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Abstract

This dissertation presents a measurement of forward–forward and forward–central dijet azimuthal angular

correlations and conditional yields in proton–proton (pp) and proton–lead (p+Pb) collisions as a probe

for possible gluon-density saturation in regions where the momentum fraction of a parton compared to a

nucleon in the lead nucleus is low. In these regions, gluon saturation can modify the rapidly increasing parton

distribution function of the gluon. The analysis utilizes 25 pb−1 of pp data and 360 µb−1 of p+Pb data, both

at
√
sNN = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The

measurement is performed in the center-of-mass frame of the nucleon–nucleon system in the center-of-mass

rapidity range between -4.0 and 4.0 using the two highest transverse momentum jets in each event. The

highest transverse momentum jet is restricted to the forward rapidity range where it is possible to probe

the region where the momentum fraction of a parton compared to a nucleon in the lead nucleus is low. No

significant broadening of azimuthal angular correlations is observed for forward–forward or forward–central

dijets in p+Pb compared to pp collisions within the uncertainties. The ratio of conditional yields of forward–

forward jet pairs in the proton-going direction in p+Pb collisions compared to pp collisions is suppressed by

approximately 20%, with no significant dependence on the transverse momentum of the dijets system. No

modification of conditional yields is observed for forward–central dijets.
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Chapter 1

Introduction

The fundamental properties of the matter surrounding us have always been of great interest to humankind.

The word atom dates back to ancient Greece, and the electron, a fundamental particle that plays an impor-

tant role in everyday life was discovered just 125 years ago by J.J Thompson. In recent years, technology

has allowed us to probe microscopic distances and study matter at an unprecedented level. To this day,

many new breakthroughs in the understanding of microscopic and macroscopic properties of matter have

been made.

The LHC, a particle collider in CERN, Switzerland, is currently the worlds most powerful machine for

probing the properties of known matter and carrying out searches for new forms of matter. It has contributed

to the recent discovery of the Higgs boson and to an improved understanding of physics at high energies. The

ATLAS detector is one of the largest instruments that measures collisions at the LHC and is the product of

thousands of collaborators from hundreds of institutions from around the world. The author of this thesis

is a member of the ATLAS collaboration, and had the privilege to use this wonderful machine to conduct

the study which will be presented in this thesis.

One of the fundamental building blocks of matter surrounding us is the proton, which like the electron,

is a well known particle to most readers. The properties and structure of the proton have attracted a lot

of attention over the years. While many of its macroscopic properties such as its mass, charge, and lifetime

are known to a precise degree, there remain many unanswered questions about its microscopic properties.

This dissertation will present a measurement probing into one of these unanswered questions - the behavior

of subatomic particles called partons at different energy regimes inside of the proton. More specifically, the

measurement will focus on studying a parton called the gluon, which is a particle that binds together partons

called quarks. These quarks and gluons, and the interactions between them, are currently described by a

globally recognized model called the Standard Model. The system of there quarks, held together by three

gluons, describes the simplest picture of the gluon. We will look at a more complex picture of the proton,

where present measurements are not able to explain the observation that there is an unrealistically large

(tending to infinity) amount of gluons seen in the proton at shorter timescales. This unphysical process has
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to stop at some point, and this is described by a phenomenon called saturation.

This dissertation is split into four chapters. Chapter 2 describes the experimental apparatus used through-

out this measurement. Chapter 3 gives a theoretical background that should help the reader understand the

measurement that will be presented in this thesis. Chapter 4 presents a brief overview of the qualification

work completed as a requirement for becoming a member of the ATLAS collaboration. Finally, Chapter 5

presents a detailed outline of the measurement along with its results.

In addition to carrying out this analysis into the structure of the proton. The author of this dissertation

contributed to the commissioning of a large area drift chamber for the COMPASS experiment at CERN.

The contributions included parts procurement, assembly, testing, and data acquisition for the detector. The

author also contributed to the simulation work, assembly, and data taking at beam tests for new ATLAS

zero degree calorimeter (ZDC) prototype.

I hope that you learn from, and enjoy reading this dissertation. Thank you.
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Chapter 2

Experimental Setup

2.1 LHC

The Large Hadron Collider (LHC) [1] was built by the European Organization for Nuclear Research (CERN)

and is located on the France-Switzerland border outside of Geneva. The LHC is designed to collide beams

of protons at a center of mass energy up to
√
s=14 TeV and beams of lead ions at a center-of-mass energy

per nucleon up to
√
sNN=8.16 TeV. It is the largest of many accelerators that constitute the the CERN

accelerator complex, pictured in Fig. 2.1.

Figure 2.1: The accelerator complex at CERN. ATLAS can be seen inside the SPS on the LHC ring. Figure
taken from Ref. [2]

During the LHC’s first operational data taking run, referred to as Run 1 (2009-2013), the first collisions

with stable beams were observed between protons and protons (pp), as well as protons with lead ions (p+Pb)

at center of mass energies of
√
s=8 TeV and

√
s
NN

=2.76 TeV, respectively. Center of mass energies for p+Pb

collisions were subsequently increased to
√
s
NN

=5.02 TeV in 2013. After an extended technical shutdown for
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upgrades following Run 1, the LHC was restarted for run Run 2, during which pp and p+Pb collisions with

stable beams were observed at center-of-mass energies of
√
s=13 TeV and

√
s
NN

=8.16 TeV, respectively.

The LHC is located in a tunnel at depths of 50 to 175 m underground. Originally, this tunnel was built for

the Large Electron-Proton Collider (LEP), an electron-proton collider that was operation from 1989-2000.

In the LHC, particle packets in high vacuum beam pipes going in opposite directions are accelerated by 8

radio frequency cavities (RF) which deliver voltages up to 2 MV at an oscillator frequency of 400 MHz. Each

26.7 km ring consists of eight arched sections with 616 dipole super-conducting magnets per beam, which

supply fields of up to 8.33 Tesla. An additional 196 beam focusing quadropole magnets per beam serve to

narrow the beam and increase luminosity. To supply such high magnetic fields, LHC magnets use super-fluid

helium and operate at temperatures down to 1.9 K while the RF cavities operate at temperatures down to

4.5 K.

Any proton or lead ion entering the LHC must go through the complex chain of accelerators shown in

Fig. 2.1. In order to be accelerated and focused in the beams, the proton and lead ions are required to

have a net positive charge. Thus, the hydrogen and lead atoms must be first stripped of the electrons in

their atomic shells. Positively charged protons are obtained by stripping atoms of hydrogen gas from their

electrons using an electric field. Positively charged lead ions are initially extracted from a source which

provides partially stripped lead ions with an average around Pb29+. These ions then go through a series of

pre-accelerators, seen at the bottom of Fig. 2.1, starting with the Linear Accelerator 3 (LINAC3) where they

are further stripped of electrons by passing through 3.0 µm of carbon foil. Next, a mass spectrometer selects

lead ions with an average Pb29+ to be fed into the Low Energy Ion Ring (LEIR). The protons, meanwhile,

begin their journey at the Linear Accelerator 2 (LINAC2). Both protons and lead ions then enter the next

phase of pre-accelerators which consist of the Proton Synchrotron (PS) and the Super Proton Synchrotron

(SPS), where they continue to be accelerated. The lead ions are completely stripped away of remaining

electrons at the exit of the PS, where they pass through 0.8 mm aluminum foil. The final stage is at the exit

of the SPS where the protons and lead ions enter the LHC for the final phase of acceleration before they are

collided.

Beams in the LHC consist of 2808 bunches of protons or lead ions with bunch spacing down to 25 ns (7.5

m). A proton bunch contains approximately 1.15x1011 protons while an ion bunch contains approximately

2.2x108 ions. These beams are brought to collide at four interaction points which can be seen along the

circumference of the LHC in Fig. 2.1. At these interaction points there are detectors present to analyze

the collisions: A Large Ion Collider Experiment (ALICE), A Toroidal LHC Apparatus (ATLAS), Compact

Muon Solenoid (CMS), and the Large Hadron Collider Beauty (LHCb).
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2.2 ATLAS Experiment

Figure 2.2: The ATLAS detector. Figure taken from Ref. [3].

The ATLAS detector [3], shown in Fig. 2.2 is one of the two larger detectors on the LHC and is located

at interaction point 1 (IP1) on the LHC ring1 It is designed to perform measurements of Standard Model

physics, including the search for the Higgs boson, and search for physics beyond the Standard Model.

Although ATLAS is primarily a detector used to measure pp collisions, it has also been used to study Heavy

Ion physics with much higher nuclear collision energies and much larger particle multiplicities compared to

pp collision.

The ATLAS detector consists of four main parts, or sub-detectors. The closest part to the interaction

point is the Inner Detector (ID), which is placed close to the IP and is used to measure charged particle tracks.

The ID is inside a 2 Tesla solenoidal magnetic field, which causes charged particles to curve, allowing their

momentum to be measured. Outside of the ID are the electromagnetic (EM) and hadronic calorimeters.

These give energy measurements and are the primary detectors for the analysis presented in this thesis.

The fourth and outermost part is the muon spectrometer which is placed inside a toroidal field provided

by eight toroid magnets. The muon system is the outermost part of the detector because due to their

weakly interacting nature, muons are one of the only particles which pass through the calorimeters. All of

the ATLAS sub-detectors have full 2π azimuthal coverage and different pseudorapidity coverages shown in

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y axis
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam
pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units

of ∆R ≡
√

(∆η)2 + (∆φ)2. Rapidity is defined in terms of energy and momentum of a particle or jet as y = 1
2
ln(E+pz

E−pz
). The

rapidity with center-of-mass frame boost accounted for is denoted y∗.
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Figure 2.3: ATLAS detector pseudorapidity coverage. All components cover 2π in azimuth.

Fig. 2.3. A detailed description of the ATLAS detector and it’s subsystems can be found in [3].

2.2.1 ATLAS Trigger System

In order to select events during data-taking, a complex hardware and software system called the trigger

is required. It relies on many detector subsystems to flag events based on a set of rules that are defined

prior to each run. A two-level trigger system was used to select the pp and p+Pb collisions analyzed

for the measurement presented in this thesis. The first, the hardware-based trigger stage Level-1 (L1), is

implemented with custom electronics. The second level is the software-based High Level Trigger (HLT). The

HLT consists of the Level-2 (L2) trigger, followed by the event filter (EF). The ATLAS trigger was designed

for a collision rate of 40 MHz, with the L1 trigger designed to reduce the rate to 75 kHz, and the HLT

to perform a final reduction to about 200 Hz, which is the final even rate written to disk. A schematic of

the ATLAS trigger and data acquisition systems can be seen in Fig. 2.4. Some triggers selecting minimum-

bias (MB) events used the minimum-bias trigger scintillator detectors (MBTS). The MBTS detect charged

particles over 2.1 < |η| < 3.9 using two segmented counters placed at z = ±3.6 m. Each counter provides

measurements of both the pulse heights and the arrival times of ionization energy deposits [3].

Some triggers can be prescaled, meaning that not every event meeting the requirements of a particular

trigger is saved to disk. If a trigger with prescale cp is saved n times, this corresponds to cpn events passing

through the HLT. The decision of what prescale to assign to a trigger is very complicated. Various physics

analysis groups have different requirements, but unfortunately not all data from a run can be saved due to

technical limitations. Depending on the physics goals of a particular run, the trigger menu, which assigns

the triggers and their respective prescales, will change. The UIUC ATLAS group has been responsible for

the trigger system operation in all of the heavy ion runs since 2015.
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Figure 2.4: A schematic (left) of the ATLAS trigger and data acquisition systems, and the L1 hardware
trigger (right). The total event rate of about 40 MHz is reduced by the L1 trigger to about 75 kHz, and
further reduced to 200 Hz by the HLT (L2 + EF) trigger.Figure taken from Ref. [3].

2.2.2 Calorimetery

The ATLAS calorimeter system [3] is the main system used for the present analysis, a picture of this system

is shown in Fig. 2.5. The calorimeters are of sampling and non-compensating nature with a pseudorapidity

coverage of |η| < 4.9. The non-compensating nature gives a different response on the EM and hadronic

scales, and this is corrected in the calibration procedure. A sampling calorimeter is one where two distinctly

different materials are chosen, one to produce a particle shower, and the other to measure the deposited

energy.

There are two different sampling technologies used in the ATLAS calorimeter system. One technology is

where liquid argon (LAr) is interspaced with lead, which acts as the absorber material. This is used in all

of the ATLAS EM systems - the electromagnetic barrel (EMB), electromagnetic end-cap (EMEC), forward

calorimeter (FCal), as well as the hadronic end-cap (HEC). Shower development starts in the absorber, and

due to moving electrons and ions from ionization in the active material (LAr), a signal can be read out

from induced charge on copper electrodes. The LAr gap is subject to a high voltage electric field in order

7



Figure 2.5: The ATLAS calorimeter system. Figure taken from Ref. [3].

to direct the ionized electrons and ions to the electrodes in a predictable way. The second technology, used

in the hadronic tile calorimeters (TileCal), uses absorber material interspaced with plastic scintillator. The

readout is different from the LAr case since scintillation light converted by wavelength shifting fibers and

transported to photomultipliers instead of reading induced charge from ionization in LAr.

EM Calorimeters

The ATLAS LAr electromagnetic calorimeter as chosen to have have an accordion geometry to minimize

capacitance in the detecting elements. It is split into a barrel part covering |η| < 1.475, and two end-

caps covering 1.375 < |η| < 3.2. The accordion design allows modules to have multiple layers in depth,

with varying granularity (∆η × ∆φ). Layouts of segments from the barrel and end-cap EM calorimeters

are shown in Fig. 2.6. A detailed sketch of a barrel EM module and its constituent layers is shown in

Fig. 2.7. All components are placed into cryostats at a temperature of approximately 86◦ K [4]. The

design and size of the EM calorimeter provides a total thickness of at least 22 radiation lengths (X0). One

X0 represents the average distance an electron must travel through a material to reduce its energy to 1/e

of its initial energy [5]. The cumulative thickness of the calorimeter system can be seen as a function of

pseudorapidity in Fig. 2.8. All EM calorimeter systems were designed and tested to have an energy resolution

of σ(ET )/ET = 10%/
√
ET
⊕

0.7%.

A typical pulse in the LAr calorimeter originates from ionization electrons in the LAr gap. An electric
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Figure 2.6: Layouts of a barrel EM module (top), inner end-cap wheel (bottom left), and outer end-cap
wheel (bottom right). Figure taken from Ref. [3].

field inside the gap collects the electrons and an ionization pulse is then read out and shaped. An ionization

pulse is triangular in shape has a width of ∼450 ns [6], as can be seen in Fig. 2.9. The final pulse that is

digitized has a width between 450 and 600 ns after shaping. This corresponds to roughly 18 to 24 LHC

bunch crossings. During this time, there could be contributions from out-of-time events (pile-up), and

various techniques such as optimal filtering [7] have been developed to minimize contributions from pile-up.

EM Barrel Calorimeter

The EM barrel, covering |η| < 1.475, consists of two half-barrels, each 3.2 meters long and weighing 57 tons.

It has an inner and outer diameter of 2.8 m and 4.0 m, respectively. The calorimeter is comprised of three

layers, with a thickness of at least 22 X0 increasing to from 22 to 30 X0 in the interval 0 < |η| < 0.8, and

from 24 to 33 X0 in the interval 0.8 < |η| < 1.3, as seen in Fig. 2.8. In front of these three layers is a LAr

presampler which is intended to recover energy lost to material in front of the EMCal. The granularity of the

EM barrel calorimeter’s first layer is ∆η ×∆φ = 0.025× 0.025 in order to be able to perform shower shape

measurements and to distinguish pairs of γ from π0 decays with pairs of γ from H decay. The granularity

of the presampler is ∆η ×∆φ = 0.025× 0.1.

EM End-cap Calorimeter

The EM end-cap calorimeter, covering 1.375 < |η| < 3.2, consists of two wheels on each side of the EM barrel

calorimeter, each 63 cm thick, with a weight of 27 tons. Each wheel of the EM end-cap calorimeter consists
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Figure 2.7: Sketch of a barrel EM module showing the different layers and their respective granularities.
Radiation length (X0) is the average distance an electron must travel through a given material to reduce its
energy to 1/e of its initial energy. Trigger towers are sets of cells (strip or square) from which analog signals
are summed for input to the L1 trigger. Figure taken from Ref. [3].

of 32 identical azimuthal sectors. Similar to the EM barrel calorimeter, the barrel end-cap calorimeter

consists of three layers. It has a total thickness of at least 24 X0 increasing from 24 to 38 X0 on the outer

wheel (1.475 < |η| < 2.5), and from 26 to 36 X0 on the inner wheel (2.5 < |η| < 3.2). Similar to the EM

barrel calorimeter, the granularity of the first layer is ∆η ×∆φ = 0.025 × 0.025 and the granularity of the

presampler is ∆η ×∆φ = 0.025× 0.1.

Hadronic Calorimeters

The hadronic calorimeters surround the EM calorimeters and are designed to measure the energy deposited

from hadrons and hadronic showers that passed through the EM calorimeters. Characteristic distance for

hadronic calorimeters is described by the nuclear interaction length λI , which is the hadronic equivalent

to a radiation length. For the EM calorimeter system, λI is small, requiring hadronic calorimeters to

have sufficiently larger thicknesses in order to fully contain hadronic showers. The hadronic calorimeter is

composed of the Tile barrel calorimeter with a coverage |η| < 0.8, the Tile extended barrel with a coverage
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Figure 2.8: Cumulative thickness, in units of radiation length X0 and as a function of |η|, in front of (yellow
distribution) and in the electromagnetic calorimeters. Shown separately are the amounts of radiation in the
various layers of the barrel (left) and end-cap (right) EM calorimeters. Figure taken from Ref. [3].

0.8 < |η| < 1.7, and the HEC with a coverage 1.5 < |η| < 3.2. Both Tile systems use steel as an absorber,

with scintillator as the active material. The particle shower begins in the absorber, and scintillation light

then gets transported through the wavelength shifting fiber into photomultiplier tubes where the signal is

read out. The HEC is based on the same LAr technology used in the EM calorimeters, but uses copper,

instead of lead, for the absorber material. Total interaction lengths of the ATLAS calorimeter system as a

function of pseudorapidity are summarized in Fig. 2.10. Both TileCal and HEC calorimeters have an energy

resolution of σ(ET )/ET = 50%/
√
ET
⊕

3%.

Tile Barrel and Extended Barrel Calorimeters

The Tile barrel and extended barrel calorimeters cover |η| < 0.8 and 0.8 < |η| < 1.7 respectively. The tile

barrel calorimeter is 5.8 m long, the two tile extended barrels are each 2.6 m in length. Both the tile barrel

and extended barrel calorimeters have an inner and outer diameter of 2.28 m and 4.25 m, respectively. They

is composed of three layers with granularity of ∆η×∆φ = 0.1×0.1 for the first two layers, and the outermost

layer with granularity ∆η×∆φ = 0.2× 0.1. Each barrel consists of 64 modules roughly ∆φ = 0.1 in size. A

schematic showing a TileCal module is shown in Fig. 2.11.

LAr Hadronic End-Cap Calorimeter

The HEC calorimter is based the LAr technology used in the EM calorimter systems. The absorber material

is copper, and the active material is LAr. The HEC covers a pseudorapidity region of 1.5 < |η| < 3.2. The

two barrels of the HEC each contain 32 modules symmetric in azimuth, with an outer radius of 2030 mm.

The first two layers of the HEC have a granularity ∆η ×∆φ = 0.1× 0.1, while the last layer has a courser
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Figure 2.9: Amplitude versus time plot of a LAr calorimeter pulse before shaping (triangular). The shaped
pulse is sampled every 25 ns, as indicated by the periodic points. The sampling frequency corresponds to
the LHC bunch crossing frequency of 25 ns. Figure taken from Ref. [3].

granularity of ∆η ×∆φ = 0.2× 0.2.

Forward Calorimeter

The forward calorimeter is an important sub-system in the present analysis due to its forward pseudorapidity

coverage. The calorimeter is comprised of two halves located on either side of the ATLAS detector IP,

surrounded by the HEC. It covers a pseudorapidity range of 3.2 < |η| < 4.9, and has a granularity of

∆η × ∆φ = 0.2 × 0.2. While the other EM calorimeter systems use an accordion design, the forward

calorimeter has electrodes oriented parallel to the beamline (z-axis) which consist of thin tubes of copper

with a gap for LAr that surround rods of absorber material. These tubes are located inside the same kind

of absorber material. The LAr gap is thin, about 0.25 mm in the first module, in order to increase readout

time and decrease noise from ion buildup.

Each FCal is composed of three modules, as shown in the y − z plane in Fig. 2.12. The first of three

modules (FCal1) is the EM module and uses copper as the absorber. The last two hadronic modules (FCal2,

FCal3) use tungsten as the absorber. FCal1 uses copper plates that are stacked one behind the other.

These plates have 12,260 drilled holes to make space for the electrodes, which are rods made from absorber

material coaxial to a thin surrounding LAr layer with precision, radiation-hard plastic fiber used for readout.

A schematic of first layer of the calorimeter as it appears in the x − y plane, perpendicular to the beam
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Figure 2.12: Diagram showing the three modules of the FCal. Shown in the y − z plane, with the beam
going in the z direction. The FCal is the most forward calorimeter in ATLAS, covering a pseudorapidity
interval 3.2 < |η| < 4.9. Figure taken from Ref. [3].
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Figure 2.13: View of first FCal module (EM) as seen along the z-axis (left). Tubes of LAr inside absorber
material. Shown is one Moliere radius RM , which is the radius of a cylinder that would contain 90% of
the radiation inside a calorimeter. A schematic of the tungsten rods, enclosed in copper and a LAr gap,
all surrounded by tungsten slugs (right). The design is used for the two hadronic FCal modules FCal2 and
FCal3. Figures taken from Ref. [3].
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Figure 2.14: The ATLAS magnet system. Shown is the cylindrical solenoid magnet, as well as the eight
barrel toroid magnets used for muon detection. Figure taken from Ref. [3].

direction, showing the tubes of LAr inside the absorber material, is shown in the left of Fig. 2.13. Signal

is read out from ionized charges in the LAr that travel to electrodes which run parallel to the tubes. The

hadronic modules FCal2 and FCal3 require large interaction lengths, which is why tungsten is chosen as

the absorber material, rather than copper as in FCal1. The modules consist of two copper plates, 2.35 cm

thick, that have many tungsten rods, coaxial to copper tubes with a LAr gap, enclosed in tungsten slugs,

as shown in right of Fig. 2.13. These modules give a total of 10 λI interaction lengths. The FCal has an

energy resolution of σ(ET )/ET = 100%/
√
ET
⊕

10%.

2.2.3 Solenoid Magnet

The magnet system, shown in Figure 2.14 has an overall dimension of 22 m in dameter and 26 m in length.

It stores a total energy of 1.6 GJ and consists of a barrel solenid magnet, and toroidal magnets used by the

muon system. The toroidal magnets are not used in the present analysis. The solenoid magnet, which is

used by the inner detector tracker, provides a 2 T axial field which is supplied by a 7.73 kA current. NbTi

is used as a conductor and is supercooled by a LAr cryostat temperatures down to 4.5 K.

2.2.4 Inner Detector

The ATLAS Inner Detector (ID) is responsible for tracking, which is the precise determination of the position

of charged particles. In an average collision there can be thousands of particles, which, in in the presence

of a magnetic field, will curve. If their positions are well known and can be distinguished, the particles

momentum can be calculated. The ID is designed to provide precision tracking for particles above a pT
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Figure 2.15: Cut-away picture (left) and schematic (right) of the ATLAS Inner Detector. Figures taken
from Ref. [3].

threshold of 0.5 GeV, although some studies have had similar performance with particle pT as low as 0.1

GeV. The ID is designed to have a transverse momentum resolution of σ(pT)/pT = 0.05%/
√
ET
⊕

1%.

Tracking is a very important part of every high energy particle detector, and is usually placed closest to the

interaction point of a detector. A cut-away and schematic of the ID is shown in Fig. 2.15. The detector

sits inside the 2T magnetic field produced by the solenoid. The ID has a rapidity coverage of |η| < 2.5 and

has an outer radius of 1.15 m. There are there main subsystems that comprise the ID, listed outwards from

the beam pipe: the pixel detectors, the semiconductor tracker (SCT), and the transitional radiation tracker

(TRT).

The pixel layer has the highest granularity out of the ATLAS tracking subsystems. There is a barrel layer

and two end-cap layers, one on each side of the IP. The barrel detector has three concentric layers located

50.5mm, 88.5mm, and 122.5 mm radially away from the beam pipe. The end-caps also have three layers

located 495mm, 580mm, and 650mm in the transverse direction on each side of the interaction point. All of

the pixel subsystems have a granularity of 50x400 µm2 and total approximately 80 million readout channels.

The SCT has roughly 6.3 million channels and consists of four concentric barrel layers, and nine disks on

each side of the IP. The accuracy of the barrel and end-cap regions is 17 µm in the (Rφ) plane and 580 µm

in the radial direction. The TRT, which is a drift tube (straw) detector, is the outermost tracking layer of

the ID. It has a total of approximately 351,000 channels (one per straw) and an accuracy of 130 µm per

straw tube. However, during HI running, the occupancy in the TRT is usually too large to use effectively.
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Chapter 3

Theoretical Introduction

3.1 Quantum Chromo-Dynamics

Quantum Chromo-Dynamics (QCD) is a relativistic non-abelian gauge theory, with symmetry group SU(3),

which describes the strong interaction between quarks and gluons. Quarks are charged subatomic particles

that are the fundamental constituents of matter and gluons are gauge bosons that are mediators of the

strong interaction between quarks. In its form, QCD appears similar to QED [8], however, since the gluons

of the strong force carry color charge, solutions to the QCD Lagrangian become more complicated. The

QCD Lagrangian [9] is

L = ψ̄i(iγ
µ∂µ −mi)ψi − gψ̄iγµtaijAaµψj −

1

4
Fµνa F aµν , (3.1)

where ψ is the spin-1/2 quark field (quark), mi is the quark mass, AAα is the spin-1 gluon field (gluon),

taij is a generator from the fundamental representation of the SU(3) group which describes the interactions

between quark and gluon fields. The field strength tensor Fµνa is derived from AAα ,

F aµν =
[
∂µAaν − ∂νAaµ − gfabcAbµAcν

]
(3.2)

where the indices a, b, and c sum over the eight color degrees of freedom of the gluon field and fabc

are the structure constants of the SU(3) color group. The term g =
√

4παS is related to the strong force

coupling constant αS .

In 3.1, the left-most term, ψ̄i(iγ
µ∂µ−mi)ψi, is the Dirac equation describing a free particle. To account

for interactions with the field, additional terms are present. The middle term, gψ̄iγ
µtaijAaµψj , describes the

coupling between quarks and gluons, and the last part of the Lagrangian, 1
4F

µν
a F aµν , is the kinetic term from

the gluon field.

The third term, fabcAbµAcν , in the field strength tensor Fµνa , is the non-abelian term that distinguishes

QCD from QED. This gives raise to three- and four-point gluon vertices, resulting in the three basic vertices
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Figure 3.1: Strong force coupling constant αS(Q2), which decreases with increasing four-momentum transfer
Q =

√
|q2|. Figure taken from Ref. [10].

of QCD, shown in Figure 3.2.

A consequence of gluon self interactions in QCD is the fundamental property of asymptotic freedom:

the fact that the strong force coupling constant αS(Q2) decreases with increasing energy scales, or by the

uncertainty principle, smaller distances. The four-momentum transfer Q =
√
|q2|, where q is the four

momentum of a virtual particle responsible for an interaction, determines the energy and distance scales

(d ∼ 1/Q) probed. Asymptotic freedom also explains the interpretation that quarks and gluons are point-like

particles since the distances probed inside the proton can be arbitrarily small. The behavior of αS at larger

distances, or smaller energies shows a rapid increase in the coupling between quarks and gluons. A direct

q q

g g

g g g g

g g

Figure 3.2: Three types of QCD vertices: the basic quark-gluon QCD vertex (left), three-gluon self interaction
(center), and four-gluon self interaction (right).
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consequence of this is that particles which interact via the strong force are highly confined: they cannot exist

freely at macroscopic distances. Only color singlet states - quark-antiquark pairs (mesons) and three quark

states (baryons) exist stably [8]. The behavior of αS is shown from various measurements as a function of

four-momentum transfer Q in Fig. 3.1.

There have been several techniques developed for performing QCD calculations. The two established

methods are perturbative QCD (pQCD) [11] and lattice QCD [12]. Lattice QCD is used predominantly for

calculations at lower energies where Q2 is small and αS is large. These calculations are performed below the

characteristic QCD scale λQCD ∼ 200 MeV, where αS ∼ 1. Lattice QCD calculations have been successful in

describing experimental data on the properties of nucleons, such as their mass mass [13]. Additionally, these

computationally intensive calculations support experimental evidence of a new state of matter that exists at

high temperatures and densities called the Quark Gluon Plasma (QGP) [14, 15, 16, 17, 18]. If the Q2 of a

system is above λQCD, meaning αS is sufficiently small, pQCD calculations can be used because an order-by-

order expansion of the Lagrangian in powers of αS is appropriate. In this high Q2 regime, individual quarks

or gluons in the nucleus can be resolved. Whereas, in the low Q2 regime, where lattice QCD calculations

are used, only individual nucleons and not their constituents can be observed. The measurement presented

in this dissertation will rely on tools that were developed to work at energy scales where pQCD calculations

can be used.

�

P k+q
k

electron
l

l’

q

proton
X

e
e’

Figure 3.3: The DIS process that takes place in e±p collisions with an exchange via a virtual photon γ∗.
Figure taken from Ref. [19].
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3.2 Deep Inelastic Scattering

The proton, the fundamental building block of nuclear matter in nature, is a fermion with one positive

unit of electric charge, a spin of 1/2h̄. However, much more has been discovered about its fundamental

properties and constituents in recent years. Almost half a decade ago the so called naive parton model [20,

21] of the proton was proposed: the proton was made out of non-interacting point-like constituents called

partons, which were thought to be charged fermions, possibly bound together by some other neutral particles.

This model was first supported by evidence from through lepton-nucleon Deep Inelastic Scattering (DIS)

experiments from the SLAC-MIT collaboration [22]. Commonly, this was done with an electron and a

proton, with incoming four-momenta e and P , respectively, and a virtual photon with four-momentum q

acting as the exchange particle. This process, ep→ eX, where X are the remnants of the proton, is shown in

Fig. 3.3. From these quantities, we define two important variables in DIS, the first is the proton longitudinal

momentum fraction carried by its constituent parton, Bjorken-x:

x =
Q2

2P · q =
Q2

2Mν
, (3.3)

where ν is the energy of the virtual photon in the proton rest frame. The second variable is the lepton

momentum fraction transferred to the proton:

y =
P · q
P · e =

ν

E
, (3.4)

where E is the energy of the lepton in the proton rest frame. The resolving power of the photon goes as

R2 ∼ 1/Q2, meaning that for the proton, with a proton radius of Rp ∼ 8 fm, if Q2 ≡ −q2 � 1 (GeV/c)2, the

photon will interact elastically with the proton nucleus as a whole. If Q2 ≡ −q2 � 1 (GeV/c)2, the photon

will interact inelastically with the proton, and will probe its individual constituents, partons. This inelastic

scattering regime, where energy is transferred from the photon to the proton, Q2 � 1/R2
p ∼ 1(GeV/c)2

corresponds to Q2 � m2
p, where mp ∼ 1(GeV/c)2 is the proton mass. This puts a minimum requirement on

Q2 to effectively disassemble the proton and is the region of phase-space where DIS occurs. This is usually

named as the boundary to the inelastic scattering regime. However, to avoid the creation of purely resonant

states, a second criteria is often the energy of the hadronic final state. Thus, in some QCD global analysis,

Q2 > 4 GeV is chosen as the boundary.

The sub-structure of hadrons in DIS can be parameterized by so called structure functions F1(x,Q2)

and F2(x,Q2) [23], which are distribution functions describing the structure of a baryon. Using a linear

combination of the two structure functions
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FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2), (3.5)

the DIS cross section can be parameterized as

d2σ

dx dQ2 =
2παS

2

xQ4

[
(1 + (1− y)2)F2(x,Q2)− y2FL(x,Q2)

]
. (3.6)

As introduced above y is the fractional energy loss of the lepton and is usually small in most of the

kinematic plane. The majority of experiments impose a cut of y < 0.8 to keep QED radiative corrections

small. As a result, FL can be neglected leaving only the contribution from F2. In fact, the structure function

FL is only measured where Q2 is close the so called kinamtic limit [8], which is Q2 < (p+ l)2.

3.3 Parton Distribution Functions

The DIS interaction through a photon, which does not couple to gluons, first assumed that the F2 structure

function purely described quark distributions. In the naive parton model, the point-like nature of the proton

constituents implied there is no cutoff on the distances that can be probed, meaning there should not be

a dependence on Q2. This meant that the F2 structure function can be rewritten with no Q2 dependence

purely as the sum over flavors of quark and antiquark parton distribution functions (PDFs) qi(x) and q̄i(x)

F2(x,Q2) ∼ F2(x) =
∑

i

ei
(
xqi(x) + xq̄i(x)

)
, (3.7)

where ei is their respective charge. The PDFs are probability density functions representing the prob-

ability of finding a quark with flavor i having a longitudinal momentum fraction x and x + dx. Therefore,

xqi(x) is the number of quarks with flavor i that have a longitudinal momentum fraction x between x and

x + dx. The results of F2 structure function data are shown in Fig. 3.4 [24, 25, 26, 1, 27], where a lack of

Q2 dependence, called Bjorken scaling [28], is seen for x > 0.1. However, experiments that probed lower x

saw a non-linearity, or a scaling violation, of F2 with changing Q2.

The linearity of the F2 structure function was proposed based on the assumption that protons constituents

are non-interacting. This ignores QCD radiative processes, the process in which quarks interact with and

radiate gluons. Probing the proton at low energies, the picture is one of three partons - two up quarks and

a down quark as shown on the left of Fig. 3.5. These so called valence quarks are strongly interacting and

are held together by gluons. However, at smaller distances and shorter timescales, the picture of the proton
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Figure 3.4: Summary of F2 structure function data plotted as a function of Q2 for different values of x.
Figure taken from Ref. [10]
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Figure 3.5: A simple picture of the proton, with three quarks connected by three gluons (left). At shorter
timescales, quantum fluctuations exist and the proton picture becomes more complex (right).
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Fig. 11: Left: the 1/x–evolution of the gluon, sea quark, and valence quark distributions for Q2 = 10 GeV2, as
measured at HERA (combined H1 and ZEUS analysis [4]). Note that the gluon and sea quark distributions have
been reduced by a factor of 20 to fit inside the figure. Right: the ‘phase–diagram’ for parton evolution in QCD;
each coloured blob represents a parton with transverse area ∆x⊥ ∼ 1/Q2 and longitudinal momentum kz = xP .
The straight line lnQ2

s(x) = λY is the saturation line, cf. Eq. (25), which separates the dense and dilute regimes.

This growth is indeed seen in the data: e.g., the HERA data for DIS confirm that the proton
wavefunction at x < 0.01 is totally dominated by gluons (see Fig. 11 left). However, on physical
grounds, such a rapid increase in the gluon distribution cannot go on for ever (that is, down to arbitrarily
small values of x). Indeed, the BFKL equation is linear — it assumes that the radiated gluons do not
interact with each other, like in the conventional parton picture. While such an assumption is perfectly
legitimate in the context of theQ2–evolution, which proceeds towards increasing diluteness, it eventually
breaks down in the context of the Y –evolution, which leads to a larger and larger gluon density. As long
as the gluon occupation number (17) is small, n � 1, the system is dilute and the mutual interactions
of the gluons are negligible. When n ∼ O(1), the gluons start overlapping, but their interactions are
still weak, since suppressed by αs � 1. The effect of these interactions becomes of order one only
when n is as large as n ∼ O(1/αs). When this happens, non–linear effects (to be shortly described)
become important and stop the further growth of the gluon distribution. This phenomenon is known as
gluon saturation [5–7]. An important consequence of it is to introduce a new transverse–momentum
scale in the problem, the saturation momentumQs(x), which is determined by Eq. (17) together with the
condition that n ∼ 1/αs :

n
(
x,Q2 = Q2

s(x)
)
∼ 1

αs
=⇒ Q2

s(x) ' αs
xg
(
x,Q2

s(x)
)

R2
. (23)

Except for the factor αs, the r.h.s. of Eq. (23) is recognized as the density of gluons per unit transverse
area, for gluons localized within an area Σ ∼ 1/Q2

s(x) set by the saturation scale. Gluons with k⊥ ≤
Qs(x) are at saturation: the corresponding occupation numbers are large, n ∼ 1/αs, but do not grow
anymore when further decreasing x. Gluons with k⊥ � Qs(x) are still in a dilute regime: the occupation
numbers are relatively small n � 1/αs, but rapidly increasing with 1/x via the BFKL evolution. The
separation between the saturation (or dense, or CGC) regime and the dilute regime is provided by the
saturation line in Fig. 11 right, to be further discussed below.

The microscopic interpretation of Eq. (23) can be understood with reference to Fig. 12 (left) :
gluons which have similar values of x (and hence overlap in the longitudinal direction) and which occupy
a same area∼ 1/Q2 in the transverse plane can recombine with each other, with a cross–section σgg→g '
αs/Q

2. After taking also this effect into account, the change in the gluon distribution in one step of the

18

Figure 3.6: Schematic showing the BFLK evolution in ln(1/x) and DGLAP evolution in ln(Q2) (left figure).
The saturation scale QS is represented by the diagonal line.

becomes more complicated, as seen on the right of Fig. 3.5. In this regime, gluons can be seen splitting into

short lived quark-antiquark pairs (sea quarks), or into gluon-gluon pairs. Additionally, it was found that

the total momentum contribution of all quarks inside the proton, when the quark PDFs are integrated over

a wide range of x, was roughly 50% [9]. All this information strongly suggested the possibility that gluons

carry a significant momentum fraction of the proton, depending on the x and Q2 of the interaction. The

inclusion of gluons into the nucleus wavefunction is what gave rise to the scaling violation seen in the various

experiments at lower-x. As a result, the PDFs for quarks and gluons have to be expressed as a function of x

and Q2: qi(x,Q
2) for quarks and gi(x,Q

2) for gluons. This new picture of the proton is is sometimes called

the improved parton model or just the parton model, for brevity.

In the regime where pQCD can be used (αS > λQCD), techniques have been developed to describe

the evolution of PDFs both with x and Q2. The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [29, 30, 31, 32] describe the evolution of PDFs at as a function of ln(Q2), at a fixed x. The other

set of equations, describing the PDF dependence on ln(1/x) at fixed Q2, are the Balitsky-Fadin-Kuraev-

Lipatov (BFKL) evolution equations [33, 34, 35, 36]. These sets of equations describing the evolution of

parton densities in Q2 and x are considered to be the most fundamental equations in pQCD. The BFLK

equation will be of particular interest to this thesis because of its role in evolving PDFs to low-x. A schematic

representation of the BFLK and DGLAP evolutions in the ln(1/x) vs ln(Q2) phase-space is shown in 3.6.

Over time, global QCD analysis of structure functions in deep inelastic lepton-nucleon scattering at

HERA, as well as jet and hadron cross sections at the LHC, Tevatron, and RHIC were performed in a

wide kinematic range, providing several new sets of PDFs with the highest degree of precision reached so

far [38, 39, 40, 37]. Examples of quark and gluon PDFs from DIS experiments at different Q2 from the

23



0.2

0.4

0.6

0.8

1

-410 -310 -210 -110 1

HERAPDF2.0 NLO 

HERAPDF2.0HiQ2 NLO 

HERAPDF2.0 NLO 

HERAPDF2.0HiQ2 NLO 

x

xf
2= 10 GeV2

f
µ

vxu

vxd
 0.05)×xS (

 0.05)×xg (

H1 and ZEUS

0.5

1

1.5

2

2.5

-410 -310 -210 -110 1

HERAPDF2.0 NLO 

HERAPDF2.0HiQ2 NLO 

HERAPDF2.0 NLO 

HERAPDF2.0HiQ2 NLO 

x

xf

2= 10000 GeV2
f

µ

vxu

vxd

 0.05)×xS (

 0.05)×xg (

H1 and ZEUS

Figure 3.7: PDFs obtained at different Q2 by the H1 and ZEUS collaborations. The gluon PDFs are scaled
so they would fit on the plots with the quark PDFs. Note that the observable plotted is xqi(x,Q

2). Figure
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H1 and ZEUS collaborations are shown in Fig. 3.7. These global QCD analyses show that the g(x,Q2)

found to rise rapidly at small x in the proton. The rapidly increasing g(x,Q2) at x � 1 is explained

by gluon radiation (bremsstrahlung) of soft gluons, where a parton with high-x collinearly emits a gluon

with an x1 � 1 and with small pT. This process is shown in Fig. 3.8 where a soft gluon radiates a softer

gluon and this continues with a probability ∝ ln(1/x) at each step via the BFLK evolution. Naturally,

the momentum fraction x carried by some intermediate gluon in this cascade is smaller than that of its

predecessors (x � xn � xn−1 � ... � x2 � x1). This divergent behavior of g(x,Q2) means that at small

enough x, the number of gluons xg(x,Q2) will tend to infinity. However, unitarity requires that the first

moment of the gluon momentum distribution remains finite. Therefore, the steep rise at low-x must change

at some x value; this possible phenomenon is known as saturation [41]. Presently it is believed that the

mechanism for saturation is gluon recombination (g+g → g), which is expected to happen at the saturation

scale Qs(x) when the gluon wavefunctions begin to overlap due to very high gluon densities [42]. Gluons

with pT < QS are said to be at saturation since their densities do not grow anymore. The phenomenon of

saturation, which is the main focus of this thesis, will be discussed in more detail later in this chapter. First,

it is informative to learn about some of the tools that can possibly be used to probe this effect.
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Fig. 10: Gluon cascades produced by the high–energy (BFKL) evolution of the proton wavefunction.

gluon obeys x� x1 � 1 provides a contribution of relative order

αsNc

π

∫ 1

x

dx1

x1
= ᾱs ln

1

x
, ᾱs ≡

αsNc

π
. (20)

When ᾱs ln(1/x) ∼ 1, this becomes of O(1), meaning that this two–gluon diagram contributes on the
same footing as the single gluon emission in Fig. 8. A similar conclusion holds for a diagram involving n
intermediate gluons strongly ordered in x, cf. Fig. 10 right, which yields a relative contribution of order

ᾱns

∫ 1

x

dxn
xn

∫ 1

xn

dxn−1

xn−1
· · ·
∫ 1

x2

dx1

x1
=

1

n!

(
ᾱs ln

1

x

)n
. (21)

When ᾱs ln(1/x) & 1, the correct result for the gluon distribution at leading order is obtained by sum-
ming contributions from all such ladders. As clear from Eq. (21), this sum exponentiates, modifying the
integrand of Eq. (19) into

x
dNg

dxdk2
⊥
∼ αsCF

π

1

k2
⊥

eωᾱsY , Y ≡ ln
1

x
, (22)

where ω is a number of order unity which cannot be determined via such simple arguments. The variable
Y is the rapidity difference between the final gluon and the original valence quark and it is often simply
referred to as ‘the rapidity’. The quantity in the l.h.s. of Eq. (22) is the number of gluons per unit rapidity
and with a given value k⊥ for the transverse momentum, a.k.a. the unintegrated gluon distribution2.

To go beyond this simple power counting argument, one must treat more accurately the kinematics
of the ladder diagrams and include the associated virtual corrections. The result is the BFKL equation
(from Balitsky, Fadin, Kuraev, and Lipatov) [3] for the evolution of the unintegrated gluon distribution
with Y . The solution of this equation, which resums perturbative corrections (ᾱsY )n to all orders,
confirms the exponential increase in Eq. (22), albeit with a k⊥–dependent exponent and modifications to
the k−2

⊥ –spectrum of the emitted gluons.

An important property of the BFKL ladder is its coherence in time : the lifetime of a parton being
proportional to its value of x, ∆t ' 2kz/k

2
⊥ ∝ x, cf. Eq. (5), the ‘slow’ gluons at the lower end of the

cascade have a much shorter lifetime than the preceding ‘fast’ gluons. Therefore, for the purposes of
small–x dynamics, fast gluons with x′ � x act as frozen colour sources emitting gluons at the scale x.
Because these sources may overlap in the transverse plane, their colour charges add coherently, giving
rise to a large colour charge density. The average colour charge density is zero by gauge symmetry
but fluctuations in the colour charge density — as measured in particular by the unintegrated gluon
distribution — are nonzero and increase rapidly with 1/x, cf. Eq. (22).

2The occupation number (17) is more correctly defined as the unintegrated gluon distribution per unit transverse area:
n(Y,k⊥) = dNg/(dY d2k⊥d2b⊥) where b⊥ (the ‘impact parameter’) is the transverse position of a gluon with respect to the
center of the hadron.

17

Figure 3.8: Graphic representation of BFKL evolution leading to high gluon densities at low-x. Figure
taken from Ref. [19].

3.4 Hadronic Collisions and Jets

The DIS experiments successfully showed the scaling violation of the linearity of F2 with Q2 with smaller-x

and provided precise PDFs for quarks. Indirect measurements of the gluon distribution from F2 data were

still carried out, but the precision on g(x,Q2) was limited because the photon cannot couple with gluons.

Fortunately, collisions involving hadrons with hadrons, or hadrons with heavy ions open up the possibility

of a hard scattering via gluon, analogous to the interaction via photon in DIS. Since gluons can couple to

other gluons, hadronic collisions can be used as direct probes of g(x,Q2), providing measurements of the

gluon distribution with much higher precision than in DIS. In a collision between two protons, modelled

PA + PB → q1 + q2 and shown in the left of Fig. 3.9, the cross section for a hard scattering process can be

written [9]

σ(P1, P2) =
∑

i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σij(p1, p2, αS(µ2), Q2/µ2), (3.8)

where P1 and P2 are the four-momenta of the incoming protons, p1 = x1P1 and p2 = x2P2 are the four

momenta of the partons participating in the interaction. The quark and gluon PDFs are fi and fj , the

QCD scattering cross section for partons of type i and j is σij . The hard scattering scale Q2 is determined

experimentally and places a lower limit on the possible final state particles that are produced. As discussed

previously, at sufficiently high Q2, αS becomes small, and the cross section can be calculated perturbatively

in a series of αS . The factorization scale µ2 is an arbitrary parameter that places an energy threshold on

what physics is considered part of the hadron wavefunction and what physics is part of the scattering process

and can be considered in the hard scattering cross-section. The dependence on µ2 gets smaller by including

more terms in the perturbative expansion of the cross section calculation (which requires more computing

power). In general, the factorization scale should be chosen to be µ2 ∼ Q2.
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fi(x1)

fj(x2)

σij(αS
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x2P2

q1

q2

Figure 3.9: Diagram of a hadronic collision (PA + PB → q1 + q2) between two protons, producing two
outgoing partons, which are represented in their final state as a stream of particles. The box represents the
hard scattering process.

A particle collision with sufficiently high energy transfer can result in a quark or gluon being ejected

from the hadron in which it was confined. From the properties of confinement, a parton cannot exist alone

at macroscopic distances, meaning a quark or gluon cannot be directly observed in a detector. The DGLAP

formalism describes the evolution of the ejected parton from the hard scale until the perturbative limit

λQCD. From QCD rules, as the distance of the exiting parton from its scattering event begins to increase,

the probability for radiating collinear gluons will increase. These radiated gluons can in turn split into

quark antiquark pairs, which can radiate more gluons, and so fourth. The quarks and antiquarks from the

resulting cascade then recombine into color singlet states of particles collienar with the original parton. This

process, known as hadronization, produces a narrow cone of particles called jets [43, 44, 45]. The creation

of these final state particles that make up a jet is described by phenomenological models, since at every level

in the hadronization process, the energy of the newly created partons decreases until perturbative methods

can no longer be applied. Many of these newly created particles have a lifetime sufficiently long enough for

them to reach and create a signal in a detector. In this sense, a jet is a manifestation of a parton that was

knocked out in a scattering event, however the precise definition of a jet depends on the procedure with

which it is reconstructed. An example of an actual event from ATLAS where two jets (dijets) were created

and reconstructed is shown in Fig. 3.10.
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Figure 3.10: Event display from a real ATLAS dijet event. Shown are two back-to-back jets, which are
manifestations of the quarks involved in a hard scattering at the interaction point, which is labeled in the
figure.

3.4.1 Anti-kt Jets

Before a jet’s energy and position can be correctly described, a prescription of what a jet is must be agreed

upon. A jet can have many constituents, which are final state particles produced in the hadronization

process. These particles can be physically detected and used as input into clustering algorithms that aim

to describe jets consistent with theory predictions [46, 47, 48, 49]. While different algorithms have their

advantages and disadvantages, the anti-kt algorithm [50] has grown in popularity since its introduction

almost a decade ago. Besides its fast computation speed, the main advantage of the anti-kt algorithm is its

infrared and collinear safety (IRC) from effects of soft radiation.

Any jet clustering algorithm needs to accept a set of homogeneous input data (objects) such as the

four-momenta of particles, calorimeter tower energies, topological calorimeter cells, etc. The treatment

of these input objects by the algorithm is identical. The anti-kt algorithm comes from a broader family

of kt clustering algorithms that appear the same in their formalism but yield different results based on

an important parameter that will be discussed shortly. The general form of any kt algorithm involves a

collection of input objects with indexes i having energy and spatial coordinates (ηi, φi, pTi
) where ηi, φi,

and pTi are the objects pseudorapitidy, azimuthal angle, and transverse momentum, respectively. Between

any two objects i and j, two distances are defined in terms of energy and position:

diB = −p2p
Ti

(3.9)
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dij = min(p2p
Ti
, p2p

Tj
)
∆R

R2
(3.10)

where ∆R2 = (ηi − ηj)2 − (φi − φj)2, R is the characteristic radius parameter describing the maximum

allowed radius of a jet, and the parameter p is what determines which type of kt algorithm is used. The

general prescription for any kt algorithm is as follows:

1. Out of the list of objects, calculate all distances dij and diB .

2. Identify the smallest distance out of dij and diB .

3. If the minimum is dij , combine the four-momenta of the ith and jth objects, return to the first step,

and begin again.

4. If the minimum is diB , save object i as a jet and remove it from the list of objects. Then return to the

first step and begin again.

5. Continue this process until the list of objects is empty.

The behavior of all the kt algorithms with respect to soft radiation is the same for any p < 0 but the

focus is going to be on the case of p = −1, which is the parameter used in the anti-kt jet reconstruction

algorithm mentioned earlier. To understand the general idea of how it works, it is useful to begin with an

ensemble several high pT (hard) objects, and many low pT (soft) objects used as an input to the algorithm.

The distance dij between a hard particle i and a soft particle j will dominated by the hard particle i and

will be smaller than the distance dkl between two soft particles k and l. This means that soft objects will

cluster with hard objects preferentially over other soft objects. If the hard object i has no other hard object

within a distance of 2R, all soft objects within a circle of radius R will simply cluster with object i and

eventually form a perfectly conical jet of radius R. If there are two had particles with ∆R < R, then they

will be combined to form a jet of radius R around the higher pT object. If object i has another hard object

within R < ∆R < 2R, the object with higher pT will form a perfectly conical jet of radius R, and the object

with lower pT will form a jet an area clipped by its neighbor with higher pT. In reality, it does not matter

what object is hard or soft, the algorithm takes a list of objects as input, naturally performs the clustering

of these objects according to its prescription, and outputs a collection of jets. An example of the same input

data run through different jet reconstruction algorithms is shown in Fig 3.11. The anti-kt algorithm was

adopted by ATLAS as a standard way to describe jets due to its IRC safety, fast performance, and robust

treatment of various kinds of input datasets.
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random soft
“ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas of
the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by the
specific set of ghosts used, and change when the ghosts are modified.

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which clips a
lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various quanti-
tative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet boundaries for
different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures a jet’s
susceptibility to point-like radiation, and the active area (A) which measures its susceptibility to
diffuse radiation. The simplest place to observe the impact of soft resilience is in the passive area for
a jet consisting of a hard particle p1 and a soft one p2, separated by a y− φ distance ∆12. In usual
IRC safe jet algorithms (JA), the passive area aJA,R(∆12) is πR

2 when ∆12 = 0, but changes when
∆12 is increased. In contrast, since the boundaries of anti-kt jets are unaffected by soft radiation,

4

Figure 3.11: Results of jet reconstruction by the kt (top left), Cambridge Aachen (top right), SISCone
(bottom left), and anti-kt (bottom right) algorithms on identical input sets with a jet radius requirement of
R = 0.1. Figure taken from Ref. [50].

3.5 Gluon Saturation

The search for the onset of saturation was first pursued with d+Au collisions at RHIC [51, 52, 53], where the

sensitivity to possible saturation effects was increased due to the enhancement of the nuclear gluon density

in the Lorentz-contracted heavy ion nucleus [54, 55]. More recent measurements at the LHC have been

performed in the proton-going direction of p+Pb collisions and at higher center-of-mass energies, allowing

lower-x of the lead nucleus to be probed [56, 57, 58, 59]. The ALICE measurement of dijet azimuthal

correlations at mid-rapidity did not find significant modification in p+Pb collisions compared to pp collisions.

The ATLAS and CMS measurements of inclusive jet production also did not find significant evidence of

nuclear modification. Recently, CMS extended the search for gluon saturation to the highest gluon densities

reached so far by measuring the inclusive jet cross-section in p+Pb collisions at very forward rapidity using

the CASTOR detector with −6.6 < η < −5.2, probing x down to 10−6 [60]. Comparing measured jet pT

spectra to event generators (Epos-lhc [61], Hijing [62], and Qgsjetii-04 [63]), it was found that none

could describe the data over the full jet pT spectra range, opening up the possibility for nuclear effects

not described by these models. Currently, the differences between nuclear PDFs (nPDFs) and free nucleon

PDFs are often understood from shadowing, anti-shadowing, and EMC effects [64, 65]. Calculating nPDFs

fAi (x,Q2) for parton types i from FA2 of heavy ions with atomic number A and comparing them to free
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Fig. 1 Illustration of the EPPS16 fit function RA
i (x,Q2

0).

would otherwise (that is, if α = 1) develop if xa < 0.1.
The coefficients ai, bi, ci are fully determined by the
asymptotic small-x limit y0 = RAi (x → 0, Q2

0), the an-
tishadowing maximum ya = RAi (xa, Q

2
0) and the EMC

minimum ye = RAi (xe, Q
2
0), as well as requiring con-

tinuity and vanishing first derivatives at the matching
points xa and xe. The A dependencies of y0, ya, ye are

parametrized as

yi(A) = yi(Aref)

(
A

Aref

)γi[yi(Aref )−1]

, (3)

where γi ≥ 0 and Aref = 12. By construction, the nu-
clear effects (deviations from unity) are now larger for
heavier nuclei. Without the factor yi(Aref) − 1 in the

exponent one can more easily fall into a peculiar situa-
tion in which e.g. yi(Aref) < 1, but yi(A � Aref) > 1,
which seems physically unlikely. For the valence quarks

and gluons the values of y0 are determined by requiring
the sum rules

∫ 1

0

dxfp/AuV
(x,Q2

0) = 2, (4)

∫ 1

0

dxf
p/A
dV

(x,Q2
0) = 1, (5)

∫ 1

0

dxx
∑

i

f
p/A
i (x,Q2

0) = 1, (6)

separately for each nucleus and thus the A dependence
of these y0 is not parametrized. All other parameters

than y0, ya, ye are A-independent. In our present frame-
work we consider the deuteron (A = 2) to be free
from nuclear effects though few-percent effects at high

x are found e.g. in Ref. [57]. The bound neutron PDFs

f
n/A
i (x,Q2) are obtained from the bound proton PDFs

by assuming isospin symmetry,

f
n/A
u,u (x,Q2) = f

p/A

d,d
(x,Q2), (7)

f
n/A

d,d
(x,Q2) = f

p/A
u,u (x,Q2), (8)

f
n/A
i (x,Q2) = f

p/A
i (x,Q2) for other flavours. (9)

Above the parametrization scale Q2 > Q2
0 the nu-

clear PDFs are obtained by solving the DGLAP evo-

lution equations with 2-loop splitting functions [58,59].
We use our own DGLAP evolution code which is based
on the solution method described in Ref. [60] and also

explained and benchmarked in Ref. [61]. Our parametri-
zation scale Q2

0 is fixed to the charm pole mass Q2
0 =

m2
c where mc = 1.3 GeV. The bottom quark mass is

mb = 4.75 GeV and the value of the strong coupling
constant is set by αs(MZ) = 0.118, where MZ is the
mass of the Z boson.

As is well known, at NLO and beyond the PDFs do
not need to be positive definite and we do not impose

such a restriction either. In fact, doing so would be ar-
tificial since the parametrization scale is, in principle,
arbitrary and positive definite PDFs, say, at Q2

0 = m2
c

may easily correspond to negative small-x PDFs at a
scale just slightly below Q2

0. As we could have equally
well parametrized the PDFs at such a lower value of Q2

0,

we see that restricting the PDFs to be always positive
would be an unphysical requirement.

3 Experimental data

All the `−A DIS, pA DY and RHIC DAu pion data sets
we use in the present analysis are the same as in the

EPS09 fit. The only modification on this part is that we
now remove the isoscalar corrections of the EMC, NMC
and SLAC data (see the next subsection), which is im-

portant as we have freed the flavour dependence of the
quark nuclear modifications. The `−A DIS data (cross
sections or structure functions F2) are always normal-
ized by the `−D measurements and, as in EPS09, the

only kinematic cut on these data is Q2 > m2
c . This

is somewhat lower than in typical free-proton fits and
the implicit assumption is (also in not setting a cut in

the mass of the hadronic final state) that the possi-
ble higher-twist effects will cancel in ratios of structure
functions/cross sections. While potential signs of 1/Q2

effects have been seen in the HERA data [62] already

around Q2 = 10 GeV2, these effects occur at signifi-
cantly smaller x than what is the reach of the `−A DIS
data.

From the older measurements, also pion-nucleus DY

data from the NA3 [48], NA10 [49], and E615 [50] col-
laborations are now included. These data have been

Figure 3.12: Illustration of a generalized EPPS16 parameterization of the nuclear modification factor RAi
for different parton types i and heavy ions with atomic number A. Suppression of RAi by nuclear shadowing
and EMC effects are prevalent at low- and high-x. Enhancement of RAi due to antishadowing effects are
seen in an intermediate-x range. Figure taken from Ref. [64].

nucleon PDFs fpi (x,Q2) calculated from F p2 is direct measure of the nuclear modification factor

RAi =
fAi (x,Q2)

Afpi (x,Q2)
. (3.11)

Studies of nPDFs in heavy ion nuclei expected a scaling of free nucleon PDFs with A such that the

nuclear modification factor is consistent with unity. The parameterization of RAi shown in Fig 3.12 indicates

that the nuclear modification factor is not consistent with unity at various values of x. The suppression of

RAi can be seen from shadowing (low-x) and EMC(x ∼ 1) effects, while enhancement of RAi can be seen

from the antishadowing effect at x ∼ 10−1. The shadowing effect, which is of most interest to the low-x

physics of this thesis, is thought to arise from screening of the nuclear parton densities by gluons on the

outside of the heavy ion nucleus, which interact preferentially with any incoming probes. While this effect

is not completely understood, it is well known experimentally. As discussed earlier, the large uncertainty

on the gluon nPDFs and free nucleon gluon PDFs is due to the inability to directly probe gluon densities

from F2. Additionally, final state processes can also contribute to the modification of the gluon nPDF. This

opens up the possibility for additional nuclear processes to contribute to the gluon density suppression at

low-x.
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Fig. 14: Schematic representation of the d.o.f. involved in the CGC effective theory and of the quantum evolution
which is taken into account in this theory. A newly emitted gluon with a small longitudinal momentum fraction
x � 1 rescatter off the gluon field Aµa [ρ] created in the previous steps by the gluons with larger values x′ � x,
effectively represented by their global colour charge density ρa.

the large–x gluons which are integrated out in the construction of the effective theory) is illustrated in
Fig. 14. The effective theory based on this separation is valid to LO in αs, but to all orders in αs ln(1/x)
and in the classical field Aµa ∼ O(1/g).

The mathematical structure of the CGC theory is rather complex and it will be only schematically
described here. To that aim, it is convenient to switch to light–cone vector notations. Namely, for any
4–vector such as xµ, pµ, Aµa etc. we shall define its light–cone (LC) components as

x+ ≡ 1√
2

(x0 + x3) , x− ≡ 1√
2

(x0 − x3) , xµLC = (x+, x−,x⊥) . (26)

In LC notations, the scalar product reads k · x ≡ kµxµ = k+x− + k−x+ − k⊥ · x⊥.

To see the usefulness of these notations, consider a right–moving ultrarelativistic hadron, with
Pµ ' (P, 0, 0, P ) : this propagates at nearly the speed of light along the trajectory x3 = t. In LC
notations, the 4–momentum PµLC ' (

√
2P, 0, 0, 0) has only a ‘plus’ component, while the trajectory

reads simply x− = 0. The same holds for any of the large–x partons which move quasi–collinearly
with the hadron and serve as sources for the small–x gluons that we are interested in. In the semi–
classical approximation, these small–x gluons are described as the solution to the Yang–Mills equations
(the non–Abelian generalization of the Maxwell equations) having these ‘fast’ gluons as sources:

Dab
ν F

νµ
b (x) = δµ+ρa(x−,x⊥) . (27)

In this equation, the l.h.s. features the covariant derivative Dab
ν = ∂ν − gfabcAνc and the field strength

tensor F νµa = ∂νAµa − ∂µAνa − gfabcAνbA
µ
c associated with the classical colour field, while the r.h.s. is

the colour current of the ‘fast’ gluons: Jµa = δµ+ρa, with ρa(x−,x⊥) their colour charge density. The
latter is localized in x− near x− = 0 and is independent of time (hence of x+), because these fast charges
are ‘frozen’ by Lorentz time dilation. But the distribution of these charges in transverse space is random,
since the fast gluons can be in any of the quantum configurations produced at the intermediate stages of
the gluon evolution down to x. The proper way to describe this randomness is to give the probability
to find a specific configuration ρa(x−,x⊥) of the colour charge density. This probability is a functional
of ρa(x−,x⊥), known as the CGC weight function and denoted as WY [ρ], with Y = ln(1/x). This
functional is gauge–invariant, which in particular ensures that 〈ρa(x−,x⊥)〉 = 0, as it should.

To the accuracy of interest, all the observables relevant for the scattering off the small–x gluons
are represented by gauge–invariant operators built with the classical fieldAµa . IfO[A] is such an operator,
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Figure 3.13: Schematic representation of the CGC theory, showing the high density, low-x gluons originating
from high-x partons (left). These gluons form a gluon field Aρ where the whole gluons with higher-x are
represented by a color charge density ρ. Figure taken from Ref. [19].

3.6 Color Glass Condensate

One of the proposed models of gluon saturation is in the framework of the Color Glass Condensate (CGC) [66,

67, 68]. It is useful to discuss the meaning of the name: color comes from the fact that gluons carry a color

charge, glass describes how short lived gluons with low-x see the surrounding higher-x gluons in the dense

medium as ”frozen”, condensate describes the saturated nature of the high density gluons recombining with

one another. The CGC effective theory describes a model for the interaction of a high energy parton with a

highly dense gluon medium described by the BFKL evolution that includes a non-linear term responsible for

gluon recombination. In the schematic shown in Fig. 3.13, a low-x gluon that originated or re-scattered from

other gluons with higher x′ > x is emitted and interacting with this gluon is a probe of the overall gluon

field A(ρ), where ρ is the color charge density of the nucleon. Recently, together with non-relativistic QCD,

the CGC model was able to successfully describe experimental data on the cross section of J/ψ production

at ALICE [69], shown in Fig. 3.14.

A measurement probing gluon saturation in nuclear gluon densities in the framework of the CGC model

was was proposed by measuring possible modifications of dijet azimuthal angular distributions in p+Pb and

pp collisions at an x down to 10−5 [70]. For back-to-back dijets, the gluon field in the Pb nucleus is probed at

low transverse momentum where saturation effects are expected to be large. These effects are described by

whether or not an incoming parton scatters individually off each gluon in the highly dense field of the lead

nucleus, or recoils against the nucleus as a whole. An away-side jet is created when a constituent gluon of

this dense field is knocked out of the nucleus by the scattering incoming parton. However, due to the highly

dense field, the incoming parton can scatter many times, losing energy and changing trajectory. As a result,

if there are two outgoing jets, one from the scattered parton, and the other jet (away side) from a knocked
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Figure 1. Inclusive J/ψ cross section in pp collisions as a function of transverse momentum.
Left: Results at

√
s = 7 TeV at forward (blue triangles) and mid-rapidity (red squares). For

comparison, results from other LHC experiments at the same collision energy are also shown.
[5, 6, and references therein]. Right: Results at

√
s = 13 TeV at forward rapidity with model

predictions from the NRQCD model [7], NRQCD and CGC [8] for the prompt contribution and
FONLL [9] for the non-prompt contribution.

These models make predictions on the transverse momentum and energy dependence of hadronic
J/ψ production as well as the polarization.

Another observable is the J/ψ yield as a function of the underlying event activity. It provides
insight into the interplay between the hard and soft mechanisms relevant for charmonium
production, and into the importance of multiple interactions [10]. It might also be useful to
address new proposed phenomena, such as the onset of collective effects in high multiplicity
proton-proton collisions. In the analysis presented here, the event activity is quantified by the
charged particle multiplicity at mid-rapidity.

1.2. Experimental setup and analysis methods
The ALICE detector is capable of reconstructing J/ψ particles in two kinematic regions in two
different decay channels, i.e. at mid-rapidity (|y| < 0.9) in the dielectron decay channel and at
forward rapidity (2.5 < y < 4.0) in the dimuon decay channel. At mid-rapidity the Inner Track-
ing System is used for vertexing and tracking, and the Time Projection Chamber as the main
tracking and Particle IDentification (PID) device. At forward rapidity, the dedicated muon arm
is used for triggering, tracking and PID. The charged particle density is calculated using the
number of tracklets reconstructed from hits in the two innermost layers of the Inner Tracking
System. More details on the ALICE detector can be found in [11], details on the analyses in [5]
and [12].

When comparing experimental results with model predictions one should keep in mind the
different sources of J/ψ production: In an inclusive measurement about 60 % of the J/ψ cross
section is directly produced, 20 % to 30 % is feed-down from heavier charmonium states, and
10 % to 20 % comes from the weak decay of B-mesons. The first two sources are commonly
referred to as prompt production, the last as non-prompt. Models often make predictions for
direct or prompt J/ψ production, therefore for a quantitative comparison to data it is important
to take all the components into account.

Figure 3.14: Figure taken from Ref. [69].

out gluon, they may not be perfectly back-to-back, resulting in the azimuthal broadening. The monojet

signature could result from the incoming parton recoiling off the nucleus coherently [67]. The parton would

not scatter with any of the individual partons, and as a result, would not produce an away-side jet. To

probe these effects, one must define some observables, which will be extracted from data and presented in

the latter sections of this thesis.

3.7 Measured Observables

This thesis will present a measurement of dijet production at forward rapidity with the ATLAS detector.

Proton-lead collisions are studied in addition to proton-proton collisions because of the enhancement of gluon

densities in the Lorentz contracted lead nucleus.

At the leading order, in a hard scattering event between a proton moving in the +z direction, and a lead

nucleus moving in the −z direction, as shown in the middle panel of Fig. 3.15, there will be two outgoing

partons, one with transverse momentum pT,1 and center-of-mass rapidity y∗1 coming from the proton, and

one with transverse momentum pT,2 and center-of-mass rapidity y∗2 coming from a nucleon in the lead ion.

The center-of-mass rapidities (y∗ ≡ y −∆y) are used to account for the rapidity shift of the center-of-mass

frame of the p+Pb system relative to the ATLAS laboratory frame. The resulting expressions for parton

momentum fractions xp of the proton’s parton, and xPb of a lead nucleon’s parton will be:
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Figure 3.15: Example of a collision in the y− z plane in pp where y = y∗ (left), a collision in the y− z plane
in p+Pb where y∗ ≡ y − ∆y (middle) to account for the boost (∆y) of the center-of-mass system, and a
collision in the x− y plane showing the difference in azimuthal angle ∆φ between two jets (right).

Figure 3.16: Dijet azimuthal angular correlations from theoretical models for central-forward pp and p+Pb
collisions as a function of ∆φ between two jets in different pT bins. Figure taken from Ref. [71].

xp =
pT,1e

y∗1 + pT,2e
y∗2√

s
, xPb =

pT,1e
−y∗1 + pT,2e

−y∗2√
s

. (3.12)

From these equations, it is clear that to probe a lower xPb, two forward (high y∗1and y∗2) particles, with

low pT,1 and pT,2 are preferred. To show the difference between rapidity y and center-of-mass rapidity y∗,

an event producing two jets in pp collisions is shown on the left panel of Fig. 3.15. The azimuthal angle ∆φ

between two jets is shown on the right panel of Fig. 3.15

The final observables in this analysis are dijet azimuthal angular ∆φ distribution widths and conditional

yields of dijets. Example dijet ∆φ distributions are shown from theoretical models in Figure 3.16. The

measurement is performed in different intervals of y∗1 , y∗2 , pT,1, and pT,2, where y∗1 , pT,1 is the center-of-mass

rapidity and transverse momentum of the leading jet, and y∗2 , pT,2 the center-of-mass rapidity and transverse

momentum of the sub-leading jet. The leading jet, which is required to be in the forward (defined as proton-
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going) direction, has the highest pT in the event, and the sub-leading jet has the second highest pT in the

event. This is a measurement of dijets probing the lowest-x of the lead nucleus at the hardest scattering scale

so far. The azimuthal angular correlation functions, C12, which are normalized to the number of leading

jets, are defined as

C12 =
1

N1

dN12

d∆φ
, (3.13)

where N1 is the number of leading jets, N12 is the number of dijets, and ∆φ is the lower azimuthal angle

between the leading and sub-leading jets. The C12 distributions are fitted and their widths W12 defined by

the root-mean-square (RMS) of the fit: W12= RMS(C12).

In addition to dijet azimuthal angular distributions, the dijet conditional yields, I12, are measured and

defined as

I12 =
1

N1

dN12

dy∗1dy∗2dpT,1dpT,2
. (3.14)

where pT,1, pT,2, y∗1 , and y∗2 are the transverse momenta and center-of-mass rapidities of the leading and

sub-leading jets, respectively.

The azimuthal angular correlations and conditional yields evaluated in p+Pb and pp collisions are com-

pared and the ratios in W12 and I12 between the two systems are calculated as:

ρpPb
W =

W
p+Pb
12

W
pp
12

, ρpPb
I =

I
p+Pb
12

I
pp
12

. (3.15)

Finding a broadening in the dijet angular correlation distribution for p+Pb collisions compared to pp

collisions probes for nuclear effects in the jet formation and scattering off individual gluons of the highly

dense gluon field. A suppression of the conditional yields in p+Pb compared to pp could be an indicator of

the mono-jet or jet quenching event signature due to the coherent scattering off the lead nucleus as a whole.

To closer follow next-to-leading-order (NLO) calculations, a minimum ∆pT = pT,1−pT,2 is required on the

dijets [72, 73, 74]. However, techniques such as Sudakov re-summation [75] can take into account the absence

of ∆pT requirements. Also, comparisons with fixed-order calculations and soft gluon re-summation, which

involve transverse momentum dependent PDFs, instead of collinear PDFs, are better suited for scenarios

not requiring any minimum ∆pT cut. The results of the measurement are therefore presented both without

any requirement on ∆pT, as well as with the requirement of ∆pT > 3 GeV.
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Chapter 4

ATLAS Required Qualification Work

In order to qualify as an author in the ATLAS collaboration a task must be completed as a contribution to

the experiment. The assigned task was to study the impact of service material from the recent Insertable

B-Layer (IBL) upgrade on the transverse momentum reconstruction in the forward region. Throughout this

task, a large portion of the software required for the thesis analysis was developed because this specific

qualification work was chosen with the currently proposed analysis in mind.

The IBL was installed during LS1 between 2013 and 2015. This new pixel detector was needed to

achieve better vertex resolution during the higher luminosity Run 2. The service materials, which run out

azimuthally from the beam-pipe in high pseudorapidity regions were found to have very high radiation lengths

compared to the material previously there. This could have a negative impact on the forward calorimeter’s

performance.

In order to better understand the effect of the IBL services on forward physics, specifically forward jet

measurements, the azimuthal dependence of ∆φ, and relative pT response in a forward-central dijet system,

as well as azimuthal jet yields were looked at in 5.02 TeV pp data and MC samples. Additionally, jet response

and ∆φ correlations between truth and reconstructed jets in MC were also studied.

4.1 Event Selection and Cuts

Data from the heavy ion 5.02 TeV pp run in 2015 was used and selected by forward High Level Triggers.

The Monte-Carlo samples used were generated by PYTHIA 8 [76], with leading order PDFs, and simulated

by GEANT4 [77, 78].

The relative azimuthal angular correlation, ∆φ, between forward and central, leading and sub-leading

jets, was studied at as a function of the central jets’ azimuthal angle φ. A 20 GeV pT cut was placed on

the central jet, and different cuts were placed on the forward jets. Three jet events were rejected if 40% of

the average pT of the two leading jets was less than the pT of the third jet. Initially, jets were required to

be isolated such that if two jets fall within a cone of R = 1.0, then one jet has to have at least twice the
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Figure 4.1: Examples of Gaussian fitted ∆φ distributions in various η, pForwardT , and φCentral bins.

transverse momentum of the second jet.

4.2 Procedure

Throughout this study, using the specified data and MC samples, jets were reconstructed using the anti-kT

algorithm with a radius of R = 0.4 [50]. Topological towers with a ∆η ×∆φ = 0.1 × 0.1 were constructed

from calorimeter information and used as input into the clustering jet reconstruction algorithm. The HI jet

calibration was used along with standard event selection cuts. This is the same calibration used in the main

thesis analysis and will be discussed in more detail in Chapter 5.

Azimuthal jet yields in bins of pseudorapidity, azimuth, and transverse momentum were normalized to

the mean in each bin to get the normalized azimuthal jet yield.

Normalized Y ield(pT , η, φ) =
Y ield(pT , η, φ)−Mean Y ield(pT , η)

Mean Y ield(pT , η)
(4.1)

Both the ∆φ and relative pT distributions were filled in bins of η, pForwardT , and φCentral. For every

φCentral bin, the respective distribution was fitted to a Gaussian, as shown in Figure 4.1, with some ∆φ fits

as an example, to yield the final azimuthal distributions.

4.3 Results

For both IBL and non-IBL regions, one forward pT bin is selected and the normalized yield distributions

are plotted for both data and MC in Figure 4.2. The magnitude of the variation in the IBL and non-IBL

regions is similar in the data, while in MC it is flat in the non-IBL region, but oscillates in the IBL region.

In the data, however, there is even some modulation in the non-IBL region.
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Figure 4.2: Normalized azimuthal jet yields for the forward jet pT bin 25 < pForwardT < 45GeV is shown
in the IBL region (3.6 < η < 3.8), and non-IBL region (3.8 < η < 4.4), for both data and MC. Red lines
indicate a 25% deviation, and green lines indicate a 50% deviation.

Looking at the RMS of the projections onto the y-axis, in the non-IBL region (3.6 < η < 3.8) the data

has an RMS = 0.20 while the MC has an RMS = 0.098, and the IBL region (3.8 < η < 4.4) the data has

an RMS = 0.21 and the MC an RMS = 0.16. This shows that in the data, the two regions are not so

different, but they are in the MC. This is due to the IBL services being described differently in the MC than

what is actually seen in the data.

There is some difference seen in normalized yields between IBL and non-IBL regions. It is also important

to study the ∆φ and relative pT response as functions of the central jet’s azimuthal angle in data and MC.

The ∆φ between forward and central jets is shown in Figure 4.3. The distribution in the data exhibits a

saw-tooth pattern which is not well understood, but there does not appear to be a major difference between

the IBL and non-IBL regions overall. Relative pT response in the forward-central dijet system is shown in

Figure 4.4. Jets were required to be back-to-back, 2.5 < ∆φ < 3.8. As with the ∆φ distributions, no strong

difference is seen between IBL and non-IBL regions.

4.4 Conclusion

The IBL service material is found to have no significant impact on the relative pT response and ∆φ azimuthal

angular difference in the forward-central dijet system. This is important for the proposed thesis analysis

because the forward calorimeter will be one of the most important detectors, and this study shows that the

IBL material will not harm the current calibration or affect the important physical quantities.

37



Central
φ

2− 0 2

 
F

C
φ∆

3

3.2

<45 [GeV]F

T
25<p

<3.8η3.6<

 InternalATLAS
-1 2015, 26 pbpp

Data

MC

 (Data) = 0.025539
Forward

φ - 
Central

φRMS 

 (MC) = 0.026881
Forward

φ - 
Central

φRMS 

Central
φ

2− 0 2

 
F

C
φ∆

3

3.2

<45 [GeV]F

T
25<p

<4.4η3.8<

 InternalATLAS
-1 2015, 26 pbpp

Data

MC

 (Data) = 0.023807
Forward

φ - 
Central

φRMS 
 (MC) = 0.024086

Forward
φ - 

Central
φRMS 

Figure 4.3: As a function of the central jet azimuthal angle, the ∆φ distribution for the forward jet pT bin
25 < pForwardT < 45GeV is shown in the IBL region (3.6 < η < 3.8), and non-IBL region (3.8 < η < 4.4), for
both data and MC.

Central
φ

2− 0 2

 
C T

/p
F Tp

0.5

1

1.5
<45 [GeV]F

T
25<p

<3.8η3.6<

 InternalATLAS
-1 2015, 26 pbpp

Data

MC

 (Data) = 0.025282C

T
/pF

T
RMS p

 (MC) = 0.049203C

T
/pF

T
RMS p

Central
φ

2− 0 2

 
C T

/p
F Tp

0.5

1

1.5
<45 [GeV]F

T
25<p

<4.4η3.8<

 InternalATLAS
-1 2015, 26 pbpp

Data

MC

 (Data) = 0.030034C

T
/pF

T
RMS p

 (MC) = 0.023123C

T
/pF

T
RMS p

Figure 4.4: As a function of the central jet azimuthal angle, the relative pT distribution for the forward jet pT
bin 25 < pForwardT < 45GeV is shown in the IBL region (3.6 < η < 3.8), and non-IBL region (3.8 < η < 4.4),
for both data and MC.

38



Chapter 5

Measurement of Dijet Azimuthal
Correlations

5.1 Overview

This chapter gives a detailed outline for the analysis of azimuthal correlations in pp and p+Pb data taken

with the ATLS detector. First, in Section 5.2, an overview of the size and type of data and simulation

samples used in the analysis is given. Next, in Section 5.3, the rules for event selection in these respective

data and MC samples are discussed. This is including but not limited to simple phase-space cuts or trigger

requirements in data. Since jets are the observables used in this analysis, a detailed overview of the jet

reconstruction is given in Section 5.4. As with all analysis done in ATLAS, the proper performance of

the detector must be verified before the beginning of the physics measurement. Any irregularities that are

identified must later be corrected for in order to have a proper physics measurement. Detector performance is

evaluated using MC samples and is later used as input into any known systematics that should be taken into

account for a precise physics measurement. Next, in Section 5.5, the main analysis procedure is described.

This section goes step-by-step through all parts of the analysis, explaining why things were done, and backs

up every part with respective plots. Systematic uncertainties, which are very important and a large part of

the analysis are presented in Section 5.6. Finally, everything is put together and the results and discussion

of the measurements are presented in Section 5.7. A summary of these analysis steps, with their respective

sections are below:

• Data sets - Section 5.2

• Trigger and Event Selection - Section 5.3

• Jet Selection and Reconstruction Performance - Section 5.4

• Analysis Procedure - Section 5.5

• Systematic Uncertainties- Section 5.6

• Results - Section 5.7
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5.2 Data Sets

The p+Pb data used in this analysis were recorded in 2016 and the samples used are shown in Table A.1

in the appendix. The LHC was configured with a 4 TeV proton beam and a 1.57 TeV per nucleon Pb

beam producing collisions with
√
s
NN

= 5.02 TeV and a rapidity shift of the nucleon-nucleon center-of-mass

frame ∆y = −0.465 relative to the lab frame. The data collected had one beam configuration with the Pb

beam traveling to the positive pseudorapidity direction and the proton beam to the negative pseudorapidity

direction. To be consistent with previous p+Pb physics measurements [56, 79], the positive center-of-mass

rapidity direction, y∗ > 0 is chosen as the proton beam direction. The physical detector is described in

terms of η and is consistent with conditions used during data-taking while the center-of-mass rapidity y∗ is

the physics quantity in which results are presented. The integrated luminosity of the 2016 p+Pb data taken

is 360 µb−1. The pp data used in this measurement was recorded in 2015 with the LHC configured to collide

two equal energy proton going beams at a center-of-mass energy of
√
s = 5.02 TeV. These pp and p+Pb

data samples are shown in Table A.1 in the appendix. The instantaneous luminosity conditions provided by

the LHC during p+Pb data taking resulted in an average number of interactions per bunch crossing of 0.03.

During pp data taking, the average number of interactions per bunch crossing varied from 0.6 to 1.3.

The performance for measuring azimuthal angular correlations and conditional yields in both the 2015

pp and 2016 p+Pb data samples is evaluated with a 5.02 TeV pp MC sample simulated using Pythia

8.212 [76]. Hard scattering pp events with the A14 [80] tune and the next-to-next order NNPDF23LO PDF

set [81] are used. The detector response is then simulated using GEANT4 [77, 78]. The pp samples used

for this analysis contain approximately 12 million events, and are listed with their respective number of

events in the top Table A.2 in the appendix. Corresponding p+Pb MC samples are obtained by overlaying

minimum-bias p+Pb data events recorded during the 2016 data-taking period with simulated 5.02 TeV pp

events generated with the same MC tune as for the pp MC sample but with a rapidity shift equivalent to

that in the p+Pb collisions. Detector response is also modeled using GEANT4. Due to the forward rapidity

filtering, approximately 3 million events were used in the p+Pb MC samples. These samples are listed

in the middle of Table A.2 in the appendix, along with their respective number of events. Additionally,

approximately 5 million events of the 5.02 TeV pp Herwig++ [82] MC simulation are used to compare with

the pp Pythia8 performance to determine the uncertainties on position resolution. The samples used in

the Herwig++ MC, with their respective number of events are listed in the bottom of Table A.2 in the

appendix.

The MC samples used in this analysis are split into so called cross-section weighted slices. This is done

in order for different analysis to be able to the pT regions of phase space that they are interested in for their
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JZN R = 0.4 ptruth
T [GeV] σ [nb] × ε (pp) σ [nb] × ε (p+Pb)

1 20− 60 8.15× 107 × 2.83× 10−3 6.79× 107 × 3.85× 10−4

2 60− 160 6.40× 105 × 4.28× 10−3 8.96× 105 × 2.53× 10−3

Table 5.1: Summary of pT ranges, cross-section weights σ, and filtering efficiencies ε in JZN slices for pp
and p+Pb MC samples.

measurement. Some measurements require high pT jets and some require the lower end of the spectra. The

slices are numbered JZN, where N is an integer indicating the pT interval covered by that sample. Each

slice has a cross section weight σi and a filtering efficiency εi which represents the generator level filtering

that was implemented to select the appropriate pT of jets for each JZ sample. This analysis uses the JZ1

and JZ2 cross section weighted slices. Their respective cross section weights and filtering efficiencies are

summarized in Table 5.1. Transverse momentum intervals for each JZ slice are consistent between pp and

p+Pb MC samples, but filtering efficeincies and cross section weights are different. If a wide interval of jet

pT is used in an analysis, covering the ranges of multiple JZ slices, a cross section re-weighting must be

implemented when combining slices in order to guarantee a smooth jet pT spectra. If an observable ω in

some bin is a counted quantity, the prescription for combined counts over all cross section weighted slices i

with cross section weights σi and filtering efficiencies εi is:

ω =

∑
ωiσiεi∑
σiεi

. (5.1)

If an observable ω is a result of a calculation, the prescription for getting a final cross section weighted

value also depends on the number of entries ni in each bin of the observable and the total number of events

Nev
i in each JZ slice:

ω =

∑
ωiσiεi

ni

Nev
i∑

σiεi
ni

Nev
i

. (5.2)

5.3 Trigger and Event Selection

5.3.1 General Cuts

For the analysis of pp and p+Pb data samples, the first level of filtering is via a Good Runs List (GRL)

which is used to clean bad luminosity blocks (lumiblocks). All the data from every run is split up into these

lumiblocks, which can hold thousands of events. Th GRL is compiled by the collaboration after data quality

studies identifying issues with data-taking conditions have been performed after each run. The next step

of filtering is at the event level where there is a minimum of one reconstructed vertex required for an event
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to pass. Additionally, DAQ errors due to the Scintillator Detector, Tile Calorimeter, and Liquid Argon

calorimeters are checked for every event. If any of these detectors are flagged, or a primary vertex is not

identified, the event is skipped. Next, events are chosen based on trigger decision.

5.3.2 Trigger Selection

The ATLAS trigger discussed in Section 2.2.1 was used to select minimum-bias and jet events. Jet events

were selected by the HLT with L1 seeds from jet, minimum bias, and total-energy triggers. In order to

efficiently distribute the limited bandwith of the trigger to the various physics streams, a procedure known

as seeding was used. This relies on having minimum requirement for a given trigger to be considered for

processing. This requirement is usually a smaller threshold or minimum-bias trigger firing, which selects

less common events more efficiently. The HLT jet trigger, used both in p+Pb collisions and pp collisions,

refined the selection of minimum-bias, level one total energy (L1TEx), or level one jet triggers (LIJx) with

various thresholds. The total-energy trigger required a total transverse energy measured in the calorimeter

of greater than 5 GeV. The L1 jet trigger required jets with transverse momenta greater than 12 GeV to be

reconstructed at the hardware level. The forward jet triggered p+Pb events were seeded by minimum-bias

events by requiring at least one hit in the MBTS detector on each side of the interaction point at the L1

trigger. The HLT jet trigger operated a jet reconstruction algorithm similar to that applied in the offline

analysis and selected events containing jets with transverse energy thresholds of 15 GeV in p+Pb collisions

and up to 85 GeV in pp collisions. In both pp and p+Pb collisions, the highest threshold jet trigger sampled

the full delivered luminosity. The trigger selecting minimum-bias events required a track above 200 MeV in

the pp data-taking. For p+Pb data-taking, the minimum-bias trigger required the same conditions at the

L1 level in the MBTS that were used to seed forward jet triggered events.

Table 5.2 lists the triggers used during pp data-taking both in the forward (3.2 < |η| < 4.4), and central

(|η| < 3.2) regions, the corresponding pT range where the trigger is 99% efficient, and the average prescale

used. In pp data-taking, both forward and central triggers are used. Jet trigger efficiencies during pp data-

taking for forward and central triggers are shown in Fig.s 5.1 and 5.2. These efficiencies are obtained by

comparing jet spectra of various triggers to spectra of MinBias triggers or other lower pT triggers. A small

inefficiency is seen for the lowest forward jet trigger HLT J25 320ETA490 L1TE5 due to the jet area

overlap with the region between forward and central triggers at |η| = 3.2.

During p+Pb data-taking, only one forward, unprescaled jet trigger was used because the y∗ interval

from 2.7 to 4.0 for the leading jet corresponds to a pseudorapidity interval from -3.2 to -4.4. The efficiency

plot for this forward jet trigger is shown in Fig. 5.3. This trigger was seeded by the L1 MBTS trigger and
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2015 pp Forward (3.2 < |η| < 4.4) Trigger pT Efficiency Range [GeV] Average Prescale
HLT_j25_320eta490_L1TE5 28−−− 42 290.476
HLT_j35_320eta490_L1TE10 42−−− 52 74.11

HLT_j45_320eta490 52−−− 65 1.413
HLT_j55_320eta490 65−−− 90 1.413

2015 pp Central (|η| < 3.2) Trigger pT Efficiency Range [GeV]
HLT_j20 28−−− 35 5827.311

HLT_j30_L1TE5 35−−− 44.5 297.388
HLT_j40_L1TE10 44.5−−− 59 73.183
HLT_j50_L1J12 59−−− 70 14.225
HLT_j60_L1J15 70−−− 79 10.807
HLT_j75_L1J20 79−−− 89 1.012

HLT_j85 89−−− 90 1.002

Table 5.2: List of pp triggers with associated pT ranges where the trigger is over 99% efficient.

2016 p+Pb Forward (−4.4 < η < −3.2) Trigger pT Efficiency Range [GeV] Average Prescale
HLT_j15_ion_n320eta490_L1MBTS_1_1 28−−− 90 1.02

Table 5.3: Un-prescaled p+Pb trigger with associated pT ranges where the trigger is over 99% efficient.

2016 p+Pb Min-Bias Trigger
HLT_mb_sptrk_L1MBTS_1_OVERLAY

HLT_noalg_L1TE5_OVERLAY

HLT_noalg_L1TE20_OVERLAY

Table 5.4: List of 2016 p+Pb triggers used to tag events for the MC data overlay.
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Figure 5.1: Jet trigger efficiency for pp central triggers in the pseudorapidity range −3.2 < |η| < 3.2.
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Figure 5.2: Jet trigger efficiency for pp forward triggers in the pseudorapidity range 3.2 < |η| < 4.4. A
small inefficiency is seen for the lowest forward jet trigger HLT J25 320ETA490 L1TE5 due to the jet
area overlap with the region between forward and central triggers at |η| = 3.2.
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Figure 5.3: Jet trigger efficiency for p+Pb forward triggers in the pseudorapidity range 3.2η < 4.4.
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its corresponding pT range used is shown in Table 5.3. The p+Pb triggers used to produce the data overlay

for the p+Pb MC are shown in Table 5.4. For the data overlay, entire events were selected based solely on

the MB trigger decision with no requirement on jets.

To check that the performance of jet triggers was consistent across runs in pp and p+Pb data-taking, the

number of jets in some pT,1 and y∗1 intervals were counted and divided by the prescale-corrected luminosity

of each run. Plotted as a function of run number, this ratio should be relatively uniform and is shown for

central and forward pp triggers and forward p+Pb trigger in Fig. 5.4. The large luminosity uncertainty

during the p+Pb data taking contributed to the statistical fluctuations seen this ratio for the forward jet

trigger.
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Figure 5.4: Number of jets in some pT,1 and y∗1 interval divided by prescale-corrected luminosity for each
run. Central pp trigger (left), forward pp trigger (center), and forward p+Pb trigger (right).

5.3.3 Disabled HEC in p+Pb Data-taking

During the 2016 p+Pb data-taking period, part of the HEC in the lead going direction was disabled in the

pseudorapidity and azimuthal intervals −3.2 < η < −1.3 and −π < φ < −π/2, respectively. Reconstructed

dijets where the sub-leading jet area overlaps with the disabled HEC region are excluded from the analysis

in p+Pb data and MC samples. Plots of jet multiplicity in η × φ space for the p+Pb data, MC signal, and

MC with data overlay samples for the lowest jet pT interval 25 < pT < 35 GeV are shown in Fig. 5.5. In the

signal MC simulation, which does not include any data overlay, there appears to be a small cavity in the

region covered by the HEC. This is also seen in the p+Pb data. However, in the MC simulation with data

overlay, this region is not disabled. To account for the jet radius R = 0.4 the excluded region is increased

to not include jets with jet axes in −3.6 < η < −0.9 in pseudorapidity, and −π < φ < (−π/2 + 0.4) and

(π− 0.4) < φ < π in azimuth. This is detector inefficiency is corrected by a procedure that will be described

in a later section.
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Figure 5.5: Maps of φ vs η shown for lowest pT interval 25 < pT < 35 GeV for the p+Pb data (left), p+Pb
MC with only signal included (centeR), and p+Pb MC with data overlay (right). A depletion is seen in the
data for the region covered by the HEC detector in the lead going direction (negative η), and a minor cavity
is seen in the signal MC in the same region. No apparent effect is seen in the MC with data overlay. The
red box indicates the HEC region which was turned off. Due to the jet radius R = 0.4 the excluded region
is increased, and is indicated by the black box.

5.4 Jet Selection and Reconstruction Performance

Jets are reconstructed using a heavy ion reconstruction procedure developed for previous jet measurements

in Pb+Pb and p+Pb collisions [56, 79]. The jet reconstruction is first run in four-momentum recombination

mode, on ∆η ×∆φ = 0.1 × 0.1 calorimeter towers with the anti-kt algorithm [50] with R = 0.4. Energies

in the towers are obtained by summing the energies of calorimeter cells at the electromagnetic energy scale

within the tower boundaries. Then, an iterative procedure is used to estimate the layer and η-dependent

underlying event (UE) transverse energy density, while excluding the regions populated by jets. The UE

transverse energy is subtracted from each calorimeter tower and the four-momentum of the jet is updated

accordingly. Jets which do not overlap with the region included in the UE background subtraction also have

a small correction applied on the order of a few percent. Then, a jet η− and pT-dependent correction factor

derived from the simulation samples is applied to correct for the calorimeter response. These factors are

derived by the ATLAS Jet ET Miss (JetEtMiss) group and are standard corrections used in all analyses. An

additional data driven correction based on in situ studies of the momentum balance of jets recoiling against

photons, Z bosons, and jets in other regions of the calorimeter is also applied [83, 84].

Jets are selected in the transverse momentum range of 28 < pT < 90 GeV and a center-of-mass rapidity

of −4.0 < y∗ < 4.0. This is the largest symmetric overlap between the two colliding systems for which most

forward jets can be reconstructed using the FCal with full coverage for R = 0.4 jets. All reconstructed jets

are required to have a pT such that the jet trigger efficiency is greater than 99%. As a result, no trigger

efficiency correction is applied.

The MC samples are used to evaluate the jet reconstruction performance and to correct the measured

distributions for detector effects. This is done independently for both pp and p+Pb collisions. In the
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Figure 5.6: Jet reconstruction efficiency evaluated in the pp (left) and p+Pb (right) Pythia8 MC samples.

MC samples, the generator level jets are reconstructed from primary particles1 with the anti-kt algorithm

with radius R = 0.4. Using the pseudorapidity and azimuthal angles ηtruth, φtruth, ηreco, and φreco of the

generated and reconstructed jets, respectively, generator level jets are matched to reconstructed jets by

requiring ∆R < 0.2, where ∆η = |ηreco − ηtruth|, and ∆φ = |φreco − φtruth|.

The efficiency of reconstructing jets in pp and p+Pb collisions is evaluated using the Pythia8 MC

samples by determining the probability of finding a reconstructed jet associated with a generator level jet.

The jet reconstruction efficiencies are shown in in Fig. 5.6 for pp and p+Pb MC samples in different y∗ and

pT regions. The jet reconstruction efficiency is greater than 99% for jets with pT > 30 GeV over the selected

y∗ range −4.0 < y∗ < 4.0 and drops to 95% at a jet pT = 28 GeV. The variation of the jet reconstruction

efficiency with y∗ is due to jets having a higher total energy for a given transverse energy as compared to

more central regions.

The ratios of transverse momenta of generated and reconstructed jets, ptruth
T and preco

T respectively, deter-

mine the relevant jet energy scale (JES) preco
T /ptruth

T , and jet energy resolution (JER) σ(preco
T /ptruth

T ), which

characterize the jet energy reconstruction performance. The JES and JER are plotted as a function of ptruth
T ,

in intervals of generated jet pseudorapidity ηtruth in Fig. 5.7, 5.8 for pp and p+Pb MC samples, respectively.

The means and standard deviations of the preco
T /ptruth

T distributions, along with their errors are extracted

from fits of the distributions to Gaussian function The JES shows a very small dependence on ηtruth, with

a maximum deviation of ±3% from unity at ptruth
T = 30 GeV and a minimum of −3% deviation from unity

at ptruth
T = 50 GeV. The JES decreases with ptruth

T , and with decreasing η.

1Primary particles are defined as particles with a mean lifetime τ > 0.3 × 10−10 s, excluding muons and neutrinos, which
are weakly interacting and do not leave significant energy deposits in the calorimeters.
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Figure 5.7: JES (left) and JER (right) evaluated in pp MC samples and plotted as a function of ptruth
T .
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Figure 5.8: JES (left) and JER (right) evaluated in p+Pb MC samples and plotted as a function of ptruth
T .
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Figure 5.9: The mean angular distance ∆η (left) and resolution σ(∆η) (right) between truth and recon-
structed jets evaluated in pp MC samples and plotted as a function of ptruth

T .

The mean angular distance 〈∆η〉 and jet angular resolution (JAR) for pseudorapidity σ(∆η) between

truth and reconstructed jets ∆η = ηreco − ηtruth is plotted in Fig.s 5.9, 5.10 for the pp and p+Pb MC

samples respectively. Similarly, mean angular distance 〈∆φ〉 and azimuthal JAR σ(∆φ) between truth

and reconstructed jets ∆φ = φreco − φtruth is plotted in Fig. 5.11 and 5.12 in pp and p+Pb MC samples

respectively. Similar to the procedure used for extracting the JER and JES, means and standard deviations

are extracted from fits with a Gaussian function. For both pseudorapidity and azimuth, 〈∆η〉 and 〈∆φ〉 are

consistent with zero in the pp MC sample. In the p+Pb MC sample, 〈∆φ〉 is consistent with zero but there

is a shift of less than 0.01 in 〈∆η〉 from the underlying event contribution. This is a result of the UE pulling

the reconstructed jet in the lead going direction, however it is a negligible effect which is less than 1/10 of

the tower size. The angular resolution σ(∆η) and σ(∆φ) decreases as a function ptruth
T as expected.

Performance Study of p+Pb MC

The wrongly configured HEC condition in the p+Pb MC sample with data overlay raised questions about

other possible discrepancies in detector conditions. One way check the reliably of the MC reconstruction

conditions is to use tracks reconstructed in the inner detector tracker, which is very precise, and compare

the results against jets. This is done by studying the comparison of rtrk distributions as a function of jet pT

in data and MC. rtrk is defined as:

rtrk =

∑
ptrki

T

pjet
T

(5.3)
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Figure 5.10: The mean angular distance ∆η (left) and resolution σ(∆η) (right) between truth and recon-
structed jets evaluated in p+Pb MC samples and plotted as a function of ptruth

T .
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Figure 5.11: The mean angular distance ∆φ (left) and resolution σ(∆φ) (right) between truth and recon-
structed jets evaluated in pp MC samples and plotted as a function of ptruth

T .
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Figure 5.12: The mean angular distance ∆φ (left) and resolution σ(∆φ) (right) between truth and recon-
structed jets evaluated in p+Pb MC samples and plotted as a function of ptruth

T .

where
∑
ptrki

T is the sum of transverse momenta of all tracks that fall within a reconstructed jets area. If

the ratio of rtrk between data and MC samples is consistent with unity, the test acts as a data-driven check

that the MC conditions are consistent with those during the data-taking. This ratio is shown in Figure 5.13

for two proton going direction ranges of pseudorapidity in a region of the detector where the tracker can be

used. The figures show the ratio of rtrk between data and MC samples for the p+Pb MC sample with data

overlay, as well as the p+Pb signal sample alone. The results in the central part of the barrel −1.8 < η < 0

show good closure. The results in the extended barrel −2.5 < η < −1.8 have high statistical fluctuations,

but are consistent with unity at lower pT. The jet radios of R = 0.4 near the edge of the tracker η = −2.5

also introduces uncertainties as not all of the tracks in the jet pass through the tracker. This test still shows

that the conditions in the p+Pb data and MC samples are consistent.
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Figure 5.13: Ratios of rtrk between data and MC with data overlay (black) and MC signal sample only (red).
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5.5 Analysis Procedure

5.5.1 Overview

In both the pp and p+Pb MC and data samples, two highest pT jets are used to study azimuthal angular

correlations. The measurement uses jets with transverse momentum between 28 GeV to 90 GeV. Due to the

jet radius R = 0.4, the full coverage of the forward detector up to |η| = 4.9 is reduced to cover only up to 4.5

in pseudorapidity. Furthermore, due to the center-of-mass rapidity shift of ∆y=0.465 in the p+Pb collision

system, the corresponding y∗ interval that is studied is approximately −4.0 < y∗ < 4.0. The y∗ interval

used in the measurement is consistent in the pp and p+Pb collision systems. The final observables in this

analysis are widths of dijet C12 distributions and conditional yields. The widths are sensitive to broadening

between the leading and sub-leading jets and the yields show the number of dijets, given a leading jet in

each pT and y∗ kinematic region.

The binning of this measurement is summarized in Table 5.5 and is composed of different combinations

of y∗1 , y∗2 , pT,1, and pT,2, where y∗1 and pT,1 is the position and transverse energy of the leading jet, and y∗2

and pT,2is the position and transverse energy of the sub-leading jet. Since the measurement aims to probe

low-x partons, only the interval 2.7 < y∗1 < 4.0, which is the proton going direction in p+Pb is used. The y∗

binning is chosen to be consistent with the center of mass rapidity boundary between forward and central

triggers in p+Pb data taking. The transverse momentum binning was chosen to be on the boundaries of the

pT intervals used for different triggers in pp data taking.

The C12 distributions are evaluated as a function of ∆φ in combinations of y∗1 , y∗2 , pT,1, and pT,2 bins,

unfolded, and normalized by the leading jet pT spectra. Leading jet pT,1 spectra are estimated in different

y∗1 bins and are also unfolded. The azimuthal correlation distributions are fitted to extract their widths W12

and integrated of over their full range to extract the conditional yields I12. The correct normalization by

number of leading jets is important for the measurement of I12 and thus must be analyzed carefully.

pT,1Bins [GeV] pT,2Bins [GeV] y∗2Bins
28 < pT,1 < 35 28 < pT,2 < 35 2.7 < y∗jet < 4.0
35 < pT,1 < 45 35 < pT,2 < 45 1.8 < y∗jet < 2.7
45 < pT,1 < 90 45 < pT,2 < 90 0.0 < y∗jet < 1.8

−1.8 < y∗jet < 0.0
−4.0 < y∗jet < −1.8

Table 5.5: Transverse momentum and y∗ binning for leading and sub-leading jets. For the leading jet, only
the 2.7 < y∗1 < 4.0 bin is used.

To account for detector affects, the distributions in data have to be unfolded using MC information. The

method used is the bin-by-bin unfolding which relies on MC information about the relationship between any
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Figure 5.14: Total FCal ET distributions in p+Pb MC and data (left), and ratio MC/Data (right).

truth and reconstructed quantity. This type of unfolding is sensitive to differences in the shapes of data

and MC distributions and requires a re-weighting of the MC before unfolding factors can be evaluated. The

re-weighting is done in two steps: 1) weights for jet pT spectra are evaluated; 2) when deriving weights

for C12 distributions, the dependence on the jet pT spectra is removed by applying the weights from the

previous step. The final weight is the product of the two weights.

To better match UE levels to the data, the p+Pb MC is re-weighted at the event level. The total FCal

ET distribution in MC is divided by the total FCal ET in data to derive the event weights which are then

applied to the MC. The total FCal ET distributions in p+Pb MC and data, along with the ratio between

the two distributions are shown in Fig. 5.14.

5.5.2 Unfolding Procedure

Detector effects affecting the leading jet pT spectra and dN1,2/d∆φ distributions in pp and p+Pb collisions

are corrected using a bin-by-bin unfolding procedure. For more information on the this procedure see

Appendix B. The unfolding procedure corrects for the effect of the migration due to the finite JER, JAR,

and the jet reconstruction efficiency. The jets excluded due to the disabled HEC region in p+Pb data and

MC samples are naturally accounted-for using the same procedure. Two corresponding MC distributions for

each of the two observables are evaluated, one using generator level jets and the other using reconstructed

jets after the detector simulation. The MC response matrices are also filled using the same procedure.

The diagonal elements of these matrices represent pairs of truth and reconstructed jets agree in momentum
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and position intervals of the measurement. The response matrix is always a multidimensional object with

twice the number of dimensions used in the phase space of the measurement. The ratio of these two MC

distributions provides correction factors which are then applied to the data. The correction factors Ci are

defined as:

Ci =
Ti
Ri
, (5.4)

where Ti and Ri are the number of truth and reconstructed dijets, respectively. However, The recon-

structed and generated distributions are manifestations of each other since they former is actually a detector

reconstruction of its respective truth event. Thus, Ti and Ri are partially correlated, the resulting errors on

the correction factors are defined as:

δC2
i =

T 2
i

R3
i

(
1− M2

ii

TiRi

)
, (5.5)

where Mii are the diagonal elements of the response matrix. These errors take into account the correlation

between the truth and reconstructed quantities. Errors on correlated quantities will be smaller than those on

purely uncorrelated distributions because if there is no migration, i.e. the reconstructed quantities perfectly

resemble their generator level counterparts, Mii = Ti = Ri and therefore δC2
i = 0. However, there is

insignificant migration in energy and position, so the diagonal matrix elements are rarely similar to either

the reconstructed or generated counts.

As mentioned previously, bin-by-bin unfolding procedure is sensitive to the shapes of the distributions

from which the correction factors are derived. This method works when the shape of the data distribution

matches the shape of the MC distributions. Since both thepT spectra and C12 distributions are unfolded

with correction factors, both distributions must first be re-weighted. The weights are estimated as ratios

of distributions of Data/MCReco. The value of the weight for a given truth and reconstructed jet pair is

obtained from the truth jet kinematics. This procedure is done for all jet measurements and is motivated by

the need to re-weight the prior (truth) distribution. Further, re-weighting using reconstructed kinematics

could introduce inefficiency to the response matrix. In the following procedure, jet pT spectra weights are

derived first. Then C12 weights are derived with the pT spectra weight applied. With this intermediate

re-weighting in jet pT spectra, it is found that the C12weights are invariant in pT, allowing extrapolation

into underflow and overflow bins in pT, and reducing statistical fluctuations. Final C12 weights are derived

only as a function of ∆φ in bins of y∗, removing the pT dependence. The product of pT spectra weights and

the C12 weights is applied to the final MC distributions when deriving the correction factors.
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Figure 5.15: Single-jet pT spectra for jets in pp data (left) and p+Pb data (right) in bins of y∗.

From the re-weighted MC truth and reconstructed distributions, correction factors are derived and applied

to data both for the pT spectra and dN1,2/d∆φ distributions. The unfolded dN1,2/d∆φ data distributions

are scaled by the unfolded leading jet pT spectra information to obtain C12 and are then fitted to the

exponentially modified Gaussian function. The widths are extracted from fit results, and the conditional

yields are extracted by integrating these C12 distributions.

5.5.3 Jet Spectra

Jets in pp and p+Pb data are required to have a trigger fired, and any jet(s) are required to be in the

trigger’s pseudorapidity range and transverse momentum interval where the trigger efficiency is above 99%.

The jets are entered with prescale weights given by the ATLAS Lumi-Calc for each trigger and run. For the

2.7 < y∗1 < 4.0 rapidity range, the contribution of different triggers to the final spectra is shown for pp data

in Fig. 5.16. The leading jet pT spectra for pp data are presented in different forward y∗ bins on the left of

Fig. 5.15 and for p+Pb data on the right of Fig. 5.15. In p+Pb data, only one trigger with no pre-scale is

used, thus, unlike the pp spectra, where there are many trigger contributions, the final spectra is composed

entirely of one trigger. The pT binning is consistent with what is shown in Table 5.5 because these spectra

will eventually be used for normalization of ∆φ distributions.

In MC, jet pT spectra are filled separately for each cross setction weighted (JZx) sample, and then

combined using the cross section weights and filtering efficiencies. If no cross section weighted recombination

is performed, the spectra will not be smooth and will have jumps at the jet pT corresponding to the boundaries

covered by the individual JZ samples. The smoothly falling spectra from MC show that the cross section

weighted recombination is working correctly. Reconstructed and truth leading jet pT spectra for the pp MC

are shown in Fig. 5.17 and for the p+Pb MC in Fig. 5.18.
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Figure 5.16: Individual triggers, and resulting jet pT spectra for pp data for the 2.7 < y∗1 < 4.0 rapidity
range.
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Figure 5.17: Reconstructed (left) and truth (right) level leading jet pT spectra in pp MC in bins of y∗.
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Figure 5.18: Reconstructed (left) and truth (right) level leading jet pT spectra in p+Pb MC in bins of y∗.
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5.5.4 Jet Spectra Re-weighting

The leading jet pT spectra weights in both the pp and p+Pb MCs are derived as the ratio of Data/MCReco

leading jet pT spectra. The weights are derived by first scaling the Data and MC spectra to a common

integral and then taking their quotient in bins of y∗. Jet pT spectra with fine binning are used to have better

sensitivity to the shape. Scaled jet pT spectra from data and reconstructed level MC are shown as the black

and red points, respectively, on the top plots of Fig. 5.19. Their ratio, which represents the jet pT spectra

re-weighting factors, is show by the blue points in the bottom plots of Fig. 5.19. Jet pT spectra weights are

consistent with unity in pp and p+Pb collisions.

The shape of the re-weighted reconstructed level MC jet spectra should match the shape of the recon-

structed level jet spectra from data. To check this, reconstructed jet spectra from data are compared to

reconstructed jet spectra before and after re-weighting in MC. The ratio of data to re-weighted MC is con-

sistent with unity for pp and p+Pb. The ratio and reconstructed jet pT spectra as shown as the red points

in Fig. 5.19.
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Figure 5.19: Reconstructed level data (black) and re-weighted (red) and default (blue) reconstructed jet
spectra from MC, with ratios. Jet pT spectra re-weighting factors are represented by the ratio of Data to
reco MC (blue poitns in ratio). The ratio to data to re-weighted MC (red points in ratio) is consistent with
unity for pp (left) and p+Pb (right). Shown for 2.7 < y∗1 < 4.0, which is the only y∗1 bin used in the analysis.

Jet spectra are not re-weighted in y∗ because the effect from the JAR is much smaller than from JER

and additionally, wide bins in rapidity are used. Putiry matrices for pp and p+Pb MC showing migration in

y∗ are shown in Fig. 5.20. There is minor migration, with a purity of at least 97% indicating no significant

change in the shape of the distribution as a function of y∗.
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Figure 5.20: Purity matrices for y∗, shown for pp (left) and p+Pb MCs. High purity indicates very minor
effect on the shape of the distribution. Shown for the 28 < pT < 35 GeV interval.

5.5.5 Jet Spectra Unfolding

To unfold the leading jet pT spectra, the unfolding procedure described in 5.5.2 is used with correction factors

obtained from the ratio the truth to reconstructed leading jet pT spectra. The response matrix describes the

bin migration between ptruth
T and preco

T . The pp reconstructed and truth jet pT spectra, with the response

matrix and resulting correction factors are shown on the left of Fig. 5.21. Similarly, the p+Pb reconstructed

and truth jet pT spectra, with the response matrix and resulting correction factors are shown on the right

of Fig. 5.21. The correction factors and ratios of unfolded to reconstructed MC are shown as a check that

the unfolding procedure is working correctly, not as a check of closure.

5.5.6 Dijet Azimuthal Distributions C12

Distributions of the azimuthal correlations C12 of two jets are constructed from the leading and sub-leading

jet kinematics. In pp and p+Pb data, a trigger is required, and the leading jet is required to be in the trigger’s

pseudorapidity and transverse momentum range. In the dijet system there is a combinatoric contribution

which comes from multi-parton scattering in both pp and p+Pb. This is corrected for by fitting to a constant

in the range 0 < |∆φ| < 1, and subtracting the result on the full range 0 < |∆φ| < π. The effect of the

combinatoric subtraction (CS) is small, as can be seen in Fig. 5.22, where C12 distributions with and without

subtraction are shown, along with W12 and I12 results respectively. This is done at the reconstructed and

truth levels in the same manner. The ∆φ distributions are then normalized by the leading jet pT spectra

counts, fitted to measure the widths, and integrated to measure the yields.
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Figure 5.21: Reconstructed and truth jet pT spectra distributions (top plot), the resulting correction factors
(middle plot) and the pT response matrix (bottom plot). Results shown for pp MC samples (left) and p+Pb
MC samples (right).

5.5.7 Re-weighting C12 Distributions

The weights for C12distributions in both pp and p+Pb MCs are derived as the ratios of Data to MC C12

distributions. This way, the pT dependence of the azimuthal correlation distributions can be eliminated and

only residual differences in shapes between data and MC distributions need to be accounted for. The pp

MC C12 weights in all combinations of pT,1 and pT,2 and increasing bins in y∗2 are shown in Fig. 5.23 as a

function of ∆φ. In such fine binning the weights have very high statistical fluctuations but they are invariant

in pT, so they can be combined to form weights only depending on y∗2 , as shown on the left of Fig. 5.25. To

account for the still high statistical fluctuations in the tail of the distributions, the points are also smoothed.
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Figure 5.22: C12 distributions for pp and p+Pb data showing the effects of the combinatoric subtraction.
Red points are C12 distributions without combinatoric subtraction, black points are the same distributions
with combinatoric subtration. Shown from 0 < ∆φ < 1 is the fit to the tail of the C12 distribution. The
analysis uses combinatoric subtraction by default.

The p+Pb C12 weights are evaluated with the same method. The p+Pb MC C12 weights in all combinations

of pT,1 and pT,2 in increasing bins in y∗2 are shown in Fig. 5.24, and the combined weights are shown on the

right of Fig. 5.25, all as a function of ∆φ. The C12 weights are consistent with unity near the peak of C12

distributions, where the effect of re-weighting is largest.
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Figure 5.23: pp MC C12 weights shown for increasing bins of y∗2 and all possible combinations of pT,1 and
pT,2. Weights have high statistical fluctuations but are invariant in pT.

To properly use the re-weighting in the unfolding procedures, the shapes of re-weighted reconstructed

MC distributions should be checked against those in data. There is not expected to be a complete match

because the re-weighting is done as a function of truth kinematics, but it should pull the reconstructed

distribution towards the data. Comparisons of the re-weighted and default MC distributions to the data are

shown in Fig. 5.26 for pp and Fig. 5.27 for p+Pb C12 distributions. The ratio of the data to re-weighted MC
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Figure 5.24: p+Pb MC C12 weights shown for increasing bins of y∗2and all possible combinations of pT,1

and pT,2. Weights have high statistical fluctuations but are invariant in pT.
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Figure 5.25: pp (left) and p+Pb (right) MC samples C12 weights for combined pT bins, now shown only in
bins of y∗2 .

is constant in ∆φ, indicating a consistent shape. The ratio is fitted to a constant in a range where there is

sufficient statistical precision (2.5 < ∆φ < π). In order to test fit quality, probability distributions of the fit

results are shown for pp and p+Pb in Fig. 5.28. The probability distributions are flat indicating a good fit

to a constant function.

5.5.8 Fitting of C12 Distributions

The unfolded jet pT spectra and dN1,2/d∆φ are further used to evaluate C12 distributions both in pp and

p+Pb collisions using the procedure described until this point. The C12 distributions are then fitted by a
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Figure 5.26: ∆φ distributions for pp data and MC. For MC, both re-weighted and default reconstructed
distributions ares shown. The re-weighting makes the shapes flat in ∆φ as indicated by the constant ratio.
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Figure 5.27: ∆φ distributions for p+Pb data and MC. For MC, both re-weighted and default reconstructed
distributions ares shown. The re-weighting makes the shapes flat in ∆φ as indicated by the constant ratio.

double-exponential distribution convoluted with a Gaussian function:

f(∆φ) =

∫ ∞

−∞
dδ

e−δ
2/2σ2

√
8πσ2τ2

e−|∆φ−δ|/τ (5.6)

where τ is the inverse slope of the exponential component and σ is the width of the Gaussian distribu-

tion. All parameters are required to be positive. Evaluating the convolution of the Gaussian and double

exponential functions, the resulting fit function used in the analysis is:

f(∆φ) = A
eσ

2/2τ2

2τ

(
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(
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Erfc

(
1√
2

[
∆φ

σ
− σ

τ
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, (5.7)

where A is the overall scaling factor. From the fit function, the quantity chosen as the width is the second

moment, or root-mean-square (RMS) of the probability density function in Eq 5.6:

W12 = RMS(C12) =
√

2τ2 + σ2. (5.8)
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Figure 5.28: Probability distribution for constant fits to ratio of re-weighted reco MC to data ∆φ distribu-
tions. Shown for pp (left) and p+Pb (right) MCs.

The fitting procedure is performed for 2.5 < ∆φ < π, and is similar to the one used in a previous dijet

measurement [85]. However, the convolution of the Gaussian and double exponential functions is found to

better describe the data around the peak of the C12 distributions than a pure exponential function. A fitting

procedure is chosen rather than directly evaluating the RMS relative to π in order to minimize the impact

of statistical fluctuations. The fit is performed for 2.5 < ∆φ < π, similarly to the phase-space used in a

previous dijet measurement [85]. Fitting is chosen rather than directly evaluating the RMS relative to π in

order to minimize the impact of statistical fluctuations.

5.5.9 Unfolding C12 Distributions

When filling the truth and reconstructed distributions in either pp or p+Pb, the leading jet weights shown in

Fig. 5.19, in addition to the pT invariant C12 weights shown in Fig.s 5.25 for pp and p+Pb samples are applied

in product. Using the re-weighted truth and reconstructed C12 distributions, along with the respective re-

weighted response matrices, new correction factors are then derived using the bin-by-bin procedure described

earlier. C12 distributions for truth, reconstructed, and unfolded pp MC in two different bins of pT,1 are shown

on the left of Fig. 5.29, along with the correction factors and respective response matrices. Similarly, two

different azimuthal correlation distributions for truth, reco, and unfolded p+Pb MC distributions in different

bins of pT,1 are shown on the right of Fig. 5.29, along with the correction factors and respective response

matrices. All of the correction factors derived from pp and p+Pb MC samples are shown in Appendices C

and D, respectively.
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Figure 5.29: MC reconstructed, truth, and unfolded C12 distributions for two different bins of pT,1, with
correction factors (top row) and respective response matrices (bottom row) for pp MC samples (left) and
p+Pb MC samples (right).

5.5.10 MC Closure Test

As a check of the unfolding procedure, the MC reconstructed results are unfolded using the derived correction

factors. Unfolded reconstructed MC distributions should resemble those at the generator level (truth level).

The comparison of the pp MC truth and unfolded C12 distributions, and the respective ratios are shown

in Fig. 5.30 in bins of pT,1 and pT,2. Similarly, a comparison of I12 in the pp MC truth and unfolded

distributions is shown in Fig. 5.32. The ratios between unfolded and truth results are consistent with unity

within statistical uncertainties indicating there is good closure between the unfolded and truth results. The

comparison of the p+Pb MC truth and unfolded widths, and the respective ratios are shown in Fig. 5.31 in
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bins of pT,1 and pT,2. The similar comparison of conditional yields is shown in Fig. 5.33. As in the case of

the pp system, the ratios between unfolded and truth results in the p+Pb system are consistent with unity

within statistical uncertainties indicating there is good closure between the unfolded and truth results. The

few fluctuations seen in the ratios are statistical in origin.
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Figure 5.30: Comparison of widths from fits to C12 distributions between unfolded and truth results for
the pp MC. Ratios are consistent with unity, indicating good unfolding closure.
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Figure 5.31: Comparison of widths fits to C12 distributions between unfolded and truth results for the
p+Pb MC. Ratios are consistent with unity, indicating good unfolding closure.

As an additional closure test, the jet pT spectra and C12 correction factors derived from the Pythia8

MC were applied to reconstructed jets from the Herwig++ MC. A comparison of unfolded and truth C12

and I12 between the pp Herwig++ and Pythia8 MCs are shown in Fig. 5.34. For the p+Pb results, there

is no additional MC so this test was only done on the pp MC. Ratios of unfolded to truth distributions

indicate good closure. From Table A.2 in the appendix, it is evident that the statistics in the pp Herwig++

MC is roughly 50% of the pp Pythia8 MC, so the resulting fluctuations are seen as statistical.
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Figure 5.32: Comparison of I12 between unfolded and truth results for the pp MC. Ratios are consistent
with unity, indicating good unfolding closure.
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Figure 5.33: Comparison of I12 between unfolded and truth results for the p+Pb MC. Ratios are consistent
with unity, indicating good unfolding closure.

5.5.11 Isolation Requirements

Initially, jets were required to be isolated such that if two jets were separated by a distance of ∆R < 0.2,

they were not considered in the event. This was done to avoid potential split jet contributions to the result.

However, when comparing with NLO QCD, isolation requirements cause complications and as a result they

were removed. The effect of the isolation requirement on C12 and I12 distributions is very minor, as shown

in Appendix E.
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Figure 5.34: Comparison of C12 (left) and I12 (right) between unfolded and truth results for the pp
Herwig++ MC. Unfolding is done using correction factors derived from the Pythia8 MC. Ratios are
consistent with unity, indicating good unfolding closure.

5.6 Systematic Uncertainties

5.6.1 Overview

This section gives an overview of the major sources of systematic uncertainties on the pp and p+Pb azimuthal

angular correlations. Careful treatment of these known variations is necessary for a precise physics result.

The systematic uncertainties in the measurement originate from:

• Jet energy scale

• Jet energy resolution

• Jet Position resolution

• Unfolding of jet pT spectra and C12 distributions

• Fitting of the C12 distributions

• Differences in conditions between data and MC samples

The systematic uncertainties have been evaluated for the C12 distributions as a function of y∗ for pp and

p+Pb collisions. For each source of systematic uncertainties, the entire unfolding and fitting procedure is

repeated (1D unfolding of the C12 distributions as a function of ∆φ, and the 1D unfolding of leading jet pT
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spectra as a function of jet pT) and the W12, I12, and ratios of these distributions, ρpPb
W and ρpPb

I , in p+Pb

and pp collisions are re-evaluated. The difference between the varied and nominal distributions is used as

an estimate of the uncertainty. All sources of systematic uncertainty discussed in this section have been

combined in quadrature to obtain the total systematic uncertainty.

5.6.2 Systematic Uncertainty Due to the Jet Energy Scale

The systematic uncertainty due to the JES is determined from in situ studies of the calorimeter response [83,

86, 84, 87], and studies of the relative energy scale difference between the heavy ion style jet reconstruction

procedure [86] and the procedure used in pp collisions [88]. For the pp and p+Pb JES uncertainties, part

a globally reduced set of nuisance parameters derived by the JetEtMiss group are used. The heavy ion

specific components are from the a cross calibration and the jet flavor uncertainties at 5.02 TeV. The latter

uncertainties come from the fact that jets from different quark flavors will have minor differences in jet

shape and fragmentation, but in the analysis all jets are treated identically. As a result, a systematic

ucnertainty must be introduced, and should also account for the affect of the boost in p+Pb collisions. For

each component of the variation the response matrices are regenerated with the shifted pjet
T :

pT
?,reco = pT

reco(1± UJES(pT, η)). (5.9)

where UJES is the uncertainty in the JES. The data is then re-unfolded with these response matrices and

the variation in the widths of C12 distributions is taken as the systematic uncertainty.

5.6.3 Additional Systematic Uncertainty in p+Pb Due to the Jet Energy Scale

The JES in the 2016 p+Pb MC with data overlay differs from the 2016 p+Pb signal only MC, and from the

2015 pp MC. The JES for the different configurations is show in in the top plots Fig. 5.35, and the difference

in the JES between the overlay and signal MC samples, and the difference between the signal and pp MC

samples is shown in the bottom plots. These two differences are used as an additional systematic on the

JES in p+Pb, and are added together in quadrature.

The absolute effect of the additional systematic on the final uncertainties on C12 and I12 distributions

is shown in Fig. 5.36, where the total uncertainty before the new JES systematics is compared to the total

uncertainty with the new JES systematics. All figures showing the relative effect of the new systematics on

C12 and I12 distributions are shown in Fig. F.1 and Fig. F.2 of the appendix. Generally, the effect is below

3%, with some bins having up to a 5% effect. This additional uncertainty is acceptable for the analysis and
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Figure 5.35: Top row shows the JES in the p+Pb MC with overlay (black points), p+Pb signal only MC
(red points), and pp MC (blue points). Green points show recent and small validation sample where the
HEC issue was fixed. This is done for testing purposes and does not have a significant effect. Bottom row
shows the difference between the overlay and signal (empty blue points) and between the signal and pp
(empty black points). Shown for forward, proton going direction (left plot) and barrel region (right plot).
The differences are used as an additional JES systematic in p+Pb.

does not change the results sufficiently.

The effect of the additional systematic on ρpPb
W and ρpPb

I is shown in Fig. 5.37, where the total uncertainty

on the ratio before the new JES systematics is compared to the total uncertainty on the ratio with the new

JES systematics. All figures showing the relative effect of the new systematics on on ρpPb
W and ρpPb

I are

shown in in Fig. F.3 and Fig. F.4 of the appendix. The effect is minor, not increasing any total systematic

uncertainty by more than 2%.

5.6.4 Systematic Uncertainty Due to the Jet Energy Resolution

The uncertainty due to the JER is evaluated by repeating the unfolding procedure with modified correlation

matrices, where an additional contribution is added to the resolution of the simulated pjet
T using a Gaussian

smearing procedure [88]. The smearing factor is evaluated using an in situ technique in 13 TeV pp data

involving studies of dijet energy balance [89]. The jet pT
reco is then smeared by

pT
?,reco = pT

reco ×N (1, σeff
JER) , (5.10)

where N (1, σeff
JER) is the normal distribution with the effective resolution σeff

JER =
√

(σJER + σsyst
JER)2 − σ2

JER.

An additional uncertainty is included to account for differences between the heavy ion style jet recon-
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Figure 5.36: Effect on total systematic uncertainty on C12 (left) and I12 (right) after adding new JES
uncertainties. Shown for two different bins of pT,1 and pT,2. Generally the relative effect is below 10%, with
some bins reaching 25%. Fig.s in all bins of pT and y∗ are shown in Appendix F.

struction and that used in the analyses of 13 TeV pp data. The resulting uncertainty from the JER is

symmetrized to account for negative variations of the JER. The size of the resulting uncertainty due to the

JER on the I12 distributions reaches up to 30% and is typically below 10% in the W12 distributions.

5.6.5 Systematic Uncertainty Due to the Jet Angular Resolution

To account for the systematic uncertainties due to the disagreement between JAR in data and MC, the pro-

cedure used in previous measurements [90] based on the comparison of relative angular resolutions between

calorimetric jets and track jets in the data and the MC cannot be used due to the limited pseudorapidity

coverage of the ID. The uncertainty in this analysis is derived as the difference in the JARs evaluated using

the two different MC generators. Jets from Herwig++ and Pythia8 MC samples are used. The comparison

of pseudorapidity and azimuthal angular resolutions between pp Herwig++ and Pythia8 MC performance

for forward and central bins of y∗ are shown in Fig. 5.38. Since the p+Pb MC sample utilizes the overlay

procedure, ensuring that the underlying event is the same in the MC and data, the pp MC is used for the
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Figure 5.37: Difference between total systematic uncertainty on ρpPb
W (left) and ρpPb

I (right) before and after
adding new JES uncertainties. The total systematic uncertainty on the ratio before the addition of the new
JES uncertainties is shown as the dotted red line, and after the addition of the new JES uncertainties in
the solid black line. Overall effect on uncertainties on the ratios is small, with the difference in uncertainties
generally below 2%, with one bin reaching 5%. Fig.s in all bins of pT and y∗ are shown in Appendix F.

uncertainty on the p+Pb JAR. The difference in pseudorapidity and azimuthal angular resolutions between

Pythia8 and Herwig++ MC samples is less than 0.5% in both the forward and central directions.

The uncertainty on the the widths of azimuthal correlation distributions associated with the jet angular

resolution in η and φ is estimated similarly to the uncertainty in JER. A modified response matrix where

the reconstructed jet angular in η and φ is smeared to reflect uncertainties on the JAR evaluated in previous

paragraphs. The Gaussian probability density function is estimated for each jet pT and jet y∗. The new

unfolded results are compared with the original distributions and the difference is used as an estimate of the

systematic uncertainty.

5.6.6 Systematic Uncertainty Due to Unfolding

The systematic uncertainty associated with the unfolding procedure is connected with its sensitivity to the

choice of input distributions. The default version of the unfolding uses the MC reweighted such that the
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Figure 5.38: Comparison of angular resolutions in η (left) and φ (right) between Pythia8 and Herwig++.

reconstructed MC is matched to the reconstructed data in the shapes of the C12 distributions. Conservatively,

the systematic is evaluated by using the MC without re-weighting. A comparison of correction factors with

and without re-weighting is shown for two different phase space bins for the pp and p+Pb MCs in Fig. 5.39.

The effect on the correction factors is minor (below 5%) and the resulting uncertainty on the measurement

is also below 5%. This indicates that the correction factors are robust against re-weighting.

5.6.7 Systematic Uncertainty Due to Fitting

The systematic uncertainty due to the fitting to C12 distributions is associated with the sensitivity of the

measured widths to the choice of fit range. The default fitting is in the range 2.5 < ∆φ < π, and a varied

fit range of 2.1 < ∆φ < π is used to evaluate the systematic uncertainty. This systematic only affects the

C12 widths, not the normalized yields where no fitting is used. Resulting widths, with two different fit

ranges are shown for pp and p+Pb data in Fig. 5.40. The changes in the widths of azimuthal correlation

distributions are below 8% in most bins. However, there are large statistical uncertainties in some fit results

and the resulting statistical fluctuations in turn affect the resulting systematic uncertainty, which is related

to the ratio between the results using two different fit ranges. To account for this, the ratios, shown in the

bottom of Fig. 5.40, are fitted to a constant. The resulting systematic uncertainty is conservatively taken

as the fit result plus error on the fit. For reference, results in all combinations of pT,1 and pT,2 are shown in

Appendix G.
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Figure 5.39: Comparison of correction factors with and without re-weighting for the pp MC (top row) and
the p+Pb MC (bottom row)

5.6.8 Systematic Uncertainty Due to the HEC

The systematic uncertainty associated with excluding reconstructed level jets that are in the region covered

by the lead-going HEC, as discussed in Section 5.3.3, is taken by increasing excluded region by 0.1 in all

directions in azimuth and pseudorapidity. This number was chosen to introduce some variation and at the

same time not drastically decrease the sampled statistics . The resulting widths and yields, with default

HEC region excluded, and with the increased region excluded, shown for two bin in pT,2 for C12 and I12 in

Fig. 5.41. The effect on the widths is consistent with unity, and on the yields, there is up to a 10% effect in

the most negative y∗2 bin, which are the two the center-of-mass rapidity bins affected by the HEC issue.
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Figure 5.40: Comparison widths from fitting on two different ranges, 2.5 < ∆φ < π for the solid black
points, and 2.1 < ∆φ < π for the open red points, and their respective ratios. Shown for pp data (top row)
and p+Pb data (bottom row). Empty black points show result of statistical RMS calculation.

5.6.9 Summary of Systematic Uncertainties

The total and individual systematic uncertainties on the pp widths are shown in 5.42, and on the pp yields

in 5.43. Similarly, the total and individual systematic uncertainties on the p+Pb widths are shown in 5.44,

and for the yields in 5.45.

The correlations between the various systematic components are considered in evaluating the p+Pb to pp

ratios ρpPb
W and ρpPb

I for widths and yields respectively. The unfolding and fitting are taken to be uncorrelated

between the two collision systems and are added in quadrature. The new JES and HEC detector condition

systematics are present in p+Pb only and by construction considered to also be uncorrelated between the two

collision systems. All other uncertainties associated with the JES, JER, and JAR are taken to be correlated.

The ratios are re-evaluated by applying the variation to both collision systems and the resulting variations of
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Figure 5.41: Effect of using removing jets that are in the default region that the HEC affects (black points),
and with the region with 0.1 increase in all directions in azimuth and pseudorapidity (red points). The
uncertainty is represented by the ratio of results using the two different excluded regions.

the ratios from their central values is used as the correlated systematic uncertainty from a given source. The

summary of systematic uncertainties on ρpPb
W and ρpPb

I distributions is presented in Fig. 5.46 and Fig. 5.47,

respectively. The systematic uncertainty due to the JES is dominant (up to 20%) on both ρpPb
W and ρpPb

I

distributions.
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Figure 5.42: Total and individual systematic uncertainties on the widths of C12 distributions in pp data.
Some bins have been removed due to very high statistical and systematic uncertainties in those bins.
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Figure 5.43: Total and individual systematic uncertainties on the dijet conditional yields in pp data.
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Figure 5.44: Total and individual systematic uncertainties on the widths of C12 distributions in p+Pb data.
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Figure 5.45: Total and individual systematic uncertainties on the dijet conditional yields in p+Pb data.
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Figure 5.46: Total and individual systematics on ρpPb
W . Some bins have been removed due to very high

statistical and systematic uncertainties in those bins.
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Figure 5.47: Total and individual systematics on ρpPb
I . Some bins have been removed due to very high

statistical and systematic uncertainties in those bins.

81



5.7 Results

5.7.1 C12 Distributions and Their Fits
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Figure 5.48: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are presented with no ∆pT requirement (top row) and with a requirement of ∆pT > 3
GeV (bottom row).

This section presents results for W12 and the I12 distributions, and ratios, ρpPb
W and ρpPb

I , of these

distributions in p+Pb and pp collisions in order to explore the effects of saturation of gluon distribution

functions. These distributions are measured for pairs of leading and sub-leading jets in transverse momentum

range of 28 < pT < 90 GeV. Leading jets are measured in the center-of-mass rapidity region 2.7 < y∗1 < 4.0

and sub-leading jets in the center-of-mass rapidity of −4.0 < y∗2 < 4.0.

Examples of unfolded C12 distributions with systematic uncertainties in different intervals of y∗2 , pT,1,

and pT,2 evaluated in pp and p+Pb collisions are shown in Fig. 5.48 together with the fit results. These

results are presented with and without a requirement of ∆pT > 3 GeV. All the C12 distributions used in

the analysis, with systematic uncertainties and fit result are shown for pp and p+Pb collisions with and

without the ∆pT requirement in Appendix H. The C12 distributions exhibit an exponential behavior, with a

flattening, described by the Gaussian, near the peak at ∆φ = π. Fit quality is validated from the χ2/NDF

probability distribution shown in Figure 5.49. Since there is no physics motivation behind the fit function,

a uniform probability distribution is not expected.
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Figure 5.49: Comparison of fit quality of unfolded pp (red) and p+Pb (black) results.

5.7.2 Widths and Conditional Yields With no ∆pT Requirement

The results of measurements of W12 in p+Pb collisions and pp collisions for different ranges of pT,1 and

pT,2 as a function of y∗2 are presented in left panels of Fig. 5.50. The W12 distribution increases with

increasing rapidity separation between the leading and sub-leading jets both in the pp and p+Pb collisions.

Further, the W12 increases with imbalance in pT between the leading and sub-leading jets. From the pQCD

BFKL equation, the probability of additional soft radiation increases with larger rapidity separation between

dijets, leading to a stronger ∆φ decorrelation [91]. The results of the measurement of conditional yields I12

in p+Pb and pp collisions are shown in the right panels of Fig. 5.50. The I12 distribution increases with

the increasing rapidity separation between the two jets reaching a maximum for sub-leading jets in the

0 < y∗2 < 1.8 interval and decreases for larger rapidity separations between the two jets. This is attributed

to the dijet cross section falling off faster at forward rapidities compared to the inclusive jet cross section.

The shapes of the I12 distributions for pp and p+Pb collisions are similar for all pT,1 and pT,2 combinations.

The ratios ρpPb
W between p+Pb collisions and pp collisions for different rangess of pT,1 and pT,2 as a

function of y∗2 are consistent with unity and are presented in the left panel of Fig. 5.52. The ratios ρpPb
I

between p+Pb collisions and pp collisions in the same bins of rapidity and transverse momenta are shown in

the right graph of Fig. 5.52. The uncertainty on both ρpPb
W and ρpPb

I is dominated by systematic uncertainties,

which are correlated in jet pT and y∗. The ratios ρpPb
I are consistent with unity for sub-leading jets in the

lead-going direction. However, the ratio of conditional yields of jet pairs in the proton-going direction in

p+Pb collisions compared to pp collisions is suppressed by approximately 20%, with no significant dependence

on jet pT and rapidity of the sub-leading jet y∗2 . In the most forward-forward configuration, with both jets
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in the lowest jet pT interval 28 < pT,1, pT,2 < 35, the approximate x range probed is 1.5× 10−4 < x < 10−3.

The suppression is an indication of possible nuclear effects including saturation.

5.7.3 Widths and Conditional Yields With a ∆pT > 3 GeV Requirement

Results for the W12 and the I12 distributions from p+Pb collisions and pp collisions with a ∆pT > 3 GeV

requirement are shown in Fig. 5.51. The C12 distributions are unaffected by the ∆pT cut, but the conditional

yields I12 are smaller than the results with no ∆pT cut. This is expected because in bins of pT with a width

of 7 GeV to 10 GeV, a requirement that the leading and sub-leading jets have a ∆pT > 3 GeV will affect a

significant portion of the statistics. Results for the ratios ρpPb
W and ρpPb

I with a ∆pT > 3 GeV requirement

are shown in Fig. 5.51. The ratios ρpPb
W and ρpPb

I are both unaffected by the ∆pT cut indicating that having

such a requirement does not have an impact on the study of possible saturation effects since both pp and

p+Pb collisions are identically affected.
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Figure 5.50: Comparison of W12 (left) and I12 (right) distributions in pp (open symbols) and p+Pb (closed
symbols) collisions for different selections of pT,1 and pT,2 as a function of y∗2 . The shaded and empty
boxes indicate systematic uncertainties and vertical error bars represent statistical uncertainties. Results
are presented with no ∆pT requirement.
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Figure 5.51: Comparison of W12 (left) and I12 (right) distributions in pp (open symbols) and p+Pb (closed
symbols) collisions for different selections of pT,1 and pT,2 as a function of y∗2 . The shaded and empty boxes
indicate systematic uncertainties and vertical error bars represent statistical uncertainties. Some points have
been removed due to high statistical uncertainties. Results are presented with a requirement of ∆pT > 3
GeV.
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Figure 5.52: Ratios ρpPb
W of W12 (too) and ρpPb

I of I12 (bottom) between p+Pb collisions and pp collisions
for different selections of pT,1 and pT,2 as a function of y∗2 . The open boxes indicate systematic uncertainties
and vertical error bars represent statistical uncertainties. Results are presented with no ∆pT requirement.
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Figure 5.53: Ratios ρpPb
W of C12 (top) and ρpPb

I of I12 (bottom) between p+Pb collisions and pp collisions for
different selections of pT,1 and pT,2 as a function of y∗2 . The open boxes indicate systematic uncertainties and
vertical error bars represent statistical uncertainties. Data points in the rapidity interval of −4.0 < y∗2 < 1.8
are not presented due to limited statistical precision. Results are presented with a requirement of ∆pT > 3
GeV.
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Chapter 6

Summary

This dissertation presents measurements of dijet azimuthal angular correlations along with their widths and

the conditional yields of leading and sub-leading jets in p+Pb collisions and pp collisions at
√
s = 5.02 TeV.

The measurement utilizes pairs of leading and sub-leading R = 0.4 anti-kt jets in the transverse momentum

range of 28 < pT < 90 GeV. The shapes of azimuthal angular correlations, C12 for forward-forward and

forward-central dijets and conditional yields could be sensitive to possible effects of gluon saturation at

low-x [92, 93]. Dijets where both jets are very far forward probe x ≈ 10−5 at this collision energy.

The widths of the azimuthal correlations are found to be smaller for pairs of jets with higher pT,1, pT,2

and the widths increase with the increasing rapidity interval between the leading and sub-leading jet. No

significant broadening of azimuthal angular correlations is observed for forward-forward and forward-central

dijets in p+Pb compared to pp collisions within the uncertainties. However, the measurement of conditional

yields of jet-pairs for forward-forward jets in p+Pb collisions compared to pp collisions shows a suppression

of approximately 20%, with no significant dependence on jet pT and y∗. The uncertainty on this ratio is

dominated by systematic uncertainties, which are correlated in jet pT and y∗. The observed suppression of

ρpPb
I indicates possible saturation effects for the higher gluon densities expected in the Pb-nucleus at low-x.

Currently, there are no available calculations to compare these results to. However, the hope is that

the presented measurement will contribute to predictions coming from phenomenology and theory groups

interested in saturation physics. There has already been significant contact with groups working on such

physics, and the motivation for tuning existing models to replicate the presented measurement exists. At

the time of finishing this thesis, the results presented hereof were approved by the ATLAS collaboration

and were shown at the Hard Probes 2018 Conference in Aix-le-Bains, France. Furthermore, the results are

planned to be published in the journal Physical Review C.
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Appendix A

Data Sets

2016 p+Pb Data Samples Number of Events
data16_hip5TeV.00312649.physics_Main.recon.AOD.f784_m1741 8.96e6
data16_hip5TeV.00312796.physics_Main.recon.AOD.f784_m1741 4.32e7
data16_hip5TeV.00312837.physics_Main.recon.AOD.f774_m1736 8.50e7
data16_hip5TeV.00312937.physics_Main.recon.AOD.f774_m1736 2.60e7
data16_hip5TeV.00312945.physics_Main.recon.AOD.f774_m1736 2.87e7
data16_hip5TeV.00312968.physics_Main.recon.AOD.f774_m1736 3.66e7
data16_hip5TeV.00314199.physics_Main.recon.AOD.f781_m1741 2.40e8

2015 pp Data Samples Number of Events
data15_5TeV.periodK.physics_Main.PhysCont.AOD.repro20_v03 1.15e8
data15_5TeV.periodVdM.physics_Main.PhysCont.AOD.repro20_v03 1.27e6

Table A.1: Data samples from
√
s
NN

=5.02 TeV pp and p+Pb collisions collected during the 2015 and 2016
heavy ion runs, respectively.

J 2015 pp Pythia8 MC Samples Number of Events
1 mc15_5TeV.420011.Pythia8EvtGen_A14NNPDF23LO_jetjet_ 5.88e6

JZ1R04.merge.AOD.e4108_s2860_r7792_r7676

2 mc15_5TeV.420012.Pythia8EvtGen_A14NNPDF23LO_jetjet_ 5.84e6
JZ2R04.merge.AOD.e4108_s2860_r7792_r7676

J 2016 p+Pb Pythia8 MC Samples Number of Events
1 mc15_5TeV.420018.Pythia8EvtGen_A14NNPDF23LO_jetjet_ 1.98e6

JZ1R04_MaxEta_m3p0.merge.AOD.e6114_d1462_r10136_r9647

2 mc15_5TeV.420019.Pythia8EvtGen_A14NNPDF23LO_jetjet_ 1.00e6
JZ2R04_MaxEta_m3p0.merge.AOD.e6114_d1462_r10136_r9647

J 2015 pp Herwig++ MC Samples Number of Events
1 mc15_5TeV.420031.HerwigppEvtGen_UEEE5_CTEQ6L1_jetjet_ 2.82e6

JZ1R04.merge.AOD.e4929_s2860_r7792_r7676

2 mc15_5TeV.420032.HerwigppEvtGen_UEEE5_CTEQ6L1_jetjet_ 2.80e6
JZ2R04.merge.AOD.e4929_s2860_r7792_r7676

Table A.2: 2015 pp Pythia8 MC Samples (top). 2016 p+Pb Pythia8 MC samples with data overlay
(middle). 2015 pp Herwig++ Monte Carlo samples (bottom).
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Appendix B

Bin-by-bin Unfolding Procedure

In Figure B.1, we have truth and reconstructed ∆φ distributions on the left-most plot, the response matrix

Mij where ∆φReco is along the x-axis, along the j-index, and ∆φTruth is along the y-axis, along the i-index,

and resulting correction factors with errors on the right-most.

Define Ti as the total number of entries in the ith bin of the Truth distribution (blue points on left plot),

and Ri as the total number of entries in the ith bin of the Reconstructed distribution (red points on left

plot).

In terms of the response matrix, Rj is

Rj =
∑

i

Mij = Mjj +
∑

i 6=j
Mij (B.1)

The last part is just the diagonal element plus the off-diagonal vertical elements of the ith bin (on the

x-axis).

Similarly, in terms of the response matrix, Ti is
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Figure B.1: ∆φ distributions for truth and reco (left). Response Matrix Mij (center). Correction factors
with errors (right).
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Ti =
∑

j

Mij = Mii +
∑

j 6=i
Mij (B.2)

For some bin ith reconstructed bin,

Ri = Ti −NLeaving +NArriving = Ti −
∑

k 6=i
Mik +

∑

j 6=i
Mji (B.3)

We can express the number leaving and number arriving in terms of off-diagonal row or column elements

of Mij , or in terms of Ti, Ri, and diagonal elements of Mij .

NLeaving = Ti −Mii (B.4)

NArriving = Ri −Mii (B.5)

Now, Ti is taken as a constant. This means that reconstructed distribution can be different time to time,

but the truth distribution stays the same. In the language of a toy MC, this is equivalent to generating one

Truth distribution, and smearing it many different times, each time (or for each new ”experiment”) getting

new results.

When Ti is taken as constant, the bin migration of leaving and arriving is different. The distribution of

NLeaving is binomial, while NArriving is Poisson. If Ti is fixed, there is only a certain number of entries that

can leave, while the number that arrives depends on, and is a mix of the entries leaving neighboring bins.

In a toy MC 1, for the case where the truth distribution was generated one time, but smearing applied

to the reconstructed (case with ”fixed” Ti), it is clear from Figure B.2 that the migration where entries are

leaving is narrower than where the arrive. In the same toy MC, when for every experiment a new truth

distribution was used, it is evident that the migration to and from is the same.

Correction factors Ci, which relate Ti and Ri are

Ci =
Ti
Ri

(B.6)

1A Toy MC with a randomly generated exponential was generated for the truth distribution 5000 times, with smearing from
the ATLAS MC response matrix applied to the reconstructed distribution. The experiment was then repeated 10,000 times to
get some good statistics on correction factors, their errors, bin migration, etc.
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arriving (right) and entries leaving (left).Migration where entries leave has a binomial (narrower) distribution,
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Figure B.3: For the case where for every experiment a new truth distribution is generated and the recon-
structed is smeared from that, histogram of migration between ∆φ bins (x and y axes) for entries arriving
(right) and entries leaving (left). Both migrations have Poisson distributions.

and their respective errors σCi
are

σ2
Ci

=
C2
i

R2
i

σ2
Ri

(B.7)

Now since Ti is constant, and the entries leaving a Ti bin follow binomial statistics, while entries arriving

are Poisson, we continue from Equation B.3. The error in Ri is

σ2
Ri

= σ2
NLeave

+ σ2
NArrive

(B.8)

σ2
Ri

= Ti
Ti −Mii

Ti

(
1− Ti −Mii

Ti

)
+ (Ri −Mii) (B.9)

σ2
Ri

= Ti +Ri − 2Mii −
(Ti −Mii)

2

Ti
(B.10)

From this, plugging into Equation B.7, the error on the correction factor is
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σ2
Ci

=
T 2
i

R4
i

(
Ti +Ri − 2Mii −

(Ti −Mii)
2

Ti

)
(B.11)

σ2
Ci

=
T 2
i

R3
i

(
1− M2

ii

TiRi

)
. (B.12)
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Appendix C

∆φ Correction Factors From pp MC
Samples
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Figure C.1: Corretion factors derived from pp MC samples.
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Figure C.2: Corretion factors derived from pp MC samples.
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Figure C.3: Corretion factors derived from pp MC samples.
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Appendix D

∆φ Correction Factors From p+Pb
MC Samples
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Figure D.1: Corretion factors derived from p+Pb MC samples.
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Figure D.2: Corretion factors derived from p+Pb MC samples.
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Figure D.3: Corretion factors derived from p+Pb MC samples.
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Appendix E

Effect of Isolation Cuts
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Figure E.1: Comparison of C12 distributions with and without isolation requirement in pp data.
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Figure E.2: Comparison of I12 distributions with and without isolation requirement in p+Pb data.
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Appendix F

Effect of New JES Systematic
Uncertainties
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Figure F.1: Effect on total systematic uncertainty on C12 after adding new JES uncertainties. Generally the
effect is below 10%.
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Figure F.2: Effect on total systematic uncertainty on I12 after adding new JES uncertainties. Generally the
effect is below 10%, with some bins reaching 25%.
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Figure F.3: Effect on total systematic uncertainty on ratio ρpPb
W after adding new JES uncertainties. The

total systematic uncertainty on ρpPb
W before the addition of the new JES uncertainties is shown as the

dotted red line, after the addition of the new JES uncertainties in the solid black line.Generally the absolute
difference is below 2%.
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Figure F.4: Effect on total systematic uncertainty on ratio ρpPb
I after adding new JES uncertainties. The

total systematic uncertainty on ρpPb
I before the addition of the new JES uncertainties is shown as the dotted

red line, after the addition of the new JES uncertainties in the solid black line. Generally the absolute
difference is below 2%, with a one bin in the most negative y∗2 region having an effect of 5%.
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Appendix G

Fitting Systematic Uncertainties
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Figure G.1: For pp data, comparison of fits in default range (black) and extended range (red) and their
ratios, which represent the systematic uncertainty on the fits. Due to large statistical fluctuations in some
points, the ratios are fitted to a constant. Empty black points show result of statistical RMS calculation.
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Figure G.2: For p+Pb data, comparison of fits in default range (black) and extended range (red) and their
ratios, which represent the systematic uncertainty on the fits. Due to large statistical fluctuations in some
points, the ratios are fitted to a constant. Empty black points show result of statistical RMS calculation.
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Appendix H

Unfolded C12 Distributions from Data
with Systematic Uncertainties

H.1 C12 distributions with no ∆pT requirement
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Figure H.1: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are shown with no ∆pT requirement.
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Figure H.2: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are shown with no ∆pT requirement.
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Figure H.3: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are shown with no ∆pT requirement.
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H.2 C12 distributions with a requirement of ∆pT > 3 GeV
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Figure H.4: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are presented with a requirement of ∆pT > 3 GeV.
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Figure H.5: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are presented with a requirement of ∆pT > 3 GeV.
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Figure H.6: Unfolded C12 distributions in pp (red symbols) and p+Pb (black symbols) collisions for different
selections of pT,1, pT,2, and y∗2 as a function of ∆φ. Lines represent results of the fit (for more details see the
text). Open boxes represent correlated systematic uncertainties and vertical error bars represent statistical
uncertainties. Results are presented with a requirement of ∆pT > 3 GeV.
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