

Distinctive Features of α -decays of N=153 Isotones

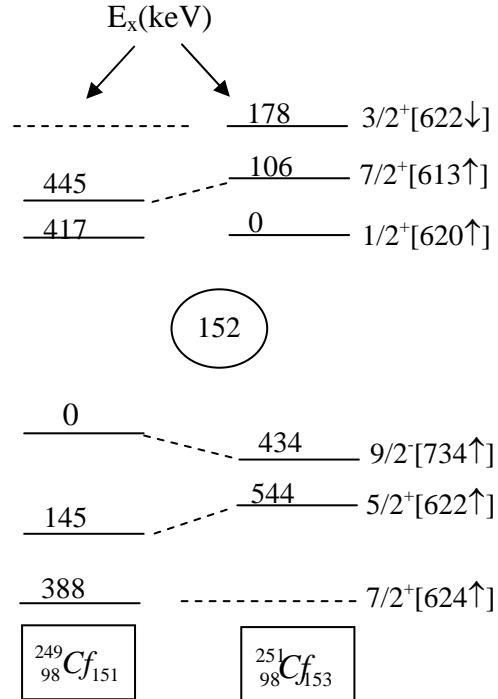
R Gowrishankar*, K Vijaya Sai, K Venkataramaniah and P C Sood

Department of Physics, Sri Sathya Sai University, Prasanthinilayam, A.P. 515134

²* email: rgs@sss.edu.in

A recent survey of lifetimes of heavy nuclei by Sood et. al., [1] revealed the surprising observation that in the trans-plutonium region, odd mass nuclei are generally longer-lived than their even-even neighbors. This was sought to be explained by analyzing the α -decay data. Extending this study with a focus on $A>250$ nuclei, we find that the longest lived odd-mass nucleus in this domain is ^{251}Cf ($t_{1/2}=898\text{y}$) and odd-odd nucleus is ^{252}Es ($t_{1/2}=471.7\text{d}$). Both these nuclei have $N=153$, i.e., one nucleon beyond the shell closure. Normally one would expect the singly close shell (SCS) $N=152$ isotones to be more stable/longer-lived. The comparative situation in respect of SCS ($N=152$) nuclei and those with one extra neutron (with $N=153$) is summarized [2] in our Table 1. It is seen that, in all known cases, lifetimes of (SCS+1n) nuclei are an order of magnitude larger than those of closed shell cases. On further analysis, it was found that α -decays of (SCS+1n) nuclei have some other distinctive features which are briefly outlined in the present report.

Table 1: Half lives and decay modes for $N=152$ and $N=153$ nuclides under consideration


$\frac{N}{zX}$	152	153
^{102}No	^{254}No 51s	^{255}No 5.1m
	α : 90 ε : 10	α : 61 ε : 39
^{100}Fm	^{252}Fm 25.39h	^{253}Fm 3.00d
	α : 100	α : 12 ε : 88
^{99}Es	^{251}Es 33 h	^{252}Es 471.7d
	α : 0.5 ε : 99.5	α : 78 ε : 22
^{98}Cf	^{250}Cf 13.08y	^{251}Cf 898y
	α : 99.9 SF: 0.08	α : 100

First we look at the configuration space around $N=152$ as sketched in fig.1, wherein the experimentally observed low-energy band heads in $N=151$ nucleus ^{249}Cf (on the left) and in $N=153$ nucleus ^{251}Cf (on the right) are plotted

indicating the Nilsson orbital quantum numbers for each level. As seen herein, and also in all the other $N=(152\pm 1)$ spectra, a clear gap of $>400\text{keV}$ is witnessed across $N=152$. Since the dominant decay mode in almost all these cases is α -emission, we consider the Viola-Seaborg relation (based on the empirical Geiger-Nuttal Law)

$$\log t_{1/2}(\text{sec}) = \{A(Z) / E_\alpha(\text{MeV})^{1/2}\} + B(Z) \quad (1)$$

which relates the partial α -half life and the energy of emitted α particle.

Fig. 1: Experimental band head energies in ^{249}Cf ($N=151$) and ^{251}Cf ($N=153$) across $N=152$ shell.

For odd- A decays, the daughter state having the same configuration as the parent state is favored with Hindrance Factor (HF) of <4.0 . Thus for decays of $N=153$ nucleus into favored states across the $N=152$, E_α is smaller by ~ 400 keV and consequently, vide eq.(1), the parent $t_{1/2}^\alpha$ is considerably larger as compared

Table 2: Summary of experimental α -decay data for Odd-A N=153 nuclei (gs: $1/2^+[620\uparrow]$). Entries in each box are I, %I $_{\alpha}$ (per 100 α) and HF for 2 lowest rotational levels, with the entries in bold representing the total % I $_{\alpha}$ for all (including unlisted) rotational levels of each band in daughter nuclei.

A_X \ N config	9/2 $^-$ [734 \uparrow]	5/2 $^+$ [622 \uparrow]	7/2 $^+[613\uparrow]$: 255	1/2 $^+[620\uparrow]$
${}^{255}\text{No}$	9/2 1.9 1400 11/2 4.2 460 6%	5/2 45.5 14 7/2 11.9 37 64%	7/2 11.9 12 9/2 4.2 21 16%	1/2 8.9 4.1 3/2 2.4 9.7 14%*
${}^{253}\text{Fm}$	9/2 1.3 3200 11/2 6.7 350 8%	5/2 42.7 25 7/2 9.8 72 61%	-	1/2 23.2 3.0 3/2 2.4 23 28%
${}^{251}\text{Cf}$	9/2 2.6 5100 11/2 12.5 510 16%	5/2 27.6 31 7/2 4.0 130 35%	7/2 2.5 170 9/2 0.8 240 4%	1/2 35.4 2.6 3/2 3.3 19 44%

* In ${}^{255}\text{No}$ decay, another level at 703 keV (I $_{\alpha}$ =2.8%) with HF=3.6 is also indicated.

to the half life of N \leq 152 nuclei wherein no such shell gap exists.

For discussing other distinctive features of N=153 decays, we refer to Table 2, wherein the main α branches, their intensities, %I $_{\alpha}$ per 100 α 's and HF are shown for α decays of the 3 odd-A, N=153 nuclides into the indicated band levels of the respective daughter nuclei. As summarized in Table 2, in all the known cases of α -decays of N=153 nuclei, I $_{\alpha}$ (fav) is not even 50%. In the case of ${}^{255}\text{No}$ decay, I $_{\alpha}$ (fav) is barely 11% and in ${}^{253}\text{Fm}$ decay, it is 25% while in ${}^{251}\text{Cf}$ decay it is 44%. This feature is in sharp contrast to the α -decays of N \neq 153 nuclei, wherein I $_{\alpha}$ (fav) >85% (in many cases \geq 95%) which is very similar to the g \rightarrow g decays of neighboring e-e nuclei.

In N=153 decays, maximum α intensity appears to go into $1/2^+[620\uparrow] \rightarrow 5/2^+[622\uparrow]$ branch (>60% in both ${}^{255}\text{No}$ and ${}^{253}\text{Fm}$ decays). Another distinctive feature noticed herein is that $1/2^+[620\uparrow] \rightarrow 7/2^+[613\uparrow]$ branch in ${}^{255}\text{No}$ decay has I $_{\alpha}$ \approx 16% (even more than I $_{\alpha}$ (fav)), while for $1/2^+[620\uparrow] \rightarrow 7/2^+[624\downarrow]$ branch in ${}^{251}\text{Cf}$ decay, I $_{\alpha}$ =3% only (with I $_{\alpha}$ (fav)=44%). One other feature observed in $1/2^+[620\uparrow] \rightarrow 9/2^-[734\uparrow]$ branches in all 3 cases is that while HF \sim 10³ for 9/2 $^-$ band head level, that for its 11/2 $^-$ rotational level is an order of magnitude smaller. Explanation of these features in terms of asymptotic quantum number selection rules is being investigated.

The case of the doubly odd N=153 nucleus ${}^{252}\text{Es}$ (Z=99) presents a perplexing situation.

NDS evaluators [3] had assigned an I $^{\pi}$ =5 $^-$ spin-parity to ${}^{252}\text{Es}$ gs corresponding to the 2qp configuration $5\{p:3/2[521] \otimes n:7/2[613]\}$ which, however, conflicts with the fact that 153rd neutron, in all known cases, unambiguously occupies (see our fig 1 & Table 2) $1/2[620]$ orbital. Recently, Sainath et al. [4] have re-examined the situation with the inclusion of α - γ coincidence data following ${}^{256}\text{Md}$ decay, and concluded that a $4^+\{p:7/2[633] \otimes n:1/2[620]\}$ assignment for ${}^{252}\text{Es}$ gs is consistent with all the available experimental results. In the present context, the 5 $^-$ assignment appears untenable on the basis of the observation that 96% of the α 's from its decay populate a K $^{\pi}$ =6 $^+$ band levels in ${}^{248}\text{Bk}$; the 5 $^- \rightarrow 6^+$ transition requires an L=1 partial wave (parity change) which almost always is highly hindered. Further the NDS adopted ${}^{252}\text{Es}$ α -decay [3] shows only 1.02% α 's going into the suggested 5 $^-$ favored state at 590 keV in ${}^{248}\text{Bk}$. In sharp contrast 96% of the α 's from ${}^{254}\text{Es}$ decay go into the favored state. In view of these considerations, experimental re-investigation of ${}^{252}\text{Es}$ α -decay is certainly needed.

References

- [1] PC Sood, OSKS Sastri and RK Jain, J.Phys. G35(2008) 065104
- [2] JK Tuli, Nucl. Wallet Cards, 8th ed., (2005)
- [3] N Nica, Nucl. Data Sheets, 106 (2005) 813
- [4] M Sainath, K Venkataramiah & PC Sood, J Phys. G35 (2008) 095105