International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

DIRAC RESTful API

A. Casajus Ramo!, R. Graciani Diaz!, A. Tsaregorodtsev?
1 ICC, University of Barcelona
? CPPM Marseille

E-mail: adria@ecm.ub.es

Abstract.

The DIRAC framework for distributed computing has been designed as a flexible and
modular solution that can be adapted to the requirements of any community. Users interact
with DIRAC via command line, using the web portal or accessing resources via the DIRAC
python API. The current DIRAC API requires users to use a python version valid for DIRAC.

Some communities have developed their own software solutions for handling their specific
workload, and would like to use DIRAC as their back-end to access distributed computing
resources easily. Many of these solutions are not coded in python or depend on a specific
python version. To solve this gap DIRAC provides a new language agnostic API that any
software solution can use. This new API has been designed following the RESTful principles.
Any language with libraries to issue standard HTTP queries may use it. GSI proxies can
still be used to authenticate against the API services. However GSI proxies are not a widely
adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the
user credentials to a third party solution. These delegated credentials allow the third party
software to query to DIRAC on behalf of the users.

This new API will further expand the possibilities communities have to integrate DIRAC
into their distributed computing models.

1. Introduction

The DIRACI18] project started in 2002 as a software tool to manage LHCb Monte Carlo
simulation jobs in an efficient manner. DIRAC functionality has been extended since then
to include data management, user analysis, workflows... to manage all LHCb’s computing
activities. Other communities started to use and adapt DIRAC to fit their own needs.

In the last years there has been an increasing attention to DIRAC. DIRAC is now used
by several user communities as their grid management tool. As more and more people start
interacting with DIRAC it has been clear that the DIRAC portal cannot accommodate all use
cases. Each community has their own needs and problems that need solving.

Communities can extend the DIRAC web portal[4] to meet their needs. But some of them
started projects on their own before deciding on using DIRAC or are using other already existing
products. Those communities would like to connect their own projects with DIRAC. DIRAC is
almost entirely coded in Python[17] and provides an API for third party applications to interact
with it. Many of these solutions are not coded in Python. Migrating these projects to Python
is not feasible in most cases.

Up until now, applications that wanted to interact with DIRAC that could not use the
standard DTRAC API had to use the command line tools and parse the result. This solution

Published under licence by IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing

Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019
Codification Requires schema | Human readable | Native types
XML Yes Yes No
YAML Yes Yes No
JSON No Yes Yes
BSON No No Yes
MessagePack Yes No Yes
Protocol Buffers | Yes No Yes
Thrift Yes No Yes

Table 1. Comparison of serializers

has proven troublesome time and again. Every time a command line tool changes the output
format or a functionality is added or modified the applications have to be patched. Even if this
approach can be used as a proof of concept, a more robust solution is needed.

This paper is organized as follows. Section 2 introduces the possibilities on how to make
a language agnostic API. Section 3 describes the API implemented and what components are
necessary to provide the required functionality. Section 4 summarizes this paper and explores
future work.

2. Language agnostic APIs

A API is required to allow third party applications that are not written in the native language
of a given software. In the case of DIRAC, its native language is python. To achieve the widest
possible coverage APIs should be language agnostic. A language agnostic has to use standard
mechanisms for:

e Codification of requests and responses
e Credential delegation

e Query protocol

At the same time, it is desirable that the chosen solution can be easily understood, maintained
and debugged.

2.1. Request codification

There are plenty of serializers that are available for lots of languages. A few examples are
XMLI[5], YAML[22]. JSON|[11], BSON 2], MessagePack[13], Protocol Buffers[16], Thrift[1] and
many more. A comparison of these serializers is included in table 1. XML and YAML were
discarded because they do not have any knowledge of native types. The serialization has to
be defined by the user to define what each object is. On top of that, the serialized data XML
produces is overloaded with repetitive patterns that make the data too big. MessagePack,
ProtocolBuffers and Thrift where discarded because they need a schema to be compiled before
using the serializer. Defining a schema for the serializer can help maintain the interfaces once
an API is mature. But it adds a lot of complexity to it. BSON is a binary form of JSON.
Although BSON is an open specification there seems to be only one company behind it and it
is not widely used. JSON is a more mature standard than BSON and has been used for a long
time.

2.2. Credentials delegation

Whenever an application uses the API to interact with DIRAC, the user has to have granted
privileges to the application previously as shown in figure 1. Without credentials delegation
DIRAC would not know what the application is allowed to access.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

Request on
behalf of the
user

Delegate ;
credential

Figure 1. Credentials delegation

DIRAC uses x509 certificates [9] and grid proxies [3] to authenticate connections and can
make delegate to the different components that make use of them. Grid proxies are not an RFC
standard. There is an ongoing effort to update DIRAC to understand X509 proxies [19] in the
near future. But using proxies is not easy to do through a web page. Although it would be
possible to create a grid proxy in the browser if it had access to the user credentials, browsers
are not able to retrieve the user key from the certificate store.

The usual solution for this problem has been Kerberos[12]. Kerberos is a network
authentication protocol. Kerberos uses strong cryptography so that clients and servers can prove
their identity across an insecure network connection. Once their identity has been proved, they
can also encrypt all their communication. Although Kerberos would solve the problem, it is quite
complicated and difficult to understand. On top of that Kerberos has multiple authentication
plug-ins that make it difficult to be properly configured.

Ideally the delegation mechanism should be simple enough that it can be implemented from
scratch with the basic modules available to any programming language. This requirement implies
that it is simple enough for a wide user community to understand it and therefore many people
will be able to contribute to spot possible flaws in the mechanism. This follows the open source
approach to improve the quality of the software.

OAuth[8] is an alternative that lately has been gathering strength from the web community.
Multiple web pages such as Twitter[15], Google Apps[20], and Flickr[21] support it. It is simple
enough so that anyone can understand how it works. There is a second version of the protocol
at the OAuth web page[14] that further simplifies the protocol but it is still a work in progress.

OAuth is a mechanism to grant privileges to tokens that are only known to certain parts. It
starts with the application requesting a request token to DIRAC. In OAuth language, DIRAC is
called provider and the application is called client. To get the request token the client must use
his client token that has been granted before. That means that only known clients can request
tokens, and that each token is tied to a single client. Once the provider grants the request token
to the client, the client gives the token to the user so it can grant privileges to it. The user
logs-in to the provider and grants the required privileges to the token. As soon as the token
has the privileges granted, the user notifies the client that the request token has the requested
privileges. Finally the client exchanges the request token for an access token with the provider.
This last step is to ensure that not even the user know the tokens the client is using. An example
flow is shown in figure 2.

Using this mechanism the client will never know the password or require access to the user
certificate. On top of that, if a user does not want an application to access DIRAC anymore,
it just needs to revoke the privileges to the token it granted and the application will not have
access any more until a new token is validated.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

1. Ask for a
request token

5. Request access token
using request token

DIRAC
(Provider)

2. Give token
to user
to validate it

S8

User

4. Notify of
validation

3. Validate
request token

Figure 2. OAuth flow

2.8. Query protocol

There are lots of standard protocols that allow querying a remote server. Those using XML
for their message format have been discarded due to the length of the messsages and the cost
of processing XML serialized data. Not many remain standard protocols that are completely
language agnostic and easy to use remain after discarding those that use XML. REST over
HTMLI6] architecture has been chosen as the way to expose DIRAC’s language agnostic API.
By using a HT'ML as transport layer it allows an easy integration with any language. REST
has several key points that make it a perfect fit:

e It is so simple so that even if there are not any bindings for a specific language, one can be
coded easily.

e By being stateless, REST allows for a scalable deployment. If the API server is overloaded,
another can be set up thus increasing capacity is really easy.

e Allows cache management. Clients can know if a result if cacheable and for how long.

3. RESTful API
To provide the new language agnostic API several components have been added to DIRAC as
shown in figure 3. A new server has been created to serve the REST requests. This server can
also generate OAuth tokens. A credential store has also been added to store the tokens and
privileges granted.

3.1. Service architecture

Any client (any community application) that wants to use the REST API requires an OAuth
client token. Applications can request tokens to the REST server. Once a request token has been
generated, the application has to redirect the user to a DIRAC web portal. Users can validate the
request token in the web portal. By accessing the web portal users are authenticating themselves
with their certificate so the web portal will know who they are automatically. Permissions are
also be granted on a per group basis following the same authorization schema that DIRAC
already provides. When accessing the web portal, users automatically have an active group.
They can change group using the standard DIRAC web portal mechanism before granting
privileges to the token.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

7. Forward request 1. Request token
to required DIRAC

component

5. Get access token
and send requests
6. Check _
privileges 4. l;l:)atlrl;¥ of
Credentials granted
store
2. Validate token
Web Portal |- Q
3. Store privileges et

granted to token

Figure 3. RESTful DIRAC architecture

Once the user has authenticated to the web portal and has granted privileges to the token.
The web portal will redirect the user back to the application. The application can then finally
exchange the request token for the final access token that will be used to sign the requests.

This flow is really useful if the client is a web application. In case the application is a
graphical non-web one or has command-line interface there is an alternative for validating the
token. DIRAC also provides a command-line tool to validate tokens. Users only need to generate
a grid proxy using either DIRAC or any grid proxy generation tool and execute the command
line script to validate the token.

In any case the credentials are stored in a new service. This service acts as a credential store.
All the tokens, identities and privileges are stored there. This is a critical component that should
be installed in a host where the access rules are strict.

3.2. API requests
Any request has to be signed with an OAuth token. The REST server will know on behalf
on which user the request has to be executed based on the token that signs the request. Each
token is linked to one user, one set of privileges and one client. The Credential store is queried
by the REST server to retrieve the information for each new token. That information can be
queried by the REST server until the cache time expires or the Credential store informs the
REST server that those privileges have been revoked.

Each request has to follow the REST style. REST defines several guidelines on how to create
a uniform interface:

e Each object has to have a unique and persistent identity. In web-based REST systems
objects can be identified by URIs. Objects have to be conceptually separate from the
representation that is sent to the client. For example, servers do not send the database
they have but a JSON representation of the relevant records.

e When a client holds a represention of a object given by a server. It has enough information
to modify or delete it, if it has permission to do so. That means that clients do not need
to know the internal representation of a object.

e Each response has enough information to describe how to process it. Responses should also
indicate their cacheability.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

For instance, to retrieve information about a single job, an application can issue a GET
request to the job URI. An example of the URI could be:

http://restserver.domain.net/api/job/jobid

The server will return a JSON encoded structure containing all info related to the job.
The headers of the response will contain also the caching information for the response. If the
application wants to kill a job, it can issue a DELETFE request to the job URI. The server will
reply whether it has permission or not... This mechanism can be extended for any object that
DIRAC handles.

4. Summary

DIRAC has been extended to provide the previously described language agnostic API. This new
API follows the REST style over HT'ML using JSON as the serialization format. OAuth is used
as the credentials delegation mechanism to the applications. All three technologies are widely
used and have bindings already made for most of today’s modern languages.

Although the current implementation is at the prototype stage, several applications have
shown interest in testing it such as gUSE/ WS-PGRADE]|7] and InSilicoLab[10]. Once the API
has been tested, credentials delegation using OAuth version 2 will be added to the service.

By providing this new API DIRAC can now be interfaced to any component written in most
of today’s modern languages.

Acknowledgments

The presented work has been financed by Comision Interministerial de Ciencia y Tecnologia
(CICYT) (project FPA2010-21885-C02-01 and CPAN (CSD2007-00042 from Programa
Consolider-Ingenio 2010), and by Generalitat de Catalunya (AGAUR 2009SGR01268).

References

[1] Apache Thrift. URL: http://thrift.apache.org/.

[2] Binary JSON. URL: http://bsonspec.org/.

[3] A. Casajus and R. Graciani. “DIRAC Distributed Secure Framework”. In: Computing in
High-Energy Physics and Nuclear Physics 2009. 2009.

[4] A. Casajus and M. Sapunov. “DIRAC Secure Web User Interface”. In: Computing in
High-FEnergy Physics and Nuclear Physics 2009. 2009.

[5] FEztensible Markup Language. URL: http://en.wikipedia.org/wiki/XML.

[6] R. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616 (Draft Standard).
Updated by RFCs 2817, 5785, 6266, 6585. Internet Engineering Task Force, June 1999.
URL: http://www.ietf.org/rfc/rfc2616.txt.

[7] grid User Support Environment. URL: http://wuw.guse.hu/.

[8] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational). Internet
Engineering Task Force, Apr. 2010. URL: http://www.ietf.org/rfc/rfc5849.txt.

[9] R. Housley et al. [RFC3280] Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. United States, 2002.

[10] InSilicoLab. URL: http://insilicolab.grid.cyfronet.pl/.

[11] JavaScript Object Notation. URL: http://www. json.org/.

[12] Kerberos: The Network Authentication Protocol. URL: http://web.mit.edu/kerberos/.
[13] MessagePack. URL: http://msgpack.org/.

[14] OAuth. URL: http://oauth.net/.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing

Journal of Physics: Conference Series 396 (2012) 052019 doi:10.1088/1742-6596/396/5/052019

[15] OAuth for Twitter. URL: https://dev.twitter.com/docs/auth/oauth.

[16] Protocol Buffers. URL: http://code.google.com/p/protobuf/.

[17] Python programming language. URL: http://www.python.org/.

[18] A. Tsaregorodtsev et al. “DIRAC: A community grid solution”. In: Computing in High-
Energy Physics and Nuclear Physics 2007. 2008.

[19] S. Tuecke et al. [RFC3820] Internet X.509 Public Key Infrastructure (PKI) Proxy
Certificate Profile. United States, 2004.

[20] Using OAuth 2.0 to Access Google APIs. URL: https://developers.google.com/accou
nts/docs/0Auth2.

[21] Using OAuth with Flickr. URL: http://www.flickr.com/services/api/auth.oauth.ht
ml.

[22] YAML Ain’t Markup Language. URL: http://yaml.org/.

