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Kapitel 1

Einleitung

Das Ziel der vorliegenden Arbeit ist es, Eichkopplungen und Grundlagen der Flavorphysik
im Rahmen des Randall-Sundrum Modells zu studieren. Da wir es hierbei mit einer Er-
weiterung des wohlvertrauten Standardmodells (SM) der Elementarteilchenphysik zu tun
haben, stellt sich zunächst die Frage, warum generell eine Erweiterung nötig sein sollte.
Das SM beschreibt die uns heute bekannten Teilchen und ihre Austauschwechselwirkungen
konsistent bis zu beliebig hohen Energien, jedoch macht es keine Aussage darüber, welche
Rolle Quantengravitationseffekte in diesem Zusammenhang spielen, die im Energiebereich
der Planckskala auftreten. Desweiteren enthält es eine große Anzahl freier Parameter, die
man sozusagen von außen in die Theorie einführen muss, um eine korrekte Beschreibung
der Natur zu erhalten. So enthalten z.B. die Fermion ihre Masse durch Kopplung an das
skalare Higgs-Feld. Die Stärke der Kopplung ist zunächst völlig beliebig. Man gleicht da-
her die Kopplungskonstanten den gemessenen Fermionmassen an, ohne eine Erklärung für
deren Massenhierarchie zu haben.
Die elektromagnetische, die starke und die schwache Wechselwirkung haben ihre Ursache
in der Forderung nach lokaler Eichinvarianz der Theorie unter den jeweiligen Symmetrie-
gruppen. Ausgangspunkt ist die SU(3)× SU(2)L×U(1)Y -Symmetrie welche durch Kopp-
lung der elektroschwachen Eichfelder an das Higgsboson (Dublett unter SU(2)L) auf die
verbleibende SU(3) × U(1)e.m. Restsymmetrie heruntergebrochen wird. Die Austausch-
teilchen der schwachen Wechselwirkung, die W- und Z-Bosonen, erhalten hierbei Massen
proportional zum Vakuumerwartungswert des Higgs-Feldes. Man sagt, der Symmetriebruch
erfolgt bei der schwachen Skala mW (die Masse des W-Bosons).
Der Erfolg der elektroschwachen Vereinheitlichung veranlasste Georgi und Glashow [1], eine
Vereinheitlichung aller drei Eichwechselwirkungen in eine ursprüngliche SU(5)-Symmetrie
bei hohen Energien vorzuschlagen. Die Skala, bei der der Symmetriebruch auf die SU(3)×
SU(2)L × U(1)Y -Symmetrie des Standardmodells erfolgen soll, ist als GUT-Skala (grand
unified theory) bekannt. Diese liegt bei etwa 1015 GeV, da hier die laufenden Kopplungen
von starker und elektroschwacher Wechselwirkung von der selben Größenordnung sind.
Wenn man also in der Lage wäre, solche Energien im Experiment zu erzeugen (was sicher-
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6 KAPITEL 1. EINLEITUNG

lich nie der Fall sein wird), so würde man massive Eichbosonen dieser höheren Symmetrie-
gruppe produzieren. Das Standardmodell erschiene in diesem Licht als effektive Theorie,
deren Cut-Off durch die GUT-Skala gegeben ist. Auch wenn eine direkte Produktion mögli-
cher neuer Eichbosonen nicht möglich ist, so würden sie dennoch als virtuelle Teilchen in
Wechselwirkungen auftreten und Quarks an Leptonen koppeln. Auf diese Weise könnte ein
Proton zerfallen. Dieser Effekt wäre aber, da es sich effektiv um einen 4-Fermionprozess
handelt, mit dem inversen Quadrat der GUT-Skala unterdrückt (zum Vergleich: die Ko-
pllungsstärke der schwachen Wechselwirkung ist durch 1/m2

W gegeben).
Andererseits stellt sich die Frage, ob in der Natur weitere schwere Materiefelder außer den
uns bekannten existieren. Wenn ja, dann sind diese entweder in leichtere (uns bekannte)
Materie zerfallen, oder sie wechselwirken im besten Fall nur schwach und sind daher für uns
unsichtbar. Ihre Präsenz würde sich jedoch durch ihre gravitative Wechselwirkung bemerk-
bar machen. Wir wissen heute, dass es solche dunkle Materie im Universum geben muss,
da die sichtbare Masse zu gering ist, um die Rotationsgeschwindigkeiten von Galaxien zu
erklären.
Man hat also gute Gründe anzunehmen, dass der Feldgehalt des Standardmodells nicht
ausreicht. Die oben genannten stellen jedoch nur eine Auswahl dar. Es gibt noch weitere
Fragen, die das Standardmodell nicht beantwortet. Darüberhinaus wäre es ohnehin äußerst
gewagt, davon auszugehen, dass zwischen den heute im Experiment erreichbaren Energien
(etwa 100GeV) und Energien im Bereich der zweiten fundamentalen Skala in der Natur, der
Planckskala (etwa 1019GeV), keine neuen Effekte auftreten. Vom experimentellen Stand-
punkt hat man es demnach mit 17 Größenordnungen unerforschten Niemandsland zu tun!
Eine Erweiterung des Standardmodells ist zwar gut motiviert, bringt aber konzeptionel-
le Probleme mit sich. Wenn man annimmt, dass es weitere Materiefelder jenseits der
schwachen Skala gibt, so werden auch deren Massen durch sogenannte Yukawakopplun-
gen mit dem Higgsfeld erzeugt. Massenterme der Art m(ψ̄LψR + ψ̄RψL) sind nämlich a
priori nicht eichinvariant, da links- und rechtshändige Felder sich unterschiedlich unter
SU(2)-Transformationen verhalten. Die Masse des Higgsbosons selbst hingegen ist ein fun-
damentaler Parameter der Theorie (m2φ†φ ist eichinvariant). Der Higgs-Propagator enthält
nun Schleifenkorreturen durch alle Felder, die an das Higgs koppeln. Den größten Anteil
haben hierbei Fermionschleifen. Diese erzeugen eine quadratische Divergenz, welche sich
durch Renormierung aus der Theorie entfernen lässt. Wenn es aber Teilchen gibt, die viel
schwerer sind als das Higgs, so ist hierbei eine enorme Feinjustierung der Parameter von
Nöten, um die Higgsmasse in der Nähe der schwachen Skala zu fixieren. Eine winzige
Änderung der Parameter hätte ein Anwachsen der Higgsmasse in die Größenordnung der
Massen der neuen Teilchen zur Folge. Die Notwendigkeit einer Feinjustierung wird demnach
als unnatürlich empfunden. Allgemein sagt man, dass alle fundamentalen Massenparame-
ter einer Theorie, die bis zu einer Skala Λ gültig ist, von der selben Grösßenordnung sein
müssen, damit die Theorie natürlich ist. Wenn man nun eine Erweiterung des Standardmo-
dells formuliert, welche neue Physik bis zur Planckskala mit sich bringt, so muss man sich
Mechanismen überlegen, welche die Higgsmasse stabilisieren, wenn man vermeiden will,
dass die Theorie unnatürlich ist. Das eben beschriebene Problem wird in der Literatur als
Hierarchie-Problem bezeichnet und resultiert aus der Tatsache, dass die schwache Skala so
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verschieden von der Planckskala ist. Es ist sozusagen die Schwäche der Gravitation im Ver-
gleich zu den anderen Wechselwirkungen, die uns wiedereinmal Kopfzerbrechen bereitet.

Die populärste Erweiterung des Standardmodells, welche zugleich das Hierarchiepro-
blem löst, ist die Supersymmetrie. Sie ordnet jedem Fermion einen bosonischen Superpart-
ner und umgekehrt zu. Ich möchte jedoch nicht weiter darauf eingehen. Ein wesentlich
radikaleres Konzept wurde 1998 von Nima Arkani-Hamed, Savas Dimopoulos und Gia
Dvali vorgeschlagen. Im ADD Modell [2] wird die Planckskala als fundamentale Skala der
Natur eliminiert. Während die Physik der schwachen Wechselwirkung bei Energien der
elektroschwachen Skala experimentell wohl erprobt ist, ist dies für die Gravitation im Be-
zug auf die Planckskala keineswegs der Fall. Das 1/r Potential der Newton’schen Theorie
war zu diesem Zeitpunkt bis auf Abstände von etwa 1cm geprüft (heute ∼ 100µm). Die
Annahme, die Planckskala sei fundamentaler Natur, setzt voraus, dass sich an diesem
Potentialverlauf bis hin zu Abständen der Plancklänge (∼ 10−35m) nichts ändert. Mit an-
deren Worten: Man extrapoliert die experimentelle Bestätigung des Gravitationsgesetz um
33 Größenordnungen! Im ADD-Modell wird angenommen, dass es in der Natur n zusätz-
liche kompaktifizierte Raumdimensionen mit Radius R gibt, durch welche allerdings nur
das Graviton propagieren darf. Sämtliche Standardmodell-Teilchen bleiben in der gewöhn-
lichen vierdimensionalen Raumzeit lokalisiert. Diese bildet eine Hyperfläche (sog. Brane)
im höherdimensionalen Raum. Die fundamentale (4+n) dimensionale Planckskala soll nun
in etwa von der Größenordnung der elektroschwachen Skala sein. Sei r ¿ R der Abstand
zweier Testmassen, dann gilt für das Gravitationspotential nach dem Gauss’schen Gesetz

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
(r ¿ R). (1.1)

Für (r À R) erhält man hingegen

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1

r
(r ¿ R). (1.2)

Demnach gilt für die effektive 4D Planckskala

M2
Pl ∼Mn+2

Pl(4+n)R
n. (1.3)

Der Radius ergibt sich hieraus zu

R ∼ 1

MPl(4+n)

( MPl

MPl(4+n)

) 2
n

. (1.4)
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Für n = 1 findet man R ∼ 1011−1012m. Dies ist gänzlich ausgeschlossen, da man sonst seit
Newton ein 1/r2-Potential gemessen hätte. Der Fall n = 2 liefert R ∼ 100µm-1mm. Auch
diese Möglichkeit ist nach den neuesten Messdaten ausgeschlossen. Mit der Wahl n = 3 liegt
der Radius der zusätzlichen Dimensionen bereits im Nanometerbereich. Eine experimentelle
Überprüfung des Gravitationsgesetzes in diesem Bereich dürfte nahezu ausgeschlossen sein,
jedoch hätte das Modell weitere phänomenologische Konsequenzen: Sperrt man ein Teilchen
in eine kompaktifizierte Dimension, so bildet sich unter Verwendung der Randbedingungen
in Analogie zum harmonischen Oszilator eine Kaskade an möglichen Zuständen aus. Man
findet ein äqidistantes, nahezu kontinuierliches Spektrum von sogenannten Kaluza-Klein-
Gravitonen der Masse mk:

mk =
k π

R
= k π MPl(4+n)

(MPl(4+n)

MPl

) 2
n ≈ k πMEW · 101− 30

n , k = 0, 1, 2, ... (1.5)

Hierbei wurde MPl(4+n) ∼ 1TeV angenommen. Der Grundzustand entspricht hierbei dem
gewöhnlichen Graviton und bleibt masselos. Betrachtet man nun Prozesse bei der Energie
E =

√
s/2, bei denen Gravitonen emmitiert werden, so ist die Anzahl der möglichen

Zustände ∼ (ER)n. Für den Wirkungsquerschnitt gilt somit

σ ∼ 1

M2
Pl(4+n)

(ER)n. (1.6)

Setzt man nun versuchsweise MPl(4+n) = E = MEW , so findet man σ ∼ 1/M 2
EW . In einem

Collider-Experiment hätte man es demnach mit fehlender Energie aufgrund der Abstrah-
lung von Kaluza-Klein-Gravitonen zu tun. Hieraus kann man Bedingungen an MPl(4+n)

und n herleiten [4]. Weitere Einschränkungen findet man durch astrophysikalische Effekte,
beispielsweise das Herunterkühlen der Supernova SN1987A [5]. Die Analyse ergab:

n = 3 MPl(7) ≥ 4TeV,

n = 4 MPl(8) ≥ 1TeV.

Auch wenn dieser verblüffende Ansatz der sogenannten Large Extra Dimensions durch
geeignete Wahl der Parameter den Experimenten angepasst werden kann, so löst er bei ge-
nauerer Betrachtung nicht wirklich das Hierarchieproblem. Vielmehr wird die Frage nach
dem Grund der Hierarchie zwischen MPl und MEW umformuliert in die Frage, warum die
zusätzlichen Dimensionen so groß sind im Vergleich zu 1/MPl, der natürlichen Längenskala
einer Theorie, welche bis zur Planckskala gültig ist. Dieses neue Problem würde jedoch im
Limes n→∞ verschwinden.

Die Idee der zusätzlichen Raumdimensionen zur Lösung des Hierarchieproblems wurde
im Oktober 1999 in dem Artikel Large Mass Hierarchy from a Small Extra Dimension

[7] von Lisa Randall und Raman Sundrum aufgegriffen. Im Gegensatz zu ADD gehen die
Autoren von einer einzigen zusätzlichen Raumdimension von der Größenordnung der Plan-
cklänge aus. Die Besonderheit besteht darin, dass sich Längen- bzw. Energieskalen ändern,
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wenn man in die 5. Dimension vordringt. Dies wird durch das Einführen einer nichtfak-
torisierenden fünfdimensionalen Metrik erreicht, welche die Raumzeitkoordinaten mit der
Koordinate der 5. Dimension verknüpft. Auch in diesem (RS1-) Modell bleiben die SM-
Felder auf der Brane lokalisiert.

Die Arbeit ist nun wie folgt gegliedert: Im nachfolgenden Kapitel werden die Grundideen
des RS-Modells und die damit verbundene Beseitigung des Hierarchieproblems erläutert.
Daraufhin entlassen wir die Felder in den Bulk und studieren deren Kaluza-Klein-Zerlegung.
Kapitel 3 beschäftigt sich mit der Herleitung der Fermionprofile aus den Resultaten des
vorangegangenen Kapitels. Weiterhin werden Yukawakopplungen an ein branelokalisier-
tes Higgsfeld und die daraus hervorgehende unendlichdimensionale Massenmatrix erörtert.
Diese wird dann im Rahmen eines Entwicklungsverfahrens diagonalisiert. Kapitel 4 widmet
sich den verallgemeinerten fünfdimensionalen Eichtheorien mit dem Ziel, die zugehörigen
Feynmanregeln aufzustellen. Hierbei wird es bei der Herleitung der Propagatoren in belie-
biger Rξ-Eichung zu einem Zusammenspiel der Goldstone-Bosonen mit den Komponenten
A5 des Eichfeldes kommen, welches die Eichinvarianz der abgeleiteten vierdimensionalen
Theorie garantiert. Dieses soll in Kapitel 5 anhand zweier Beispiele auf Baumgraphen- und
Schleifenniveau konkret überprüft werden. Die Arbeit schließt mit einigen Bemerkungen
über die Herangehensweise bei der Herleitung der Lagrangedichte einer effektiven Theorie,
bei der die Kaluza-Klein-Felder aus der Sichtweise des Pfadintegralformalismus ausinte-
griert werden.

Diese Version der Arbeit wurde auf Tippfehler korrigiert. In den Formeln (4.52), (4.54)
sowie (4.61) und (4.62) wurde jeweils das fordere Feld in den bilinearen Termen nachträglich
komplex konjugiert. Stand vom 14.06.2008
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Kapitel 2

Das Randall-Sundrum-Modell

2.1 Ansatz und Lösung der Metrik

Das Herzstück des RS-Modells [7] bildet die nichtfaktorisierende fünfdimensionale Metrik,
welche durch das folgende Linienelement gegeben ist

ds2 = e−2σ(φ)ηµνdx
µdxν + r2dφ2 . (2.1)

Hierbei ist r der Radius der 5. Dimension, φ stammt aus dem Intervall [−π, π]. Randall und
Sundrum verwenden die Konvention ηµν = diag(−1, 1, 1, 1). Die Punkte (x, φ) und (x,−φ)
werden identifiziert. Hierzu führt man eine Paritätsoperation ein, so dass P (φ) = −φ
gilt. Man spricht von einer S1/Z2-Orbifold (angelehnt an den engl. Begriff manifold). Die
Punkte φ = 0, π werden hierdurch mit sich selbst identifiziert. An diese Fixpunkte werden
nun vierdimensionale Unterräume, sog. 3-Branen angeheftet (die Zahl 3 bezieht sich auf
die Anzahl der räumlichen Komponenten).

Abbildung 2.1: S1/Z2-Orbifold

Die Gravitation soll nun auf der sog. Planck- oder UV-Brane bei φ = 0 residieren, die

11



12 KAPITEL 2. DAS RANDALL-SUNDRUM-MODELL

Standardmodell-Teilchen leben auf der TeV- oder IR-Brane. Die Namensgebung ist in der
obigen Exponentialfunktion begründet, die auf den Namen Warpfaktor getauft wurde. Wie
wir später zeigen werden, ist σ(φ) ∝ |φ|. Demnach verschwindet der Warpfaktor bei der
Planckbrane und sorgt für eine Vergrößerung der Längenskalen auf der TeV-Brane.
Sei nun GMN die fünfdimensionale Metrik mit krummlinigen Koordinaten, dann ergeben
sich die induzierten vierdimensionalen Metriken auf den Branen zu

gIRµν (x) ≡ Gµν(x, φ = π), (2.2)

gUVµν (x) ≡ Gµν(x, φ = 0). (2.3)

Betrachten wir nun die 5D-Wirkung:

S =

∫

d4x

∫

dφ
√
−G{2M 3R− Λ} (2.4)

+

∫

d4x
√

−gIR{LIR − VIR}+
∫

d4x
√

−gUV {LUV − VUV }.

Hierbei bezeichnet R den Ricci-Skalar und Λ die kosmologische Konstante der 5D Theorie.
VIR und VUV sind die kosmologischen Konstanten der vierdimensionalen Unterräume. Diese
werden in der Literatur als brane tensions bezeichnet. Variiert man die Wirkung nach
der jeweiligen Metrik, so erhält man die 5D-Einsteingleichungen. Im Vakuum, also ohne
Materiefelder, lauten sie

√
−G(RMN −

1

2
GMNR) = −

1

4M3
Λ
√
−G GMN (2.5)

− 1

4M3

(

VIR
√

−GIRgIRµν δ
µ
Mδ

ν
Nδ(φ− π) + VUV

√

−GUV gUVµν δ
µ
Mδ

ν
Nδ(φ)

)

.

Der oben gegebene Ansatz (2.1) respektiert die 4D-Poincaré-Invarianz der Theorie entlang
der Koordinaten xµ an jeder Koordinate φ. Wir berechnen die zugehörigen Christoffel-
Symbole

ΓRMN =
1

2
GRS(GNS,M +GMS,N −GMN,S) (2.6)

wobei das Komma für eine partielle Ableitung steht (∂MGNS ≡ GNS,M ) und ∂5 = ∂φ. Man
findet

Γ5
00 = −Γ5

ii = −
σ′

r2
e−2σ, (2.7)

Γ0
05 = Γ0

50 = Γii5 = Γi5i = −σ′, (2.8)

bzw. in kompakter Notation

Γµµ5 = Γµ5µ = −σ′, Γ5
µµ = ηµµ

σ′

r2
e−2σ. (2.9)
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Alle anderen Christoffel-Symbole sind Null. Für den Ricci-Tensor

RMN = ∂KΓ
K
NM − ∂NΓKKM + ΓKKLΓ

L
NM − ΓKNLΓ

L
KM (2.10)

erhält man somit die nicht verschwindenden Komponenten

R00 = −Rii =
1

r2
e−2σ(4σ′

2 − σ′′), (2.11)

R55 = 4(σ′′ − σ′2). (2.12)

Letzlich berechnet man den Ricci-Skalar zu

R = RN
N = GNMRMN = − 4

r2
(5σ′

2 − 2σ′′). (2.13)

Setzt man die obigen Resultate in die linke Seite der Einsteingleichungen (2.5) ein und
vergleicht mit der rechten Seite, so findet man:

R55 −
1

2
G55R = 6σ′

2 !
= − 1

4M3
Λr2 (2.14)

Rµµ −
1

2
GµµR = ηµµ

1

r2
(6σ′

2 − 3σ′′)e−2σ

!
= −ηµµe−2σ 1

4M3

(

Λ + VIR
1

r
δ(φ− π) + VUV

1

r
δ(φ)

)

. (2.15)

Hierbei wurde auf der rechten Seite
√
−G =

√−g r benutzt. Vereinfacht man (2.15) durch
Einsetzen von (2.14), so bleiben die Gleichungen

σ′
2
= −r2 Λ

24M3
, (2.16)

σ′′ =
r

12M3

(

VIRδ(φ− π) + VUV δ(φ)
)

. (2.17)

Da ferner σ(φ) = σ(−φ) gilt, folgt aus (2.16)

σ = r|φ|
√

−Λ
24M3

(2.18)

und somit Λ < 0. Die zugrundeliegende 5D-Raumzeit ist demnach ein Anti de Sitter Raum.
Da man die Metrik als periodische Funktion in der Koordinate φ begreift (siehe Abb.2.1),
folgt aus (2.18)

σ′′ = 2r

√

−Λ
24M3

(

δ(φ)− δ(φ− π)
)

. (2.19)

Durch Vergleich mit Gl. (2.17) findet man

VUV = −VIR = 24M 3k, Λ = −24M 3k2. (2.20)
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Abbildung 2.2: Warpfaktor und Randbedingungen

Hierbei ist k eine Energieskala, die, wie wir später sehen werden, die fundamentale 5D-
Planckskala M mit der bekannten 4D-Planckskala MPl verknüpft. Setzen wir dieses Resul-
tat in Gl. (2.18) ein, so erhalten wir

σ = kr|φ|. (2.21)

Hätte man im Gegensatz zu Randall und Sundrum die Konvention ηµν = diag(1,−1,−1,−1)
gewählt, wäre das 5D-Linienelement durch

ds2 = e−2σ(φ)ηµνdx
µdxν − r2dφ2 (2.22)

gegeben (man beachte den Vorzeichenwechsel in der 5. Komponente). Die nichtverschwin-
denden Christoffelsymbole sowie der Riccitensor blieben unverändert (es gilt nachwievor
∂5 = ∂φ). Der Ricciskalar und die Funktionaldeterminante hingegen wechseln ihr Vorzei-
chen. Man würde daher in der 5D-Wirkung (2.4) das Vorzeichen vor der kosmologischen
Konstanten Λ ändern. Dies garantiert ferner, dass die Beziehung (2.16) sich nicht ändert,
wir es also nach wie vor mit einer Anti-de Sitter-Raumzeit zu tun haben.
Da wir in Zukunft effektive vierdimensionale Feldtheorie betreiben wollen, empfiehlt es
sich, von nun an die Konvention ηµν = diag(1,−1,−1,−1) zu benutzen, da dies in der
Phänomenologie des Standardmodells üblich ist.

2.2 Beseitigung des Hierarchieproblems

Bevor wir den nächsten Schritt unternehmen und die Standardmodellfelder in den Bulk
entlassen, wollen wir zunächst verstehen, wie der Ansatz (2.22) das Hierarchieproblem
eliminiert. Zunächst einmal benötigt man eine Relation zwischen den Skalen M , k und
MPl. Hierzu ziehen wir den Warpfaktor aus der Metrik heraus:

gIRµν = e−2krπgµν . (2.23)

Im Vakuum gilt somit

gIRµν = e−2krπηµν . (2.24)



2.2. BESEITIGUNG DES HIERARCHIEPROBLEMS 15

Wie sieht nun der effektive Krümmungsskalar R4 aus? Aus vierdimensionaler Sicht tragen
alle Ableitungen nach |φ| zu Potentialtermen bei (siehe [7], [28]), welche man absepariert.
Aus den Gleichungen (2.6), (2.10) und (2.13) folgt nun die Beziehung R = e−2σR4. Somit
gilt für die effektive Wirkung

Seff ⊃
∫

d4x

∫ π

−π
dφ
√−g r e−2kr|φ| 2M3R4 ≡

∫

d4x
√−g 2M 2

PlR4 . (2.25)

Aus
∫ π

−π
dφ e−2kr|φ| =

1

kr
(1− e−2krπ) (2.26)

folgt somit

M2
Pl =

M3

k
(1− e−2krπ). (2.27)

Betrachten wir nun ein fundamentales Higgsfeld, welches auf der IR-Brane leben soll.
Die zugehörige 4D-Wirkung enthält unter anderem folgende Terme:

Seff ⊃
∫

d4x e−4krπ
(
gµνe2krπDµH

†DνH − λ(|H|2 − v2
0)

2
)
. (2.28)

Hierbei bezeichnet v0 eine fundamentale Massenskala. Um den kinetischen Term kanonisch
zu normieren, führen wir eine Reskalierung des Higgsfeldes durch, H → ekrπH. Dieses führt
auf

Seff ⊃
∫

d4x
(
gµνDµH

†DνH − λ(|H|2 − e−2krπv2
0)

2
)
. (2.29)

Wir identifizieren nun effektiven Vakuumerwartungswert des Higgsfeldes v durch

v ≡ e−krπv0. (2.30)

Dieses Resultat lässt sich im Übrigen auf jeden fundamentalen Massenparameter m0 der
5D-Theorie verallgemeinern. Sei nun v0 von der Größenordnung der Planckskala, dann gene-
riert die Relation (2.30) den physikalischen Higgs-Vakuumerwartungswert v ' 246GeV für
kr ≈ 12. Andererseits ist nach (2.27) k in etwa von der Größenordnung M , falls M ≈MPl

gilt. Wir finden somit, dass keine großen Hierarchien zwischen den fundamentalen Parame-
tern v0,M , k und r−1 existieren. Andererseits liegen alle abgeleiteten 4D-Massenparameter
bei der elektroschwachen Skala.
Im Gegensatz zum ADD-Modell ist das Spektrum der Kaluza-Klein-Anregungen des Gra-
vitons nicht nahezu kontinuierlich. Die Masse der ersten Anregung liegt im TeV-Bereich
[11]. Demnach skaliert die Stärke der gravitativen Kopplung für KK-Gravitonen mit der
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Größenordnung 1/TeV statt mit 1/MPl. Dies hat zur Folge, dass sie einerseits individuell
am Beschleuniger als Spin-2-Resonanzen detektiert werden können, andererseits erfordert
die Präsenz von stark wechselwirkenden Gravitonen die Einführung einer Quantengravita-
tion bereits im TeV-Bereich! Das Randall-Sundrum-Modell ist in diesem Sinne der nieder-
energetische Limes eben dieser Quantengravitation, wie auch immer diese beschaffen sei.
Man versteht jetzt, wie das RS-Modell das Hierarchieproblem löst. Beschränkt man sich
auf Energien unterhalb der Schwelle zur Quantengravitation, so hat man einen Spielraum
von einigen wenigen TeV. Jegliche neue Physik, die in diesem Energiebereich möglicher-
weise noch auftaucht, hat keinen besorgniserregenden Einfluss auf die Higgsmasse, das
heißt, man kann den Effekt der neu hinzugekommenen Schleifenkorrekturen ohne drasti-
sche Feinjustierung der Parameter korrigieren.
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2.3 5D-Felder und Kaluza-Klein-Zerlegung

Als natürliche Verallgemeinerung zum RS1-Modell bietet es sich an, die Standardmodellfel-
der im Bulk propagieren zu lassen. Den Anstoß hierzu lieferten Golberger und Wise, indem
sie dieses Szenario für skalare Teilchen studierten [9]. Darüberhinaus schlugen sie vor, den
Radius r der fünften Dimension mithilfe eines skalaren Feldes dynamisch zu stabilisieren
[10]. Befassen wir uns nun mit dem Konzept der Kaluza-Klein-Zerlegung.

2.3.1 Skalare Felder

Als Ausgangspunkt dient die Wirkung

S =
1

2

∫

d4x

∫

dφ
√
G (GAB∂aΦ∂BΦ−m2Φ2), (2.31)

wobei m von der Größenordnung der fundamentalen SkalaM sein soll. Nach Einsetzen der
Metrik (2.22) und partieller Integration erhält man

S =
1

2

∫

d4x

∫

rdφ

(

e−2σgµν∂µΦ∂νΦ +
1

r2
Φ∂φ

(

e−4σ∂φΦ
)

−m2e−4σΦ

)

. (2.32)

Wir zerlegen nun das Feld Φ(x, φ) in eine Summe von 4D-Feldern Φ(n)(x) multipliziert miz
je einer reellwertige Funktion der 5. Dimension f (n)(φ). Diese bilden einen vollständigen,
orthonormierten Satz von Funktionen im Intervall [−π, π]. Dieses ist gerade die vielfach
erwähnte Kaluza-Klein-Zerlegung:

Φ(x, φ) =
1√
r

∞∑

n=0

Φ(n)(x)f (n)(φ). (2.33)

Der Vorfaktor (
√
r)−1 ist Konvention und kürzt nach Einsetzen der Zerlegung den Faktor

r im Integrationsmaß. Wählt man die Orthonormierungsbedingung zu

∫ π

−π
dφ e−2σ(φ)f (n)(φ)f (m)(φ) = δmn (2.34)

und fordert

1

r2
∂φ

(

e−4σ∂φf
(n)(φ)

)

−m2e−4σf (n)(φ) = −m2
ne
−2σf (n)(φ), (2.35)

so vereinfacht sich die Wirkung (2.32) zu einer kanonischen 4D-Wirkung für skalare Felder

Seff =
1

2

∫

d4x
∑

n

(

∂µΦ
(n)∂µΦ(n) −m2

nΦ
(n)2
)

. (2.36)
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Um die Profile f (n)(φ) zu bestimmen, führt man in Gl. (2.35) die Variablensubstitution
zn = mne

σ/k durch und ersetzt f (n) → e−2σfn. Dies führt auf die Bessel’sche Differential-
gleichung

z2
n

d2fn
dz2

n

+ zn
dfn
dzn

+

(

z2
n − (4 +

m2

k2
)

)

fn = 0, (2.37)

welche unter Berücksichtigung der Randbedingungen ∂φf̂
(n)|π = 0 zu lösen ist. Man wählt

Neumann-Randbedingungen, da die Punkte φ = ±π miteinander identifiziert sind. Man
kann zeigen [33], dass nur dann eine Nullmode existiert, wenn man die Wirkung um bra-
nelokalisierte Massenterme ergänzt. In diesem Fall kann man das hergeleitete Profil durch
Wahl der zugehörigen Massenparameter nach Belieben modellieren. Wir wollen an dieser
Stelle jedoch nicht ins Detail gehen. Das einzige skalare Teilchen in dieser Arbeit ist nämlich
das Higgsfeld, welches wir der Einfachheit halber auf der IR-Brane lokalisieren. Entlässt
man das Higgsteilchen in den Bulk, so muss man dafür sorgen, dass das zugehörige Pro-
fil sein Maximum bei der IR-Brane findet. Andernfalls würde man das Hierarchieproblem
wieder einführen. Wir kommen nun zur Zerlegung der Spin-1/2- und Spin-1-Felder. Die
Pionierarbeiten dieser beiden Resorts sind [14] und [12].

2.3.2 Fermionen

Wir beginnen mit der Wirkung für ein 5D-Dirac-Fermion der Masse m von der Größenord-
nung der fundamentalen Skala M . Hierzu führen das d-dimensionale Vielbein Em

M(x) über
die Definition

Em
M(x)ηmnE

n
N(x) = GMN(x) (2.38)

ein, wobei ηmn die d-dimensionale Minkowskimetrik bezeichnet (siehe z.B. [3]). Desweiteren
benötigen wir eine Darstellung der 5D-Clifford-Algebra

{Γm,Γn} = 2ηmn . (2.39)

Hierbei ist darauf zu achten, dass man nun zwischen γ5 und γ5 zu unterscheiden hat, da
gilt

γ5 = η55γ5 = −γ5 =

(
−1 0

0 1

)

. (2.40)

Wir setzen

Γm = (γµ, iγ5) bzw. Γm = (γµ,−iγ5) (2.41)

Diese Verallgemeinerung hat jedoch zur Folge, dass 5D-Fermionen vierkomponentige Dirac-
Spinoren sind. Um aber nach KK-Zerlegung die Nullmode mit dem SM-Teilchen identifi-
zieren zu können, muss diese einem zweikomponentigen Weyl-Spinor entsprechen. Dies ist
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ein weiterer Grund aus dem wir Anfangs die Z2-Parität eingeführt haben. Wie wir später
sehen werden, hat die Nullmode immer gerade Z2-Parität. Setzen wir jetzt ψ = ψL + ψR
und fordern

P (ψL) = +ψL, P (ψR) = −ψR , (2.42)

wobei P den Paritätsoperator bezeichnet, so gilt ψ(0) = ψ
(0)
L . Die eben dargebrachte Lösung

des Problems führt jedoch auf ein Neues. Es stellt sich nämlich die Frage, wie eine Yukawa-
kopplung aus dem Higgsdublett, dem links- und dem rechtshändigen Fermion zu verwirkli-
chen ist, wenn das Rechtshändige keine Nullmode besitzt. Diesem Problem wird man jedoch
Herr, wenn man einen zweiten Satz von 5D-Fermionen einführt und diesen mit dem ent-
gegengesetzten Z2-Verhalten ausstattet. Wir schreiben ψ = (ψ+, ψ−)T [18], ψ± = ψ±L +ψ±R
wobei

P (ψ±) = ±γ5ψ
± . (2.43)

Es ist also immer entweder ψL oder ψR eine gerade Funktion der Koordinate φ. Weitere
Details hierzu sind Gegenstand des dritten Kapitels. Kommen wir nun zur 5D-Wirkung.
Sie lautet

S =

∫

d4x

∫

dφ
√
G

(
i

2
ψ̄ EM

m γ
m

(

∂M −
←−
∂ M +

1

4
ωabM [γa, γb]

)

ψ −m sgn(φ)ψ̄ψ

)

.

(2.44)

Das Signum vor dem Massenterm ist notwendig, da dieser sonst aufgrund der Z2-Symmetrie
der Felder verschwinden würde. Das inverse Vielbein EM

m = diag(eσ, eσ, eσ, eσ, 1/r) bildet
Elemente aus dem Minkowskiraum (Index m) in den Tangentialraum der Mannigfaltig-
keit (Index M) ab. Den Spinzusammenhang ωM leitet man wie folgt her [42]: Sei vN ein
Tangentialvektor, dann gilt

DMv
N = ∂Mv

N + ΓNMKv
K = ∂ME

N
a v

a + ΓNMKE
K
a v

a

= EN
a ∂Mv

a + (∂ME
N
a )va + ΓNMKE

K
a v

a

≡ EN
a (∂Mv

a + ωabMvb) := EN
a DMv

a. (2.45)

Hieraus folgt

ωabMvbva = Ea
N(∂ME

N
c + ΓNMKE

K
c )vcva. (2.46)

Die Größen va und vb sind nun durch Gamma-Matrizen γa, γb zu ersetzen. Verwenden wir
die Christoffelsymbole des Vakuums (2.9) und beachten den Wechsel in der Konvention
der Metrik ηµν , so findet man

M = 5 : e−σ(∂φe
σ)γµγµ + e−σ(−σ′)eσγµγµ = 0, (2.47)

M = µ : e−σ(−σ′)1
r
iγ5γµ − r(ηµµ

σ′

r2
e−2σ)eσγµiγ5 = −2σ

′

r
eσiγ5γµ . (2.48)
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Andererseits gilt

ωabMγaγb = Ea
N(∂ME

N
c + ΓNMKE

K
c )γaγ

c = −2σ
′

r
eσiγ5γµ, (2.49)

so dass wir mit σ′ = kr sgn(φ) und

ωM :=
1

8
ωabM [γa, γb] (2.50)

das Resultat

ωµ = −ik
2
sgn(φ)eσγ5γµ, ω5 = 0 (2.51)

erhalten. Der Spinzusammenhang im Vakuum ist somit eine ungerade Funktion der Koor-
dinate φ, verschwindet somit bei Ausintegration der 5. Dimension und liefert keinen Beitrag
zur Wirkung (2.44). Diese notieren wir erneut, separieren aber nach den Indizes µ und 5.
Mit γ5 = diag(−1, 1) und ΨL,R ≡ 1

2
(1− γ5)Ψ erhalten wir

S =

∫

d4x

∫

rdφ
{

e−3σ(ψ̄Li∂ÁψL + ψ̄Ri∂ÁψR)− e−4σm sgn(φ)(ψ̄LψR + ψ̄RψL)

+
i2

2r

(

ψ̄Le
−4σ∂φψR − e−4σ(ψ̄L

←−
∂ φ)ψR − (L↔ R)

)}

. (2.52)

Nach partieller Integration ergibt sich die letzte Zeile zu

− 1

2r

(

ψ̄L(e
−4σ∂φ + ∂φe

−4σ)ψR − (L↔ R)
)

. (2.53)

Wir folgen dem Papier [14] und wählen die Zerlegung

ψL,R(x, φ) =
1√
r

∑

n

ψ
(n)
L,R(x)e

2σf̂
(n)
L,R(φ). (2.54)

Dies führt auf

S =

∫

d4x

∫

dφ
∑

m,n

{

eσ(ψ̄
(m)
L i∂Áψ(n)

L f̂
(m)∗
L f̂

(n)
L + ψ̄

(m)
R i∂Áψ(n)

R f̂
(m)∗
R f̂

(n)
R )

−m sgn(φ)(ψ̄
(m)
L ψ

(n)
R f̂

(m)∗
L f̂

(n)
R + ψ̄

(m)
R ψ

(n)
L f̂

(m)∗
R f̂

(n)
L )

− 1

2r

(

ψ̄
(m)
L f̂

(m)∗
L (e−2σ∂φe

2σ + e2σ∂φe
−2σ)

︸ ︷︷ ︸

=2σ′+∂φ−2σ′+∂φ=2∂φ

f̂
(n)
R ψR(n)− (L↔ R)

)}

. (2.55)

Die kanonische 4D-Wirkung lautet

S =
∑

n

∫

d4x
(
ψ̄(n)(x)i∂Áψ(n)(x)−mnψ̄

(n)(x)ψ(n)(x)
)
, (2.56)
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wobei ψ(n) = ψ
(n)
L +ψ

(n)
R und die Nullmode jeweils nur für eines der beiden Felder existiert.

Demnach gibt es keinen Massenterm fürm0 woraus sofort folgt, dass die Nullmode masselos
ist. Um nun das Resultat (2.55) auf die obige Form zu bringen, fordert man

∫ π

−π
dφ eσf̂

(m)∗
L,R (φ)f̂

(n)
L,R(φ) = δmn , (2.57)

(

±1

r
∂φ −m sgn(φ)

)

f̂
(n)
L,R(φ) = −mne

σf̂
(n)
R,L. (2.58)

Die erste Gleichung ist die Orthonormierungsbedingung für die Fermionprofile f̂
(n)
L,R, aus

der zweiten Gleichung erhält man deren konkrete Form. Dies ist unter Anderem Gegen-
stand des nächsten Kapitels. Die Randbedingungen f̂

(m)∗
L (0)f̂

(n)
R (0) = f̂

(m)∗
L (π)f̂

(n)
R (π) = 0,

welche aus dem unterschiedlichen Z2-Verhalten der Felder folgen, gewährleisten die Hermi-
tizität des Operators (± 1

r
∂φ − sgn(φ)m) und die mn sind somit reell. Bevor wir die obige

Prozedur für Eichbosonen wiederholen, lohnt es sich, die Kopplung der Fermionfelder an
die Gravitation zu studieren und die Beziehung (2.27) zwischen den Skalen MPl, M und k
nocheinmal daraus herzuleiten. Wir benötigen hierzu den Energie-Impuls-Tensor T , dessen
Komponenten durch die Gleichung

δ

∫

d4x

∫

dφ
√
G L =

∫

d4x

∫

dφ
√
G TMN(δGMN) (2.59)

definiert sind. Die nachfolgende Rechnung orientieret sich an [37]. Es ist

δ

∫

d4x

∫

dφ
√
G L =

∫

d4x

∫

dφ
(

(δ
√
G) L+

√
G δL

)

. (2.60)

Es lässt sich zeigen, dass δG = G GKLδGKL gilt. Somit ist

δ
√
G =

1

2

δG√
G

=
1

2
GKL
√
G δGKL. (2.61)

Die Variation der Lagrangedichte liefert

δL = δGMNEm
N

i

2
ψ̄ γm(∂M −

←−
∂ M)ψ. (2.62)

Aus der Variation von GMLGLK = δMK folgt δGMN = −GMLGKNδGKL und wir erhalten
aus (2.61) und (2.62) die linke Seite von (2.59)

∫

d4x

∫

dφ
√
G
{1

2
GKL

(
EM
m

i

2
ψ̄ γm(∂M −

←−
∂ M)ψ −m sgn(φ)ψ̄ψ

)

−GMLGKNEm
N

i

2
ψ̄ γm(∂M −

←−
∂ M)ψ

}
δGKL . (2.63)

Durch Vergleich mit der rechten Seite finden wir schließlich

TKL =
1

2

(

(GKLEM
m − 2GMLEK

m )
i

2
ψ̄ γm(∂M −

←−
∂ M)ψ −GKLm sgn(φ)ψ̄ψ

)

. (2.64)
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Betrachten wir nun Fluktuationen um die klassische Lösung der Einstein-Gleichungen
(2.22) und setzen (siehe [7])

ds2 = e−2kT (x)|φ|(ηµν + hµν(x))dx
µdxν − T 2(x)dφ2. (2.65)

Hierbei entspricht hµν(x) dem physikalischen masselosen 4D Graviton und gleichzeitig der
Nullmode der KK-Zerlegung

hµν(x, φ) =
1√
r

∑

n

h(n)
µν (x)χ

(n)(φ). (2.66)

Der Kompaktifizierungsradius r ist gerade der Vakuumerwartungswert des skalaren Feldes
T (x). Die Wirkung für die Kopplung der Fermionen an die Gravitation lautet

Sint =
1

M3

∫

d4x

∫

dφ
√
G T µν(x, φ)hµν(x)/N. (2.67)

N einem Normierungsfaktor, den wir in Kürze berechnen. Wählen wir die Eichung hµµ =
hµνηµν = 0 und setzen die KK-Zerlegung (2.54) ein, so verbleibt

Sint =
1

M3

∑

m,n

∫

d4x

∫

dφ eσf̂
(m)∗
L,R f̂

(n)
L,R

i

2
ψ̄(m)γµ(∂ν −←−∂ ν)ψ(n)hµν(x)/N

=
1

M3N

∑

n

∫

d4x ψ̄(n) i

2
γµ(∂ν −←−∂ ν)ψ(n)hµν(x). (2.68)

Hierbei haben wir Gebrauch von der Orthonormierungsbedingung (2.57) gemacht. Den
NormierungsfaktorN erhalten wir, indem wir den Vakuumerwartungswert des Warpfaktors
e−2kT (x)|φ|, den wir in (2.65) herausgezogen haben, über die 5. Dimension integrieren:

N =

∫ π

−π
r dφ e−2σ =

1

k
(1− e−2krπ). (2.69)

Aus der Fordeung

1

M3N
=

1

M2
Pl

(2.70)

folgt die Relation (2.27). Der nächste Schritt bestünde nun in der Herleitung der Fer-
mionprofile aus Gl. (2.58). Dies wollen wir jedoch ausführlich im nächsten Kapitel tun.
Schließlich betrachten wir noch die KK-Zerlegung der Eichbosonen und die daraus folgen-
den Bedingungen an deren Profile.
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2.3.3 Eichbosonen

Wir studieren zunächst den einfachsten Fall eines U(1)-Eichfeldes. Die Verallgemeinerung
auf nichtabelsche Eichtheorien ist Gegenstand des vierten Kapitels. Das fünfdimensionale
Eichfeld AM setzt sich zusammen aus dem Spin1-Feld Aµ und dem skalaren Feld A5. Da
sich herausstellen wird, dass die Nullmode eine gerade Funktion der Koordinate φ ist und
wir A

(0)
µ mit dem Photon identifizieren wollen, muss Aµ gerade Z2-Parität besitzen. Es gibt

nun Modelle, in denen das Higgs-Teilchen als fünfte Komponente des Eichfeldes identifiziert
wird (Gauge-Higgs-Unification, siehe z.B. [25]). In diesem Fall würde man dem Feld A5

ebenfalls gerade Z2-Parität zuweisen. Wir wollen diesen Weg jedoch nicht beschreiten und
wählen negative Parität:

P (Aµ) = Aµ, P (A5) = −A5 . (2.71)

In diesem Fall besitzt A5 keine Nullmode. Als weitere Vereinfachung wählen wir zunächst
die Eichung A5 = 0. Der Feldstärketensor ist gegeben durch

FMN = DMAN −DNAM = ∂MAN − ∂NAM . (2.72)

Hierbei haben wir im zweiten Schritt die Antisymmetrie des Feldstärketensors ausgenutzt,
welche bewirkt, dass die beiden zusätzlichen Terme aus dem affinen Zusammenhang sich
kürzen (die Christoffel sind symmetrisch in den unteren beiden Indizes). Die 5D-Wirkung
lautet in diesem Fall

S = −1

4

∫

d4x

∫

dφ
√
G GMKGNLFMNFKL

= −1

4

∫

d4x

∫

r dφ

(

FµνF
µν − 2e−2σ 1

r2
∂φAµ∂φA

µ

)

. (2.73)

Für die KK-Zerlegung wählen wir nun

Aµ(x, φ) =
1√
r

∑

n=0

A(n)
µ (x)χ(n)(φ). (2.74)

Fordern wir
∫ π

−π
dφ χ(m)(φ)χ(n)(φ) = δmn, (2.75)

−1
r2

d

dφ

(

e−2σ d

dφ
χ(n)

)

= m2
nχ

(n), (2.76)

so erhalten wir die kanonische 4D-Wirkung

S =
∑

n

∫

d4x

(

−1

4
F (n)
µν F

(n)µν +
1

2
m2

nA
(n)
µ A(n)µ

)

. (2.77)
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Für die Nullmode gilt nun mn = 0. In Gl. (2.76) verschwindet somit die rechte Seite.
Ungerade Funktionen müssen nun an den Orbifoldfixpunkten 0 und π verschwinden, da
wir Periodizität in der 5. Dimension fordern. Eine solche Lösung existiert jedoch nicht. Für
gerade Funktionen muss nun die Ableitung nach φ an den besagten Stellen verschwinden.
Die Lösung ist schlicht χ(0) = const. Die Orthonormierung (2.75) liefert schließlich

χ(0) =
1√
2π

. (2.78)

In Analogie zu den skalaren Feldern setzen wir zn = mn

k
eσ und χ̃(n) = e−σχ(n). Es ist somit

d

dφ
= σ′zn

d

dzn
. (2.79)

Dieses zusammen mit den obigen Definitionen in (2.76) eingesetzt, ergibt

−mnk zn
d

dzn

(1

z n
+

d

dzn

)

χ̃(n) = mnk zn χ̃
(n) (2.80)

(σ′2 = k2r2), beziehungsweise

(

z2
n

d2

dz2
n

+ zn
d

dzn
+ (z2

n − 1)

)

χ̃(n) = 0. (2.81)

Dies ist eine Bessel’sche Differentialgleichung erster Ordnung, deren allgemeinste Lösung
nach Rücksubstitution auf χ(n) durch

χ(n)(φ) =
eσ

Nn

(

J1(
mn

k
eσ) + βnY1(

mn

k
eσ)
)

(2.82)

gegeben ist. Hierbei bezeichnet Nn eine Normierungskonstante. Den Koeffizienten βn be-
stimmt man aus den Randbedingungen

d

dφ
χ(n)

∣
∣
∣
0,π

= 0, (2.83)

welche die Hermitizität des Differentialoperators in (2.76) garantieren, und findet

J1(xn) + xnJ
′
1(xn) + βn

(

Y1(xn) + xnY
′
1(xn)

)

= 0, (2.84)

wobei xn = mn

k
für φ = 0, bzw. xn = mn

k
ekrπ für φ = π gilt. Die Gleichung für φ = 0 liefert

den Koeffizienten βn für ein gegebenes Verhältnis mn

k
. Entwickeln wir

βn = −J1(
mn

k
) + mn

k
J ′1(

mn

k
)

Y1(
mn

k
) + mn

k
Y ′1(

mn

k
)

(2.85)
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nach mn

k
¿ 1 und setzen absofort xn = mn

k
ekrπ, so erhalten wir

βn ≈ −
π

2(ln(mn

2k
) + γE)

= − π

2(ln(xn
2
)− krπ + γE)

. (2.86)

Für k ∼ 1018GeV ergibt sich β1 ≈ 0, 1. Die Gleichung für φ = π ist nun lösbar für diskrete
Werte x̃n und wir erhalten das Spektrum der KK-Massen

mn = ke−krπx̃n . (2.87)

Einige numerische Werte finden sich in [12]. Im Gegensatz zu einem Szenario mit einer
zusätzlichen flachen Extradimension (siehe z.B. [32]), ist das Spektrum nicht äquidistant.
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Kapitel 3

Bulk-Fermionen

Das Ziel dieses Kapitels ist es, die Massenmatrix der Fermionen, welche sich aus Yukawa-
termen und KK-Massen zusammensetzt, zu diagonalisieren um somit die Masseneigenwerte
der frei propagierenden Zustände zu bestimmen. Hierbei wird man neben der aus dem Stan-
dardmodell bekannten Flavormischung zusätzlich eine Mischung der KK-Moden finden.

3.1 Herleitung der Fermionprofile

Die Herleitung der Fermionprofile erfolgt im Grunde demselben Verfahren, welches für
die Eichbosonen verwendet haben. Wir orientieren uns jedoch an der Arbeit von Grossman
und Neubert [14], in welcher durch geschickte Umdefinition der Variablen das Ergebnis eine
einfache, numerisch gut zu handhabende Form annimmt. Da die Wirkung gerade unter Z2-
Parität ist, wird zunächst die Integration über φ auf das Intervall [0, π] eingeschränkt. Will
man die Felder über den gesamten Orbifold normieren, multipliziert man das Integral mit
einem Faktor 2. Daraufhin führt man die Variable t = εeσ ∈ [ε, 1] mit ε = e−krπ ≈ 10−16

ein, und reskaliert das Fermionprofil f̂
(n)
L,R(φ)→

√
krεf

(n)
L,R(t). Desweiteren definiert man

c =
m

k
, xn =

mn

εk
=
mn

k
ekrπ. (3.1)

Die zweite Definition ist uns bereits durch die Eichbosonen vertraut. Die Relationen (2.57)
und (2.58) nehmen nun mit dφ = (krt)−1dt folgende Gestalt an:

2

∫ 1

ε

dt f
(m)∗
L,R (t)f

(n)
L,R(t) = δmn, (3.2)

(±t∂t − c)f (n)
L,R(t) = −xntf

(n)
R,L(t). (3.3)

Die Randbedingungen lauten f
(m)∗
L (ε)f

(n)
R (ε) = f

(m)∗
L (1)f

(n)
R (1) = 0. Für die Nullmode ist

xn = 0 und die Differentialgleichung Gl.(3.3) entkoppelt. Da sie reell ist, kann man die
Profile o.B.d.A. ebenfalls reell wählen und findet

f
(0)
L,R(t) = f

(0)
L,R(1) t

±c. (3.4)

27
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Den Vorfaktor bestimmt man aus der Orthonormierungsbedingung:

f
(0)
L,R(1)

−2
= 2

∫ 1

ε

dt t±2c = 2
1− ε1±2c

1± 2c
(3.5)

⇒ f
(0)
L,R(t) =

√

1/2± c
1− ε1±2c

t±c. (3.6)

In der Tat hat das Profil der Nullmode gerade Z2-Parität, da t ∝ eσ mit σ = kr|φ|
gilt. Die Parameter c werden durch die Theorie nicht festgelegt (der Massenparameter m
in der Wirkung ist beliebig). Demnach müssen wir deren Werte von Hand festlegen. Als
Referenz dienen hierbei die im Experiment ermittelten Massen der Elementarteilchen. Die
Komplikation besteht nun darin, dass auch die Profile der KK-Anregungen von c abhängig
sind und die physikalischen Standardmodellfelder sich als Überlagerung der Nullmode mit
den KK-Moden ergeben. Es wird also eine numerische Rechnung mit einer trunkierten
Massenmatrix von Nöten sein, um realistische Werte zu erhalten.
Um die Profile der KK-Moden zu berechnen, multiplizieren wir Gl. (3.3) von links mit
(±t∂t + c). Es folgt eine Differentialgleichung zweiter Ordnung:

[

t2∂2
t + x2

nt
2 − c(c∓ 1)

]

f
(n)
L,R(t) = 0 (3.7)

Setzen wir nun f(t) =
√
t g(t), so folgt

t2∂2
t g(t) + t ∂tg(t) + x2

nt
2g(t)−

[1

4
+ c(c∓ 1)

]

g(t) = 0, (3.8)

bzw. nach Reskalierung der Variablen

x2
nt

2g′′(xnt) + xnt g
′(xnt) +

[

x2
nt

2 − (c∓ 1

2
)2
]

g(xnt) = 0. (3.9)

Der Einfachheit halber nehmen wir an, dass c 6= 1
2
+ n, wobei n eine natürliche Zahl sein

soll. In diesem Fall lautet die allgemeinste Lösung

f
(n)
L,R(t) =

√
t
[

a
(n)
L,RJ 1

2
∓c(xnt) + b

(n)
L,RJ− 1

2
±c(xnt)

]

. (3.10)

Die Lösungen f
(n)
L und f

(n)
R sind nun über Gl. (3.3) miteinander verknüpft, aus der wir

nun eine Beziehung zwischen den Koeffizienten a
(n)
L,R und b

(n)
L,R herleiten. Hierzu setzen wir

zn = xnt und erhalten

[

± zn
d

dzn
− c
]√

zng
(n)
L,R(zn) = −z3/2

n g
(n)
R,L(zn)

⇔ ±
[

zn
d

dzn
+

1

2
∓ c

︸ ︷︷ ︸

≡k

]

g
(n)
L,R(zn) + zng

(n)
R,L(zn) = 0. (3.11)
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Benutzen wir die Identität

d

dz

[

zkJk(z)
]

= zkJk−1(z) (3.12)

so erhalten wir nach Ausführung der Ableitung auf der linken Seite

zJ ′k(z) + kJk(z) = zJk−1(z). (3.13)

Andererseits gilt

d

dz

[

zkJ−k(z)
]

= −zkJ−k+1(z) (3.14)

und wir erhalten

zJ ′−k(z) + kJ−k(z) = −zJ−k+1(z). (3.15)

Zur Probe kann man in (3.15) −k durch k ersetzen und die daraus resultierende Gleichung
von (3.13) abziehen. In der Tat gilt

2kJk(z) = z
[

Jk−1(z) + Jk+1(z)
]

. (3.16)

Setzten wir den Ansatz

g
(n)
L,R = a

(n)
L,RJ 1

2
∓c(zn) + b

(n)
L,RJ− 1

2
±c(zn) (3.17)

in (3.11) ein und verwenden die beiden obigen Resultate, so erhalten wir nach Koeffizien-

tenvergleich b
(n)
L = a

(n)
R , sowie b

(n)
R = −anL und damit

f
(n)
L (t) =

√
t
[

a
(n)
L J 1

2
−c(xnt) + a

(n)
R J− 1

2
+c(xnt)

]

, (3.18)

f
(n)
R (t) =

√
t
[

a
(n)
R J 1

2
+c(xnt)− a

(n)
L J− 1

2
−c(xnt)

]

. (3.19)

Um nun die Koeffizienten a
(n)
L,R zu bestimmen, benötigen wir die Randbedingungen, welche

aus Z2-Parität der Felder resultieren. So gilt für ungerade Felder

f (n)(ε) = f (n)(1) = 0. (3.20)

Nun sind entweder die linkshändigen oder die rechtshändigen Felder ungerade (entspricht
ψ− bzw. ψ+) und wir müssen die Lösung für beider Sätze separat bestimmen. Hierzu
nutzen wir das asymptotische Verhalten der Besselfunktion Jk(x) → xk für x → 0. Man
sieht, dass im Limes ε → 0 für gegebenes c jeweils ein Koeffizient verschwinden muss,
damit die Bedingung (3.20) erfüllt wird. Es verbleibt eine Gleichung, aus welcher man die
Parameter xn bestimmt. Der Limes ε→ 0 ist eine ausgezeichnete Näherung, es sei denn, wir
betrachten Überlappintegrale der Profile f

(n)
L,R, die Gewichtsfunktionen enthalten, welche für
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Fall a
(n)
L a

(n)
R Gleichung für xn Nullmode

ψ−, c > +1
2

0 N 1
2
+c(xn) Jc− 1

2
(xn) = 0 R

ψ−, c < +1
2

N 3
2
−c(xn) 0 J 1

2
−c(xn) = 0 R

ψ+, c > −1
2

0 N 3
2
+c(xn) J 1

2
+c(xn) = 0 L

ψ+, c < −1
2

N 1
2
−c(xn) 0 J− 1

2
−c(xn) = 0 L

Abbildung 3.1: Lösungen für Bulk-Fermionen im Limes e−krπ → 0

t → 0 divergieren. Den verbleibenden Koeffizienten bestimmt man durch Normierung. Es
gilt

2

∫ 1

0

dt t Jk(xnt)
2 = Jk+1(xn)

2 (3.21)

und wir definieren |Na(xn)|2 = Ja(xn)
−2. Die Ergebnisse sind in der obigen Tabelle zusam-

mengefasst. Zum Schluss notieren wir die Profile.

Profile mit gerader Z2-Parität:

f
+(n)
L (t) =

√
t
J−1/2+c(xnt)

|J3/2+c(xn)|
für c > −1

2
, (3.22)

f
+(n)
L (t) =

√
t
J1/2−c(xnt)

|J1/2−c(xn)|
für c < −1

2
, (3.23)

f
−(n)
R (t) =

√
t
J1/2+c(xnt)

|J1/2+c(xn)|
für c > +

1

2
, (3.24)

f
−(n)
R (t) = −

√
t
J−1/2−c(xnt)

|J3/2−c(xn)|
für c < +

1

2
. (3.25)

Profile mit ungerader Z2-Parität:

f
+(n)
R (t) =

√
t
J1/2+c(xnt)

|J3/2+c(xn)|
für c > −1

2
, (3.26)

f
+(n)
R (t) = −

√
t
J−1/2−c(xnt)

|J1/2−c(xn)|
für c < −1

2
, (3.27)

f
−(n)
L (t) =

√
t
J−1/2+c(xnt)

|J1/2+c(xn)|
für c > +

1

2
, (3.28)

f
−(n)
L (t) =

√
t
J1/2−c(xnt)

|J3/2−c(xn)|
für c < +

1

2
. (3.29)

Wie man sieht, ergeben sich die Eigenwerte xn als Nullstellen von Besselfunktionen. Die
Ergebnisse haben Gültigkeit für t ∈ [ε, 1], also φ ∈ [0, π]. Dies hat zur Folge, dass man bei
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Rücksubstitution auf die alten Koordinaten und Verallgemeinerung auf den kompletten
Orbifold, die Profile ungerader Parität antisymmetrisieren muss. Im Folgenden betrachten
wir Massenterme, welche durch Yukawakopplung an das Higgsfeld zustande kommen.

3.2 Yukawakopplungen

Zunächsteinmal wollen wir das Symmetrieverhalten unserer Fermionfelder unter SU(2)-
Transformationen angeben. Hierzu müssen wir die Diracfermionen ψ+ und ψ− einer Kaluza-
Klein-Zerlegung unterziehen. Das Feld ψ+ zerfällt hierbei in ein linkshändiges Weylfermion
(Nullmode) und eine Kaskade von links- und rechtshändigen KK-Anregungen, welche Mo-
de für Mode einen Diracspinor bilden. Das Feld ψ− liefert eine rechtshändige Nullmode.
Schematisch gilt also

ψ± → ψ
±(0)
L , ψ

±(n)
L + ψ

±(n)
R . (3.30)

Betrachten wir zunächst eine Generation, so erhalten wir die folgenden Quarkfelder:

ψ+ → Dubletts QL q
(0)
L =

(
u
(0)
L

d
(0)
L

)

, q
(n)
L =

(
u
(n)
L

d
(n)
L

)

+ q
(n)
R =

(
u
(n)
R

d
(n)
R

)

ψ− → Singuletts u
c(0)
R , d

c(0)
R , u

c(n)
L + u

c(n)
R , d

c(n)
L + d

c(n)
R .

Die Felder q
(n)
R , u

c(n)
L und d

c(n)
L haben hierbei negative Z2-Parität. Aufgrund der Existenz

dreier Generationen führt man weitere Indizes i und j ein. Da wir das Higgsfeld auf der
Brane lokalisieren, gibt es nur Kopplungen mit Feldern gerader Z2-Parität. Die 4D-Yukawa-
Massenterme in der Lagrangedichte lauten

LY ukawa = −
∫ π

π

dφ
√
G

(
∑

m,n

∑

i,j

(
λijd5 Q̄

(m)
Li Φd

c(n)
Rj + λiju5Q̄

(m)
Li ΦCu

c(n)
Rj

)

+ h.c.

)

δ(φ− π)

(3.31)

mit ΦC = iσ2Φ
∗. Wir erhalten somit eine unendlich dimensionale Massenmatrix, deren Ein-

träge zu festem n und m durch 3× 3-Matrizen (M (m,n))ij gegeben sind. Nach Reskalierung
des Higgsfeldes H → 1√

r
ekrπH ergibt sich

(M (m,n))ij =

∫ π

−π
dφ

v√
2

λij5√
r
ekrπδ(φ− π)f̂+(m)

Li (φ)f̂
−(n)
Rj (φ) (3.32)

wobei v den (4D-) Higgserwartungswert bezeichnet. Die Profile f
+(n)
R und f

−(n)
L verschwin-

den an den Orbifoldfixpunkten. Wir können daher die Integration auf das halbe Intervall
einschränken und den obigen Koordinatenwechsel vollziehen und erhalten somit

(M (m,n))ij = 2

∫ 1

ε

dt

krt

v√
2

λij5√
r
krδ(t− 1)

1

ε
f̂

+(m)
Li (t)f̂

−(n)
Rj (t) = kr λij

v√
2
f

+(m)
Li (1)f

−(n)
Rj (1),

(3.33)
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wobei wir in der zweiten Zeile λij = λij5 /
√
r gesetzt haben. Die 3 × 3-Untermatrizen zu

festem m und n haben somit eine Produktstruktur (siehe auch [24]). Setzen wir alle λij
gleich, so ergibt sich beispielsweise

(M (0,0))ij ∼





a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



 , ai = f
+(m)
Li (1), bj = f

−(m)
Rj (1). (3.34)

Diese Matrix hat die Eigenwerte (0, 0,
∑

i aibi). Lässt man jetzt verschiedene Kopplungs-
konstanten der gleichen Größenordnung zu, so ist die Matrix nichtsingulär, hat jedoch
eine starke Hierarchie in den Eigenwerten λ1 ¿ λ2 ¿ λ3. Wenn man jetzt noch bedenkt,
dass man den Wert der Fermionprofile bei der TeV-Brane durch geringfüge Variationen
der Massenparameter ci signifikant verändern kann, so erscheint die bisher unverstandene
Fermionmassenhierarchie als völlig natürliche Konsequenz des Modells.
Unglücklicherweise steht die obige Matrix (M (0,0))ij nicht in Eins zu Eins Korrespondenz
mit dem Standardmodell. Der Grund hierfür ist die oben erwähnte Beimischung der KK-
Moden nach Diagonalisierung der gesamten, unendlich dimensionalen Massenmatrix. Dies
soll nun im nächsten Abschnitt bewerkstelligt werden.

3.3 Diagonalisierung der Massenmatrix

Die Lagrangedichte (3.31) enthält Massenmatrizen für Up- und Down-Quarks verschiedener
Generationen. Wir betrachten nun den Up-Quark Sektor (die Rechnung für Down-Quarks
läuft völlig analog). Der Massenterm hat die Gestalt Ψ̄T

L M ΨR, wobei

ΨL = (u
(0)
L , c

(0)
L , t

(0)
L , u

(1)
L , c

(1)
L , t

(1)
L , u

c(1)
L , c

c(1)
L , t

c(1)
L , ...)T , (3.35)

ΨR = (u
c(0)
R , c

c(0)
R , t

c(0)
R , u

(1)
R , c

(1)
R , t

(1)
R , u

c(1)
R , c

c(1)
R , t

c(1)
R , ...)T . (3.36)

Man beachte an dieser Stelle, dass eine Mischung von SU(2)L-Dubletts mit SU(2)L-
Singletts nach elektroschwacher Symmetriebrechung zulässig ist, wenn diese die gleiche
Ladung unter U(1)e.m. besitzen. Die Massenmatrix

M =












M (0,0) 03×3 M (0,1) 03×3 M (0,2) · · ·
M (1,0) MQ1 M (1,1) 03×3 M (1,2) · · ·
03×3 03×3 MU1 03×3 03×3 · · ·
M (2,0) 03×3 M (2,1) MQ2 M (2,2) · · ·
03×3 03×3 03×3 03×3 MU2 · · ·
...

...
...

...
...

. . .












(3.37)

enthält außer den Yukawatermen (3.33) die Matrizen MQn und MUn für die KK-Moden
der SU(2)L-Dubletts und Singuletts [24]. Diese kann man als Diagonalmatrizen ansetzen,
was der Wahl einer speziellen Basis entspricht [30]. Anstatt die Eigenwerte über das cha-
rakteristische Polynom zu bestimmen (was für die obige unendlich dimensionale Matrix
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recht kompliziert ist), wollen wir die Diagonalisierungsmatrizen durch eine Entwicklung in
Potenzen des Skalenverhältnisses MEW

MKK
herleiten. Da M nicht hermitesch ist, gibt es keine

unitäre Transformation, die M diagonalisiert. Man kann die Diagonalgestalt jedoch durch
eine biunitäre Transformation erreichen. Es sei daher

M̃ = U †L M UR (3.38)

eine Diagonalmatrix, wobei UL und UR unitäre Matrizen bezeichnen. Bilden wir

M̃M̃ † = U †L M UR U †R M † UL = U †L MM † UL, (3.39)

so sehen wir, dass eine unitäre Transformation des Produktes MM † die quadratischen
Masseneigenwerte der linkshändigen Zustände liefert (MM † ist hermitesch für jede nicht-
singuläre Matrix M). Andererseits gilt

M̃ †M̃ = U †R M †M UR, (3.40)

und wir erhalten die Massenquadrate der rechtshändigen Zustände.

3.3.1 Entwicklung in erster Ordnung

Es sind nun alle Yukawaterme von der Größenordnung MEW ≈ 100GeV und demnach um
mindestens eine Größenordnung kleiner als die unteren KK-Anregungen (≈ (3− 10)TeV).
Um die Buchhaltung zu erleichtern, versehen wir diese Terme mit einem Ordnungsparame-
ter ε, den man jederzeit in Gedanken gleich Eins setzen kann. Desweiteren ist eine vorläufige
Trunkierung der Massenmatrix von Nöten. Wir beginnen mit einer 3×3-Matrix, erweitern
auf 5 × 5 und schließen auf den allgemeinen Fall. Da die KK-Massen auf der Diagonalen
von M zu finden sind, wählen wir den Ansatz

UL =





U00 εU01 εU02

εU10 U11 εU12

εU20 εU21 U22



 (3.41)

und bilden U †LMM †UL. Im Folgenden sei Mm,n =M (m,n). Wir finden
















O(ε2) εU
†
10MQM

†
QU11 +O(ε2) ε(U †20MUM

†
U

+U
†
00M01M

†
U )U22 +O(ε2)

εU
†
11MQM

†
QU10 +O(ε2) U

†
11MQM

†
QU11 +O(ε2) ε(U †11MQM

†
QU12

+U
†
21MUM

†
UU22

+U
†
11M1,1M

†
UU22) +O(ε2)

εU
†
22(MUM

†
UU20 ε(U †12MQM

†
QU11

+MUM
†
0,1U00) +O(ε2) +U

†
22MUM

†
UU21 U

†
22MUM

†
UU22 +O(ε2)

+U
†
22MUM

†
1,1U11) +O(ε2)
















. (3.42)
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Die Forderung nach Diagonalität in erster Ordnung verlangt, dass diejenigen Einträge in
den Nebendiagonalelementen, die nicht von O(ε2) oder höherer Ordnung sind, verschwin-
den. Es gilt somit:

U †10MQM
†
QU11

!
= 0 ⇒ U †10 = 0 bzw. U10 = 0. (3.43)

Aus der Forderung nach Unitarität folgt, dass U01 in erster Ordnung ebenfalls verschwindet.

Aus UU †
!
= diag(1, 1, 1) erhält man die Gleichungen

U00U
†
20 + U02U

†
22

!
= 0, (3.44)

U11U
†
21 + U12U

†
22

!
= 0, (3.45)

U20U
†
00 + U22U

†
02

!
= 0, (3.46)

U21U
†
11 + U22U

†
12

!
= 0. (3.47)

Außerdem gilt UiiU
†
ii = 1, d.h. die Diagonaleinträge sind in der betrachteten Näherung

unitär. Kehren wir nun zu der Analyse der quadrierten Massenmatrix zurück. Der Eintrag
in der 3. Zeile, 1. Spalte verlangt

U †22(MUM
†
UU20 +MU M †

0,1U00)
!
= 0

⇒ U20 = −(M †
U)
−1M †

0,1U00 . (3.48)

Löst man Gleichung (3.44) nach U02 auf, setzt die Adjungierte von Gl. (3.48) ein, so findet
man

U02 =M0,1M
−1
U U22. (3.49)

Schließlich betrachten wir den Eintrag 3. Zeile, 2. Spalte (Eintrag 2,3 liefert die gleiche
Bedingung, lediglich h.c.):

U21 = −(U †22MUM
†
U)
−1U †12MQM

†
QU11 − (M †

U)
−1M †

1,1U11. (3.50)

Einsetzen von (3.47) liefert

U21 = (MUM
†
U)
−1U21U

†
11MQM

†
QU11 − (M1,1M

−1
U )†U11 . (3.51)

Desweiteren findet man

U12 =MQM
†
QU12(U

†
22MUM

†
UU22)

−1 +M1,1M
−1
U U22 . (3.52)

In einer Basis, in der die KK-Moden bereits diagonal sind, werden U11 und U22 in er-
ster Ordnung der Einheitsmatrix entsprechen (desweiteren gilt M = M †). Man erhält die
Bestimmungsgleichungen

−U12MUM
†
U +MQM

†
QU12 +M1,1M

†
U = 0. (3.53)
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Diese lassen sich mit U12 = −U †21 ≡ X zu einer Gleichung zusammenfassen und die Diago-
nalisierungsmatrix UL ergibt sich zu

UL =









UL
00 0 M0,1M

−1
U

0 13×3 X

−(M0,1M
−1
U )†UL

00 −X† 13×3









,

−XMUM
†
U +MQM

†
QX +M1,1M

†
U = 0. (3.54)

Auf die selbe Art und Weise diagonalisiert man M †M und erhält die zweite Diagonalisie-
rungsmatrix

UR =









UR
00 (M−1

Q M1,0)
† 0

−M−1
Q M10U

R
00 13×3 −X̃†

0 X̃ 13×3









,

−X̃M †
QMQ +M †

UMUX̃ +M †
1,1MQ = 0. (3.55)

Schließlich wiederholen wir die Rechnung unter Einbeziehung der ersten beiden KK-Moden
und erhalten

UL =














UL
00 0 M0,1M

−1
U1 0 M0,2M

−1
U2

0 13×3 X1,1 0 X1,2

−(M0,1M
−1
U1 )

†UL
00 −X

†
1,1 13×3 −X

†
2,1 0

0 0 X2,1 13×3 X2,2

−(M0,2M
−1
U2 )

†UL
00 −X

†
1,2 0 −X

†
2,2 13×3














,

MQmM
†

QnXm,n −Xm,nMUnM
†

Un +MmnM
†

Un = 0. (3.56)
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UR =
















UR
00 (M−1

Q1m10)
† 0 (M−1

Q2M2,0)
† 0

−M−1
Q1M1,0U

R
00 13×3 −X̃

†
1,1 0 −X̃

†
1,2

0 X̃1,1 13×3 X̃2,1 0

−M−1
Q2M2,0U

R
00 0 −X̃

†
2,1 13×3 −X̃

†
2,2

0 X̃1,2 0 X̃2,2 13×3
















M †
UmMUmX̃m,n − X̃m,nM

†
QnMQn +M †

n,mMQn = 0. (3.57)

Die Gleichungen (3.56) und (3.57) gelten bereits allgemein und die zugehörigen Matrizen
lassen sich leicht fortsetzen.

3.3.2 Entwicklung in zweiter Ordnung

Um die Diagonalisierungsmatrizen in zweiter Ordnung zu bestimmen, wählt man den An-
satz

U =














U00 ε2U01 εU02 ε2U03 εU04

ε2U10 13×3 − ε2s11 εU12 ε2U13 εU14

εU20 εU21 13×3 − ε2s22 εU23 ε2U24

ε2U30 ε2U31 εU32 13×3 − ε2s33 εU34

εU40 εU41 ε2U42 εU43 13×3 − ε2s44














. (3.58)

Da sich die Bestimmungsgleichungen für die in erster Ordnung von Null verschieden Terme
nicht ändern, gilt nach wie vor:

U12 = −U †21 = X1,1 , U14 = −U †41 = X1,2 (3.59)

U20 = −(M0,1M
−1
U1 )

†U00 , U40 = −(M0,2M
−1
U2 )

†U00 (3.60)

U02 =M0,1M
−1
U1 , U04 =M0,2M

−1
U2 (3.61)

U32 = −U †23 = X2,1 , U34 = −U †43 = X2,2. (3.62)

Desweiteren findet man nun

−MQ1M
†
Q1U10 = (M1,0M

†
0,0 +M1,1M

†
0,1 +M1,2M

†
0,2)U00 +M1,1M

†
U1U20

+U †21MU1(M0,1U00 +M †
U1U20) +M1,2M

†
U2U40 + U †41MU2(M

†
0,2U00 +M †

U2U40). (3.63)



3.3. DIAGONALISIERUNG DER MASSENMATRIX 37

Mit Hilfe der obigen Relationen vereinfacht sich die rechte Seite zu M10M
†
00U00. Es gilt

somit

U10 = −(MQ1M
†
Q1)

−1M1,0M
†
0,0U00, (3.64)

U30 = −(MQ2M
†
Q2)

−1M2,0M
†
0,0U00, (3.65)

U01 = −U00U
†
10 − U02U

†
12 − U04U

†
14

=M0,0M
†
1,0(MQ1M

†
Q1)

−1 −M0,1M
−1
U1X

†
1,1 −M0,2M

−1
U2X

†
1,2, (3.66)

U03 = −U00U
†
30 − U02U

†
32 − U04U

†
34

=M0,0M
†
2,0(MQ2M

†
Q2)

−1 −M0,1M
−1
U1X

†
2,1 −M0,2M

−1
U2X

†
2,2 . (3.67)

Die verbleibenden Nebeniagonalelemente sind erneut durch Matrixgleichungen gegeben,
die man komponentenweise lösen muss:

U31 = −U †13 −X2,1X
†
1,1 −X2,2X

†
1,2 = Y1,2, (3.68)

−Y2,1MQ1M
†
Q1 +MQ2M

†
Q2Y2,1 − (X2,1X

†
1,1 +X2,2X

†
1,2)MQ1M

†
Q1

+M20M
†
10 +M21M

†
11 +M22M

†
12 −M21M

†
U1X

†
1,1 −M22M

†
U2X

†
1,2 −X2,1MU1M

†
11

−X2,2MU2M
†
12 +X2,1MU1M

†
U1X

†
1,1 +X2,2MU2M

†
U2X

†
1,2 = 0, (3.69)

U42 = −U †24 − (M01M
−1
U1 )

†M02M
−1
U2 −X†

1,1X1,2 −X†
2,1X2,2 = Z2,1, (3.70)

−Z2,1MU1M
†
U1 +MU2M

†
U2Z2,1 − (X†

1,2X1,1 +X†
22X21)MU1M

†
U1

+MU2M
†
02M01M

−1
U1 +MU2M

†
12X1,1 +MU2M

†
22X2,1 +X†

1,2M11M
†
U1

+X†
2,2M21M

†
U1 +X†

1,2MQ1M
†
Q1X1,1 +X†

2,2MQ2M
†
Q2X2,1 = 0 . (3.71)

Um die Korrekturen auf der Diagonalen berechnen zu können benötigt man UU †
!
= 1. Man

erkennt jetzt, dass in dieser Ordnung U00 nicht unitär sein kann, da

U00U
†
00 +

2∑

i=1

(M0iM
−1
Ui )U00U

†
00(M0iM

−1
Ui )

† !
= 13×3 (3.72)

gilt. Desweiteren findet man Bestimmungsgleichungen für die sii:

s11 + s†11 = X1,1X
†
1,1 +X1,2X

†
1,2, (3.73)

s33 + s†33 = X2,1X
†
2,1 +X2,2X

†
2,2, (3.74)

s22 + s†22 = X†
1,1X1,1 +X†

2,1X2,1 + (M01M
−1
U1 )

†M01M
−1
U1 , (3.75)

s44 + s†44 = X†
1,2X1,2 +X†

2,2X2,2 + (M02M
−1
U2 )

†M02M
−1
U2 . (3.76)
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Der letzte Schritt besteht nun in der Verallgemeinerung auf den kompletten Tower. Man
findet

Un0 = −(M0n
2
M−1

U n
2
)†U00 n gerade, (3.77)

Un0 = −(MQn+1
2
M †

Qn+1
2

)−1Mn+1
2

0M
†
00U00 n ungerade, (3.78)

U0n =M0n
2
M−1

U n
2

n gerade, (3.79)

U0n =M00M
†
n+1

2
0
(MQn+1

2
M †

Qn+1
2

)−1 −
∑

k=1

M0kM
−1
UkX

†
n+1

2
,k

n ungerade, (3.80)

Umn = −U †nm = Xm+1
2

,n
2

m,n > 0, m ungerade, n gerade, (3.81)

Umn = −U †nm −
∑

k=1

Xm+1
2

,kX
†
n+1

2
,k
= Ym+1

2
,n+1

2
, (3.82)

m,n ungerade wobei m > n > 0 (3.83)

Umn = −U †nm − (M0,m
2
M−1

U m
2
)†Mn0,n

2
M−1

U n
2
−
∑

k=1

X†
k,m

2
Xk,n

2
= Zm

2
,n
2
, (3.84)

n ,m gerade wobei n > m > 0, (3.85)

sn,n + s †n,n =
∑

h=1

Xn+1
2
,hX

†
n+1

2
,h

n ungerade, (3.86)

sn,n + s †n,n =
∑

h=1

X†
h,n

2
Xh,n

2
+ (M0,n

2
M−1

U n
2
)†M0,n

2
M−1

U n
2

n gerade, (3.87)

U00U
†
00 +

∑

h=1

M0,hM
−1
Uh(M0,hM

−1
Uh)

† !
= 1. (3.88)

Um zu sehen, wie sich die Einträge Ym,n und Zm,n verallgemeinern, muss man die Rechnung
auf die ersten drei Anregungen erweitern. Man findet schließlich

−Ym,nMQnM
†
Qn +MQmM

†
QmYm,n +

∑

k=0

Mm,kM
†
n,k

+
∑

h=1

(MQmM
†
QmXm,hX

†
n,h −Xm,hMUhM

†
UhX

†
n,h) = 0, (3.89)

−Zm,nMUnM
†
Un +MUmM

†
UmZm,n +MUmM

†
0,mM0,nM

−1
Un

+
∑

h=1

(MUmM
†
UmX

†
h,mXh,n −X†

h,mMQhM
†
QhXh,n) = 0. (3.90)
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Zerlegt man U00 in das Produkt einer hermiteschen Matrix H mit einer unitären Matrix U
(dies ist möglich für jede nichtsinguläre Matrix M), so ergibt sich H aus

U00U
†
00 = HUU †H† = HH† = H†H

!
= 1−

∑

h=1

M0,hM
−1
Uh(m0hM

−1
Uh)

†

zu

H = H† = 1− 1

2

∑

h=1

M0,hM
−1
Uh(M0,hM

−1
Uh)

†. (3.91)

Rechtshändige Felder

Die Einträge der Matrix UR seien mit Wmn bezeichnet. Aus den Forderungen URU
†
R = 1

und U †RM
†MUR = diag erhält man:

Wn0 = −M−1
Qn+1

2

Mn+1
2
,0W00 n ungerade, (3.92)

Wn0 = −(M †
U n

2
MU n

2
)−1M0,n

2
M0,0W00 n gerade, (3.93)

W0n = (M−1
Qn+1

2

Mn+1
2
,0)
† n ungerade, (3.94)

W0n =M †
00M0,n

2
(M †

U n
2
MU n

2
)−1 −

∑

k=1

(M−1
Qkmk0)

†X̃†
n
2
k n gerade, (3.95)

Wmn = −W †
nm = X̃m

2
,n+1

2
m,n > 0, m gerade, n ungerade, (3.96)

Wmn = −W †
nm −

∑

k=1

X̃m
2
,kX̃

†
n
2
,k = Ỹm

2
,n
2

m, n gerade wobei m > n > 0, (3.97)

Wmn = −W †
nm −M−1

Qm+1
2

Mm+1
2

0(M
−1
Qn+1

2

Mn+1
2

0)
† −
∑

k=1

X̃†
k,m+1

2

X̃k,n+1
2
, (3.98)

= Z̃m+1
2

,n+1
2

m, n ungerade wobei m > n > 0.

Hierbei gilt

−Ỹm,nM †
UnMUn +M †

UmMUmỸm,n +
∑

k=0

M †
k,mMkn

+
∑

h=1

(M †
UmMUmX̃m,hX̃

†
n,h − X̃m,hM

†
QhMQhX̃

†
n,h) = 0, (3.99)

−Z̃m,nM †
QnMQn +M †

QmMQmZ̃m,n +M †
QmMm,0(M

−1
QnMn,0)

†

+
∑

h=1

(M †
QmMQmX̃

†
h,mX̃h,n − X̃†

h,mM
†
UhMUhX̃h,n) = 0, (3.100)
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s̃n,n + s̃ †n,n =
∑

h=1

X̃n
2
,hX̃

†
n
2
,h n gerade, (3.101)

s̃n,n + s̃ †n,n =
∑

h=1

X̃†
h,n+1

2

X̃h,n+1
2

+M−1
Qn+1

2

Mn+1
2
,0(M

−1
Qn+1

2

Mn+1
2
,0)
† n ungerade, (3.102)

W00W
†
00 +

∑

h=1

(M−1
QhMh,0)

†M−1
QhMh,0

!
= 1. (3.103)

3.3.3 Interpretation

Abschließend wollen wir die Struktur der Diagonalisierungsmatrizen studieren. Bleibt man
in erster Ordnung ε, so sieht man, dass beispielsweise die linkshändigen Nullmode, die
dem SU(2)-Dublett zuzuordnen ist, nur Beimischungen von SU(2)-Singulett Moden er-
halten. Ebenso erfahren die zum Dublett gehörenden KK-Moden nur Beimischungen von
Singulett-Zuständen. Umgekehrt erhalten diejenigen KK-Moden, die zum SU(2)-Singulett
gehören, nur Beimischungen von Dublett-Zuständen. Die Beimischungen zu einer beliebi-
gen Mode mit gegebener Chiralität sind demnach unabhängig voneinander, das heißt, sie
mischen nicht untereinander. Analoge Betrachtungen gelten für rechtshändige Zustände.
Hier mischen zu der Nullmode, die nun dem SU(2)-Singulett entspricht, nur Dublett-
Zustände. Auch diese mischen nicht untereinander und liefern somit unabhänige Beiträge.
Die Masseneigenzustände der physikalischen Nullmoden (SM-Fermionen) ergeben sich nun
zu

ψ
′(0)
L = U †00

(

ψ
(0)
L −

∑

k=1

(

M0,kM
−1
Uk ψ

c(k)
L +Mk,0M

†
0,0(MQkM

†
Qk)

−1 ψ
(k)
L

)
)

, (3.104)

ψ
′(0)
R =W †

00

(

ψ
(0)
R −

∑

k=1

(

(M−1
QkMk,0)

† ψ
c(k)
R +M †

0,kM0,0(M
†
UkMUk)

−1 ψ
(k)
R

)
)

. (3.105)

Berechnet man die Feynmanregeln für die Eichkopplung zwischen linkshändigen Fermionen,
so erhält man die entsprechende Regeln für rechtshändige Felder, indem man die folgenden
Ersetzungsregeln anwendet, welche man durch Vergleich der Einträge von UL und UR
erhält:

n→ n+ 1, n+ 1→ n (gilt nicht für Laufindizes) (3.106)

MU/Q →M †
Q/U (3.107)

M →M † + Vertauschung der Indizes sowie Ersetzung (3.106) (3.108)

Wir erinnern an dieser Stelle nocheinmal daran, dass aufgrund der angesetzten Diagonalität
der KK-Moden im Flavor-Raum die Matrizen MQ/U gleich ihrem hermitesch Konjugierten
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sind. Die obigen Regeln implizieren ferner X,Y, Z → X̃, Ỹ , Z̃.
Um die Feynmanregeln für die Eichkopplung hinschreiben zu können, benötigen wir den
Zusammenhang zwischen Massen- und Wechselwirkungseigenzustand des Eichbosons. Für
Photonen und Gluonen sind diese identisch, da die Massenmatrix keine Nebendiagonal-
einträge enthält. Die massiven Eichbosonen werden jedoch eine Mischung der Moden in
Analogie zu den Fermionen erfahren. Wir widmen daher das nächste Kapitel dem Studium
des elektroschwachen Eichsektors.





Kapitel 4

5D-Eichtheorien

Das Ziel dieses Kapitels ist es, die fünfdimensionale Yang-Mills Theorie der elektroschwachen
Bulk-Eichbosonen auf eine 4D-Theorie zu reduzieren und Feynmanregeln für Propagato-
ren und die Selbstkopplung herzuleiten. Während man die reine Yang-Mills-Theorie für
alle Symmetriegruppen simultan studieren kann, ist bei der Herleitung der Propagatoren
im Falle massiver Eichbosonen der symmetriebrechende Mechanismus zu berücksichtigen.
In unserem Fall wird die abgeleitete 4D-Theorie durch Kopplung an ein Brane-Higgs ge-
brochen.

4.1 Zerlegung des 5D-Eichfeldes

Zunächst benötigen wir die allgemeine Kaluza-Klein-Zerlegung des fünfdimensionalen nicht-
abelschen Eichfeldes AM ≡ Aa

M(x, φ)τ a. Sie lautet

Aµ(x, φ) =
1√
r

∑

n=0

A(n)a
µ (x)τ aχ(n)(φ) ≡ 1√

r

∑

n=0

A(n)
µ χ(n) (4.1)

A5(x, φ) =
1√
r

∑

n=1

A
(n)a
5 (x)τ a

1

mn

∂φχ
(n)(φ) ≡ 1√

r

∑

n=1

A
(n)
5

1

mn

∂φχ
(n) (4.2)

Die Zerlegung des Feldes A5 hat aufgrund der Ableitung nach der fünften Koordinate ne-
gative Z2-Parität, wie in Kapitel 2 gefordert. Es hat nun Aµ(x, φ) die Massendimension 3/2

und A5(x, φ) die Massendimension 1/21. Der Faktor 1/mn sorgt nun dafür, dass A
(n)
5 genau

wie A
(n)
µ die Massendimension Eins hat. Andererseits besitzt A

(n)
5 = g55A

(n)
5 die Massendi-

mension 3. Die Ursache hierfür ist durch unserem Ansatz der Metrik (2.22) begründet.
Würde man die 5. Dimension durch ein dimensionsbehaftetes Wegelement dy = rdφ para-
metrisieren, so hätten, da man ∂φ durch ∂y ersetzen würde, A

(n)
5 und A(n)5 in Analogie zu

A
(n)
µ und A(n)µ die Massendimension Eins. In der Tat wird diese Art der Parametrisierung

1Die Massendimensionen der Felder einer D-dimensionalen Theorie sind gerade so, dass der kinetische
Term die Massendimension D besitzt. Diese wird durch das D-dimensionale Raumzeitintegral gekürzt und
die Wirkung hat somit Massendimension Null.
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in der Literatur häufig verwendet. Oftmals geht man sogar noch einen Schritt weiter und
verwendet homogene Koordinaten z = z(y). Hierzu substituiert man im Linienelement

ds2 = e−2σ(y)ηµνdx
µdxν − dy2 (4.3)

die fünfte Komponente durch

e−σ(y)dz = dy (4.4)

und erhält mit σ(y) = k|y|

z = sgn(y)
1

k
ek|y| ⇐⇒ e−2σ =

( 1

kz

)2

(4.5)

und somit

ds2 =
( 1

kz

)2

(ηµνdx
µdxν − dz2). (4.6)

Die neue Metrik ist nun konform flach, d.h. sie kann mittels einer konformen Transformation

gMN =
( 1

kz

)2

g̃MN mit g̃MN = ηMN (4.7)

in die Minkowskimetrik überführt werden (siehe z.B. [22], [28]). Die Tatsache, dass in

unserer Konvention die Felder A
(n)
5 (x) und A5(n)(x) unterschiedliche Massendimensionen

haben, bereitet jedoch keine Schwierigkeiten, da in der Wirkung alle Indizes kontrahiert
werden. Bevor wir die 5D-Eichtheorie mit gebrochener Symmetrie behandeln, wollen wir
zunächst das Verhalten der 5D-Felder unter Eintransformation studieren und dieses dann
auf 4D-Niveau reduzieren.

4.2 5D-Eichtransformationen

Sei θ eine skalare Funktion aller Raumzeitkoordinaten

θ ≡ θa(x, φ)τ a, Ω = exp(iθ) (4.8)

und

AM → A′M = Ω

(

AM +
i

g5

∂M

)

Ω−1 =
i

g5

Ω DM Ω† (4.9)

die zugehörige Eichtransformation, wobei

θ(x, φ) =
∑

n=0

θ(n)a(x)τ aχ(n)(φ) ≡
∑

n=0

θ(n)χ(n). (4.10)
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Setzt man die obigen KK-Zerlegungen (4.1) und (4.2) ein, so zerfällt die Transformation
in

∑

n=0

A(n)
µ χ(n) → i

g5

exp(i
∑

m=0

θ(m)χ(m))

(

∂µ − i
g5√
r

∑

n=0

A(n)
µ χ(n)

)

exp(−i
∑

m=0

θ(m)χ(m)),

∑

n=1

A
(n)
5

1

mn

∂φχ
(n) → i

g5

exp(i
∑

m=0

· · · )
(

∂φ − i
g5√
r

∑

n=1

A
(n)
5

1

mn

∂φχ
(n)

)

exp(−i
∑

m=0

· · · ).

Beschränkt man sich auf infinitesimale Transformationen, dann sieht man sofort, dass die
Transformationen der einzelnen Komponenten der adjungierten Darstellung durch

A(n)a
µ → A(n)a

µ +
1√
2πg4

∂µθ
(n)a + fabc

∑

m=0

θ(m)bχ(m)A(n)c
µ , (4.11)

A
(n)a
5 → A

(n)a
5 +

1√
2πg4

mnθ
(n)a + fabc

∑

m=0

θ(m)bχ(m)A
(n)c
5 (4.12)

gegeben sind. Dieses Ergebnis wird benötigt, wenn wir eine Eichfixierung vornehmen. Im
folgenden studieren wir die SU(2) × U(1)-Theorie der elektroschwachen Wechselwirkung.
Die Übertragung der Ergebnisse auf die Yang-Mills-Theorie der SU(3)-Symmetrie ist ab-
solut unproblematisch, da diese aufgrund der ungebrochenen Symmetrie formal wesentlich
einfacher ist.

4.3 Eichtheorie mit gebrochener Symmetrie

4.3.1 Zerlegung der Wirkung

Ausgangspunkt ist die folgende 5D-Wirkung

S5D =

∫

d4x

∫

dφ
√
G
(

GKMGLN
(

− 1

4
W a

MNW
a
KL −

1

4
BMNBKL

)

+
1

2
|DMΦ5D|2δ(φ− π)− V (Φ5D)δ(φ− π) + LGF + LFP

)

, (4.13)

wobei

W a
MN = ∂MW

a
N − ∂NW a

M + gfabcW b
MW

c
N ,

BMN = ∂MBN − ∂NBM ,

DM = ∂M − ig5W
a
Mτ

a − ig′5Y BM , D5Φ5(x) = 0. (4.14)
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Multipliziert man die Feldstärketensoren aus, so erhält man beispielsweise für den vorderen
kinetischen Term

−GMKGLN
(1

2
(∂MW

a
N∂KW

a
L − ∂NW a

M∂KW
a
L) (4.15)

+
1

2
g5f

abcW b
MW

c
N(∂KW

a
L − ∂LW a

K) +
1

4
g2
5f

abcfadeW b
MW

c
NW

d
KW

e
L

)

.

Im Folgenden richten wir unser Augenmerk auf die bezüglich der Felder quadratischen
Terme. Aus ihnen wird der Propagator konstruiert. Die kubischen und quartischen Terme,
welche die Wechselwirkungen der Eichbosonen untereinander beschreiben, werden gegen
Ende des Kapitels behandelt.
Der quadratische Anteil des obigen Ausdrucks zerfällt nach partieller Integration in

1

2
e4σ
(

W a
ν ∂µ∂

µW aν −W a
µ∂

µ∂νW
aν

+g55e2σ(−∂φW a
µ∂φW

aµ +W a
5 ∂µ∂

µW a
5 + 2∂φW

a
µ∂

µW a
5 )
)

. (4.16)

Hierbei gilt aufgrund von (2.22) g55 = −1/r2. Die Berechnungen für den zweiten kinetischen
Term laufen analog. Bevor wir jedoch die KK-Zerlegung einsetzen und die 5. Dimension
ausintegrieren, analysieren wir zunächst den Higgs-Sektor. Die kanonische Normierung des
Higgsfeldes liefert

Φ5D(x) =
1√
r
ekrπΦ(x), |DMΦ|2 = |DmΦ|2. (4.17)

Die Integration über die fünfte Raumkomponente ist trivial:

1

2

∫

dφ
√
G |DmΦ5D|2δ(φ− π)

=
1

2

∣
∣
∣(∂µ − ig5W

a
µ τ

a − ig′5Y Bµ)Φ
∣
∣
∣

2

φ=π
. (4.18)

Das Higgspotential V (Φ) liefert nach Entwicklung um den Vakuumerwartungswert v des
Feldes Φ die Higgsmasse. Wir wollen darauf jedoch nicht näher eingehen, sondern konzen-
trieren uns auf die Eichbosonen. Es empfielt sich, eine neue Notation einzuführen (siehe
auch [39]). Man definiert hierzu den vierkomponentigen Vektor Aa, a = 1, 2, 3, Y :

Aa = (W 1,W 2,W 3, B)T , τ i =
σi

2
, τY = Y =

1

2
. (4.19)

Die Generatoren der SU(2)-Felder sind gegeben durch die halben Pauli-Matrizen, der Ge-
nerator des U(1)-Feldes kann als 1 notiert werden. Desweiteren definieren wir

T a = −iτ a, g
(a)
5 =

{g5 für a = 1, 2, 3

g′5 für a = Y
(4.20)
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sowie das Higgsdublett

Φ(x) =
1√
2

(−i(ϕ1(x)− iϕ2(x))

v + (h(x) + iϕ3(x))

)

, Φ0 =
1√
2

(
0

v

)

. (4.21)

Die Goldstonebosonen ϕi beschreiben Feldfluktuationen entlang des Minimums. Das phy-
sikalische Higgsfeld h hingegen beschreibt diejenige Fluktuation, die die Feldkonfiguration
aus dem Minimum herausführt. Man berechnet nun die Produkte

T 1Φ0 =
v

2

1√
2

(−i
0

)

≡ v

2
√
2
n1,

T 2Φ0 =
v

2

1√
2

(−1
0

)

≡ v

2
√
2
n2,

T 3Φ0 =
v

2

1√
2

(
0

i

)

≡ v

2
√
2
n3,

T YΦ0 =
v

2

1√
2

(
0

−i

)

≡ − v

2
√
2
n3.

(4.22)

Hierbei bezeichnen die ni Einheitsvektoren entlang der Feldfluktuationen ϕi. Die Kompo-
nenten des Higgs-Dubletts sollen nun einheitlich durch einen Satz von skalaren Feldern φi
beschrieben werden. Das Higgsfeld erhält einen nichtverschwindenden Vakuumerwartungs-
wert (VEV), der VEV der Goldstonebosonen ist Null. Wir notieren

〈φi〉 = (φ0)i. (4.23)

Demnach ergibt sich

φi(x) = φ0i + χi(x), (4.24)

wobei χi die obigen Feldfluktuationen bezeichnet. Es gilt somit χi = ϕi für i = 1, 2, 3.
Betrachten wir nun die kovariante Ableitung

Dµφi = ∂µφi + g5A
a
µT

a
ijφj. (4.25)

Die partielle Ableitung generiert kinetische Terme für die Goldstonebosonen und das Higgs.
Die Wirkung der Kopplungsterme auf den Vakuumerwartungswert ist oben berechnet
(4.22). Indem wir

F a
i = T a

ijφ0j (4.26)

definieren, erhalten wir

g
(a)
5 F a

i =
v

2







g5 0 0
0 g5 0
0 0 g5

0 0 −g′5






. (4.27)



48 KAPITEL 4. 5D-EICHTHEORIEN

Substituieren wir nun die Felder in (4.18) durch (4.19) und (4.24) und verwenden die
Definition (4.26), so erhalten wir

SHiggs
4D =

1

2

∫

d4x
(

(∂µχ)
2 − 2

∑

n=0

g
(a)
5√
r
F a

iϕi∂
µA(n)a

µ χ(n)(π)

+
∑

m,n

g
(a)
5 g

(b)
5

r
F a

iF
b
iA

(m)a
µ gµνA(n)b

ν χ(m)(π)χ(n)(π) + V (φ)
)

. (4.28)

Wir setzen nun

(
m(m,n)2

)ab
=
g

(a)
5 g

(b)
5

r
F a

iF
b
iχ

(m)(π)χ(n)(π) =
g

(a)
5 g

(b)
5

r
(FF T )abχ(m)(π)χ(n)(π) (4.29)

und notieren die Wirkung (4.13) erneut, wobei wir das Higgsfeld ignorieren und die Relation
(2.76) verwenden:

S4D =
1

2

∫

d4x
(∑

m,n

A(m)a
µ

(
(∂2gµν − ∂µ∂ν +m2

ng
µν)δmnδab +

(
m(m,n)2

)ab
gµν
)
A(n)b
ν

−
∑

n=1

(A
(n)a
5 ∂2A

(n)a
5 − 2mnA

(n)a
5 ∂µA(n)a

µ )− 2
∑

n=0

g
(a)
5√
r
F a

iϕi∂
µA(n)a

µ χ(n)(π)

+(∂µϕ)
2 + LGF

)

+ SFP . (4.30)

Die Mischterme sind nun durch die Wahl einer passenden Eichfixierung zu entfernen.

4.3.2 Eichfixierung und Feldredefinition

Gegeben sei die folgende eichfixierende Funktion:

G(n)a(x) =
1√
ξ

(

∂µA(n)a
µ (x)− ξ

(g
(a)
5√
r
F a

i ϕi(x)χ
(n)(π)−mnA

(n)a
5 (x)

))

. (4.31)

Auf diese wenden wir nun eine Eichtransformation an. Hierzu verwenden wir die Ergebnisse
(4.11) und (4.12). Definiert man ferner

(

D
(m,n)
µ,5 (x, φ)

)ab

= (∂µ,mn)δmnδ
ab +

g
(a)
5√
r
fabcχ(m)(φ)A

(n)c
µ,5 (x), (4.32)

so erhält man nach kurzer Rechnung (die x-Abhängigkeit lassen wir außen vor):

G(n)a → G(n)a +
1√
ξ

(√
r

g
(a)
5

∂µ
(

D(m,n)
µ (φ)

)ab

+ ξmn

(

D
(m,n)
5 (φ)

)ab
)

θ(m)b. (4.33)
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Die Zusatzterme, die aus der Eichtransformation hervorgehen, sollen nun durch die Wir-
kung sogenannter Geist-Felder kompensiert werden. Nähere Erläuterungen hierzu findet
man beispielsweise in [38] oder [39]. Man definiert daher

(

M
(m,n)
FP (x, φ)

)ab

=
δG(n)a

δθ(m)b
=

1√
ξ

(√
r

g
(a)
5

∂µ
(

D(m,n)
µ (φ)

)ab

+ ξmn

(

D
(m,n)
5 (φ)

)ab
)

(4.34)

und erhält die Wirkung der Faddeev-Popov-Geister

SFP = −
∫

d4x

∫

dφ
√
G
∑

m,n

∑

a,b

c(m)
a

†
(x)
(

M
(m,n)
FP (x, φ)

)ab

c
(n)
b (x), (4.35)

wobei das Vorzeichen für die erwünschte Kompensation sorgt. Der eichfixierende Term in

der Wirkung sei nun LGF = −1
2

∑

n=0 (G
(n)a)

2
. Nach Einsetzen von (4.31) und partieller

Integration findet man

LGF =
1

2

∑

n=0

{1

ξ
A(n)a
µ ∂µ∂νA(n)a

ν + 2
(g

(a)
5√
r
F a

i ϕiχ
(n)(π)−mnA

(n)a
5

)
∂µA(n)a

µ

−ξ
(g

(a)
5

2

r
F a

iF
a
j ϕiϕj

(
χ(n)(π)

)2
+m2

n(A
(n)a
5 )

2 − 2 g
(a)
5√
r
F a

iϕiχ
(n)(π)mnA

(n)a
5

)}

. (4.36)

Definieren wir

(

m(n,n)2
)

ij
=
g

(a)
5

2

r
F a

iF
a
j(χ

(n)(π))
2
=
g

(a)
5

2

r

(

F TF
)

ij

(
χ(n)(π)

)2
, (4.37)

und setzen den Eichfixierungsterm in (4.30) ein, so heben sich die obigen Mischterme weg
und es bleibt

S =
1

2

∫

d4x
(∑

m,n

A(m)a
µ

(

(∂2gµν − (1− 1

ξ
)∂µ∂ν +m2

ng
µν)δmnδ

ab +
(
m(m,n)2

)ab
gµν
)

A(n)b
ν

−
∑

n=1

A
(n)a
5 ∂2A

(n)a
5 − ϕi∂2ϕi + 2Lξmass

)

+ SFP (4.38)

wobei

Lξmass = −
ξ

2

(
∑

n=0

ϕi

(

m(n,n)2
)

ij
ϕj + A

(n)a
5 m2

nA
(n)a
5 − 2

g
(a)
5√
r
F a

i ϕiχ
(n)(π)mnA

(n)a
5

)

. (4.39)



50 KAPITEL 4. 5D-EICHTHEORIEN

Zunächst könnte man darüber besorgt sein, dass die Eichfixierung einen neuen Misch-
term zwischen den Goldstonebosonen ϕi und den A

(n)
5 produziert hat. In der Tat hat aber

alles seine Richtigkeit, wie sich später herausstellen wird.
Für die nachfolgenden Überlegungen halten wir die KK-Indizes fest und richten unser Au-

genmerk auf die Massenterme (m(n,n)2)ij und (m(m,n)2)ab, welche durch die Gleichungen
(4.37) und (4.29) definiert sind. Wir bezeichnen g5 ab sofort als g und berechnen

g(a)2F a
iF

a
j = g(a)2

(

F TF
)

ij
=
v2

4





g2 0 0
0 g2 0

0 0 g2 + g′2



 (4.40)

sowie

g(a)g(b)F a
iF

b
i = g(a)g(b)(FF T )ab =

v2

4







g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2






. (4.41)

Auch der Mischterm kann explizit angegeben werden:

g(a)A
(n)a
5 F a

i ϕi =
v

2
g(A

(n)1
5 ϕ1 + A

(n)2
5 ϕ2) +

v

2
(gA

(n)3
5 − g′A(n)Y

5 )ϕ3. (4.42)

Die Massenmatrix der Goldstonebosonen ist bereits diagonal. Es gilt also (m(n,n)2)ij =

(m(n,n)2)iiδij. Die Massenmatrix der Eichfelder wird durch Redefinition der Felder A
(n)3
µ

und A
(n)Y
µ auf Diagonalgestalt bezüglich der Indizes a, b gebracht. Diese Vorgehensweise

ist uns aus dem Standardmodell wohlvertraut. Schließlich unterzieht man auch die Felder
A

(n)1
µ und A

(n)2
µ bzw. A

(n)1
5 und A

(n)2
5 einer Redefinition. Wir setzen

W
(n)±
µ,5 =

1√
2
(A

(n)1
µ,5 ∓ iA

(n)2
µ,5 ), (4.43)

A
(n)
µ,5 =

1
√

g2 + g′2
(gA

(n)3
µ,5 + g′A

(n)Y
µ,5 ), (4.44)

Z
(n)
µ,5 =

1
√

g2 + g′2
(gA

(n)3
µ,5 − g′A

(n)Y
µ,5 ), (4.45)

ϕ± =
∓i√
2
(ϕ1 ± iϕ2), (4.46)

ϕ0 = ϕ3. (4.47)

Wenn wir die Gleichungen (4.43) und (4.46) umkehren,

A
(n)1
µ,5 =

1√
2
(W

(n)+
µ,5 +W

(n)−
µ,5 ), A

(n)2
µ,5 =

i√
2
(W

(n)+
µ,5 −W (n)−

µ,5 ), (4.48)

ϕ1 =
i√
2
(ϕ+ − ϕ−), ϕ2 =

1√
2
(ϕ+ + ϕ−), (4.49)
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und dieses in (4.42) einsetzen, erhalten wir

v

2

(

g (W
(n)+
5 ϕ+ −W (n)−

5 ϕ−) +

√

g2 + g′2 Z
(n)
5 ϕ0

)

. (4.50)

Man kann nun die Wirkung (4.38) in vier separate Wirkungen für die Felder W (n)±, Z(n)

und A(n) zerlegen. Hierbei darf man die Feldbezeichnung ± am KK-Index vorbeiziehen,
welcher absofort wieder variabel sein soll. Der nächste Schritt besteht nämlich darin, die
einzelnen Massenmatrizen der neuen FelderW±(n), Z(n) und A(n) bezüglich des KK-Indexes
zu diagonalisieren. Hierbei wird man beobachten, dass im Zuge der Diagonalisierung die
verschiedenen Moden miteinander mischen. Insofern ist auch der Mischterm zwischen A

(n)
5

und ϕ nichts ungewöhnliches, da man das Goldstoneboson als Nullkomponente eines Vek-
tors A5 = (ϕ,A

(1)
5 , A

(2)
5 , ...)T interpretieren kann. Das Photonfeld hat kein korrespondie-

rendes Goldstoneboson. Daher bleibt seine Nullmode masselos. Man erhält also folgenden
Satz von Spin-1-und Spin-0-Feldern:








W
±(0)
µ

W
±(1)
µ

W
±(2)
µ

...















ϕ±

W
±(1)
5

W
±(2)
5
...







,








Z
(0)
µ

Z
(1)
µ

Z
(2)
µ

...















ϕ0

Z
(1)
5

Z
(2)
5
...







,








A
(0)
µ

A
(1)
µ

A
(2)
µ

...















0

A
(1)
5

A
(2)
5
...







. (4.51)

4.3.3 Diagonalisierung der Massenmatrizen

Wir studieren im Folgenden die Wirkung der W-Felder. Man erhält mit den obigen Sub-
stitutionen

S±4D =
1

2

∫

d4x
(∑

m,n

W±(m)∗
µ

(

(∂2gµν − (1− 1

ξ
)∂µ∂ν)δmn + (m(m,n)2 +m2

nδmn)g
µν
)

W±(n)
ν

−
∑

n=1

W
±(n)∗
5 ∂2W

±(n)
5 − ϕ±∗∂2ϕ± + 2Lξ±mass

)

+ SFP , (4.52)

wobei

Lξ±mass = −
ξ

2

∑

n=0

(

ϕ±∗m(n,n)2ϕ±+W
±(n)∗
5 m2

nW
±(n)
5 − g5√

r

v

2
mn(ϕ

±∗W
±(n)
5 +W

±(n)∗
5 ϕ±)χ(n)(π)

)

.

Setzen wir

W±
5 = (ϕ±,W

±(1)
5 ,W

±(2)
5 , ...)T , (4.53)
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so lässt sich Lξ±mass durch einen einzigen Term notieren:

Lξ±mass = −
ξ

2
W±

5
†
M±

ξ
2
W±

5 . (4.54)

Mξ±
2 bezeichnet hierbei die gemeinsame Massenmatrix der Spin-0-Felder. Sie lautet explizit

Mξ±
2 =










∑

n=0m
(n,n)2 −m(1,1)m1 −m(2,2)m2 −m(3,3)m3 · · ·

−m(1,1)m1 m2
1 0 0 · · ·

−m(2,2)m2 0 m2
2 0 · · ·

−m(3,3)m3 0 0 m2
3 · · ·

...
...

...
...

. . .










. (4.55)

Hierbei gilt

m(m,n)2 =
g2
5v

2

4 r
χ(m)(π)χ(n)(π). (4.56)

Desweiteren lesen wir aus der obigen Wirkung die Massenmatrix M±
2 der W-Felder ab

und finden

M±
2 =











m(0,0)2 m(0,1)2 m(0,2)2 m(0,3)2 · · ·
m(1,0)2 m2

1 +m(1,1)2 m(1,2)2 m(1,3)2 · · ·
m(2,0)2 m(2,1)2 m2

2 +m(2,2)2 m(2,3)2 · · ·
m(3,0)2 m(3,1)2 m(3,2)2 m2

3 +m(3,3)2 · · ·
...

...
...

...
. . .











. (4.57)

Setzen wir nun g4 = g = g5√
2πr

, mW = gv/2 und αn =
√
2πχ(n)(π) (α0 = 1), so ergeben sich

die obigen Matrizen zu

Mξ±
2 = m2

W














∑

n=0 α
2
n −α1

m1

mW
−α2

m2

mW
−α3

m3

mW
· · ·

−α1
m1

mW

m2
1

m2
W

0 0 · · ·
−α2

m2

mW
0

m2
2

m2
W

0 · · ·
−α3

m3

mW
0 0

m2
3

m2
W

· · ·
...

...
...

...
. . .














, (4.58)

M±
2 = m2

W












α2
0 α0α1 α0α2 α0α3 · · ·

α1α0
m2

1

m2
W

+ α2
1 α1α2 α1α3 · · ·

α2α0 α2α1
m2

2

m2
W

+ α2
2 α2α3 · · ·

α3α0 α3α1 α3α2
m2

3

m2
W

+ α2
3 · · ·

...
...

...
...

. . .












. (4.59)
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Um nun die physikalischen Massen der Bosonen zu bestimmen, müssen die beiden Matrizen
diagonalisiert werden. Hierbei kommt es zu der oben erwähnten Mischung der Moden. Sei
B diejenige Matrix, welche die Eichbosonen diagonalisiert und Bξ das entsprechende Pen-

dant für die Goldstonebosonen (im Folgenden werden auch die Felder A
(n)
5 als Goldstone-

bosonen bezeichnet, da sich herausstellen wird, dass auch ihre Masse proportional zum
Eichfixierungsparameter ξ ist). Definiert man ferner den Vektor

W±
µ = (W±(0)

µ ,W±(1)
µ ,W±(2)

µ , ...)T , (4.60)

so gilt

W±†
µ M±

2W±
µ = W±†

µ BBTM±
2BBTW±

µ = W±′†
µ M̃2

±W
±′
µ , (4.61)

W±†
5 Mξ±

2W±
5 = W±†

5 BξB
T
ξ Mξ±

2BξB
T
ξ W

±
5 = W±′†

5 M̃2
ξ±W

±′
5 . (4.62)

Hierbei sind die diagonalisierten Matrizen durch eine Tilde, Masseneigenzustände durch
einen Strich gekennzeichnet.
Für die Feynmanregeln der Propagatoren benötigt man nun die Masseneigenwerte λn. In
der Tat werden wir beweisen, dass die Matrizen (4.59) und (4.58) dieselben Eigenwerte
besitzen. Dies ist ohnehin unabdingbar, wenn die Amplitude eines beliebigen Prozesses
unabhängig von dem Eichfixierungsparameter sein soll, da nämlich der ξ-abhängige Anteil
im Graphen des Eichfeldes durch den Graph des zugehörigen Goldstonebosons kompensiert
werden muss.
Aufgrund des regelmäßigen Aufbaus der Massenmatrizen, bietet es sich an, dieselbigen
zu trunkieren (etwa bei n = 3) und das resultierende charakteristische zu Polynom be-
stimmen. Daraufhin extrapoliert man das Resultat für den Fall beliebiger n’s. Für die
Eichbosonmassenmatrix (4.59) findet man

det(M 2
± − λ1) =

∏

n=0

(m2
n − λ) +m2

W

∑

n=0

α2
n

∏

k 6=n
(m2

k − λ). (4.63)

Verwendet man m0 = 0 und α0 = 1, so erhält man nach wenigen Schritten

det(M 2
± − λ1) =

(
∏

n=1

(m2
n − λ)

)(

m2
W − λ− λm2

W

∑

n=1

α2
n

m2
n − λ

)

. (4.64)

Die Matrix M 2
ξ± liefert das charakteristische Polynom

det(M 2
ξ± − λ1) = m2

W

((

1 +
∑

n=1

α2
n −

λ

m2
W

)
∏

n=1

(m2
n − λ)−

∑

n=1

α2
nm

2
n

∏

k 6=n
(m2

k − λ)
)

.

(4.65)

Nach Ausklammern des Produkts erhält man

det(M 2
ξ± − λ1) =

(
∏

n=1

(m2
n − λ)

)(

m2
W − λ+m2

W

∑

n=1

α2
n

(

1− m2
n

(m2
n − λ)

))

. (4.66)



54 KAPITEL 4. 5D-EICHTHEORIEN

Die rechte Seite ist jedoch äquivalent zum charakteristischen Polynom (4.64) und die Eigen-
werte sind somit identisch. Da nun die KK-Massen mn von den Masseneigenwerten ver-
schieden sind, erfüllen sämtliche Eigenwerte die transzendente Gleichung

m2
W − λ− λm2

W

∑

n=1

α2
n

m2
n − λ

= 0. (4.67)

Diese lässt sich zwar analytisch nicht exakt lösen, jedoch können wir uns die Tatsache zu
Nutze machen, dass wir es mit zwei verschiedenen Massenskalen mW ≈ 100 GeV und mn

mit m1 ≈ (3 − 10)TeV zu tun haben. So wird beispielsweise der nullte Eigenwert von
der Gestalt m2

W plus Korrekturen in Potenzen von m2
W/m

2
n sein, wobei über alle n zu

summieren ist. Versieht man in Gl. (4.67) die W-Masse mit einem Ordnungsparameter ε,
setzt

λ0 = ε2m2
W + ε4c (4.68)

in die transzendente Gleichung ein und entwickelt nach ε, so findet man

c = −m4
W

∑

n=1

α2
n

m2
n

. (4.69)

Indem man den Ansatz auf

λ0 = ε2m2
W + ε4c2 + ε6c3 + · · · (4.70)

verallgemeinert, kann man λ0 prinzipiell bis zu jeder gewünschten Ordnung in ε bestimmen.
Es kommen nur gerade Potenzen in Frage, da mW und mn jeweils nur quadratisch in der
Massenmatrix auftreten. Das gleiche Rezept kann man auch auf die Masseneigenwerte der
KK-Moden anwenden. Hierzu setzen wir

λn = m2
n + ε2c

(n)
1 + ε4c

(n)
2 + · · · (4.71)

und erhalten

c
(n)
1 = m2

Wα
2
n (4.72)

c
(n)
2 = m4

Wα
2
n

( 1

m2
n

+
∑

k 6=n

α2
k

m2
n −m2

k

)

. (4.73)

Kennt man die Eigenwerte, so kann man die Diagonalisierungsmatrizen B und Bξ berech-
nen. Wir beginnen mit der Ersteren:

(M±
2 − λ1)Eλ = 0. (4.74)
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Wir orientieren uns an [40] und wählen den Ansatz Eλ = (1, Êλ). Dieser liefert

m2
W − λm2

W +m2
W

∑

j=1

αjÊ
λ
j = 0, (4.75)

m2
W










m2
1

m2
W

+ α2
1 − λ α1α2 α1α3 · · ·

α2α1
m2

2

m2
W

+ α2
2 − λ α2α3 · · ·

α3α1 α3α2
m2

3

m2
W

+ α2
3 − λ · · ·

...
...

...
. . .










Eλ
j = −m2

W








α1

α2

α3
...







. (4.76)

Sei die obige Matrix durch A bezeichnet, so erhält man die Eigenvektoren Êλ
j durch An-

wendung der Cramerschen Regel. Es ist

Êλ
j =

det(Aj)

det(A)
. (4.77)

Hierbei entspricht Aj der Matrix A, wobei die die j-te Spalte durch die rechte Seite von
Gl. (4.76) ersetzt wird. Wir berechnen

det(A) =
∏

n=1

(

m2
n − λ

)(

1 +m2
W

∑

n=1

α2
n

m2
n − λ

)

=
∏

n=1

(

m2
n − λ

)m2
W

λ
, (4.78)

det(Aj) = −m2
Wαj

∏

n6=j

(

m2
n − λ

)

= −
∏

n=1

(

m2
n − λ

) m2
Wαj

m2
j − λ

. (4.79)

Hierbei wurde oben Gl. (4.67) verwendet. Man erhält daher

Êλ
j =

λαj
λ−m2

j

bzw. Ê
(n)
j =

M̃2
nαj

M̃2
n −m2

j

. (4.80)

Setzt man dieses Ergebnis in (4.75) ein, so ergibt sich gerade die transzendente Gleichung

(4.67). Schließlich berechnet man aus E(n) = (1, Ê(n))T den normierten Eigenvektor E
(n)
norm:

E
(n)
j,norm =

E
(n)
j

|E(n)| =
M̃2

nαj

M̃2
n −m2

j

(

1 +
∑

k=1

( M̃2
nαk

M̃2
n −m2

k

)2
)−1/2

=
M̃2

nαj

M̃2
n −m2

j

E
(0)
j,norm ≡ Bjn . (4.81)

Mit M̃2
n bezeichnen wir den n-ten Eintrag der Diagonalmatrix M̃2

±. Hätte man den Ansatz

E(n) = (−1,−Ê(n))T gewählt, so würde das obige Ergebnis sein Vorzeichen ändern. Die
Diagonaleinträge wären demnach negativ. Da diese für Drehmatrizen aber positiv sein
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sollen, war der Ansatz gerechtfertigt. Schließlich ist man in der Lage, auch dieses Resultat
in Potenzen von ε = mW/mn zu entwickeln. Mit (4.68) und (4.69) erhält man

M̃2
0 = m2

W

(

1−m2
W

∑

n=1

α2
n

m2
n

)

(4.82)

und somit nach Entwicklung in ε bis zur vierten Ordnung beispielsweise

B00 = E
(0)
0,norm = 1− 1

2

∑

n=1

α2
n

m4
W

m4
n

(4.83)

Bj0 = E
(0)
j,norm = −αj

m2
W

m2
j

(

1 +
m2

W

m2
j

−
∑

n=1

α2
n

m2
W

m2
n

)

. (4.84)

Man überprüft, dass die führenden Terme in den Entwicklungen von Bjn und BT
jn = Bnj

entgegengesetztes Vorzeichen haben. Setzen wir O(ε4) = 0, so hat die Diagonalisierungs-
matrix B eine sehr einfache Gestalt und ist explizit gegeben durch

B =













1 α1
m2
W

m2
1

α2
m2
W

m2
2

α3
m2
W

m2
3
· · ·

−α1
m2
W

m2
1

1
α1α2m2

W

m2
2−m2

1

α1α3m2
W

m2
3−m2

1
· · ·

−α2
m2
W

m2
2
−α1α2m2

W

m2
2−m2

1
1

α2α3m2
W

m2
3−m2

2
· · ·

−α3
m2
W

m2
3
−α1α3m2

W

m2
3−m2

1
−α2α3m2

W

m2
3−m2

2
1 · · ·

...
...

...
...

. . .













. (4.85)

Schließlich berechnen wir noch die Eigenvektoren der Matrix Mξ±
2 (4.58), aus denen sich

die Diagonalisierungsmatrix Bξ ergibt. Zu lösen ist also die Gleichung

(Mξ±
2 − λ1)Eλ

ξ = 0. (4.86)

Der Ansatz Eλ
ξ = (±1,±Êλ

ξ ) liefert

±m2
W

(∑

j=0

α2
j − λ−

∑

j=1

αj
mj

mW

Êλ
ξj

)

= 0, (4.87)








m2
1 − λ 0 0 · · ·
0 m2

2 − λ 0 · · ·
0 0 m2

3 − λ · · ·
...

...
...

. . .







Êλ
ξj = mW








α1m1

α2m2

α3m3
...







. (4.88)

Die Anwendung der Cramerschen Regel ergibt

Êλ
ξj =

mWmjαj
m2

j − λ
bzw. Ê

(n)
ξj =

mWmjαj

m2
j − M̃2

n

. (4.89)
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Hierbei wurde bereits ausgenutzt, dass M̃2
± = M̃2

ξ± gilt. Setzt man dieses Ergebnis in (4.87)
ein, erhält man wiederrum die Bestimmungsgleichung (4.67) für die Eigenwerte. Wir wählen

nun E
(n)
ξ = (1, Ê

(n)
ξ ) für n = 0 und E

(n)
ξ = (−1,−Ê(n)

ξ ) für n ≥ 1. Diese Wahl garantiert
einerseits ein positives Vorzeichen der führenden Terme der Diagonaleinträge und sorgt
andererseits für das erwünschte relative Vorzeichen bezüglich der Nichtdiagonalelemente.
Wir erhalten somit

E
(0)
ξ0,norm

=
(

1 +
∑

k=1

(mWmkαk

m2
k − M̃2

0

)2)−1/2

, (4.90)

E
(0)
ξj ,norm

=
mWmjαj

m2
j − M̃2

n

E
(0)
ξ0,norm

, (4.91)

E
(n)
ξ0,norm

= −
(

1 +
∑

k=1

(mWmkαk

m2
k − M̃2

0

)2)−1/2

, (4.92)

E
(n)
ξj ,norm

=
mWmjαj

m2
j − M̃2

n

E
(n)
ξ0,norm

, n ≥ 1. (4.93)

Setzen wir wiederrum O(ε4) = 0, erhalten wir hieraus

Bξ =












1− 1
2
m2

W

∑

n=1
α2
n

m2
n
−α1

mW

m1
− b01 −α2

mW

m2
− b02 −α3

mW

m3
− b03 · · ·

α1
mW

m1
+ b10 1− 1

2
m2

W
α2

1

m2
1
−m1

m2

α1α2m2
W

m2
1−m2

2
−m1

m2

α1α2m2
W

m2
1−m2

2
· · ·

α2
mW

m2
+ b20

m2

m1

α1α2m2
W

m2
1−m2

2
1− 1

2
m2

W
α2

2

m2
2
−m2

m3

α2α3m2
W

m1
2−m2

3
· · ·

α3
mW

m3
+ b30

m3

m1

α1α3m2
W

m1
1−m2

3

m3

m2

α2α3m2
W

m2
2−m2

3
1− 1

2
m2

W
α2

3

m2
3
· · ·

...
...

...
...

. . .












,

(4.94)

wobei

b0n = −1

2
α3
n

m 3
W

m3
n

+ αn

(

m 3
W

m3
n

+
mW

mn

∑

k 6=n

α2
km

2
W

m2
n −m2

k

)

, (4.95)

bn0 = −1

2
α3
n

m 3
W

m3
n

+ αn

(

m 3
W

m3
n

− 1

2

mW

mn

∑

k 6=n

α2
km

2
W

m2
k

)

. (4.96)

Man bestätigt, dass die expliziten Ausdrücke für B und Bξ die Matrizen (4.59) und (4.58)
in dritter Ordnung diagonalisieren.
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4.4 Feynmanregeln

4.4.1 Propagatoren

Wir beginnen mit der Herleitung der Propagatoren. Sei A
′(n)
µ,5 die n-te Mode des Massenei-

genzustandes eines beliebiges Spin-1/0-Feldes, also W±, Z, A oder Ga. Es gilt daher

A
′(n)
µ = (BTAµ)

(n), (4.97)

A
′(n)
5 = (BT

ξ A5)
(n), (4.98)

wobei A
′(0)
5 = ϕ′. Für Photonen und Gluonen ist die Massenmatrix von vornherein diagonal,

wobei der nullte Eintrag verschwindet und der n-te Eintrag gerade gleich der KK-Masse

mn ist. Das zugehörige B bzw. Bξ enspricht einer Einheitsmatrix und es gilt A
′(n)
µ,5 = A

(n)
µ,5.

Wir betrachten die bezüglich der KK-Moden diagonalisierte Wirkung

S4D =
1

2

∫

d4x
(∑

n

A
′(n)
µ

(

∂2gµν − (1− 1

ξ
)∂µ∂ν + M̃2

ng
µν
)

A
′(n)
ν

−
∑

n=1

A
′(n)
5 (∂2 + ξM̃2

n)A
′(n)
5 − ϕ′(∂2 + ξM̃2

0 )ϕ
′
)

+ SFP (4.99)

und wechseln von der Orts- in die Impulsraumdarstellung. Demnach ist ∂2 durch −k2 und
∂µ∂ν durch −kµkν zu ersetzen. Definieren wir

K̃(n)µν = −k2gµν +
(

1− 1

ξ

)

kµkν + M̃2
ng

µν ,

so erhalten wir den Propagator D
(n)
νσ (k) für das Eichfeld A

′(n)
µ aus der Forderung

K̃(n)µνD̃(n)
νσ (k) = iδµν . (4.100)

Der Ansatz

D̃(n)
νσ (k) = agνσ + bkνkσ (4.101)

liefert schließlich

D(n)µν(k) =
−i

k2 − M̃2
n

(

gµν − (1− ξ) kµkν

k2 − ξM̃2
n

)

(4.102)

=
−i

k2 − M̃2
n

(

gµν − kµkν

M̃2
n

)

+
−i

k2 − ξM̃2
n

kµkν

M̃2
n

. (4.103)
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Die Masseneigenwerte M̃2
n ergeben sich im Falle der W± und Z-Bosonen aus der transzen-

denten Gleichung (4.67), für Photonen und Gluonen sind sie direkt aus der Massenmatrix

abzulesen. Die Herleitung der Propagatoren für A
′(n)
5 bzw. ϕ′ läuft analog. Wir finden

D(0)
ϕ (k) =

i

k2 − ξM̃2
0

, (4.104)

D
(n)
5 (k) =

i

k2 − ξM̃2
n

. (4.105)

Man sieht an dieser Stelle sehr schön, dass die Feldkomponenten A
′(n)
5 sich wie Goldstone-

bosonen verhalten.

4.4.2 Vertizes der nichtabelschen Eichtheorie

Die Feynmanregeln für die Kopplung der Eichbosonen untereinander sowie die Kopp-
lung an Goldstonebosonen im elektroschwachen Sektor sind im Wesentlichen die gleichen
wie im Standardmodell. Neu im Repertoire sind jedoch die Kopplungen an die Spin-0-
Feldkomponente A

(n)
5 . Der Einfachheit halber betrachten wir Gluonen. Wir rekapitulieren

zunächst die Kopplungsterme der 5D-Wirkung:

Lint = −
1

2

∫

dφ
√
−G GKMGLN (4.106)

{

g5f
abcAb

MA
c
N(∂KA

a
L − ∂LAa

K) +
1

2
g2
5f

abcfadeAb
MA

c
NA

d
KA

e
L

}

=

∫

dφ
√
−G

{

− g5

2
fabc

(

Aa
mA

b
n(∂

mAcn − ∂nAcm)

−e
−2σ

r2
(∂mA

a
5 − ∂φAa

m)A
bmAc

5 −
e−2σ

r2
(∂φA

a
n − ∂nAa

5)A
b
5A

cn
)

−g
2
5

4
fabcfade

(

Ab
mA

c
nA

dmAen − e−2σ

r2
Ab
mA

c
5A

dmAe
5 −

e−2σ

r2
Ab

5A
c
nA

d
5A

en
)}

Aufgrund der Antisymmetrie von f abc und fade gibt es keine 3- oder 4 A5-Vertizes (siehe
auch [22]). Als nächstes sind die KK-Zerlegungen der Felder einzusetzen. Im Gluonensektor
wird jedoch nicht über die Moden summiert, da die Massenmatrix von vornherein diagonal
ist und somit keine Mischungen auftreten. Im elektroschwachen Sektor hingegen werden die
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MischungsmatrizenB in den Vertexregeln auftauchen. Hier ist dann jeweils eine Summation
über alle Moden durchzuführen.
Mit g5 =

√
2πr g4 findet man, dass die Feynmanregeln für 3- und 4-Gluonvertizes die des

Standardmodells sind, welche um entsprechende Überlappintegrale zu ergänzen sind. Der
3-Gluonen-Vertex lautet

g4f
abc[gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

√
2π

∫ π

−π
dφ χ(m)(φ)χ(n)(φ)χ(k)(φ),

(4.107)

der 4-Gluonen-Vertex ist durch

−ig2
4 N

µν,ρσ
abcd 2π

∫ π

−π
dφ χ(m)(φ)χ(n)(φ)χ(k)(φ)χ(l)(φ) (4.108)

Nµν,ρσ
abcd = fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ) + fadef bce(gµνgρσ − gµρgνσ)

gegeben. Schließlich erhalten wir noch Vertizes für die Kopplungen A(m)µA(n)νA
(k)
5 und

A(m)µA
(n)
5 A

(k)
5

g4 f
abcgµν

√
2π

mk

∫ π

−π
dφ

e−2σ

r2

((
∂φχ

(m)
)
χ(n) − χ(m)

(
∂φχ

(n)
))
∂φχ

(k), (4.109)
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g4 f
abc(pµ − qµ)

√
2π

mmmn

∫ π

−π
dφ

e−2σ

r2
χ(m)∂φχ

(n)∂φχ
(k), (4.110)

sowie für A(m)µA(n)νA
(k)
5 A

(l)
5

g2
4 (f eabf ecd + f eadf ecb)gµν

2π

mkml

∫ π

−π
dφ

e−2σ

r2
χ(m)χ(n)∂φχ

(k)∂φχ
(l). (4.111)

Bei der Herleitung der letzten Regel hat man die Symmetrie der entsprechenden Terme in
der Wirkung unter Umbenennung der Farbindizes benutzt. Man überprüft, dass die Aus-
drücke (4.109) und (4.110) in Analogie zu (4.107) Massendimension Eins haben und der
Ausdruck (4.111) die Massendimension Null.

Die Herleitung aller Feynmanregeln des elektroschwachen Sektors ist sehr umfangreich,
folgt aber demselben Rezept: Man nehme die Feynmanregel des Standardmodells1, ergänze
sie um einen Faktor

√
2π für kubische bzw. 2π für quartische Wechselwirkung und notiere

das entsprechende Überlappintegral, welches aus der Kaluza-Klein-Zerlegung der Felder
folgt. Desweiteren kann man jedes Eichboson durch seine 5. Komponente ersetzen, es sei
denn, der resultierende Graph verschwindet aus Symmetriegründen (siehe oben). In die-
sem Fall wird der Integrand um einen Faktor e−2σ/r2 ergänzt. Für den elektroschwachen
Sektor muss man nun zusätzlich die Mischung der KK-Moden berücksichtigen, d.h. man
erweitert die Vertexregel um die entsprechenden Einträge der Drehmatrizen B bzw. Bξ

und summiert über alle Moden.

1Eine vollständige Auflistung findet sich in [38].
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4.4.3 Vertizes der Eichkopplungen

Zum Schluss dieses Kapitels sollen die Feynmanregeln für die Eichkopplung an Fermionen
angegeben werden. Da diese Überlappintegrale der Fermion- und Bosonprofile enthalten
werden, führen wir für Letztere ebenfalls den Koordinatenwechsel φ → t = εeσ(φ) aus
Kapitel (3.1) ein. Die Gleichung (2.82) geht somit über in

χ(n)(t) =
t

εNn

(J1(xnt) + βnY1(xnt)) . (4.112)

Vernachlässigen wir den zweiten Term (für höhere Moden ist dies sicherlich zulässig, da
βn ¿ 1), so ergibt sich für die Normierungskonstante zu

N2 ≈ 2

∫ π

0

dφ e2σJ1(
mn

k
eσ)2 ≈ 2

∫ 1

0

dt

krt

( t

ε

)2

J1(xnt)
2 =

1

krε2
J2(xn)

2. (4.113)

Hierbei wurde im letzten Schritt Gl. (3.21) benutzt. Somit gilt

χ(n)(t) ≈
√
kr t

J1(xnt)

J2(xn)
. (4.114)

Die Vertexregeln (4.107) bis (4.111) lassen sich mit dφ = (krt)−1dt problemlos auf die neue
Variable umschreiben, indem man die Integration auf den halben Orbifold (φ ∈ [0, π])
einschränkt und mit 2 multipliziert. Bezüglich der Quarkfelder führen wir die Notation

q(n) = (q(0), q(1), qc(1), q(2), qc(2), ...)T (4.115)

ein. Hierbei ist jeder Eintrag von q ein Dreiervektor im Generationenraum. Wir kenn-
zeichnen dies durch einen zusätzlichen Index i. Es ist also beispielswise q

(4)
i die zweite

KK-Mode des Singlett-Quarks qci . Dieses kann aufgrund des zweiten Satzes an Fermionen
sowohl rechtshändig, als auch linkshändig sein. Den Farbindex haben wir weggelassen. Lep-
tonische Felder notiert man auf die gleiche Art und Weise. Die effektiv vierdimensionale
Lagrangedichte für die Kopplung an Photonen lautet

Lint = ig4

√
2π q

′(m̃)
L,R iU

†(m̃,m)
L,R il (x)γ

µI
(m,n,k)
L,R ll A

(k)
µ (x)U

(n,ñ)
L,R ljq

′(ñ)
L,R j(x), (4.116)

wobei über doppelte Indizes summiert wird,

I
(m,n,k)
L,R ll =

∫ π

−π
dφ eσf̂

(m)
L,R l(φ)f̂

(n)
L,R l(φ)χ

(k)(φ) (4.117)

das Überlappintegral bezeichnet und die gestrichenen Spinoren für Masseneigenzustände
stehen. Wechseln wir in die t-Notation, so erhalten wir

I
(m,n,k)
L,R ll = 2

∫ 1

0

dt f
(m)
L,R l(t)f

(n)
L,R l(t)χ

(k)(t). (4.118)
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An dieser Stelle muss man jedoch vorsichtig sein. Der Ausdruck (4.117) verschwindet, wenn
der Integrand negative Z2-Parität besitzt. Beschränkt man hingegen die Integration auf den
halben Orbifold, so ist das Ergebnis ungleich Null. Solche Terme sind dann in den neuen
Koorddinaten von Hand Null zu setzen.
Im Falle eines Gluonenaustauschs benötigt man in der obigen Lagrangedichte zusätzliche
Farbindizes und einen Generator der SU(3) ta, a = 1...8. Die Diagonalisierungsmatrizen
UL,R sind in Kapitel 3 gegeben. Im Falle eines W-Bosonen-Austauschs gibt es zwei Ver-
schiedene, eine für Quarks vom Typ Up, eine für Quarks vom Typ Down. Desweiteren
benötigen wir nun die Mischungsmatrix B (4.85) für massive Eichbosonen. Die allg. Ver-
texregel für die Eichkopplung an ein (KK-)W-Boson lautet

igW
√

2π

2
√

2
γµ(1− γ5)G

(m,n,k)
W ij , (4.119)

G
(m,n,k)
W ij = U

†(m,m̃)
L il I

(m̃,ñ,k̃)
ll D

(ñ,n)
L lj B

(k̃,k). (4.120)

Für Z Bosonen muss man bei der Herleitung der Diagonalisierungsmatrix B die W-Masse
mW durch mW/ cos θW ersetzen. Die Dirac-Struktur der Kopplung lautet

γµ(gV + gAγ
5) =

1

2

(
gV γ

µ
(
(1 + γ5) + (1− γ5)

)
+ gAγ

µ
(
(1 + γ5)− (1− γ5)

))
. (4.121)

Somit finden wir für den Z-Vertex mit gV = 1
2
T f

3 −Qf sin
2 θw, gA = −1

2
T f

3

igW
√

2π
2 cos θw

γµ
(
(gV + gA)(1 + γ5)G

(n,m,k)
ZR u,d ij + (gV − gA)(1− γ5)G

(m,n,k)
ZL u,d ij

)
, (4.122)

G
(m,n,k)
ZL u ij = U

†(m,m̃)
L il I

(m̃,ñ,k̃)
ll U

(ñ,n)
L lj B

(k̃,k)
Z ,

G
(m,n,k)
ZL d ij = D

†(m,m̃)
L il I

(m̃,ñ,k̃)
ll D

(ñ,n)
L lj B

(k̃,k)
Z ,

G
(m,n,k)
ZR u ij = U

†(m,m̃)
R il I

(m̃,ñ,k̃)
ll U

(ñ,n)
R lj B

(k̃,k)
Z ,

G
(m,n,k)
ZR d ij = D

†(m,m̃)
R il I

(m̃,ñ,k̃)
ll D

(ñ,n)
R lj B

(k̃,k)
Z .

(4.123)
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Die Kopplungen an Photonen sind durch

ie γµ
√
2π G

(m,n,k)
L,R u,d ij , (4.124)

die Kopplung an Gluonen durch

igs ta γ
µ
√
2π G

(m,n,k)
L,R u,d ij (4.125)

gegeben, wobei man BZ in GL,R durch 1 ersetzt. Für den Austausch von Photon- und
Gluon-Nullmoden kürzen sich die zugehörigen Überlappintegrale unter Verwendung von
Gl. (2.78) und der Orthonormierung (2.75) mit dem Vorfaktor

√
2π und man erhält die

Vertexregeln des Standardmodells. Im Folgenden wollen wir exemplarisch die Kopplung
von zwei Fermion-Nullmoden an eine beliebige Eichbosonmode durch Einsetzen der Dia-
gonalisierungsmatrizen konkret ausarbeiten. Für Photonen bzw. Gluonen erhält man bei
gegebener Chiralität

G
(0,0,k)
ij = (U †00)ilI

(0,0,k)
ll (U00)lj +

∞∑

m,n=1

(U †00)il(M0,mM
−1
Um)glI

(2m,2n,k)
ll (M0,nM

−1
Un)

†
lh(U00)hj

−
∞∑

n=1

(

(U †00)ig(Mn,0M
−1
Qn)glI

(0,2n−1,k)
ll (M0,0M

−1
Qn)

†
lh
(U00)hj + h.c.

)

. (4.126)

Hierbei wird über mehrfach vorkommende Indizes summiert und berücksichtigt, dass Terme
∼ I

(2m,2n+1,k)
L,R ll bzw. ∼ I

(2m+1,2n,k)
L,R ll aufgrund der Z2-Symmetrie verschwinden. Für den W-

Bosonenaustausch kommt nur die Kopplung an linkshändige SU(2)-Dubletts in Frage. Dies
sind Terme mit einem ungeraden Index n bzw. m. Der zweite Term im obigen Ausdruck
wird daher für den geladenen Strom verschwinden. Für das Überlappintegral I

(0,0,k)
L,R ii im
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führenden Term sind wir in der Lage, einen analytischen Ausdruck anzugeben. Mit den
Gleichungen (3.6) und (4.114) erhält man

I
(0,0,k)
L,R ≈

√
kr

J2(xn)

1± 2cL,R
1− ε1±2cL,R

∫ 1

0

dt t1±2cL,RJ1(xnt) (4.127)

und somit

I
(0,0,k)
L =

√
kr

J2(xn)

1 + 2cL
2(3 + 2cL)

1F2

[3

2
+ cL ; 2,

5

2
+ cL ; −x

2
n

4

]

für cL > −
1

2
, (4.128)

I
(0,0,k)
R =

√
kr

J2(xn)

1− 2cR
2(1 + 2cR)

1F2

[1

2
+ cR ; 2,

3

2
+ cR ; −x

2
n

4

]

für − 1

2
< cR <

1

2
.(4.129)

Für cL < −1
2
bzw. cR >

1
2
geht I

(0,0,k)
L bzw. I

(0,0,k)
R gegen Null. Die anderen Überlappinte-

grale lassen sich leider nicht in solch einer geschlossenen Form angeben.

4.5 Bemerkungen

Aus den oben hergeleiteten Feynmanregeln folgen einige interessante neue Effekte. Mann
geht davon aus, dass verschiedene Fermionen qi bzw. li unterschiedlich im Bulk lokalisiert
sind, und somit unterschiedliche Überlappe mit dem Higgsfeld besitzen. So sind die leichten
Fermionen eher bei der IR-Brane, die schweren eher bei der UV-Brane anzutreffen. Wir
diskutieren kurz zwei Konsequenzen dieser Annahme.

Verschiedene Massenparameter ci führen zu verschiedenen Überlappintegralen in den
Vertexregeln. Die Vertexregeln (4.125), (4.124) und (4.122) induzieren flavorverletzende
neutrale Ströme (FCNC) bereits auf Baumgraphenniveau durch den Austausch von KK-
Gluonen, KK-Photonen, Z- und KK-Z-Bosonen2. Diese stehen in Konkurenz zu den Box-
und Penguindiagrammen des Standardmodells3, die ihrerseits im RS-Modell zusätzlich mit
ausschließlich neutralen Eichbosonen konstruiert werden können. Der Beitrag dieser neuen
Physik ist, da es sich effektiv um 4-Fermion-Prozesse handelt, mit dem inversen Quadrat
der Kaluza-Klein-Massen unterdrückt. Da er aber bereits in erster Ordnung der Störungs-
theorie auftritt, sollte er, falls es diese Effekte gibt, im Rahmen von Präzessionsmessungen
zu erfassen sein.

Die Vertexregel für den geladenen Strom enthält den Term (4.120), der als verallgemei-
nerte, unendlich dimensionale Version der CKM-Matrix verstanden werden kann. Aufgrund

2Für Eichbosonen des Standardmodells bzw. Nullmoden mit flachen 5D-Profil gibt es keine solchen
Effekte als Folge des GIM-Mechanismus.

3Diese enthalten geladene Eichbosonen.
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der nichtuniversellen Kopplung ist diese Matrix nicht unitär, was einige Berechnungen mit
Bulk-Fermionen in Schleifen erschwert. Dieses soll am Beispiel des Boxgraphen im nächsten
Kapitel demonstriert werden.



Kapitel 5

Eichinvarianz und Modenmischung

In diesem Kapitel sollen einfache Streuprozesse der abgeleiteten 4D-Theorie studiert wer-
den. Insbesondere wollen wir zeigen, wie der Eichparameter ξ in der Berechnung der Am-
plitude verschwindet. Es wird sich herausstellen, dass die transzendente Gleichung (4.67)
der Schlüssel zum Gelingen dieses Vorhabens ist. Wir werden jedoch die Theorie vereinfa-
chen, indem wir die Fermionen bei φ = π lokalisieren. Dies erspart uns die Berechnung von
komplizierten Überlappintegralen. Man muss jedoch die Fermionen über die 5. Dimension
normieren. Hierzu reskalieren wir ψ → 1√

r
e3/2krπψ. Dies bewirkt, dass der kinetische Term

in der 4D-Wirkung frei von Warpfaktoren ist (man beachte, dass auch das inverse Vielbein
einen Faktor ekrπ liefert). Die Eichbosonen bleiben selbstverständlich im Bulk. Andernfalls
hätte man es mit einer trivialen Erweiterung des Standardmodells zu tun.

5.1 Eichinvarianz auf Baumgraphenniveau

Gegeben sei die Amplitude eines Streuprozesses, bei dem ein W− zwischen den beteiligten
Quarks ausgetauscht wird (siehe Abb.5.1). Wir erinnern an dieser Stelle nocheinmal daran,
dass der Zustand der freien Propagation durch eine Überlagerung aller Moden der Eigen-
zustände der Wechselwirkung gegeben ist. Es werden daher in jedem Vertex die Einträge
Bn0 der Diagonalisierungsmatrix auftreten, welche durch E

(0)
n (siehe Gl. (4.81)) gegeben

sind. Der Propagator (4.103) generiert einen von ξ abhängigen Term in der Amplitude:

M(0)
W (ξ) = −ig

2
5

r

( 1√
2

)2

d̄a(k
′)γµ

1− γ5

2
ub(k)

qµqν

(q2 − ξM̃2
0 )M̃

2
0

ūc(p
′)γν

1− γ5

2
dd(p)

·
∑

n,n′

Bn0χ
(n)(π)Bn′0χ

(n′)(π) · Vcd(V †)ba.

Hierbei bezeichen a, b, c, d Generationenindizes. Es ist

qν ū(p′)γν(1− γ5)d(p) = ū(p′)((pÁ− pÁ′)− (pÁ− pÁ′)γ5)d(p)

= ū(md −mu)d+ ū(mu +md)γ
5d (5.1)

67
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Abbildung 5.1: Kompensation der ξ-Abhängigkeit auf Tree-Level

und somit

M−(0)
W (ξ) =

( 1

2
√
2

)2 −i2πg2
4

(q2 − ξM̃2
0 )M̃

2
0

VcdV
∗
ab

∑

n,n′

Bn0χ
(n)(π)Bn′0χ

(n′)(π)

·
(
(mu,b −md,a)d̄aub + (mu,b +md,a)d̄aγ

5ub
)

·
(
(md,d −mu,c)ūcdd + (mu,c +md,d)ūcγ

5dd
)
. (5.2)

Da wir die Fermionen auf die Brane gesetzt haben, gibt es keine Kopplungen mit den A
(n)
5 -

Beimischungen zu ϕ. Desweiteren sind die Feynmanregeln bis auf einen Faktor B00 und die
Massenkorrektur diejenigen des Standardmodells (nachzuschlagen in [38]). Vergleicht man

Mϕ− =
( 1√

2

)2 1

v2

−i
q2 − ξM̃2

0

d̄a
(
md,a(1− γ5)−mu,b(1 + γ5)

)
ub

·ūc
(
mu,c(1− γ5)−md,d(1 + γ5)

)
dd VcdV

∗
abB

2
ξ00 (5.3)

mit (5.2), so findet man

M−(0)
W +Mϕ− = 0 (5.4)

falls

2πg2
4

M̃2
0

∑

n,n′

Bn0χ
(n)(π)Bn′0χ

(n′)(π) =
4

v2
B2
ξ00. (5.5)

Mit g4v = 2 mW , αn =
√
2πχ(n)(π) und λk = M̃2

k vereinfacht man die obige Bedingung zu

mW√
λ0

∑

n=0

Bn0αn = Bξ00. (5.6)

Auf die gleiche Art und Weise berechnet man die AmplitudenM(k)
W undM(k)

5 , wobei k ≥ 1.

Hierbei koppeln dieW ′(n)
5 lediglich durch ihre ϕ-Beimischung. Die resultierende Bedingung

lautet

mW√
λk

∑

n=0

Bnkαn = Bξ0k. (5.7)
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Man sieht, dass die obige Bedingung (5.6) mit (5.7) identisch ist, wenn man k = 0 setzt.

Mit E
(k)
n,norm ≡ E

(k)
n = Bnk gilt also zu zeigen, dass

mW√
λk

∑

n=0

E(k)
n αn = E

(k)
ξ0 ∀ k = 0, 1, 2, ... (5.8)

erfüllt ist. Einsetzen von (4.81) und (4.92) liefert

mW√
λk

∑

n=0

λkα
2
n

λk −m2
n

(

1 +
∑

l=1

(
λkαl

λk −m2
l

)2
)−1/2

= −(−)δk0
(

1 +
∑

l=1

(
mWmlαl
λk −m2

l

)2
)−1/2

.

(5.9)

Betrachten wir nun die linke Seite der Gleichung. Es ist

∑

n=0

λkα
2
n

λk −m2
n

= 1 +
∑

n=1

λkα
2
n

λk −m2
n

=
λk
m2

W

. (5.10)

Hierbei haben wir Gebrauch von Gl. (4.67) gemacht. Setzen wir dieses in (5.9) ein, qua-
drieren und bilden die Inverse, so erhalten wir

m2
W

λk

(

1 +
∑

l=1

(
λkαl

λk −m2
l

)2
)

= 1 +m2
W

∑

l=1

(
mlαl

λk −m2
l

)2

(5.11)

bzw.

m2
W

λk
− 1 +m2

W

∑

l=1

(
α2
l (λk −m2

l )

(λk −m2
l )

2

)

= 0. (5.12)

Dies entspricht jedoch gerade der transzenden Gleichung (4.67) und die Bedingung (5.8) ist
erfüllt. In der Tat geschieht die Kompensation der Beiträge Ordnung für Ordnung. Hierzu
blicken wir zurück auf Gl. (5.5). Entwickeln wir M̃−2

0 = λ−1
0 unter Verwendung von (4.68),

so ergibt sich

1

M̃2
0

=
1

m2
W

(

1 +
∑

j

m2
Wα

2
j

m2
j

+O(ε4)

)

=
1

g2v2

(

1 +
∑

j

m2
Wα

2
j

m2
j

+O(ε4)

)

. (5.13)

Setzen wir ferner die entsprechenden Einträge aus (4.85) und (4.94) in die linke Seite
der Bedingung (5.5) ein, beobachten wir in der Tat, dass sich die Beiträge in gegebener
Ordnung wegheben:

(

1 +
∑

j

α2
j

m2
W

m2
j

)(

1−
∑

n

α2
n

m2
W

m2
n

)(

1−
∑

n′

α2
n′
m2

W

m2
n′

)

−
(

1− 1

2
m2

W

∑

n

α2
n

m2
n

)2

(

1 +
∑

n

α2
n

m2
W

m2
n

)(

1− 2
∑

n

α2
n

m2
W

m2
n

)

−
(

1−m2
W

∑

n

α2
n

m2
n

)

+O(ε4)

= 0 +O(ε4). (5.14)
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Für den Austausch von KK-Eichbosonen ist die Bedingung

2πg2
4

M̃2
k

∑

n,n′

Bnkχ
(n)(π)Bn′kχ

(n′)(π)− 1

v2
B2
ξ0k = 0 (5.15)

zu erfüllen. Wir entwickeln

1

M̃2
k

=
1

m2
k + α2

km
2
W + · · · =

1

m2
k

(

1− α2
k

m2
W

m2
k

+O(ε4)

)

(5.16)

und erhalten nach Einsetzen der Komponenten aus den Diagonalisierungsmatrizen

m2
W

m2
k

α2
k − α2

k

m2
W

m2
k

= 0 +O(ε4). (5.17)

Zuguterletzt wollen wir noch einen Schleifenprozess studieren, nämlich den Boxgraphen.

5.2 Boxgraph

Im Standardmodell liefert der Boxgraph mit zwei W-Bosonen beispielsweise den führen-
den Beitrag zur BB̄-Mischung. Wir wollen nun zum Vergleich die Eichinvarianz für den
Ausstausch von Nullmoden (Masseneigenzustand) prüfen. Diese entsprechen aufgrund der
Mischung mit den KK-Anregungen nicht dem SM-W-Boson. Da wir in führender Ordnung
1/M2

KK rechnen, dürfen wir alle äußeren Impulse Null setzen um somit die Amplitude zu
vereinfachen. Wir bezeichnen den Schleifenimpuls mit k. Die Fermionen sind erneut bei der
TeV-Brane lokalisiert. Die Spinoren sind aufgrund der verschwindenden äußeren Impulse
nur Zuschauer in der folgenden Rechnung, welche somit bis auf die Einträge der CKM-
Matrix für beliebige äußere Quarkfelder gilt.
Wir betrachten das Beispiel der B0

d-B̄
0
d-Mischung und definieren Γµ = γµ(1 − γ5), sowie

λi = V ∗ibVid. Konzentrieren wir uns wiederrum ausschließlich auf den von ξ abhängigen
Teil des Propagators, so erhalten wir nach Einsetzen der Zerlegung und Auswertung des
Überlappintegrals durch die Delta-Distribution

M = (2π)2
(

g4

2
√
2

)4∑

i,j

λiλj
∑

n,n′,m,m′

Bn0χ
(n)Bn′0χ

(n′)Bm0χ
(m)Bm′0χ

(m′) (5.18)

· µ4−D
∫

dDk

(2π)D
b̄ Γµ(kÁ+mi)Γσd b̄ Γτ (kÁ+mj)Γνd

(k2 −m2
i )(k

2 −m2
j)

{ kµkνkσkτ

(k2 − ξM̃2
0 )

2
M̃4

0

+
1

(k2 − M̃2
0 )(k

2 − ξM̃2
0 )

(

gµν
kσkτ

M̃2
0

+ gστ
kµkν

M̃2
0

− 2
kµkνkσkτ

M̃4
0

)}

.
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Abbildung 5.2: Kompensationsschema für den Boxgraphen: Nullmodensektor

Den oberen Ausdruck vereinfacht man durch Verwendung der Relationen kÁ2 = k2 und

kµkνγµ ⊗ γν =
1

D
k2gµνγµ ⊗ γν . (5.19)

Desweiteren nutzt man aus, dass der Boxgraph endlich ist. Rechnet man in dimensionaler
Regularisierung, so kürzen sich die Pole heraus. Aus diesem Grund dürfen wir eine weitere
Identität für D = 4 verwenden:

Γµγσγτ ⊗ γτγσΓµ = γτγσΓµ ⊗ γσγτΓµ = 4 Γµ ⊗ Γµ, (5.20)

wobei Γµ = γµ(1− γ5) [36]. Als Resultat erhalten wir schließlich

MWW = (2π)2
(

g4

2
√
2

)4∑

i,j

λiλj
∑

n,n′,m,m′

Bn0χ
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(m′)
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4 b̄ Γµd b̄ Γ
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i )(k

2 −m2
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{

2fξ(M̃
2
0 ) + gξ(M̃

2
0 )
} k4

M̃4
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, (5.21)

mit fξ(M̃
2
0 ) =

M̃2
0 − k2/D

(k2 − M̃2
0 )(k

2 − ξM̃2
0 )
, gξ(M̃

2
0 ) =

k2/D

(k2 − ξM̃2
0 )

2 . (5.22)

Für die erwünschte Kompensation sorgen nun eine Box mit zwei Goldstone-Bosonen sowie
zwei Boxen mit je einem Goldstone-und einem W-Boson (siehe Abb.5.2). Die erste liefert

Mϕϕ =
1

v4

( 1

2
√
2

)4∑

i,j

λiλjB
4
ξ00 µ

4−D
∫

dDk

(2π)D
4 b̄ Γµd b̄ Γ

µd

(k2 −m2
i )(k

2 −m2
j)
gξ(M̃

2
0 ) m

2
im

2
j ,

(5.23)
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die beiden anderen jeweils (man beachte das Vorzeichen)

MWϕ = −2πg
2
4

v2

( 1

2
√
2

)4∑

i,j

λiλjB
2
ξ00
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Bn0χ
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}m2

im
2
j

M̃2
0

. (5.24)

Machen wir nun von Gl. (5.5) gebrauch, die wir oben bewiesen haben, so kompensieren
sich die verschiedenen Beiträge gerade dann, wenn

∑

i,j

λiλj
k4 −m2

im
2
j

(k2 −m2
i )(k

2 −m2
j)

=
∑

i,j

λiλj

(

1 +
m2

i

k2 −m2
i

+
m2

j

k2 −m2
j

)

= 0 (5.25)

erfüllt ist. In der Tat gilt aufgrund der Unitarität der CKM-Matrix für Brane-Fermionen
die Beziehung

∑

i

λi =
∑

j

λj = 0 (5.26)

und der obige Ausdruck verschwindet. Man erahnt an dieser Stelle, dass sich die Rech-
nung für Bulk-Fermionen wesentlich schwieriger gestaltet. So wird man eine transzendente
Gleichung für die Fermionen in Analogie zu (4.67) benötigen und die Bedingung (5.5)
verallgemeinert sich in einer nichttrivialen Art und Weise. Ferner ist die verallgemeinerte
CKM-Matrix nicht unitär, so dass die Beziehung (5.26) durch ein inhomogenes Gleichungs-
system ersetzt wird.
Man kann nun für Baumgraphenrechnungen die unitäre Eichung verwenden. In diesem Fall
verschwinden die unphysikalischen Freiheitsgrade aus der Theorie und der Propagator für
ein KK-Eichboson lautet

D(n)µν(k) =
−i

k2 − M̃2
n

(

gµν − kµkν

M̃2
n

)

. (5.27)

Für Schleifenprozesse führt diese Eichung, die den Grenzfall ξ → ∞ beschreibt, in der
Regel zu offenkundig falschen Ergebnissen. Als Indiz hierfür dient das Skalenverhalten. So
ist ein effektiver 4-Fermion-Prozess, dessen innere (ausintegrierte) Freiheitsgrade Kaluza-
Klein-Teilchen enthalten, nach den Prinzipien der effektiven Feldtheorie mit dem inver-
sen Quadrat der zugehörigen KK-Masse unterdrückt. Rechnet man Schleifenprozesse in
unitärer Eichung, so vernachlässigt man die Beiträge des Schleifenintegrals für k → ∞.
Dies führt in der Regel zu einer falschen Unterdrückung im Resultat.



Kapitel 6

Ausblick

In den vorangegangenen Kapiteln haben wir untersucht, wie man eine vierdimensionale
Theorie aus der allgemeineren 5D Theorie ableitet. Die gefundenen Feynmanregeln erlau-
ben es nun, die Phänomenologie des Randall-Sundrum-Modells zu untersuchen. Hierbei
bieten sich Methoden der effektiven Feldtheorie an. In dieser wird die Lagrangedichte als
unendliche Summe lokaler Operatoren Qi dargestellt, welche die Symmetrien der Theorie
respektieren, und somit in der Amplitude eines beliebigen Prozesses den Übergang vom
Ausgangs- in den Endzustand vermitteln. So gilt

Leff =
∑

i

Ci(µ) Qi .

Da der GIM-Mechanismus für sämtliche KK-Eichbosonen aufgrund ihres nicht flachen 5D
Profils außer Kraft gesetzt ist, wird eine größere Anzahl an Operatoren erlaubt sein, als dies
im Standardmodell der Fall ist. So sind FCNC-Prozesse beispielsweise nicht mehr auf den
Austausch von W-Bosonen beschränkt, und es gibt zusätzliche Operatoren, die jetzt auch
rechtshändige Felder als äußere Zustände zulassen. Da diese Prozesse in der Regel bei Ener-
gien stattfinden werden, die geringer sind als die Ruhemassen der Kaluza-Klein-Teilchen,
entfernt man diese durch Ausintegration der entsprechenden Freiheitsgrade in der Wirkung
aus der Theorie. Um das Hochenergieverhalten der Theorie aufzufangen, versieht man die
Operatoren mit individuellen Koeffizienten Ci, welche die Physik oberhalb des gewähl-
ten Cut-Offs µ beinhalten. Die Bestimmung dieser sogenannten Wilson-Koeffizienten ist
die Aufgabe, der es sich zu widmen gilt. Für die führende Ordnung der oben erwähnten
flavorverändernden neutralen Ströme ist dies trivial, da sie auf Baumgraphenniveau statt-
finden. Geht man in der Bestimmung der Koeffizienten eine Ordnung höher, so empfiehlt
es sich, die Impulse der äußeren Teilchen Null zu setzen. Dies ist zulässig, da die Wilson-
Koeffizienten nur die Physik oberhalb des Cut-Offs beschreiben und somit unabhängig
von den gewählten Infrarotregulatoren sind. Als Konsequenz werden Schleifenintegrale die
Gestalt ∫

dDk k−n

annehmen. Dieser Ausdruck verschwindet aber in dimensionaler Regularisierung und die
effektive Theorie enthält nur Baumgraphen. Der Vergleich mit der Amplitude der vol-
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len Theorie, welche auf Einschleifenniveau nun sehr viele Terme enthält, liefert die Ko-
effizienten. Die Ergebnisse müssen dann auf ihre Verträglichkeit mit den Messdaten ge-
prüft werden. Hierbei hat man allerdings einen gewissen Spielraum in der Wahl der Para-
meter, so ist z.B. der Wert des Produktes kr, welches im Warpfaktor auftaucht, nicht
fest vorgegeben. Auch die Massenparameter ci der Fermionen sind zunächst beliebig.
Darüberhinaus bieten sich andere Möglichkeiten, dass Modell zu erweitern. So könnte
man beispielsweise dem Bulk eine allgemeinere Symmetriegruppe SO(4) × U(1)B−L ∼
SU(2)L × SU(2)R × U(1)B−L zuordnen, welche durch Randbedingungen an den Orbifold-
fixpunkten auf die SU(2)L × U(1)Y -Eichgruppe des Standardmodells heruntergebrochen
wird [27]. Man hat also einen gewissen Spielraum, um realistische Theorien zu konstruie-
ren. Das letzte Wort hat jedoch das Experiment.
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