

Sensitivity studies of sterile neutrinos using coherent neutrino-nucleus scattering with reactor antineutrinos

S.P. Behera^{1,*} D.K. Mishra¹, P.K. Netrakanti¹,

R.Sehgal¹, Kirtikesh Kumar¹, R.Dey^{1,2}, and V. Jha^{1,2}

¹*Nuclear Physics Division,*

Bhabha Atomic Research Centre,

Mumbai - 400085, India and

²*Homi Bhabha National Institute, Anushakti Nagar, Mumbai - 400094, India*

Introduction

The tiny mass of neutrinos is a combination of three mass eigen-states, which is established by several experiments using solar, atmospheric, reactor, and accelerator-based neutrinos. Several experiments have observed anomaly in neutrino oscillation at short baseline. The disappearance of $\bar{\nu}_e$ while propagating from the source to detector due to Active-Sterile Neutrino (ASN) oscillations with the squared mass difference $\Delta m^2 \sim 1 \text{ eV}^2$. At present the study on neutrino is in precision era. In worldwide many experiments are going on and some of them are planned to measure the neutrino cross-section. Coherent elastic neutrino-nucleus scattering (CE ν NS) is a standard model (SM) process in which the low energy neutrinos scatter off the atomic nucleus coherently through the neutral-current weak interactions [1]. For low-energy neutrinos ($< 50 \text{ MeV}$), the CE ν NS process has a larger cross-section for neutron-rich targets as compared to other known processes. Further, the CE ν NS is a threshold-less process in contrast to IBD. Although, having a larger cross-section, the CE ν NS process has not been observed earlier due to the difficulty in measuring the low-energy recoil nuclei. To this end, a feasibility study has been carried out for measuring the CE ν NS process and to ascertain the ASN mixing sensitivity of various types of the detector by placing them at short baseline ($L \leq 30\text{m}$) through CE ν NS channel.

CE ν NS scattering cross-section and oscillation probability

The differential CE ν NS scattering cross-section is given by

$$\frac{d\sigma}{dT}(E_\nu, T) = \frac{G_F^2}{8\pi} [Z(4\sin^2\theta_W - 1) + N]^2 \times A \left(2 - \frac{TA}{E_\nu^2} \right) |f(q)|^2 \quad (1)$$

where A, N, Z are the mass number, number of neutrons and number of protons in the nucleus, respectively. Further, E_ν is the incident neutrino energy, T is nuclear recoil energy, ($T_{\max}(E_\nu) = 2E_\nu^2/(A + 2E_\nu)$), G_F is the Fermi coupling constant, θ_W is the weak mixing angle and $f(q)$ is the nuclear form factor for a momentum transfer q . The main advantage of considering the CE ν NS process for finding the ASN mixing sensitivity is due to its larger cross-section as compared to IBD cross-section. This enables the use of smaller size detectors in the CE ν NS measurements. The compact detector will minimize the neutrinos path length uncertainty. The 3+1 generation oscillation model is reduced to two flavor framework for a small value of mixing angle θ_{14} and at a few meters ($< 100 \text{ m}$) source to detector distance. Then the $\bar{\nu}_e$ survival probability can be approximated as

$$P_{\bar{\nu}_e \bar{\nu}_e}(E_\nu, L) \simeq 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{1.27\Delta m_{41}^2 L}{E_\nu} \right), \quad (2)$$

where E_ν is the neutrino energy (in MeV), L is the path length (in m) between the source and the detector, and Δm_{41}^2 is the squared masses difference (in eV^2) between the two neutrino

*Electronic address: shiba@barc.gov.in

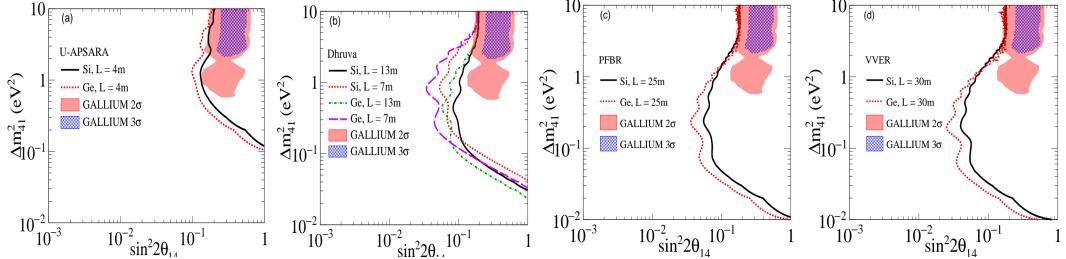


FIG. 1: ASN mixing sensitivity at 95 % C.L. for the Ge and Si detectors placed at fixed distances from the U-Apsara, DHRUVA, PFBR and VVER reactors.

mass eigen-states. The ASN oscillation parameters Δm_{41}^2 and $\sin^2 2\theta_{14}$ are represented by

$$\Delta m_{41}^2 = m_4^2 - m_1^2; \quad \sin^2 2\theta_{14} = 4|U_{e4}|^2(1 - |U_{e4}|^2)^2 \quad (3)$$

where $U_{e4} = \sin \theta_{14}$, one of the elements of unitary mixing matrix.

χ^2 analysis and ASN of detectors

The potential of different detectors have been explored on finding the active-sterile neutrino(ASN) oscillation sensitivity using neutrinos produced from various types of reactor facilities in India. The exclusion limit has been obtained for each value of Δm_{41}^2 by scanning over the various values of $\sin^2 2\theta_{14}$ to determine the boundary of the corresponding χ^2 (e.g. $\chi^2 = 5.99$ for 95.0% confidence limit (C.L.)). The definition of χ^2 is considered from Ref. [2] which is given by

$$\chi^2 = \sum_{n=0}^N \left(\frac{R_n^{th} - R_n^{ex}}{\sigma(R_n^{ex})} \right)^2 + \sum_{i=0}^k \xi_i^2, \quad (4)$$

where, n is the number of energy bins, R_n^{ex} , R_n^{th} are the number of events obtained from the simulations with oscillation (expected) and without oscillation (theoretically predicted) events, respectively. The R_n^{th} carries the information about the systematic uncertainties given by

$$R_n^{th} = R_n'^{th} \left(1 + \sum_{i=0}^k \pi_n^i \xi_i \right) + \mathcal{O}(\xi^2) \quad (5)$$

Figure 1(a) shows the sensitivity by placing the detectors at 4 m from U-Apsara research reactor core. Figure 1(b) shows the sensitivity of the detector by placing it at 7.0 m and 13.0 m from DHRUVA reactor core. Figure 1(c) shows the sensitivity of the detector at 25 m PFBR reactor core, and Fig. 1(d) shows the sensitivity for the detectors placed at 30 m from the VVER power reactor core. The shape of the sensitivity curve in the region of small values Δm_{41}^2 ($\Delta m_{41}^2 \lesssim 1.0 \text{ eV}^2$) shows a linear dependence between $\sin^2 2\theta_{14}$ and Δm_{41}^2 in the logarithmic scale. This happens as typical neutrino oscillation lengths are larger compared to the size of the detector, and the $\bar{\nu}_e$ survival probability mentioned in Eq. 2 is approximately given by $P_{\nu_e \nu_e}(E_\nu, L) \approx 1 - C \sin^2 2\theta_{14} \times (\Delta m_{41}^2)^2$, where C is a constant. In the region with larger Δm_{41}^2 values, the systematic uncertainties related to the neutrino source dominate over the statistical uncertainties. The detector energy resolution also affects the high frequency oscillation-induced deformations. Further, the detail study on ASN mixing sensitivity of detector will be presented in future.

References

- [1] D. Z. Freedman, Phys. Rev. D **9**, 1389-1392 (1974).
- [2] M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rev. D **70**, 033010 (2004).