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Abstract. We discuss the geometry of states of quantum systems in an n-dimensional Hilbert
space in terms of an explicit parameterization of all such systems. The geometry of the space of
pure as well as mixed states for n-state systems is discussed. The parameterization is particularly
useful since it allows for the simple construction and isolation of various physically meaningful
subspaces of the space of all density matrices. This is used to describe possible geometric phases,
their calculation, and analyze entropy and purity (or linear entropy) functions. In particular,
we provide conditions under which nontrivial abelian and/or nonabelian geometric phases arise
in these subspaces in terms of the given parameterization, an explicit example is given, and
multi-dimensional isentropic surfaces are discussed.

M.S. Byrd would like to dedicate this joint work to Professor E.C.G. Sudarshan on his 75th

birthday. His insight into this subject contributed to an earlier version of this manuscript and

has led to ongoing research in this area which is described in the latter sections.

1. Introduction

Two-state systems are ubiquitous in the physics literature. This is due to several factors, not
the least of which is their common properties. All two-state systems share some features due
to the two-dimensional Hilbert space which we use to describe them. However, in addition to
the more abstract properties, and in part due to those properties, two-state systems share less
abstract features which are experimentally observable. For example, the two polarization states
of a light beam can undergo a phase change due to the geometry of a fiber through which they
are traveling [1] and the two spin states of a spin one-half nucleus can undergo a phase change
due to a slowly varying external magnetic field [2]. Each of these phase changes is geometric
in nature because the path is reparameterization invariant and is due to the holonomy of the
system [3]. They are therefore referred to as geometric phases or Berry phases. Although the
physical mechanism for these phases is quite different, as are the systems themselves, they can
be described using a kinematical prescription which applies to both two-state systems and looks
quite similar in the abstract sense [4].

Two-state systems however, are often not truly comprised of only two states as in the examples
above, but are two states of a larger system. For example, they could be two states of an atom
or molecule which belong to a set of states which is countably (or even uncountably) infinite.
Systems with n states, or n-state systems, also share common features if they have the same
value n. For example, three-state systems (see for example [5], [6], [7]) have properties which

Particles and Fields: Classical and Quantum IOP Publishing
Journal of Physics: Conference Series 87 (2007) 012006 doi:10.1088/1742-6596/87/1/012006

c© 2007 IOP Publishing Ltd 1



are common to each, but which can be quite different from two-state systems. Similarly remarks
hold for n-state systems (see for example [7], [8] and [9]).

A natural question to ask is, what properties of n-state systems are similar, and which are
different, from their two-state counterparts? In order to answer this question, we will employ
the density operator or density matrix. (Here we will often not distinguish between the two.)
Many of the common properties of n-state systems are due to the structure of the space of
density operators for these systems. This structure can aide in determining many properties
of physical systems ranging quantum statistical mechanics and thermodynamics to ordinary
quantum mechanics (see [10, 11, 12], [13], [14] and references therein). This is the objective

of this paper, to understand properties of n-state systems which are due to the geometry of the

space of states and that are common to all n-state systems. There are two different, but related,
geometries we will consider. One is the geometry of the space of density operators. Second is
the geometry associated with the Berry phase.

The particulars of geometric phases for density matrices of three state systems in SU(3)
representations were studied in Refs. [15], [16] from a kinematical perspective. There it was
shown that nontrivial geometric phases for the pure state density matrices can be associated
with subgroups of SU(3). They also gave formulas for the Berry connection one form and
curvature two form. Another group theoretical method for deriving these was then pointed
out in Ref. [17, 18] along with the necessary differential geometric structures in a particular
parameterization (discussed further below).

Here we provide a method for determining, for n-state systems, the mixed state density
matrices that will exhibit geometric phases and what type of phases we should expect (abelian
vs. nonabelian). To do this, we use a generalization of the parameterization and methods in
[17, 18] and we restrict to closed evolution of a system which may have previously undergone
an evolution which caused it to become mixed. A different approach to the explicit calculation
of geometric phases for mixed state density matrices uses a purification technique [19, 20, 21].
More recently, the general geometric phases for open systems have been studied using rather
different methods. (See [22, 23] and references therein.)

It is interesting and relevant to note that after an earlier version of this work [24], geometric
phases for mixed states were studied in some detail by Ercolessi et al. [25] and the specific
geometric structures were derived. Moreover, many others followed this work with an emphasis
on particular applications, one of the first being the work in Ref. [26].

In this paper, we provide simple but general geometric arguments which help to analyze the
spaces of density operators and their geometric phases. Specifically, in section 2 we give a brief
review of density matrices and a parameterization of density operators, mixed as well as pure,
for an n-state system and discuss the geometry of these spaces. Then, in section 3 we give a
brief history and review of geometric phases. We then identify the spaces which could give rise
to nontrivial geometric phases by a simple argument involving our explicit parameterization.
We also provide an explicit example of a calculation of a non-abelian geometric phase. Finally,
in section 4, we briefly discuss the entropy of the space of density matrices and how it is able to
be analyzed using the eigenvalue parameterization of the density operator.

2. Density Matrices for n-state Systems

Pure states in Quantum Mechanics are represented by one–dimensional subspaces or rays in
Hilbert space, H. These states can be characterized as orthogonal projections of unit trace

{space of pure states} ≈ {ρ ∈ End(H) | ρ† = ρ, ρ2 = ρ, Trρ = 1}. (1)

Von Neumann and Landau originally introduced the notion of mixed states into Quantum
Mechanics [27]. To include mixed states into our current discussion, we recall that it is enough
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to enlarge (1) by simply relaxing the idempotency condition, ρ2 = ρ but keeping positive
semidefinite condition (ρ ≥ 0, meaning all eigenvalues are nonnegative), thus

{space of mixed states} ≈ {ρ ∈ End(H) | ρ† = ρ, ρ ≥ 0, Trρ = 1}. (2)

As mentioned before, two state systems have been studied in great detail. Here we review
some of the features that we seek to generalize to systems with n states. Consider first the
pure states of a 2-state system. The Hilbert space will be C

2 ∼= R
4. The unit vectors will form

S3 ⊂ R
4, and the true physical states will be obtained by modding out a phase S1:

S2 = S3/S1 or β : S1 → S3 → S2 (3)

which is the fundamental Hopf (β) fibering. The S1 is associated with the geometric phase.
In the construction

{ρ pure} ↔ sphere of radius
1

2
, (4)

the mixed states can be identified with the interior of this two–sphere (fig 1)

{ρ mixed} ↔ closed ball D3 of radius
1

2
, (5)

where we have used a radius one for S3 so a radius one-half for S2. The most mixed state is the
center of the ball, O, and for any two normalized pure states A and B in the ball,

0 ≤ overlap(A,B) ≡ |〈A|B〉|2 ≤ 1

is only zero if B is antipodal to A.

p

OBA

q

Figure 1. The disk D3 represents the space of mixed states in a 2-state system. The surface
S2 consists of pure states. The point p and the antipodal point q form an orthogonal pair.

Following a somewhat similar approach, we will proceed to discuss the geometry of the spaces
of pure and mixed state density matrices for more general n-state systems.

2.1. Pure State Density Matrices

The space of a pure state density matrix for an n-state system is isomorphic to CPn−1. This
may be seen in two different ways.

First, as above, consider the common example of a pure state for a 2-state system. Use
the space C

2 ≈ R
4, restrict to the transformations that preserve the modulus squared, S3, and

projects out an overall phase to obtain CP1. Similarly, for a 3-state system, one would use the
space C

3 ≈ R
6, restricted to the transformations that preserve the modulus squared, S5, and

project out an overall phase to obtain CP2 ∼= S3/S1.
Now one finds an immediate generalization. For an n-state system, one would use the space

C
n ≈ R

2n, restricted to the transformations that preserve the modulus squared, S2n−1, and
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project out an overall phase to obtain CPn−1. Therefore the space of pure states for an n-state
system is

CPn−1 =
C

n − {0}

C1 − {0}
=
S2n−1

S1
. (6)

The second way to discover this will lead to a parameterization of the density matrices for
n-state systems. Consider the density operator for a pure state that is represented by an n× n
matrix of zeros except for a single 1 somewhere on the diagonal, viz.,

ρpure =











0 0 · · · 0

0
. . . 0

... 1
...

0 0 · · · 0











. (7)

For convenience we may take the 1 to be in the nth column and nth row.
Now if we wish to transform this into an arbitrary pure state, ρ transforms as AρA−1 = AρA†

under any unitary transformation A ∈ U(n). On the other hand, any two pure states are always
equivalent under a transformation A, i.e., U(n) acts transitively on CPn−1. From the previous
matrix form, it is clear that the little group is U(n− 1) × U(1) hence

U(n)

U(1) × U(n− 1)
=

SU(n)

U(n− 1)
= CPn−1 = Gr(1, n), (8)

where, the Grassmanian of r-planes in C
n

Gr(r, n) =
U(n)

U(r) × U(n− r)
(9)

is well known.
Heuristically, we can go from the form (6) to the form (8) by exhibiting the odd-sphere

structure [28]
U(n) ∼= S1 × S3

⋉ S5
⋉ · · · ⋉ S2n−1, (10)

where the product, (⋉), is a nontrivial (twisted) one. So

U(n)

U(1) × U(n− 1)
= Gr(1, n) = CPn−1 =

S2n−1

S1
. (11)

2.2. Mixed State Density Matrices

Using the pure state operator described above, a parameterization of an n-state density operator
matrix can be given. Each pure state can be represented by a matrix which in diagonal form,
would consists of zeros everywhere except for a single 1 on the diagonal as indicated by Eq. (7).
To achieve a mixture of these states, a convex combination of a complete set, i.e. the set of n
matrices which has a different nonzero diagonal, is required. This combination may be written
as follows:

ρ =

(

∑

i

aiρi

)

,

where ρ is the mixed state matrix. The ρi, i = 1...n, are the pure state matrices with the 1 in

the ith along the diagonal and satisfy Tr(ρiρj) = δij . The ai satisfy
∑

i a
i = 1 and 0 ≤ ai ≤ 1.
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The eigenvalues of this matrix, the ai, can be parameterized by the squared components of an
(n− 1)-sphere. For example, for three state systems the eigenvalues can be taken to be

a1 = cos2 φ/2 sin2 θ/2, a2 = sin2 φ/2 sin2 θ/2, a3 = cos2 θ/2.

We can now obtain a parameterization of a general mixed state, one in a generic non-diagonal
configuration for an n-state density matrix. Let ρ denote the diagonal density operator where
the diagonal elements are the squared components of the n − 1 sphere as discussed above and
let D denote an SU(n) matrix. Then the mixed state density operator matrix is given by

ρ′ = DρD−1. (12)

Note, however, that parameter counting might lead us to believe that we have too many

parameters since n − 1 parameters are required for ρ and n2 − 1 for D, whereas there are only
n2−1 total parameters for a Hermitian matrix with trace one. This problem is solved, however,
by noting that the diagonal density operator commutes with any diagonal operator D (unitary
transformation) and is thus invariant under conjugate actions by the Cartan subgroup of U(n);
the Cartan subgroup being the exponential of a set of simultaneously diagonalizable elements of
the algebra of SU(n), of which there are exactly n−1. This problem was explicitly discussed and
solved for two and three state systems in [29]. For n state systems, one can solve this by the same
methods. One may parameterize SU(n) using a generalized Euler angle parameterization [30, 31]
and construct it such that the elements of the Cartan subgroup are explicitly projected out by
the conjugation Eq. (12). To see this, consider an arbitrary, undiagonalized state ρ′ = DρD−1.
Now transform to the frame where ρ′ is diagonal, ρ = D−1ρ′D. This matrix is clearly invariant
under unitary transformations d when d is diagonal. Therefore, there is a invariant subgroup,
which is comprised of the set of diagonal unitary matrices, for any given density matrix since ρ
is invariant under conjugation by all Bd such that d is diagonal and B, d are unitary. B being
arbitrary implies that it is invariant under right action by d. This provides the method for
identifying the n− 1 parameter subgroup under which ρ′ is invariant.

In addition to the solution to the “problem” with the “over” parameterization, this
parameterization enables one to identify the little group and orbit space of density matrices
under conjugation by SU(n). One may then investigate which subspaces may give rise to
nontrivial abelian and non abelian geometric phases. This is the subject of the next section.

3. Geometric Phases

Geometric phases in physics have a long and rich history [32], [33]. Pancharatnam studied them
in connection with photon polarizations over forty years ago [1]. Later Herzberg and Longuet-
Higgins showed that the phases can arise in the Born-Oppenheimer approximation describing
polyatomic molecules [34]. Mead and Truhlar showed that motion of nuclei could be described
by an effective Hamiltonian with a “gauge potential” to describe the effect of the “fast” motion
of the electrons on these nuclei to produce the geometric phase [35]. Some time after this Berry
discovered nontrivial phase factors [2] and Simon gave them a geometric description in terms
of fiber bundle theory [3] (hence the name, “Berry phase” or “geometric phase”). A classic
example is the motion of an electron in the field of a magnetic monopole. Many new interesting
topics associated to these phases soon followed. Among these were analyses in group theoretical
terms ([36], [37], [38]).

Geometric phases for SU(3) representations have been investigated in [15] and [16] for three-
level systems. The Lie subgroups of SU(3) were listed there and it was shown that non-zero
dynamical phases can only occur in certain particular subspaces of the form SU(3)/H where H
is a (Lie) subgroup of G. Note that the space of density matrices of a pure state in a three state
system is also of the form SU(3)/H since it is isomorphic to SU(3)/U(2) ∼= CP2. An explicit set
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of coordinates for this manifold were given in [17, 18] in this context. From these observations,
we may next comment on the possibility of nontrivial phase factors in different subspaces of the
space of all density operators for n-state systems in terms of our particular parameterization.

3.1. Background

A deeper treatment of the geometric phase can be found in [39]. For general references see [32]
and [40] in addition to the seminal references given above. Here we sketch the basic concepts
needed throughout the section.

Whenever a state in a given quantum mechanical system undergoes a cyclical evolution,
any representative vector will acquire a phase independent of representation. It is important to
realize the resulting overall phase has two contributions. The dynamical part depends essentially
upon the Hamiltonian, whereas the geometrical part depends only upon the closed path of
evolution and is reparameterization invariant, hence geometric. This geometric phase is just
the holonomy of the loop due to the natural connection in the U(1)-bundle associated to the
projection {vectors} → {rays}.

In the original derivation by Berry, the motion was adiabatic, and the connection was shown
to arise from the effect of the “slow” variables on the “fast” variables. Since the Lie algebra
of the holonomy is generated by the curvature of the connection (the theorem of Ambrose and
Singer, see [41]), the geometric phase is a gauge invariant concept.

The removal of the adiabatic approximation was carried out in [39]. They also consider non-

cyclic evolution with the tacit understanding that the open path could be closed, e.g., by tracing
geodesics from a common point through the initial and final points. The path is then closed,
and the geodesic segments do not alter the holonomy. This naturally leads to a treatment of the
effective dynamics of the particular system as a gauge theory, where the symmetries involved
depend upon many different aspects of that particular system; the external parameters used,
the adiabatic approximation, etc.

For a generic path, the holonomy group is U(1) for individual states. In the case of degenerate
eigenvalues, the holonomy group is enlarged to U(n), n > 1 provided the evolution of the system
does not remove this degeneracy [42]. In that case the states carry a degeneracy index which
labels the representation of the gauge group.

The approach we take below is not to try to produce an overall symmetry group for the
theory, but to consider only the little group of a particular mixed state density matrix. This will
provide a gauge group for all matrices in the SU(n) orbit of this state. We will then investigate
the possible geometric phases within such orbits. Of course this gauge group will, in general,
not be abelian. The terms abelian and non-abelian geometric phases then simply refer to the
commutativity of the gauge group involved.

3.2. Geometric Phases for Mixed States

We have said that geometric phases depend on the dynamical path of a particular system. The
easiest way to determine the possible geometric phases for a system is to consider the eigenvalues
associated with the effective dynamics of that system. For n-state systems we note that for
different sets of eigenvalues of the system, there exists the possibility of nontrivial abelian and
non-abelian geometric phases depending on the particular set of eigenvalues. This, and the
geometry of the spaces of the density matrices, are exhibited in our particular parameterization
rather nicely.

First consider the nontrivial example of a three state system. When each of the three
eigenvalues of the mixed state density operator are nonzero and are different, the space
of transformations of ρ is SU(3)/(U(1) × U(1)), i.e., the little group or stability group is
(U(1) × U(1)). This is a flag manifold Fl(3) ∼= U(3)/U(1)3 ∼= CP2

⋉ CP1. One can see
that we may have non trivial geometric phases only of the abelian type. When the matrix ρ
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contains 3 nonzero eigenvalues with 2 identical and one different, the transformation space is
SU(3)/(SU(2) × U(1)) and we may possibly observe geometric phases of the nonabelian type
which is also the case when all eigenvalues are identical. Of course these spaces exhibit only the
possibility of observing geometric phases. Our ability to actually observe them depends on the
effective dynamics of the particular system and on the path in parameter space.

For the generic case of n-state systems there is an immediate generalization of the argument
for 3-state systems. If we have an n-state density operator with all eigenvalues different and
nonzero, then the space of transformations is Fl(n) ∼= U(n)/U(1)n ∼= SU(n)/(U(1)×···×U(1)),
where there are n − 1 of these U(1) factors. If two of the eigenvalues are degenerate, there is
one factor of SU(2) replacing one of the U(1)s. If three are degenerate, there is a factor of
SU(3), etc. This extends the ideas of [15] and [16] from the case of pure 3-state systems to
the case of pure and mixed n-state systems. This goes further and offers a scheme for the
parameterization of these with SU(n) groups and uses the direct connection between these
groups and the transformation spaces of the density operators.

One can now see that the space of mixed state density matrices is locally isomorphic to the
following spaces. When all of the eigenvalues are different the space is (SU(n)/T n−1) ×Dn−1,
(see also [43] for another proof) where the component Dn−1 is the (n−1) dimensional disc. This
comes from the the parameterization of the diagonal elements in terms of the (n−1)-sphere and
is topologically a disc but is geometrically an (n− 1) dimensional rectangle or rectangular solid.
When there are two degenerate eigenvalues the space is [SU(n)/(SU(2) × T n−2)] ×Dn−2 and
so on. Here we have used the fact that T 1 ∼= U(1).

For the case of three state systems we may list 3 possibilities: all three eigenvalues are
different, two are the same and one is different, and all are the same. Respectively the spaces
of their density matrices are locally (SU(3)/T 2)×D2, [SU(3)/(SU(2) × T 1)]×D2 and a single
point.

It is worth noting also that one may arrange the eigenvalues of a diagonalized density matrix
such that the identical eigenvalues appear next to each other along the diagonal. This means
that when the matrix is in nondiagonal form, the group transformations can be expressed in a
block diagonal form. These transformations are always allowed since they correspond to a simple
change of basis. In this way we may observe the symmetry breaking associated to the differences
in eigenvalue degeneracies. For instance, if three eigenvalues of a three state system are equal,
one can be “distorted,” or changed slightly (by an outside influence such as an external magnetic
field on a three state molecule). Then if the population of one of the states is changed, we have
broken the symmetry group from SU(3) to SU(2) × U(1).

Before we leave this topic, one final note is in order. We have discussed the possibility of
identifying geometric phases within a system if degeneracies are present. This is not useful
unless we are able to experimentally identify degeneracies. Such degeneracies may be identified
directly, or by using state tomography data and the relations given in [44], which are able to
identify degeneracies using the coherence vector parameterization of the density matrix.

3.3. An Explicit Example: Non-abelian Geometric Phases

In this section an example of geometric phases for 3-state systems is given. This method is
a generalization and simplification of the method presented in [37] and provides an explicit
example of the utility of the previous discussion. Specifically, we will find the adiabatic non-
abelian geometric phase associated with a two-fold degeneracy of energy eigenvalues of the
general Hamiltonian for a 3-state system. The phases acquired will come from the subgroup
SU(2) × U(1). The two-dimensional subspace gives rise to the possibility of a non-abelian
geometric phase which would mix the two degenerate energy eigenvalues.

The way the connection one-forms for the 3-state systems are derived here using the state
space of the system is expressed in terms of the group SU(3). Our method has the advantage
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of being generalizable to other states, not just eigenstates of the Hamiltonian. (Of course, one
has to be careful of what the adiabatic assumption means then. This is well described in [45].)
It also has the advantage of being generalizable to SU(n) given the aforementioned generalized
Euler angles. Whereas one does not have a way of finding the eigenvalues of an n × n matrix,
one would be able to use SU(n) matrices and derive the connection forms for an n-state system.
In addition, the methods of [25] and [44] enable, in principle, the experimental identification of
degeneracies and therefore the orbit space structure.

Let H(t) = H(~R(t)) be the time dependent Hamiltonian of the system and let En(t) be
its eigenvalues. Then if the Hamiltonian is periodic in time with period T , i.e., then the curve
C:[0, T ] →M is closed; M is the manifold parameterized by the coordinates ~R. For the adiabatic
approximation, n labels the eigenstates, |ψ〉, of the Hamiltonian and does not change. This
means there is a unitary matrix U(n) relating |ψ(T )〉 and |ψ(0)〉 which is given by

e−
i

~

R

T

0
En(t)P

[

ei
H

C
An

]

,

where P is the path-ordering operator and An is a Lie algebra valued (connection) one-form
whose matrix elements are locally given by:

Aab
n = i〈n, a, ~R|d|n, b, ~R〉. (13)

It is important to note that the Hamiltonian is a 3×3 Hermitian matrix which can be viewed
as an element of the algebra of SU(3), i.e.,

H(~R) = b

8
∑

i=0

Riλi,

where Ri are real parameters, λ0 = 1l3×3 and the λi are the Gell-Mann matrices. Here the
constant b is taken to be one. The adiabaticity assumption may then be expressed as T >> 1.

The Hamiltonian, H, can be expressed in terms of the diagonalized Hamiltonian, HD.

H(~R) = U(~R)HDU
−1(~R),

where U(~R) ∈ SU(3) and

HD =





E1 0 0
0 E1 0
0 0 E3



 .

In this form it is obvious that M ⊂ CP2 and what is more, it is clear from ([17, 18]) that only
the angles α, β, γ and θ will remain since λ1, λ2, λ3 and λ8 commute with HD. Explicitly, the
Hamiltonian in undiagonalized form, H, is given by

H11 = E1(cos
2 β cos2 θ + sin2 β) + E3 cos2 β sin2 θ

H12 = (E1 − E3)e
−2iα cos β sin β sin2 θ

H13 = (E3 − E1)e
−i(α+γ) cos β sin θ cos θ

H21 = (E1 − E3)e
2iα cos β sin β sin2 θ

H22 = E1(sin
2 β cos2 θ + cos2 β) + E3 sin2 β sin2 θ

H23 = (E1 − E3)e
i(α−γ) sin β sin θ cos θ

H31 = (E3 − E1)e
i(α+γ) cos β sin θ cos θ

H32 = (E1 − E3)e
−i(α−γ) sinβ sin θ cos θ

H33 = E1 cos2 θ + E3 sin2 θ
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It can easily be shown that these angles parameterize CP2. In this way one can easily identify
the patches needed for certain circumstances. This is analogous to the calculation here.

As is well known, the matrix that diagonalizes H is composed of its eigenvectors. Therefore,
given that H = UHDU

−1, HD = U−1HU , so we have our |ψ〉s, the eigenvectors of H, they are





e−i(α+γ) cos β cos θ

−ei(α−γ) sin β cos θ
− sin θ



 ,





e−i(α−γ) sinβ

ei(α+γ) cos β
0



 ,





e−i(α+γ) cos β sin θ

−ei(α−γ) sin β sin θ
cos θ



 .

One can check that these are already orthonormal due to the fact that U ∈ SU(3).
Now all that needs to be done is calculate the connection forms given by (13). These are

given by
A1 = cos 2β cos2 θ dα+ cos2 θ dγ,

and

A2 =

(

− cos 2β dα− dγ e−2iγ [sin 2β sin θ dα− i sin θ dβ]
e2iγ [sin 2β sin θ dα+ i sin θ dβ] cos 2β sin2 θ dα+ sin2 θ dγ

)

.

This is a expression in terms of SU(3) Euler angle coordinates. We can generalize this
by using the expression (12) with D a variable matrix in SU(n). This allows us to express the
density matrix for an n-state system in terms of the Euler angle coordinates and the components
of the n − 1 sphere along the diagonal and an overall scale factor. Thus the eigenvalues need
not be those of the Hamiltonian but of any observable. Then a similar analysis holds for states
that are not eigenvectors of the Hamiltonian but eigenvectors of another observable.

4. Entropy

By now, the von Neumann entropy [27] S is well known in quantum information theory as
providing a measure of our uncertainty about a quantum system described by a density operator
ρ in analogy with the Shannon entropy [14]. The definition of the von Neumann entropy is

S(ρ) = −Tr(ρ ln ρ)

Intuitively, it gives us a way to identify parts of the space of density operators as having different
“purities.” Yet there is another measure of the purity also referred to as the linear entropy given
by

L(ρ) =
1

2
(1 − Tr(ρ2)).

Each is clearly zero if and only if Tr(ρ2) = 1, that is, when ρ is in a pure state.
For n = 2 our parameterization is quite useful. Write

ρ ≈

(

cos2 θ/2 0
0 sin2 θ/2

)

0 ≤ θ ≤ π/2

where ≈ means up to unitary equivalence. Hence

S[ρ(θ)] = −(cos2 θ/2) ln(cos2 θ/2) − (sin2 θ/2) ln(sin2 θ/2).

As θ varies from 0 to π/2, the entropy varies from 0 to its maximum = ln 2, and the state varies
from a pure one to the maximally mixed one. Of course, it is enough to compute the entropy
for a diagonalized density matrix, since TrM = TrAMA−1 for any two operators A, M .
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If a diagonal representative of a 3-state system is

ρ ∼=





cos2 φ/2 sin2 θ/2 0 0
0 sin2 φ/2 sin2 θ/2 0
0 0 cos2 θ/2



 0 ≤ θ, φ ≤ π (14)

the von Neumann entropy is

S(ρ) = −Tr(ρ ln ρ) =











0 for pure states,

0 ≤ S ≤ ln 3 for generic states,

ln 3 for the most “mixed” state.

The generalization to an n-state system is obvious, with similar limits

S(ρ) = −Tr(ρ ln ρ) =











0 for pure states,

0 ≤ S ≤ lnn for generic states,

lnn for the most “mixed” state.

4.1. Isentropic Curves

For two-state systems the purity is well described in terms of either the linear entropy or the
von Neumann entropy in the sense that both are monotonic in the one parameter. However,
these two functions are quite different for systems with more than two states. We will discuss
three state systems in some detail to provide an example. Our parameterization and the low
dimensional example enables us to graph these functions.

We first note that two-state systems with the same the von Neumann entropy or the same
linear entropy are related by a unitary transformation. The surfaces of constant entropy are
pairs of points (except for the maximally mixed state where the two points coincide) as can be
seen from Fig. 2 and the relation sin2 θ = 1 − cos2 θ ensures that equivalent entropy values are
related by a unitary transformation.

0.25 0.5 0.75 1 1.25 1.5
Θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S�L

Figure 2. Graph of the von Neumann entropy and the linear entropy versus the single
parameter which parameterizes the eigenvalues of the density operator. The upper curve is
the von Neumann entropy and the lower curve is the linear entropy. Here 0 ≤ θ ≤ π/2.

By contrast, the entropy of a three-state system has surfaces of constant entropy which are
one-dimensional curves. These integral curves show that different sets of eigenvalues have the
same entropy. However, since eigenvalues are not changed by unitary transformations, there exist
density operators with the same entropy which are not equivalent under unitary transformations.
This is most easily seen by viewing a contour plot as shown for the von Neumann entropy in
Fig. 3. Clearly the isentropic hypersurfaces of an n-state system are n− 2 dimensional.
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θ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

φ

Figure 3. Graph of the von Neumann entropy as a contour plot with the two parameters
(angles) which parameterize the eigenvalues of the density operator as the axes shown. The
lines on the graph are integral curves of S with larger values in lighter shades of gray.

4.2. Linear Entropy vs. von Neumann Entropy

Now we can clearly show the different functional dependences of the linear entropy and the von
Neumann entropy by superposing two graphs, one the contour plot of the linear entropy and the
other the contour plot of the von Neumann entropy (Fig. 4). Whereas there is no possibility of
changing one without changing the other for a two state system, a three state system is quite
different. The graph Fig. 4 clearly shows that, for a three state system, one may change the
von Neumann entropy while keeping the linear entropy constant, or vice versa. The plot also
identifies regions of the parameter space which show the greatest difference between the two.

θ

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

φ

Figure 4. Graph of the von Neumann entropy and the linear entropy as contour plots. (The
angles are the same two parameters as in Fig. 3.) The lines on the graph are integral curves of
S and L.

This graphical representation of the von Neumann entropy leads to several questions. For
example, could we use this to optimize information gain versus the information loss for certain
measurements? If we want to answer this question, we would require the “subentropy” [46]
which provides a lower bound on the information which can be extracted from a quantum
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system. Another open question is, how might one optimize the difference between the von
Neumann entropy and the subentropy and what are the implications for quantum information
processing? This is the subject of future work.

5. Conclusions and Comments

We have shown that the mixed state density matrices for n-state systems can be parameterized
in terms of squared components of an (n − 1)-sphere and unitary matrices. This lets one
immediately identify the little groups and therefore orbits of the space of density matrices for
particular sets of eigenvalues. The little groups can be seen as structure that describes possible
geometric phases for the system. Thus when a system described by an n-state density matrix
undergoes a change in the physical parameter space (the orbit space), the system may exhibit a
geometric phase with a “gauge group” that corresponds to the little group of the space. Given
the parameterization presented here, the identification of the little group is transparent.

This parameterization of the density matrices gives an explicit parameterization of the pure
and mixed state density matrices that is amenable to calculations. In particular, one may
parameterize the unitary matrices for SU(n) in terms of generalized Euler angles. Generalized
Euler angles were constructed explicitly for SU(3) in [17, 18] and recently extended to SU(n)
[30, 31]. Using the explicit parameterization, the geometric phases can be calculated for the case
of n-state systems using the methods of [17, 18] and [47] which are based on the kinematical
approach of Refs. [15, 16].

Parameterizing the eigenvalues in terms of the squared components of the (n − 1)-sphere,
enables the graphical representation of the entropy for n-state systems which, in turn, enables
the identification of isentropic curves. In the case of three states, these integral curves of the
von Neumann entropy indicate that the orbits of the adjoint representation of SU(3) must have
two labels. This immediately generalizes to n-dimensional systems which have n−2 dimensional
isentropic hypersurfaces. We believe the work here provides simple geometric constructions and
arguments which can be used very generally for a variety of applications.
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