–
106] advocates in behalf of the possibilities that include the
existence of massive and charged astrophysical system. The
physical mechanism for gaining a net amount of charge to
the astrophysical configurations is associated mainly with
the accretion process related to the surrounding medium.
The immediate effect of the presence of charge is that it
can resist the gravitational collapse of the stellar charged
sphere by means of strong electric force along with hydro-
static force and anisotropic force. It is argued by Stettner
[107] that in comparison to neutral fluid, charged fluid in
various situations could offer stable configuration satisfying
required physical conditions. Moreover, it is speculated in
some works [108,109] that the presence of charge hinders
the growth of curvature in spacetime and plays a vital role to
overcome singularity problem in the stellar models. Further,
it is important to note that the role [110] of charge in fluids
can be related to the origin of anisotropy in pressure in the
charged stellar fluid.

In the present paper, considering all the fact mentioned
above, we concentrate on the mechanism of developing an
analytical model for anisotropic and charged fluid spheres
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in the context of f (Q)-gravity theory. We have assumed
the anisotropy function and charge function in such a way
that these functions have a direct dependence on the f (Q)-
gravity parameter. Hence, the direct effect of non-metricity
scalar (Q) in constructing stellar models can be realized by
physical analysis of the solutions to the f (Q)-gravity field
equations in the present investigation. An ansatz related to
the radial component of spherically symmetric metric coef-
ficients tensor is assumed to be non-linear but well behaved
so that all the physical quantities in connection to stellar con-
figuration can be determined exactly.

The plan of the paper is structured as follows: in Sect. 2,
a brief account of f (Q)-gravity theory is given. Then, the
corresponding field equations for an anisotropic and charged
system are expressed in Sect. 3. Assuming anisotropy and
charge function for the fluid and considering the radial com-
ponent of the metric tensor, solutions to the field equations are
obtained and expressed in Sect. 4. In the subsequent Sects. 5
and 6, the physical analysis of the solutions and stability anal-
ysis of the stellar system have been presented with graphical
illustrations. Final remarks are reported in Sect. 7.

2 Review of the field equations for f (Q)-gravity

For the f (Q) gravity, the extended version of gravitational
action is expressed as:

S =
∫

1

2
f (Q)

√−g d4x +
∫

Lm
√−g d4x

︸ ︷︷ ︸
, (1)

whereLm denotes the Lagrangian density, which provides the
matter fields in the f (Q) gravity. The expression g represents
the determinant of the involved metric tensor gεβ . In order
to understand nonmetricity term Q, the nonmetricity tensor
Qλεβ in terms of affine connection is defined as

Qλεβ = �λgεβ = ∂λgεβ − �δ
λεgδβ − �δ

λβgεδ, (2)

where �δ
εβ is defining the affine connection, which is further

described as:

�δ
εβ = {δεβ} + K δ

εβ + Lδ
εβ, (3)

where Lδ
εβ , {δεβ} and K δ

εβ are the disformation, Levi–
Civita connection, and contortion tensors respectively. All
the above-mentioned important components are expressed
as:

{δεβ} = 1

2
gδχ

(
∂εgχβ + ∂βgχε − ∂χgεβ

)
,

Lδ
εβ = 1

2
Qδ

εβ − Q δ
(ε β),

K δ
εβ = 1

2
T δ

εβ + T δ
(ε β). (4)

In the above relations T δ
εβ defines the torsion tensor, which is

a necessary component to define the anti-symmetric portion
of the affine connection, i.e., T δ

εβ = 2�λ[εβ]. The superpo-
tential in the background of the nonmetricity tensor is calcu-
lated as follows:

Pζ
εβ = 1

4

[
−Qζ

εβ + 2Qζ
(ε β)

+ Qζ gεβ − Q̃ζ gεβ − δ
ζ
(ε
Qβ)

]
,

(5)

where

Qζ ≡ Q ε
ζ ε, Q̃ζ = Qε

ζε . (6)

The above equation provides two different and independent
traces, which are very necessary to calculate nonmetricity
scalar term as:

Q = −Qζεβ Pζεβ . (7)

In order to describe the extended version of field equations for
f (Q) theory, one can use the variation approach on action Eq.
(1) with respect to the metric tensor gεβ and get the following
expression

2√−g
�γ

(√−g fQ Pγ
εβ

)
+ 1

2
gεβ f

+ fQ
(
Pεγ i Q γ i

β − 2Qγ iε P
γ i
β

) = −Tεβ, (8)

where fQ = d f
dQ , and Tε β is the energy-momentum tensor,

which is further defined as:

Tεβ = − 2√−g

δ
(√−gLm

)
δgεβ

(9)

Moreover, from the Eq. (1), one can derive the extra con-
straint over the connection as:

�ε �β

(√−g fQ Pγ
εβ

)
= 0. (10)

The constraints through curvature less and torsionless under
the affine connection are calculated as follows:

�λ
εβ =

(
∂xλ

∂ξβ

)
∂ε∂βξβ. (11)

Now, the nonmetricity expression from Eq. (2) under some
constrain should be reduced to the following expression:

Qλεβ = ∂λgεβ, (12)

which, as the metric function is the only fundamental vari-
able, greatly simplifies the computation. Except for general
relativity, the action is no longer diffeomorphism invariant
in this scenario [24]. To get around this kind of problem,
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one can use the covariant formulation of f (Q) gravity. One
may consider the covariant formulation by first figuring out
the affine connection in the absence of gravity, as the affine
connection in Eq. (11) is completely inertial [111].

3 System of equations

To this end, we consider the standard static spherically sym-
metric line element of the form,

ds2 = −H2(r)dt2+N 2(r)dr2+r2dθ2+r2sin2θ dφ2, (13)

Here, where H(r) and N (r) are metric potentials and depend
upon the radial distance r which ensures that the spacetime
is static. For the current analysis, we are going to work with
an anisotropic matter distribution, then the effective energy-
momentum tensor Tεβ can be expressed as:

Tε β = (ρ + Pt ) uε uβ + Pt gε β + (Pr − Pt ) vε vβ, (14)

where ρ and uε are the effective density and the four-velocity
vector, respectively. Besides vε is the unitary space-like vec-
tor in the radial direction, pr is the effective radial pressure in
the direction of uε , and pt is an effective tangential pressure
orthogonal to vε . Now, the nonmetricity scalar for the metric
(13) is calculated as:

Q = −2
(
2r H ′(r) + H

)
HN 2r2 , (15)

For the anisotropic fluid (16), the independent components
of the equations of motion (8) in f (Q) gravity are given as,

ρ = f (Q)

2
− fQ(Q)

[
Q + 1

r2 + 1

r N 2

(2H ′

H
+ 2N ′

N

)]
+ E2,

(16)

Pr = − f (Q)

2
+ fQ(Q)

[
Q + 1

r2

]
− E2, (17)

Pt = − f (Q)

2
+ fQ(Q)

[Q
2

− 1

N 2

{
H ′′

H
− H ′2

H2 +
(

H ′

2H
+ 1

2r

)

×
(

2H ′

H
− 2N ′

N

)}
− E2

]
, (18)

0 = cotθ

2
Q′ fQQ, (19)

where fQ(Q) = ∂ f (Q)
∂Q . In the background of f (Q) theory,

it is mentioned that Wang et al. [37] investigated the possible
functional forms for f (Q) gravity under the static and spher-
ically symmetric spacetime with an anisotropic fluid. In par-
ticular, they have shown that there is no exact Schwarzschild
solution for the nontrivial f (Q) function, which can be
understand from the following discussions:

The study undertaken by Wang et al. [37] focused on the
off-diagonal component seen in Eq. (18). The investigation
indicates that the solutions of the f (Q) gravity theory are
restricted to only two separate scenarios:

fQQ = 0 ⇒ f (Q) = −χ1 Q − χ2 , (20)

Q′ = 0 ⇒ Q = Q0. (21)

The integration parameters in the formulas above are rep-
resented by the symbols χ1 , χ2 , and Q0. The first solution,
referred to as Eq. (20), can be regarded as comparable to gen-
eral relativity (GR) as it reduces to the STGR. The parameter
defining the cosmological constant is indicated as χ2/2χ1 .
Nevertheless, it is essential to authenticate the accuracy of
the Schwarzschild solution under the context of linear f (Q)

gravity. Within a vacuum, the values of ρ, Pr , and Pt are
all equal to zero. Given the elements indicated above, the
equation of motion may be represented as follows:

H ′

H
+ N ′

N
= 0, (22)

χ2

χ1

− 2

r2 − 2q2

χ1 r
4 = Q, (23)

χ2

2
− 2χ1(N

′(H ′r + H) − N (H ′′r + H ′))
HN 3r

= E2. (24)

The equation (22) provides the solution

H(r) = A0

N (r)
, (25)

The constant of integrationA0 can be eliminated by adjusting
the time coordinate t to a new value of t/A0. Subsequently,
in Eq. (13), it is determined that the rr -component is the
inverse of the t t component, specifically

H(r) = −N (r), (26)

The cosmological constant term, represented by the symbol
�, may be defined as the quotient of χ2 divided by χ1 , as seen
in the second Eq. (23). The sign of � is inverted in relation
to the general relativity equivalent owing to the nonmetricity
convention specified by Eq. (7). By employing the Eqs. (15),
(22), and (23), we may deduce

e−N =
(

1 + C1

r
− χ2

6χ1

r2 + q2

χ1r
2

)
, (27)

The symbol C1 represents an integration constant.The func-
tion H(r) may be obtained from Eqs. (26) and (27) as,

eH =
(

1 + C1

r
− χ2

6χ1

r2 + q2

χ1r
2

)
. (28)

Moreover, the line element in Eq. (13) may be restated as,

ds2 = −
(

1 + C1

r
− χ2

6χ1

r2 + q2

χ1r
2

)
dt2 + r2dθ2
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+r2sin2θ dφ2 +
(

1 + C1

r
− χ2

6χ1

r2 + q2

χ1r
2

)−1

dr2, (29)

The metric (29) reflects the Reissner–Nordström de Sit-
ter solution when the criteria � = χ2

2χ1
, C1 = 2M, and

Q = q2(R)

R2 are fulfilled, where M indicates the mass of the
object. The Reissner–Nordström de Sitter solution is only
found in the linear f (Q) gravity theory, which can accu-
rately reproduce the STGR. Within this particular frame-
work, the Reissner–Nordström de Sitter solution closely
aligns with the predictions of General Relativity. Further-
more, they also analyzed the deviation of the metric from the
exact Schwarzschild solution by considering the nonmetric-
ity scalar Q being constant.

It is crucial to acknowledge the Zhao [111] findings about
the suitability of a SS spacetime with the coincident gauge.
Based on his discoveries, assuming that the affine connec-
tion is zero in this coordinate system and further requiring
that the f (Q)-gravity theory possesses vacuum solutions,
i.e.Tεβ = 0, then the off-diagonal component of Eq. (8) can
be interpreted as,

cotθ

2
Q′ fQQ = 0, (30)

where Q is determined by the Eq. (15). Given the current
circumstances, the equations of motion, along with the diag-
onal components (30), yield the outcome that fQQ is equal
to zero. Consequently, it may be inferred that the function
f (Q) must exhibit linearity. Put simply, selecting f (Q) as
a non-linear function of Q will result in inaccurate equa-
tions of motion, especially when f (Q) is equal to Q2. To
summarise, if a theory incorporates f (Q) as a non-linear
function of Q, then the metric Eq. (13) with an affine con-
nection �

μ
εν = 0 will not satisfy the equations of motion.

We require a more general version of the SS metric for a
consistent coincident gauge in this particular scenario. For a
comprehensive understanding of this subject, please refer to
the detailed explanation provided in Ref. [111].

For compatibility of affine connection �
μ
εν = 0 with the

spherically symmetric coordinate system, we take fQQ coef-
ficient from the off-diagonal component given in Eq. (19) to
be zero for obtaining the solution of f (Q)-gravity which
restricts functional form of f as,

fQQ = 0 	⇒ f (Q) = −χ1 Q − χ2 , (31)

where ζ1 and ζ2 are constants. By plugging of Eqs. (15) and
(31), the Eqs. (16)–(18) provides the following explicit form
of equations of motion,

ρ = χ1

(
2N ′r + N 3 − N

)
N 3r2 − E2 − χ2

2
, (32)

Pr = χ1

r2

(
2H ′r + H

HN 2 − 1

)
+ E2 + χ2

2
, (33)

Pt = −2χ1(N
′(H ′r + H) − N (H ′′r + H ′))

HN 3r

−E2 + χ2

2
, (34)

We note that the covariant derivative of effective energy-
momentum tensor under the assumption of spherical sym-
metry (13) vanishes i.e. �εTε β = 0, which gives

− 2H ′

2H
(ρ + Pr ) − (Pr )

′ + 2

r
(Pt − Pr ) = 0. (35)

The above Eq. (35) is known as a Tolman–Oppenheimer–
Volkoff (TOV) equation in f (Q)-gravity [37] under the linear
functional form of f (Q) for the Eq. (8). The coming approach
involves seeking a most general exact solution to the field
equations (32)–(34) that describe a model of a compact stellar
object. To determine the anisotropy condition, we subtract
Eq. (33) from Eq. (34) as follows:

χ1

[
r{H ′′Nr − H ′(N ′r + N )} + H

(
−N ′r + N 3 − N

) ]

= (2E2 + �)HN 3r2. (36)

4 New exact solution charged anisotropic star in
f (Q)-gravity

Since we need to solve the differential equation (36) which
contains four unknowns namely: metric functions H(r) and
N (r) along with anisotropy � and electric field (E). There-
fore, we need three extra conditions to solve this equation.
In this regard, we consider the ansatz for the metric function
N (r) as,

N (r) =
√

1 − 2λr2

1 + λr2 , (37)

here λ denotes a constant with dimension l−2. It is high-
lighted that the general form of this metric was proposed by
Buchdahl [113] which was the form: N 2 = 1+ar2

1+br2 . He studied
the isotropic fluid model in GR representing a neutron star
stellar object for b = − a

2 . Later on, the same solution was
obtained Vaidya–Tikekar [114] for b = − a

2 = 2
R2 . Alter-

natively, Gupta and Jasim [115] introduced another form of

metric, expressed as eS = K (1+ar2)

K+ar2 , which is considered
the most general. This expression yields the same solution
as the Vaidya–Tikekar and Buchdahl solutions for K = −2.
However, Gupta and Jasim derived the most general solu-
tions for all values of K , except for the range 0 < K < 1.
In this connection, Thirukkanesh and Ragel [112] discussed
the isotropic solutions utilising same metric: N 2 = 1+ar2

1+br2

for the different cases such as a + 2b = 0, b − 2a = 0,
7b − 4a = 0, and 7b + a = 0. In all the above scenarios,
they found that the star’s density decreases monotonically
while mass increases throughout the stellar configuration.
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Recently, the same ansatz (37) was utilized by Baskey et
al. [116] to model the anisotropic star in the framework of
GR. Given the above observations, the metric N 2 = 1+ar2

1+br2 is
much more acceptable for the wide range of parameter val-
ues a and b to develop the astrophysical object in the context
of GR. Therefore, we considered this particular ansatz of the
metric function for modeling astrophysical objects in f (Q)-
gravity. After plugging the expression N (r) in Eq. (36), we
arrive on the following differential equation,

Hr(� + 2E2)
(
1 − 2λr2)2 = χ1

[
H ′′r

(−2λ2r4 − λr2 + 1
)

−H ′ (−2λ2r4 − 4λr2 + 1
) + 6λ2Hr3

]
. (38)

As we can see, the master Eq. 38 depends on the two
unknowns, namely anisotropy (�), and electric charge (E).
Therefore, we must choose physically plausible expressions
for � and E under which this master equation should be solv-
able. Another important consideration is that both anisotropy
and electric field must be zero in the center of the star and
positive elsewhere. This is necessary because the forces pro-
duced by anisotropy and electric field should work in the out-
ward direction to counteract gravitational collapse. By taking
all the above aspects, we consider well-behaved expressions
from anisotropy (�) and electric field (E) for which the Eq.
(38) is integrable,

� = 6λ2r2χ1(
1 − 2λr2

)2 ; and E2 = ηχ1r
2. (39)

where, η is a constant with dimension l−2 which is called
electric charge parameter. It is evident from the expression
given in Eq. (39), that there is no singularity in both expres-

sions and they are zero at r = 0 and positive everywhere.
After plugging � and E in Eq. (38), we find the final form,

H ′′

H
− H ′ (−2λ2r4 − 4λr2 + 1

)
Hr

(−2λ2r4 − λr2 + 1
) = ηχ1r

2
(
2 − 4λr2

)
χ1

(
λr2 + 1

) ,

(40)

Now we solve the equation using integrating factor method,
we get

H(r) = ϒ1 cosh[�(r)] + ϒ2 sinh[�(r)] (41)

where, ϒ1 and ϒ2 are arbitrary integration constant, and �(r)
is denoted as:

�(r) = 1

λ
√

2λr2 + 2
(√

6λr2 + 6 + 3
)2

[
3
√

η

((
λr2 + 1

)

×
√

1 − 2λr2
(

2λr2 + 2
√

6λr2 + 6 + 5
)

−3
[
2λr2

(√
2λr2 + 2 + 2

√
3
)

+ 5
√

2λr2 + 2 + 4
√

3
]

× tan−1

( √
1 − 2λr2√

2λr2 + 2 + √
3

) )]
. (42)

Now the expressions for density and pressures can be given
as,

ρ = −ηχ1 r
2 + 3λχ1

(
2λr2 − 3

)
(
1 − 2λr2

)2 − χ2

2
, (43)

Pr = ηr2χ1 + 1
√

λr2 + 1
(
r − 2λr3

) (√
6λr2 + 6 + 3

)4 (
ϒ2 sinh[�(r)] + ϒ1 cosh[�(r)]

)

×
[

3χ1

{
6
√

ηr
(

4
√

2λ2r4 + 4λr2
(

4
√

3λr2 + 3 + 11
√

2
)

+ 40
√

3λr2 + 3 + 49
√

2
)

×
√

1 − 2λr2
(
ϒ1 sinh[�(r)] + ϒ2 cosh[�(r)]

)
+ λr

(√
λr2 + 1

×
(√

6λr2 + 6 + 3
)4

(ϒ2 sinh[�(r)] + ϒ1 cosh[�(r)]) + 6
√

ηr2
(

4
√

2λ2r4 + 4λr2
(

4
√

3λr2 + 3 + 11
√

2
)

+40
√

3λr2 + 3 + 49
√

2
)√

1 − 2λr2 (ϒ1 sinh[�(r)] + ϒ2 cosh[�(r)])
)}]

+ χ2

2
, (44)
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Pt = 1

2

(
χ2 − 2ηr2χ1

)
+ 1

(
1 − 2λr2

)5/2 √
λr2 + 1

(√
6λr2 + 6 + 3

)8
(ϒ2 sinh[�(r)] + ϒ1 cosh[�(r)])

×
[

81χ1

(
ϒ1

{
2
√

η
(
λr2 + 1

) [
16

√
2λ4r8 + 8λr2

(
636

√
3λr2 + 3 + 1079

√
2
)

+3920
√

3λr2 + 3 + 32λ3r6
(

4
√

3λr2 + 3 + 23
√

2
)

+ 24λ2r4
(

72
√

3λr2 + 3 + 193
√

2
)

+ 4801
√

2
]

×
(

1 − 2λr2
)2

sinh[�(r)] +
(

8λr2
(

1079
√

λr2 + 1 + 563
√

6
)

+4801
√

λr2 + 1 + 16λ4r8
(√

λr2 + 1 + 4
√

6
)

+ 32λ3r6
(

23
√

λr2 + 1 + 29
√

6
)

+ 24λ2r4

×
(

193
√

λr2 + 1 + 142
√

6
)

+ 1960
√

6
)√

1 − 2λr2 cosh[�(r)]
(

3λ + 8ηλ2r6 − 8ηλr4 + 2ηr2
) }

+ϒ2

{{
8λr2

(
1079

√
λr2 + 1 + 563

√
6
)

+ 4801
√

λr2 + 1 + 16λ4r8
(√

λr2 + 1 + 4
√

6
)

+32λ3r6
(

23
√

λr2 + 1 + 29
√

6
)

+ 24λ2r4
(

193
√

λr2 + 1 + 142
√

6
)

+ 1960
√

6

}

√
1 − 2λr2 sinh[�(r)]

(
3λ + 8ηλ2r6 − 8ηλr4 + 2ηr2

)
+ 2

√
η

(
λr2 + 1

) [
16

√
2λ4r8 + 8λr2

×
(

636
√

3λr2 + 3 + 1079
√

2

)
+ 3920

√
3λr2 + 3 + 32λ3r6

(
4
√

3λr2 + 3 + 23
√

2
)

+24λ2r4
(

72
√

3λr2 + 3 + 193
√

2
)

+ 4801
√

2
] (

1 − 2λr2
)2

cosh[�(r)]
})]

. (45)

To accurately represent self-gravitating charged compact
objects, it is essential to choose an appropriate exterior solu-
tion that matches the internal solution at the pressure-free
interface, denoted as r = R. When examining the linear func-
tional form of the f (Q)-gravity theory, the exterior Reissner-
Nordstrom de-Sitter solution may provide the most appropri-
ate exterior solution as discussed above, characterized by the
following spacetime:

ds2 = −
(

1 − 2M

r
+ Q2

r2 − �

3
r2

)
dt2 + r2(dθ2 + sin2 θdφ2)

+ dr2(
1 − 2M

r + Q2

r2 − �
3 r2

) . (46)

Let M represent the total mass of the object at the boundary
r = R. It is given by the equation M = m(R)/α. Addition-
ally, � is equal to χ2/2χ1. Furthermore, it is emphasized that
the Reissner–Nordström (anti-) di Sitter spacetime will con-
vert into Reissner–Nordström spacetime when χ1 = 1, and
χ2 = 0 i.e. � = χ2

2χ1
= 0 which is equivalent to GR case.

Moreover, when we use the first and second basic forms,
we get the following result:

(
1 − 2M

R
+ Q2

R2 − �

3
R2

)
= H2(R), (47)

(
1 − 2M

R
+ Q2

R2 − �

3
R2

)−1

= N 2(R), (48)

Pr (R) = 0. (49)

Using the following boundary conditions, we find the values
of constant ϒ1, ϒ2 and M as,

ϒ2 = 1

ϒ3 cosh[�(R)] + sinh[�(R)]

√
1 + λR2

1 − 2λR2 , (50)

ϒ1 = ϒ3

ϒ3 cosh[�(R)] + sinh[�(R)]

√
1 + λR2

1 − 2λR2 , (51)

M = R

2

(
− 3λR2

(1 − 2λR2)
+ ηχ1 R

4 − �

3
R2

)
, (52)

where, �(R) is value of �(r) at r = R while ϒ3 is given by

ϒ3 =
[

2χ1

(
2
√

η
√

1 − 2λR2
(
λR2 + 1

) (
4
√

2λ2R4 + 4λR2

×
(

4
√

3λR2 + 3 + 11
√

2
)

+ 40
√

3λR2 + 3

+49
√

2
)

cosh[�(R)]
−

(
4λR2

(
11

√
λR2 + 1 + 7

√
6
)

+ 49
√

λR2 + 1

+4λ2R4
(√

λR2 + 1 + 2
√

6
)

+ 20
√

6
)

sinh[�(R)]

×
{
λ

(
2R4η − 3

) − R2η
})

−χ2

(
2λR2 − 1

) (
4λR2

(
11

√
λR2 + 1 + 7

√
6
)
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Fig. 1 The variation of electric charge (q(r)) versus r for the values of constants λ = −0.006 km−2, χ2 = 0.0002 km2, and η = 0.00001 km−4

Fig. 2 The variation of the density (ρ) versus r for different value of non-metricity parameter χ1 with the values of constants λ = −0.006 km−2,
χ2 = 0.0002 km2, and η = 0.00001 km−4

Fig. 3 The variation of the radial pressure (Pr ) versus r for different value of non-metricity parameter χ1 with same values of constants used in
Fig. 2

+49
√

λR2 + 1 + 4λ2R4
(√

λR2 + 1 + 2
√

6
)

+ 20
√

6
)

× sinh[�(R)]
]/[

2χ1

{(
4λR2

(
11

√
λR2 + 1 + 7

√
6
)

+49
√

λR2 + 1 + 4λ2R4
(√

λR2 + 1 + 2
√

6
)

+ 20
√

6
)

× cosh[�(R)] (λ (
2R4η − 3

) − R2η
) − 2

√
η
√

1 − 2λR2

× (
λR2 + 1

) (
4
√

2λ2R4 + 4λR2
(

4
√

3λR2 + 3 + 11
√

2
)

+40
√

3λR2 + 3 + 49
√

2
)

sinh[�(R)]
}

+ χ2

(
2λR2 − 1

)

×
(

4λR2
(

11
√

λR2 + 1 + 7
√

6
)

+ 49
√

λR2 + 1

+4λ2R4
(√

λR2 + 1 + 2
√

6
)

+ 20
√

6
)

cosh[�(R)]
]

(53)
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Fig. 4 The variation of the tangential pressure (Pt ) versus r for different value of non-metricity parameter χ1 with same values of constants used
in Fig. 2

5 Physical analysis

5.1 Electric charge and metric function

We have assumed a well-behaved and non-singular metric
potential N (r) which is equal to unity at the center of the
star. Again the solution to Eq. (30) provides another metric
potential H(r) which is represented in Fig. 1 and can be seen
to be finite at the center. Hence, the metric potentials in the
present stellar model governed by f (Q)-gravity are regular
and non-singular. So, the present solution configuring the
stellar system is physically acceptable for being free from
singularities. The charge function and metric potential H(r)
show increasing behavior with respect to radial distance for
different values of χ1 in Fig. 1. The metric potential H(r)
has minimal dependence whereas the charge grows gradu-
ally towards the surface of the star for increasing values χ1 .
This means that the electric force gradually gets stronger
towards the surface of the star. The result is in confirma-
tion with the graphical presentation of electrical force (Fe)
in Fig. 6. Again, the electric force acts outward within the
configuration and plays a role similar to anisotropic force to
attain stability of the gravitational system in the context of
f (Q)-gravity.

In a study [118] to analyze the impact of including elec-
tric charge it is revealed that gravitational spheres having
fluid elements of zero net charge contain but with unbounded
proper charge density at the fluid-vacuum interface can pos-
sess the enormous amount of charge of order 1019 in the
units of Coulomb. In this regard by numerical calculations
in a research work, Ray et al. [119] have shown an intrigu-
ing result related to the maximum amount of electric charge
of the order 1020 C that shall be contained in the star to
have considerable balancing effect of the forces present in the
charged compact stars. Now, numerical values of the char-
acteristic constants ϒ1 and ϒ2 related to H(r) and values
of total charge are listed in Table 1 for different values of
χ1 . We can see from Table 1 that the present anisotropic and

Fig. 5 The variation of anisotropy (� = Pt − Pr ) versus r

charged configuration in f (Q)-gravity is supported by the
net charge of the order 1020 C for χ1 > 0.17. This implies
that the total amount of charge has an effective role which
impacts on balancing effect of forces in the present model.

5.2 Density, pressure, and anisotropy

Energy density, pressure in both radial and tangential direc-
tion, anisotropy, and electric charge are the physical quan-
tities that guarantee the physical acceptance of a charged
and anisotropic stellar model governed by the linear form of
f in f (Q)-gravity. The mathematical analysis depicted in
Figs. 2, 3, 4 confirms that the quantities fulfill all the phys-
ical criteria. It can be seen that ρ, Pr , Pt are non-negative
throughout the star which is one of the necessary criteria
satisfying energy conditions for the stellar matter. The vari-
ation of density, radial pressure, and tangential pressure is
decreasing throughout the star. Again we see that only radial
pressure vanishes at some value of r which defines the bound-
ary or radius of the star. The numerical values (see Table 1)
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Fig. 6 The equilibrium condition via variation of different forces Fg , Fh , Fe, and Fa for same fixed values of constant as used in Fig. 3. The top-left
panel for χ1 = 0.17, top-right panel for χ1 = 0.18, bottom-left panel for χ1 = 0.19, and bottom-right panel for χ1 = 0.20

of density and pressure are positive and finite at the center
and surface of the stellar system.

The numerical values of radial and tangential pressure
shall be equal at the center of the star leading to zero cen-
tral anisotropy which is another important feature satisfied
in the present anisotropic stellar model (see Fig. 5). How-
ever, the anisotropy is seen to be increasing with respect to
the increase in radial distance. This physically indicates that
the anisotropic force acts in an outward direction within the
configuration of the star. At the surface, the anisotropy is
enhanced for increasing values of f (Q)-gravity parameter
χ1 . Hence, the anisotropic force becomes repulsive in nature
and offers stability by countering the gravitational collapse
of the system. The central values of ρ, Pr , Pt get larger for
increasing values of χ1 .

5.3 Hydrostatic equilibrium

The Tolman–Oppenheimer–Volkoff (TOV) equation defines
an equilibrium condition for a charged compact star that
depends on gravitational, hydrostatic, anisotropic, and elec-
tric forces. The TOV equation is expressed in a generic form
as

− H ′

H
(ρ + Pr ) − dPr

dr
+ 2q

r4

dq

dr
+ 2(Pt − Pr )

r
= 0. (54)

Or, it may be stated as

Fg + Fh + Fa + Fe = 0; such that Fg = −H
′
(ρ + pr )

H
,

Fh = −dPr
dr

, Fa = 2(Pt − Pr )

r
, Fe = q

r4

dq

dr
.

The symbols Fg , Fh , Fe, and Fa , and denote the gravitational,
hydrostatic, electric, and anisotropic forces, respectively. By
including the energy density, radial pressure, and tangential
pressure in the TOV equation, we are to find the variations of
these forces within the stellar configuration which are shown
in Fig. 6. Individually, these forces are attractive or repulsive,
but the sum of these forces is equal which shows that the
solution fulfills the TOV equation. Therefore, we may infer
that the stellar configuration has achieved the equilibrium.

− H ′

H
(ρ + Pr ) − dPr

dr
+ 2q

r4

dq

dr
+ 2(Pt − Pr )

r
= 0. (55)

5.4 Energy condition

The following part will analyze the energy conditions. In gen-
eral relativity, it has been determined that both the trace of the
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Table 1 The approximate values of the pressures P(r) & Pt , density ρ(r), the constants γ2 and γ1 and central value of adiabatic index �0, electric
charge (Q) with η = 1 × 10−5 km−4

Parameters p0 (dyne/cm2) ρ0 (gm/cm3) ρs (gm/cm3) ϒ2 ϒ1 �0 Q(C)

χ1 = 0.17 1.39823×1035 4.87596×1014 1.20841×1014 0.582386 0.0878481 1.36756 1.66111×1019

χ1 = 0.18 1.52547×1035 5.16594×1014 1.28265×1014 0.586499 0.0859598 1.39139 1.70926×1020

χ1 = 0.19 1.65351×1035 5.45592×1014 1.3569×1014 0.590179 0.0842703 1.41305 1.7561×1020

β1 = 0.20 1.78225×1035 5.7459×1014 1.43114×1014 0.593491 0.0827498 1.43282 1.80172×1020

Fig. 7 The behavior of the density (ρ), the radial pressure (Pr ), the tangential pressures (Pt ) and the anisotropy (� = Pt − Pr ) against the radial
coordinates r for the values as usedd in Fig. 2

tidal tensor Ri j Ai A j and the Ri j Bi B j term in the Raychaud-
huri equation are positively oriented. Here, Ai represents any
time-like vector and Bi is any null vector directed towards
the future. Using this Raychaudhuri equation, we can find
four constraints that can be placed on the energy-momentum
tensor (Ti j ). These constraints are known as the energy con-
ditions. In a particular case of f (Q) theory of gravity, the
energy conditions for a physical model may be represented
as

• WEC: ρ + q2

r4 ≥ 0, ρ + Pr ≥ 0, ρ + Pt + 2 q2

r4 ≥ 0;

• NEC: ρ + Pr ≥ 0, ρ + Pt + 2 q2

r4 ≥ 0;

• SEC: ρ + Pr + 2Pt + 2 q2

r4 ≥ 0;

• DEC: ρ − Pr + 2 q2

r4 ≥ 0, ρ − Pt ≥ 0.

To observe the nature of the energy conditions within the
stellar configuration, we need to see the behavior of pres-
sures, density, and electric charge (q). From Figs. 1 and 4,
it is clear that the pressures, density, and electric charge are
positive throughout the model. Hence, we may infer that our
system fulfills the WEC, NEC, and SEC. Now we only focus
on the remaining energy condition DEC. For this purpose, we

plot the inequalities ρ − Pr + 2 q2

r4 and ρ − Pt ≥ 0 in Fig. 7.
We observe from this figure that both inequalities are also
positive within the model. Hence, our charged anisotropic
model satisfies all the energy conditions.

6 Stability

6.1 Analysis of the stability of charged models using the
Harrison–Zeldovich–Novikov (HZN) criteria

We use our findings to adhere to the Harrison–Zeldovich–
Novikov (HZN) stability requirement, as shown in Fig. 8.
The HZN stability criterion’s validity is determined by the
following limits [120,121]:

1. dM
dρc

< 0 → unstable configuration

2. dM
dρc

> 0 → stable configuration.

In order to verify this condition for a charged solution,
we determine the mass expression as a function of ρ0 and its
derivative with respect to ρ0 as follows:

M = 2R7χ1η (2ρc + χ2) + 3R3 (2ρc + χ2) + 18R5χ2
1 η

4
(
R2 (2ρc + χ2) + 9χ1

) , (56)

dM

dρ0
= 27R3χ1

2
(
R2 (2ρc + χ2) + 9χ1

)
2

(57)

The graph in Fig. 8 shows that the derivative of M with respect
to ρc is positive i.e. the mass (M/M�) is an increasing func-
tion of ρc, indicating that the resulting charged anisotropic
models are stable. On the other hand, decreasing the non-
metricity parameter χ1 improves the stability of the confined
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Fig. 8 The behavior of the density (ρ), the radial pressure (Pr ), the tangential pressures (Pt ) and the anisotropy (� = Pt − Pr ) against the radial
coordinates r for the values as used in Fig. 2

Fig. 9 The variation of radial and tangential speed of sounds (v2
r & v2

t ) and stability factor |v2
t − v2

r | versus r for the same values as used in Fig. 1

structures, although the increase in mass relative to the effec-
tive central density is minimal.

6.2 Causality and stability via cracking cracking

When studying any physically possible system in astro-
physics, the stability of the star configurations is essential.
We examine the stability of charged star configurations gen-
erated by anisotropic fluid in f (Q)-gravity theory, using

superluminal speeds derived from Herrera’s cracking idea
[43]. Physically stable structures in the inside structure of
stellar objects must have a squared speed of sound, repre-
sented by the formula v2

s = dP/dρ, that falls between 0
and 1, meaning 0 ≤ v2

s = dP/dρ ≤ 1 according to the
causality requirement. Herrera (ref45) introduced the con-
cept of cracking to identify stable and unstable zones inside
compact star formations. The formula assesses regions based
on the difference between the squared sound speeds in the
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radial and tangential directions which are denoted by v2
r and

v2
t , respectively. Stable regions fall within the range of 0 to 1

i.e. 0 < |v2
t −v2

r | < 1. We include the sound speeds in Fig. 9
to facilitate stability analysis. The speed of sound is always
less than the speed of light, with the radial speed of sound
being greater within the object for each χ1 . This indicates that
the anisotropic charged stellar solution in f (Q)-gravity the-
ory meets causality and stability criteria for all taken values
of the non-metricity parameter χ1 .

6.3 Adiabatic index

We are examining the stability of our stellar models by apply-
ing the adiabatic stability rule, initially proposed by Chan-
drasekhar, for isotropic pressure gradients. The adiabatic sta-
bility criteria were defined using the following formula:

� =
(

1 + ρ

P

) (
dP

dρ

)
S
. (58)

When � is greater than 4/3, it represents the limiting sce-
nario for confined structures with isotropic pressure. The
velocity of sound is represented by the derivative dP

dρ with
the subscript S indicating a constant specific entropy. This
demonstrates that the significance of sound velocity as a cru-
cial parameter related to the adiabatic index. For instance,
the adiabatic index for the Schwarzschild solution with con-
stant density is infinite, indicating an incompressible fluid.
Glass and Harpaz demonstrated that the adiabatic index at
the center must exceed 4/3 for a stable polytropic star. Fur-
thermore, the recent findings suggest that the range of � in
large neutron stars should be between 2 and 4, as indicated in
Haensel’s study. In this connection, Herrera et al. discovered
that anisotropy and dissipation alter the condition (58). When
pressure anisotropy is present, the stability criteria change to
the following form:

� <
4

3
+

[
4

3

(Pt − Pr )

|(Pr )′|r
]

. (59)

The expression denotes the absolute value of the derivative
of the total pressure with respect to the radial coordinate r .
The Newtonian limit, � < 4/3, produces an unstable region
when the second component in Eq. (59) becomes zero due
to relativistic effects. Figure 8 displays the adiabatic index
�r as a function of radial distance r for various values of α.
Figure 10 indicates that the adiabatic index � is more than 4/3
for all values of χ1 . It is also observed when χ1 increases the
adiabatic index value increases, hence stable configuration is
confirmed.

Fig. 10 The behavior of the adiabatic index (�) against the radial coor-
dinates r

6.4 Effect of non-metricity parameter (χ1) and electric
charge parameter (η) on mass and radii for different
compact objects via M − R curves

The upper and lower bounds on the mass-radius ratio in
the presence of a cosmological constant were derived by
Andréasson [126] and Böhmer and Harko [127], respectively.
In the context of f (Q)-gravity, the inequality expressing the
bounds on the mass-radius ratio can be formulated as follows,
(

3Q2

4R2 + χ2 R
2

24χ1

)
≤ M

R
≤

(
2

9
+ Q2

3R2 − χ2 R
2

18χ1

+2

9

√
1 + 3Q2

R2 + 3χ2 R
2

2χ1

)
, (60)

The features of mass-radius relation for anisotropic
charged compact stars have been explored in the framework
of f (Q)-gravity with reference to the variations in f (Q)-
gravity parameter (χ1) and electric charge parameter (η).
In this connection the M − R curves satisfying Eq. 60 are
shown in Fig. 11 for different values of parameters χ1 and η.
The values of maximum mass and the corresponding radius
obtained from each M−R curve increase gradually for small
increments in χ1 . Although one can find minor differences
in the values of maximum mass and the radius for increasing
values of η. So, χ1 plays an influential role in developing
massive charged compact stars in f (Q)-gravity where the
effect of η on maximum mass is minimal.

Recently Rawls et al. [122] have applied a refined pro-
cess for measuring the mass of neutron stars by employing a
numerical code related to Roche geometry along with various
optimizers that can evaluate the published data for eclips-
ing X-ray binary systems. This helps to calculate accurate
eclipse duration which gives the improved value of mass as
1.29 ± 0.05M� for LMC X-4. In another study [123], radio
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timing observations obtained from the Arecibo and Green
Bank Observatories are utilized with complete measurement
of the relativistic Shapiro delay, analyzed with a very pre-
cise determination of the apsidal motion, and linked with the
new limitations of the orbital orientation of the system. As
a consequence, the mass for PSR J1903+0327 is accurately
measured as 1.667 ± 0.02 M�. In accordance with the gen-
eral relativistic Shapiro delay approach for high precision
measurement of masses of a pulsar and its companion in a
binary system, Demorest et al. [124] inferred the mass of the
millisecond pulsar PSR J1614-2230 to be 1.97 ± 0.08 M�.
An astrophysical event GW190814 [125] in connection to
the gravitational wave implies that the gravitational wave
radiation emerged from a compact binary system involving
a black hole of mass 22.2 to 24.3 M� and a compact object
of mass 2.50 to 2.67 M�.

We have restricted our study to relate observational con-
straints of the observed stars such as LMC X-4 [122], PSR
J1903+327 [123], PSR J1614-2230 [124] and GW190814
[125] to the M − R curves for the practical validity of the
present stellar model in f (Q)-gravity. Further, we have pre-
dicted values of radii for the observed stars with respect to
variations in both the parameters χ1 and η. The predicted
radii have been arranged in Tables 2 and 3 for reference.
This implies that a star of given total mass and charge can
grow physically in size with an increase in values of χ1 . In
contrast, a star of given total mass and χ1 shrinks gradu-
ally for increasing values of η. So, the charged anisotropic
configuration is more compact in comparison to the neutral
configuration (η =0 case) in f (Q)-gravity.

7 Conclusion

In the beginning of this paper, we have expressed the gravi-
tational field equations, TOV equation, and anisotropy equa-
tion for an anisotropic and charged fluid in f (Q)-gravity
constrained to the linear form of the function f (Q). We
have argued that we need three extra conditions to get a
complete solution to the anisotropy equation containing four
unknown quantities (H(r), N (r), �(r), E(r)). In this
regard, we have taken nonlinear but simple functional forms
of N (r), �(r), E(r) regulated by the parameters {λ, η, χ1}
into account with complete physical considerations at center
and surface of the star. These choices of N (r), �(r), E(r)
are able to produce non-singular and exact solutions to the
field equations. Notably, anisotropy and electric field are cho-
sen in such a way that these quantities will vanish for zero
value of χ1 . Thus, both the physical features of the stellar mat-
ter evolve simultaneously with variation in the f (Q)-gravity
parameter χ1 in the present astrophysical model. However,
the neutral counterpart of the present model can be retrieved
easily by considering η to be zero for non-zero values of χ1 .

Since we are interested in the charged case of anisotropic
matter, we have assumed non-zero values of η in the present
investigation. The properties at the boundary of the f (Q)-
gravity for anisotropic and charged compact stars have been
explored by matching the interior metric solution to the exte-
rior Reissner–Nordstrom de-Sitter solution. The boundary
is defined by the standard condition of vanishing of radial
pressure.

With the above considerations we have derived the expres-
sions for H, ρ, Pr , Pt ,�, q and presented graphically in
Figs. 1, 2, 3, 4 and 5. By satisfying all the physical crite-
ria, the physical quantities i.e., energy density, pressure in
both radial and tangential direction, anisotropy, and elec-
tric charge, ensure the physical validity of a charged and
anisotropic stellar model governed under f (Q)-gravity. Den-
sity and pressure show decreasing nature whereas anisotropy
and electric charge show increasing nature with respect to the
radial distance throughout the star. For increasing values of
f (Q)-gravity parameter χ1 , the quantities {ρ, Pr , Pt , �, q}
have gradual enhancement inside the star. Central density is
found to be of the order of 1014 gm/cm3 listed in Table 1.

On substitution of the physical entities H, ρ, Pr , Pt , q
in the Tolman–Oppenheimer–Volkoff (TOV) equation, we
have shown graphical nature of gravitational (Fg), hydro-
static (Fh), anisotropic (Fa), and electric forces (Fe) in Fig. 6
for four different values of χ1 . It is found that the resul-
tant of three forces Fh, Fa, Fe individually being repulsive
in nature balances the attractive gravitational force. Essen-
tially, this helps to avoid the gravitational collapse and the
anisotropic charged stellar system achieve stable equilibrium
in the framework of f (Q)-gravity.

From the physical behavior of pressures, density, and elec-
tric charge (q) shown in Figs. 1, 2, 3, 4, it is evident that
the pressures, density, and electric charge are non-negative
throughout the model which is the confirmation of the valid-
ity of energy conditions such as WEC, NEC, and SEC in
the stellar system. Further, Fig. 7 represents the expressions

ρ − Pr +2 q2

r4 and ρ − Pt as non-negative entities confirming
the validity of dominant energy condition in the star. There-
fore, the present anisotropic charged stellar configuration sat-
isfies all the energy conditions that advocate on behalf of the
physical acceptance of the present model in f (Q)-gravity.

Further, some additional investigations have been made
for stability analysis of the present compact star model. At
first, we studied Harrison–Zeldovich–Novikov (HZN) crite-
ria for stability by showing the gradient of total mass with
respect to central density in Fig. 5. The gradient (dM/dρc)
is found to be positive throughout the star which fulfills the
HZN criteria for stable configuration of the present stellar
system. The positive values of the gradient are seen to be
enhanced by a small amount for decreasing values of the
f (Q)-gravity parameter χ1 . In another method, we have
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Fig. 11 Mass-radius curves for compact objects under different values of non-metricity and electric charge parameters χ1 and η, respectively

Table 2 M − R curve and prediction of radii for different values of χ1

Objects M/M� Predicted R [km]

χ1 = 0.15 χ1 = 0.16 χ1 = 0.17 χ1 = 0.18 χ1 = 0.19 χ1 = 0.20

LMC X-4 [122] 1.29 ± 0.05 8.44+0.002
−0.002 8.73+0.01

−0.01 8.98+0.02
−0.02 9.22+0.01

−0.03 9.43+0.02
−0.03 9.61+0.04

−0.03

PSR J1903+327 [123] 1.667 ± 0.021 8.14+0.05
−0.05 8.67+0.015

−0.025 9.01+0.01
−0.001 9.31+0.004

−0.001 9.56+0.001
−0.001 9.81+0.01

−0.02

PSR J1614-2230 [124] 1.97 ± 0.04 – – 8.81+0.05
−0.06 9.42+0.02

−0.02 9.57+0.002
−0.009 9.84+0.002

−0.006

GW190814 [125] 2.5 − 2.67 – – – – – 9.55+0.10−

Table 3 M − R curve and prediction of radii for different values of η

Objects M/M� Predicted R [km]

η = 0 η = 0.0001 η = 0.0002 η = 0.0003 η = 0.0004

LMC X-4 [122] 1.29 ± 0.05 9.58+0.01
−0.03 9.49+0.01

−0.03 9.40+0.03
−0.03 9.32+0.03

−0.04 9.23+0.04
−0.03

PSR J1903+327 [123] 1.667 ± 0.021 9.71+0.01
−0.01 9.65+0.01

−0.01 9.58+0.01
−0.01 9.52+0.02

−0.02 9.45+0.01
−0.02

PSR J1614-2230 [124] 1.97 ± 0.04 9.73+0.01
−0.01 9.68+0.01

−0.01 9.63+0.01
−0.01 9.58+0.01

−0.01 9.53+0.01
−0.01

GW190814 [125] 2.5 − 2.67 – – 9.26+0.16− 9.27+0.14− 9.29+0.09−

examined the stability of the present gravitational system by
analyzing Herrera’s cracking concept based on the idea of
causality. Certainly, the system behaves as a causal structure
as the square of the sound speeds both in radial and tangential
direction is non-negative and less than unity as can be seen
from Fig. 8. Even, the inequality −1 < |v2

t −v2
r | < 0 is main-

tained inside the star satisfying Herrera’s cracking concept
for stable regions with minimal dependence on χ1 . Finally,
we have inspected the adiabatic stability rule given by Her-
rera for anisotropic fluid and confirmed that the adiabatic
index shown in Fig. 9 is greater than 4/3 for different val-
ues of χ1 . This indicates that the anisotropic charged stellar
solution in f (Q)-gravity theory meets causality and stability
criteria for all taken values of the non-metricity parameter
χ1 .

In the present work, with increase in χ1 the anisotropy
(Fig. 5) and the maximum mass (Fig. 11) of the stellar sys-
tem tend to increase simultaneously. The direct interpreta-
tion of the fact may be such that an increase in maximum
mass depends on enhancing the anisotropy in the star. This
can be justified by a recent study [117] showing that the
anisotropy has a direct effect on the maximum mass of a neu-
tron star. It proposes that the maximum mass of an isotropic
configuration can be increased up to 15% by including the
effect of anisotropy which may be the possible explanation
of the maximum masses larger than 2.5 M� as in the case
of the secondary component of the GW190814. Addition-
ally, the mass-radius curves are related to the observational
constraints of the masses of some known neutron stars. With
reference to Fig. 11, it can be concluded that an anisotropic
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and charged configuration in f (Q)-gravity has the capabil-
ity to fulfill the observational constraints. For instance, an
charged anisotropic compact star could explain the massive
secondary companion of GW190814.

The present investigation reveals that the charged aniso-
tropic stellar model considering a particular ansatz for met-
ric function and linear form of f (Q) in the framework of
f (Q)-gravity successfully can account for the well-behaved
and singularity-free solutions which satisfy all the necessary
physical criteria and can be associated with the observational
constraints of observed neutron stars.
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