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Kapitel 1

Einleitung

Das Ziel der vorliegenden Arbeit ist es, Eichkopplungen und Grundlagen der Flavorphysik
im Rahmen des Randall-Sundrum Modells zu studieren. Da wir es hierbei mit einer Er-
weiterung des wohlvertrauten Standardmodells (SM) der Elementarteilchenphysik zu tun
haben, stellt sich zundchst die Frage, warum generell eine Erweiterung notig sein sollte.
Das SM beschreibt die uns heute bekannten Teilchen und ihre Austauschwechselwirkungen
konsistent bis zu beliebig hohen Energien, jedoch macht es keine Aussage dariiber, welche
Rolle Quantengravitationseffekte in diesem Zusammenhang spielen, die im Energiebereich
der Planckskala auftreten. Desweiteren enthélt es eine grole Anzahl freier Parameter, die
man sozusagen von auflen in die Theorie einfiithren muss, um eine korrekte Beschreibung
der Natur zu erhalten. So enthalten z.B. die Fermion ihre Masse durch Kopplung an das
skalare Higgs-Feld. Die Stédrke der Kopplung ist zunéchst vollig beliebig. Man gleicht da-
her die Kopplungskonstanten den gemessenen Fermionmassen an, ohne eine Erklarung fiir
deren Massenhierarchie zu haben.

Die elektromagnetische, die starke und die schwache Wechselwirkung haben ihre Ursache
in der Forderung nach lokaler Eichinvarianz der Theorie unter den jeweiligen Symmetrie-
gruppen. Ausgangspunkt ist die SU(3) x SU(2), x U(1)y-Symmetrie welche durch Kopp-
lung der elektroschwachen Eichfelder an das Higgsboson (Dublett unter SU(2).) auf die
verbleibende SU(3) x U(1).,, Restsymmetrie heruntergebrochen wird. Die Austausch-
teilchen der schwachen Wechselwirkung, die W- und Z-Bosonen, erhalten hierbei Massen
proportional zum Vakuumerwartungswert des Higgs-Feldes. Man sagt, der Symmetriebruch
erfolgt bei der schwachen Skala my, (die Masse des W-Bosons).

Der Erfolg der elektroschwachen Vereinheitlichung veranlasste Georgi und Glashow [1], eine
Vereinheitlichung aller drei Eichwechselwirkungen in eine urspriingliche SU(5)-Symmetrie
bei hohen Energien vorzuschlagen. Die Skala, bei der der Symmetriebruch auf die SU(3) x
SU(2)r, x U(1)y-Symmetrie des Standardmodells erfolgen soll, ist als GUT-Skala (grand
unified theory) bekannt. Diese liegt bei etwa 10'® GeV, da hier die laufenden Kopplungen
von starker und elektroschwacher Wechselwirkung von der selben Grofienordnung sind.
Wenn man also in der Lage wire, solche Energien im Experiment zu erzeugen (was sicher-
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6 KAPITEL 1. EINLEITUNG

lich nie der Fall sein wird), so wiirde man massive Eichbosonen dieser hoheren Symmetrie-
gruppe produzieren. Das Standardmodell erschiene in diesem Licht als effektive Theorie,
deren Cut-Off durch die GUT-Skala gegeben ist. Auch wenn eine direkte Produktion mogli-
cher neuer Eichbosonen nicht moglich ist, so wiirden sie dennoch als virtuelle Teilchen in
Wechselwirkungen auftreten und Quarks an Leptonen koppeln. Auf diese Weise konnte ein
Proton zerfallen. Dieser Effekt wére aber, da es sich effektiv um einen 4-Fermionprozess
handelt, mit dem inversen Quadrat der GUT-Skala unterdriickt (zum Vergleich: die Ko-
pllungsstirke der schwachen Wechselwirkung ist durch 1/m¥, gegeben).

Andererseits stellt sich die Frage, ob in der Natur weitere schwere Materiefelder aufler den
uns bekannten existieren. Wenn ja, dann sind diese entweder in leichtere (uns bekannte)
Materie zerfallen, oder sie wechselwirken im besten Fall nur schwach und sind daher fiir uns
unsichtbar. Thre Présenz wiirde sich jedoch durch ihre gravitative Wechselwirkung bemerk-
bar machen. Wir wissen heute, dass es solche dunkle Materie im Universum geben muss,
da die sichtbare Masse zu gering ist, um die Rotationsgeschwindigkeiten von Galaxien zu
erkléren.

Man hat also gute Griinde anzunehmen, dass der Feldgehalt des Standardmodells nicht
ausreicht. Die oben genannten stellen jedoch nur eine Auswahl dar. Es gibt noch weitere
Fragen, die das Standardmodell nicht beantwortet. Dariiberhinaus wire es ohnehin duflerst
gewagt, davon auszugehen, dass zwischen den heute im Experiment erreichbaren Energien
(etwa 100GeV) und Energien im Bereich der zweiten fundamentalen Skala in der Natur, der
Planckskala (etwa 10'°GeV), keine neuen Effekte auftreten. Vom experimentellen Stand-
punkt hat man es demnach mit 17 Gréenordnungen unerforschten Niemandsland zu tun!
Eine Erweiterung des Standardmodells ist zwar gut motiviert, bringt aber konzeptionel-
le Probleme mit sich. Wenn man annimmt, dass es weitere Materiefelder jenseits der
schwachen Skala gibt, so werden auch deren Massen durch sogenannte Yukawakopplun-
gen mit dem Higgsfeld erzeugt. Massenterme der Art m(¢pvg + ¥ger) sind namlich a
priori nicht eichinvariant, da links- und rechtshédndige Felder sich unterschiedlich unter
SU(2)-Transformationen verhalten. Die Masse des Higgsbosons selbst hingegen ist ein fun-
damentaler Parameter der Theorie (m?¢¢ ist eichinvariant). Der Higgs-Propagator enthiilt
nun Schleifenkorreturen durch alle Felder, die an das Higgs koppeln. Den grofiten Anteil
haben hierbei Fermionschleifen. Diese erzeugen eine quadratische Divergenz, welche sich
durch Renormierung aus der Theorie entfernen liasst. Wenn es aber Teilchen gibt, die viel
schwerer sind als das Higgs, so ist hierbei eine enorme Feinjustierung der Parameter von
Noéten, um die Higgsmasse in der Nédhe der schwachen Skala zu fixieren. Fine winzige
Anderung der Parameter hitte ein Anwachsen der Higgsmasse in die GréBenordnung der
Massen der neuen Teilchen zur Folge. Die Notwendigkeit einer Feinjustierung wird demnach
als unnatiirlich empfunden. Allgemein sagt man, dass alle fundamentalen Massenparame-
ter einer Theorie, die bis zu einer Skala A giiltig ist, von der selben GrosBenordnung sein
miissen, damit die Theorie natiirlich ist. Wenn man nun eine Erweiterung des Standardmo-
dells formuliert, welche neue Physik bis zur Planckskala mit sich bringt, so muss man sich
Mechanismen {iiberlegen, welche die Higgsmasse stabilisieren, wenn man vermeiden will,
dass die Theorie unnatiirlich ist. Das eben beschriebene Problem wird in der Literatur als
Hierarchie-Problem bezeichnet und resultiert aus der Tatsache, dass die schwache Skala so



verschieden von der Planckskala ist. Es ist sozusagen die Schwéche der Gravitation im Ver-
gleich zu den anderen Wechselwirkungen, die uns wiedereinmal Kopfzerbrechen bereitet.

Die populédrste Erweiterung des Standardmodells, welche zugleich das Hierarchiepro-
blem 16st, ist die Supersymmetrie. Sie ordnet jedem Fermion einen bosonischen Superpart-
ner und umgekehrt zu. Ich mdéchte jedoch nicht weiter darauf eingehen. Ein wesentlich
radikaleres Konzept wurde 1998 von Nima Arkani-Hamed, Savas Dimopoulos und Gia
Dvali vorgeschlagen. Im ADD Modell [2] wird die Planckskala als fundamentale Skala der
Natur eliminiert. Wéhrend die Physik der schwachen Wechselwirkung bei Energien der
elektroschwachen Skala experimentell wohl erprobt ist, ist dies fiir die Gravitation im Be-
zug auf die Planckskala keineswegs der Fall. Das 1/r Potential der Newton’schen Theorie
war zu diesem Zeitpunkt bis auf Absténde von etwa lcm gepriift (heute ~ 100um). Die
Annahme, die Planckskala sei fundamentaler Natur, setzt voraus, dass sich an diesem
Potentialverlauf bis hin zu Abstéinden der Plancklinge (~ 1073m) nichts #ndert. Mit an-
deren Worten: Man extrapoliert die experimentelle Bestéatigung des Gravitationsgesetz um
33 Grofenordnungen! Im ADD-Modell wird angenommen, dass es in der Natur n zusétz-
liche kompaktifizierte Raumdimensionen mit Radius R gibt, durch welche allerdings nur
das Graviton propagieren darf. Simtliche Standardmodell-Teilchen bleiben in der gewhn-
lichen vierdimensionalen Raumzeit lokalisiert. Diese bildet eine Hyperfldche (sog. Brane)
im hoherdimensionalen Raum. Die fundamentale (4 +n) dimensionale Planckskala soll nun
in etwa von der Groflenordnung der elektroschwachen Skala sein. Sei r < R der Abstand
zweier Testmassen, dann gilt fiir das Gravitationspotential nach dem Gauss’schen Gesetz

mqme 1
MP;EE—H%) r i
Fir (r > R) erhdlt man hingegen
mime 1
Vir)~ ——s——— (r < R). (1.2)
MP?EiJrn) Rrr
Demnach gilt fiir die effektive 4D Planckskala
My ~ My R™ (1.3)
Der Radius ergibt sich hieraus zu
1 Mp \»
R — ( — ) . (1.4)
Pl(4+n) Pl(4+n)
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Fiir n = 1 findet man R ~ 10" —10'2m. Dies ist ginzlich ausgeschlossen, da man sonst seit
Newton ein 1/r%-Potential gemessen hitte. Der Fall n = 2 liefert R ~ 100um-1mm. Auch
diese Moglichkeit ist nach den neuesten Messdaten ausgeschlossen. Mit der Wahl n = 3 liegt
der Radius der zusétzlichen Dimensionen bereits im Nanometerbereich. Eine experimentelle
Uberpriifung des Gravitationsgesetzes in diesem Bereich diirfte nahezu ausgeschlossen sein,
jedoch hitte das Modell weitere phinomenologische Konsequenzen: Sperrt man ein Teilchen
in eine kompaktifizierte Dimension, so bildet sich unter Verwendung der Randbedingungen
in Analogie zum harmonischen Oszilator eine Kaskade an mdoglichen Zusténden aus. Man
findet ein dqidistantes, nahezu kontinuierliches Spektrum von sogenannten Kaluza-Klein-
Gravitonen der Masse my,:

my = % =k Mpl(4+n)<
Hierbei wurde Mpj44y) ~ 1TeV angenommen. Der Grundzustand entspricht hierbei dem
gewOhnlichen Graviton und bleibt masselos. Betrachtet man nun Prozesse bei der Energie

2

M )\ n
7”(4*)) ~k tMpw 10077 | k=0,1,2,... (1.5

Mp,

E = \/s/2, bei denen Gravitonen emmitiert werden, so ist die Anzahl der moglichen
Zustande ~ (ER)™. Fiir den Wirkungsquerschnitt gilt somit
1
o~ ———(ER)". (1.6)
M]%l(4+n)

Setzt man nun versuchsweise Mpjuin) = E = Mg, so findet man o ~ 1 /M%,. In einem
Collider-Experiment hétte man es demnach mit fehlender Energie aufgrund der Abstrah-
lung von Kaluza-Klein-Gravitonen zu tun. Hieraus kann man Bedingungen an M pj44r)
und n herleiten [4]. Weitere Einschrénkungen findet man durch astrophysikalische Effekte,
beispielsweise das Herunterkiihlen der Supernova SN1987A [5]. Die Analyse ergab:

n=23 Mpl(7) Z 4T6Vv,
n=4 Mpl(g) Z 1TeV.

Auch wenn dieser verbliiffende Ansatz der sogenannten Large Extra Dimensions durch
geeignete Wahl der Parameter den Experimenten angepasst werden kann, so 16st er bei ge-
nauerer Betrachtung nicht wirklich das Hierarchieproblem. Vielmehr wird die Frage nach
dem Grund der Hierarchie zwischen Mp; und Mgy umformuliert in die Frage, warum die
zusétzlichen Dimensionen so grofl sind im Vergleich zu 1/Mp;, der natiirlichen Léngenskala
einer Theorie, welche bis zur Planckskala giiltig ist. Dieses neue Problem wiirde jedoch im
Limes n — oo verschwinden.

Die Idee der zusétzlichen Raumdimensionen zur Losung des Hierarchieproblems wurde
im Oktober 1999 in dem Artikel Large Mass Hierarchy from a Small Extra Dimension
[7] von Lisa Randall und Raman Sundrum aufgegriffen. Im Gegensatz zu ADD gehen die
Autoren von einer einzigen zusétzlichen Raumdimension von der Gréflenordnung der Plan-
cklange aus. Die Besonderheit besteht darin, dass sich Langen- bzw. Energieskalen dndern,



wenn man in die 5. Dimension vordringt. Dies wird durch das Einfiihren einer nichtfak-
torisierenden fiinfdimensionalen Metrik erreicht, welche die Raumzeitkoordinaten mit der
Koordinate der 5. Dimension verkniipft. Auch in diesem (RS1-) Modell bleiben die SM-
Felder auf der Brane lokalisiert.

Die Arbeit ist nun wie folgt gegliedert: Im nachfolgenden Kapitel werden die Grundideen
des RS-Modells und die damit verbundene Beseitigung des Hierarchieproblems erlautert.
Daraufhin entlassen wir die Felder in den Bulk und studieren deren Kaluza-Klein-Zerlegung.
Kapitel 3 beschéftigt sich mit der Herleitung der Fermionprofile aus den Resultaten des
vorangegangenen Kapitels. Weiterhin werden Yukawakopplungen an ein branelokalisier-
tes Higgsfeld und die daraus hervorgehende unendlichdimensionale Massenmatrix erortert.
Diese wird dann im Rahmen eines Entwicklungsverfahrens diagonalisiert. Kapitel 4 widmet
sich den verallgemeinerten fiinfdimensionalen Eichtheorien mit dem Ziel, die zugehérigen
Feynmanregeln aufzustellen. Hierbei wird es bei der Herleitung der Propagatoren in belie-
biger R¢-Eichung zu einem Zusammenspiel der Goldstone-Bosonen mit den Komponenten
As des Eichfeldes kommen, welches die Eichinvarianz der abgeleiteten vierdimensionalen
Theorie garantiert. Dieses soll in Kapitel 5 anhand zweier Beispiele auf Baumgraphen- und
Schleifenniveau konkret iiberpriift werden. Die Arbeit schliet mit einigen Bemerkungen
iiber die Herangehensweise bei der Herleitung der Lagrangedichte einer effektiven Theorie,
bei der die Kaluza-Klein-Felder aus der Sichtweise des Pfadintegralformalismus ausinte-
griert werden.

Diese Version der Arbeit wurde auf Tippfehler korrigiert. In den Formeln (4.52), (4.54)
sowie (4.61) und (4.62) wurde jeweils das fordere Feld in den bilinearen Termen nachtriglich
komplex konjugiert. Stand vom 14.06.2008
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Kapitel 2

Das Randall-Sundrum-Modell

2.1 Ansatz und Lo6sung der Metrik

Das Herzstiick des RS-Modells [7] bildet die nichtfaktorisierende fiinfdimensionale Metrik,
welche durch das folgende Linienelement gegeben ist

ds* = e 2@y, datda” + rde? . (2.1)

Hierbei ist  der Radius der 5. Dimension, ¢ stammt aus dem Intervall [—7, 7|. Randall und
Sundrum verwenden die Konvention 7, = diag(—1,1,1,1). Die Punkte (z, ¢) und (z, —¢)
werden identifiziert. Hierzu fithrt man eine Paritdtsoperation ein, so dass P(¢) = —¢
gilt. Man spricht von einer S'/Z,-Orbifold (angelehnt an den engl. Begriff manifold). Die
Punkte ¢ = 0, 7 werden hierdurch mit sich selbst identifiziert. An diese Fixpunkte werden
nun vierdimensionale Unterrdume, sog. 3-Branen angeheftet (die Zahl 3 bezieht sich auf
die Anzahl der rdumlichen Komponenten).

UV-Brane IR-Brane

Abbildung 2.1: S} /Z,-Orbifold
Die Gravitation soll nun auf der sog. Planck- oder UV-Brane bei ¢ = 0 residieren, die

11



12 KAPITEL 2. DAS RANDALL-SUNDRUM-MODELL

Standardmodell-Teilchen leben auf der TeV- oder IR-Brane. Die Namensgebung ist in der
obigen Exponentialfunktion begriindet, die auf den Namen Warpfaktor getauft wurde. Wie
wir spéter zeigen werden, ist o(¢) o |¢|. Demnach verschwindet der Warpfaktor bei der
Planckbrane und sorgt fiir eine Vergroflerung der Léngenskalen auf der TeV-Brane.

Sei nun Gy die fiinfdimensionale Metrik mit krummlinigen Koordinaten, dann ergeben
sich die induzierten vierdimensionalen Metriken auf den Branen zu

g,w( ) = Gz, 6 =7), (2:2)
9w () = Gu(2, 0 2.3

Betrachten wir nun die 5D-Wirkung:
S— / d' / dé V=G{2M*R — A} (2.4)
+ / d*z\/—g"B{Lir — Vir} + /d4$\/ —g"V{Lyv — Vuv}.

Hierbei bezeichnet R den Ricci-Skalar und A die kosmologische Konstante der 5D Theorie.
Vir und Vi sind die kosmologischen Konstanten der vierdimensionalen Unterrdume. Diese
werden in der Literatur als brane tensions bezeichnet. Variiert man die Wirkung nach
der jeweiligen Metrik, so erhélt man die 5D-Einsteingleichungen. Im Vakuum, also ohne
Materiefelder, lauten sie

1
A —G(RMN — —GMNR) 4M3A\/ GMN (25)

- M3 (VinV/=GIRgLES; 6%6(6 — ) + Vv v/ =GUV gL 84,6%6(9) )

Der oben gegebene Ansatz (2.1) respektiert die 4D-Poincaré-Invarianz der Theorie entlang
der Koordinaten z# an jeder Koordinate ¢. Wir berechnen die zugehorigen Christoffel-
Symbole

1
Dy = §GRS(GNS,M +Gusny — Gun,s) (2.6)

wobei das Komma fiir eine partielle Ableitung steht (0yGnys = Gns,m) und 05 = 0. Man
findet

O_l

[ =-T%= —2¢ -, (2.7)

ng = F 50 — Fz5 = PZ ,7 (2~8)

bzw. in kompakter Notation

Tj =T, = =o', Tpu =y —5e™" (2.9)
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Alle anderen Christoffel-Symbole sind Null. Fiir den Ricci-Tensor
Run = Ok Ta — OnTey + DT — T Do (2.10)

erhédlt man somit die nicht verschwindenden Komponenten

1
Roo = —Ry; = 56*20(40'2 — "), (2.11)

Rss = 4(0” — o). (2.12)

Letzlich berechnet man den Ricci-Skalar zu

4

R=RN, = G"MRyy = —ﬁ(5a'2 —20"). (2.13)

Setzt man die obigen Resultate in die linke Seite der Einsteingleichungen (2.5) ein und
vergleicht mit der rechten Seite, so findet man:

1 1
R55 - §G55R = 60'/2 ; —4M3A7"2 (214)

1 1
Ry — §GW R= muﬁ((&a’? —30")e

! 1 1 1
= —nwe’zaél—w (A + VIR;5(¢ — )+ VUV;5(¢)> . (2.15)

Hierbei wurde auf der rechten Seite /—G = /=g r benutzt. Vereinfacht man (2.15) durch
Einsetzen von (2.14), so bleiben die Gleichungen

12 2A

0" = o (Vind (6 = ) + Vv d(9) ). (2.17)
Da ferner o(¢) = o(—¢) gilt, folgt aus (2.16)
—A
o =rlol\/ 5 (2.18)

und somit A < 0. Die zugrundeliegende 5D-Raumzeit ist demnach ein Anti de Sitter Raum.
Da man die Metrik als periodische Funktion in der Koordinate ¢ begreift (siehe Abb.2.1),
folgt aus (2.18)

A

o' =2\ 5o (5(¢) — (¢ — m). (2.19)

Durch Vergleich mit Gl. (2.17) findet man
Vv = —Vig = 24M?k, N = —24M>k>. (2.20)
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Abbildung 2.2: Warpfaktor und Randbedingungen

Hierbei ist k eine Energieskala, die, wie wir spéter sehen werden, die fundamentale 5D-
Planckskala M mit der bekannten 4D-Planckskala Mp; verkniipft. Setzen wir dieses Resul-
tat in Gl. (2.18) ein, so erhalten wir

o = kr|g|. (2.21)

Hétte man im Gegensatz zu Randall und Sundrum die Konvention 7, = diag(1, —1, -1, —1)
gewahlt, wéire das HD-Linienelement durch

ds* = e 2Py do'da” — rde* (2.22)

gegeben (man beachte den Vorzeichenwechsel in der 5. Komponente). Die nichtverschwin-
denden Christoffelsymbole sowie der Riccitensor blieben unveréindert (es gilt nachwievor
05 = 0y). Der Ricciskalar und die Funktionaldeterminante hingegen wechseln ihr Vorzei-
chen. Man wiirde daher in der 5D-Wirkung (2.4) das Vorzeichen vor der kosmologischen
Konstanten A dndern. Dies garantiert ferner, dass die Beziehung (2.16) sich nicht &ndert,
wir es also nach wie vor mit einer Anti-de Sitter-Raumzeit zu tun haben.

Da wir in Zukunft effektive vierdimensionale Feldtheorie betreiben wollen, empfiehlt es
sich, von nun an die Konvention 7,, = diag(l,—1,—1,—1) zu benutzen, da dies in der
Phénomenologie des Standardmodells iiblich ist.

2.2 Beseitigung des Hierarchieproblems

Bevor wir den néchsten Schritt unternehmen und die Standardmodellfelder in den Bulk
entlassen, wollen wir zunéchst verstehen, wie der Ansatz (2.22) das Hierarchieproblem
eliminiert. Zunéchst einmal benotigt man eine Relation zwischen den Skalen M, k und
Mp;. Hierzu ziehen wir den Warpfaktor aus der Metrik heraus:

g =€ g (2.23)
Im Vakuum gilt somit

G = € 2T, (2.24)
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Wie sieht nun der effektive Kriimmungsskalar R, aus? Aus vierdimensionaler Sicht tragen
alle Ableitungen nach |¢| zu Potentialtermen bei (siehe [7], [28]), welche man absepariert.
Aus den Gleichungen (2.6), (2.10) und (2.13) folgt nun die Beziechung R = e~?° R,. Somit
gilt fiir die effektive Wirkung

Seff D /d4x/ do /—g r e ?2NPR, = /d4x V=g 2M% R, . (2.25)

Aus

1

" d —2kr|¢| — —(1— —2krm 2.96
[ o e = e (2.26)

folgt somit

M3 - T
M3, = 7(1 — e 2krm), (2.27)

Betrachten wir nun ein fundamentales Higgsfeld, welches auf der IR-Brane leben soll.
Die zugehérige 4D-Wirkung enthélt unter anderem folgende Terme:

Supr O / dhe e (gD B D, H — M|HP — &2)) . (2.28)

Hierbei bezeichnet v, eine fundamentale Massenskala. Um den kinetischen Term kanonisch
zu normieren, fiithren wir eine Reskalierung des Higgsfeldes durch, H — e*™H. Dieses fiihrt
auf

Sepp D /d4x (¢""D,H'D,H — \(|H|* — e ?*"™3)?) . (2.29)

Wir identifizieren nun effektiven Vakuumerwartungswert des Higgsfeldes v durch
v=e "y (2.30)

Dieses Resultat lisst sich im Ubrigen auf jeden fundamentalen Massenparameter mg der
5D-Theorie verallgemeinern. Sei nun vy von der Groflenordnung der Planckskala, dann gene-
riert die Relation (2.30) den physikalischen Higgs-Vakuumerwartungswert v ~ 246GeV fiir
kr ~ 12. Andererseits ist nach (2.27) k in etwa von der Grofienordnung M, falls M ~ Mp,
gilt. Wir finden somit, dass keine groflen Hierarchien zwischen den fundamentalen Parame-
tern vy, M, k und r~! existieren. Andererseits liegen alle abgeleiteten 4D-Massenparameter
bei der elektroschwachen Skala.

Im Gegensatz zum ADD-Modell ist das Spektrum der Kaluza-Klein-Anregungen des Gra-
vitons nicht nahezu kontinuierlich. Die Masse der ersten Anregung liegt im TeV-Bereich
[11]. Demnach skaliert die Stdrke der gravitativen Kopplung fiir KK-Gravitonen mit der
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GroBenordnung 1/TeV statt mit 1/Mp;. Dies hat zur Folge, dass sie einerseits individuell
am Beschleuniger als Spin-2-Resonanzen detektiert werden kénnen, andererseits erfordert
die Présenz von stark wechselwirkenden Gravitonen die Einfiihrung einer Quantengravita-
tion bereits im TeV-Bereich! Das Randall-Sundrum-Modell ist in diesem Sinne der nieder-
energetische Limes eben dieser Quantengravitation, wie auch immer diese beschaffen sei.
Man versteht jetzt, wie das RS-Modell das Hierarchieproblem 16st. Beschrankt man sich
auf Energien unterhalb der Schwelle zur Quantengravitation, so hat man einen Spielraum
von einigen wenigen TeV. Jegliche neue Physik, die in diesem Energiebereich moglicher-
weise noch auftaucht, hat keinen besorgniserregenden Einfluss auf die Higgsmasse, das
heiflt, man kann den Effekt der neu hinzugekommenen Schleifenkorrekturen ohne drasti-
sche Feinjustierung der Parameter korrigieren.



2.3. 5D-FELDER UND KALUZA-KLEIN-ZERLEGUNG 17

2.3 5D-Felder und Kaluza-Klein-Zerlegung

Als natiirliche Verallgemeinerung zum RS1-Modell bietet es sich an, die Standardmodellfel-
der im Bulk propagieren zu lassen. Den Anstof hierzu lieferten Golberger und Wise, indem
sie dieses Szenario fiir skalare Teilchen studierten [9]. Dariiberhinaus schlugen sie vor, den
Radius r der fiinften Dimension mithilfe eines skalaren Feldes dynamisch zu stabilisieren
[10]. Befassen wir uns nun mit dem Konzept der Kaluza-Klein-Zerlegung.

2.3.1 Skalare Felder

Als Ausgangspunkt dient die Wirkung
1
S = §/d4a:/d¢ VG (G*P8,005P — m?®?), (2.31)

wobei m von der Gréflenordnung der fundamentalen Skala M sein soll. Nach Einsetzen der
Metrik (2.22) und partieller Integration erhilt man

S = %/d%/rdgb (6_2‘79“”6”(1)&,(1) + %(I)@(b <6_4‘78¢<I>> — m26_4"(19) ) (2.32)

Wir zerlegen nun das Feld ®(z, ¢) in eine Summe von 4D-Feldern ®™ () multipliziert miz
je einer reellwertige Funktion der 5. Dimension f((¢). Diese bilden einen vollstindigen,
orthonormierten Satz von Funktionen im Intervall [—m, 7]. Dieses ist gerade die vielfach
erwiahnte Kaluza-Klein-Zerlegung:

Bz, ) = % S 00 (2) £ (). (2.33)

Der Vorfaktor (1/7)~! ist Konvention und kiirzt nach Einsetzen der Zerlegung den Faktor
r im Integrationsmaf. Wahlt man die Orthonormierungsbedingung zu

/ " O FO) () £ () = 5, (2.34)

und fordert
06(710, 1 (0)) — e [ (9) = —mze [ (), (2.35)

so vereinfacht sich die Wirkung (2.32) zu einer kanonischen 4D-Wirkung fiir skalare Felder

1
St = 5 / s (9,201 0) — 2o (2.36)
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Um die Profile f(™(¢) zu bestimmen, fiihrt man in Gl. (2.35) die Variablensubstitution
zp = mye’ [k durch und ersetzt f (") — =27 .. Dies fithrt auf die Bessel’sche Differential-
gleichung

2@ df m?
R G () P (2.7

welche unter Berticksichtigung der Randbedingungen 0, f ™|, = 0 zu 16sen ist. Man wihlt
Neumann-Randbedingungen, da die Punkte ¢ = 4+ miteinander identifiziert sind. Man
kann zeigen [33], dass nur dann eine Nullmode existiert, wenn man die Wirkung um bra-
nelokalisierte Massenterme ergénzt. In diesem Fall kann man das hergeleitete Profil durch
Wahl der zugehorigen Massenparameter nach Belieben modellieren. Wir wollen an dieser
Stelle jedoch nicht ins Detail gehen. Das einzige skalare Teilchen in dieser Arbeit ist ndmlich
das Higgsfeld, welches wir der Einfachheit halber auf der IR-Brane lokalisieren. Entlésst
man das Higgsteilchen in den Bulk, so muss man dafiir sorgen, dass das zugehorige Pro-
fil sein Maximum bei der IR-Brane findet. Andernfalls wiirde man das Hierarchieproblem
wieder einfithren. Wir kommen nun zur Zerlegung der Spin-1/2- und Spin-1-Felder. Die
Pionierarbeiten dieser beiden Resorts sind [14] und [12].

2.3.2 Fermionen

Wir beginnen mit der Wirkung fiir ein 5D-Dirac-Fermion der Masse m von der Grofenord-
nung der fundamentalen Skala M. Hierzu fithren das d-dimensionale Vielbein E7;(z) tiber
die Definition

Ey (@) mhmn Ex (1) = G () (2.38)

ein, wobei 7,,,, die d-dimensionale Minkowskimetrik bezeichnet (siehe z.B. [3]). Desweiteren
benotigen wir eine Darstellung der 5D-Clifford-Algebra

Hierbei ist darauf zu achten, dass man nun zwischen v5 und 7% zu unterscheiden hat, da
gilt

-1 0
5 _ 55 _ .
VENTY = ( 0 1). (2.40)

Wir setzen

I = (v*,iv°) bzw. Tp = (Y, —i7°) (2.41)

Diese Verallgemeinerung hat jedoch zur Folge, dass 5D-Fermionen vierkomponentige Dirac-
Spinoren sind. Um aber nach KK-Zerlegung die Nullmode mit dem SM-Teilchen identifi-
zieren zu konnen, muss diese einem zweikomponentigen Weyl-Spinor entsprechen. Dies ist
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ein weiterer Grund aus dem wir Anfangs die Z,-Paritét eingefithrt haben. Wie wir spéter
sehen werden, hat die Nullmode immer gerade Z,-Paritét. Setzen wir jetzt ¢ = ¢ + ¥g
und fordern

P(yr) = +¢r, P(Yr) = —Vr , (2.42)

wobei P den Paritétsoperator bezeichnet, so gilt ¢(©) = @D(LO). Die eben dargebrachte Lésung
des Problems fiihrt jedoch auf ein Neues. Es stellt sich namlich die Frage, wie eine Yukawa-
kopplung aus dem Higgsdublett, dem links- und dem rechtshéndigen Fermion zu verwirkli-
chen ist, wenn das Rechtshéndige keine Nullmode besitzt. Diesem Problem wird man jedoch
Herr, wenn man einen zweiten Satz von 5D-Fermionen einfiihrt und diesen mit dem ent-
gegengesetzten Z,-Verhalten ausstattet. Wir schreiben ¢ = (¢+,97)T [18], ¥+ = T + %
wobei

P(y¥) = £y97 . (2.43)

Es ist also immer entweder v, oder 1 eine gerade Funktion der Koordinate ¢. Weitere
Details hierzu sind Gegenstand des dritten Kapitels. Kommen wir nun zur 5D-Wirkung.
Sie lautet

S = /d%/dgb VG (%1@ EMoym (31\4 - <5M + iwaﬂ[%a%o b —m Sgn(ﬁb)l;l/’) :
(2.44)

Das Signum vor dem Massenterm ist notwendig, da dieser sonst aufgrund der Zs-Symmetrie
der Felder verschwinden wiirde. Das inverse Vielbein EX = diag(e®,e”, e, e, 1/r) bildet
Elemente aus dem Minkowskiraum (Index m) in den Tangentialraum der Mannigfaltig-
keit (Index M) ab. Den Spinzusammenhang wy, leitet man wie folgt her [42]: Sei v¥ ein
Tangentialvektor, dann gilt

Dy = Oy + T 0™ = Oy BN + T EX0°
= ENoyv® + (0 EN Yo + T8 EXv®
= EN(Oyv® + w® ) = EN Dy (2.45)
Hieraus folgt
w® vy, = B (0 EYN 4 T e EX v, (2.46)

Die Groflen v, und v, sind nun durch Gamma-Matrizen ~,, v, zu ersetzen. Verwenden wir
die Christoffelsymbole des Vakuums (2.9) und beachten den Wechsel in der Konvention
der Metrik 7,,, so findet man

M =5: e 7(9pe” )"y + e 7 (=077, = 0, (2.47)

—o L o' —20\ 0 fbs o' o
M=u: e (—a/);w%# - r(nwﬁe 27V ety = —2?6 vy, . (2.48)
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Andererseits gilt

/

o .
Wt = B (OuEY + T B = —2-e7in . (2.49)

so dass wir mit o’ = kr sgn(¢) und

1

Wy = éw“]bw[%,%] (2.50)

das Resultat
k o5
wy = —zgsgn(gb)e Y'Y, ws=0 (2.51)
erhalten. Der Spinzusammenhang im Vakuum ist somit eine ungerade Funktion der Koor-
dinate ¢, verschwindet somit bei Ausintegration der 5. Dimension und liefert keinen Beitrag

zur Wirkung (2.44). Diese notieren wir erneut, separieren aber nach den Indizes p und 5.
Mit 7° = diag(—1,1) und ¥y = 1(1 — 7°)¥ erhalten wir

/d4 /TdCb T(Wrid v + Yri@ Yr) — e m sgn(¢) (Vg + Vribr)
+27 (@Z_JLe_403¢¢R — (G T n— (Lo R)) ) (252)

Nach partieller Integration ergibt sich die letzte Zeile zu

—% (&L(e—”“’ad, +0pe g — (L < R)>. (2.53)

Wir folgen dem Papier [14] und wéhlen die Zerlegung
Yrr(e,¢) = fzw 2)e* f"h(9). (2.54)
Dies fiihrt auf
= / d's / do Y {er@Migru I F + B i v J )

—m sgn(@) (b p) FmE F g gy () fm)e jiny
_%(wém) A[(/m)* (6—208¢e20 4 6208(1)6720) fR wR(n) - (L — R)) } (255)

N

~~
220/+8¢ 720/+3¢=28¢

Die kanonische 4D-Wirkung lautet

=3 [ s (G @6 @) = i (@0 @) (2.56)
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wobei 1)) = w(L") + wgl) und die Nullmode jeweils nur fiir eines der beiden Felder existiert.
Demnach gibt es keinen Massenterm fiir mg woraus sofort folgt, dass die Nullmode masselos
ist. Um nun das Resultat (2.55) auf die obige Form zu bringen, fordert man

/ 46 ¢ f(6) FU6) = b (2.57)

(20, =0 sgn(6) ) F0) = ~mae” 75, 259

Die erste Gleichung ist die Orthonormierungsbedingung fiir die Fermionprofile fL"R, aus
der zweiten Gleichung erhélt man deren konkrete Form Dles 1st unter Anderem Gegen—
stand des néchsten Kapitels. Die Randbedingungen fL (0 ) ( ) = fL () fR (m) =0,
welche aus dem unterschiedlichen Z,-Verhalten der Felder folgen gewéhrleisten die Hermi-
tizitét des Operators (+19, — sgn(¢)m) und die m,, sind somit reell. Bevor wir die obige
Prozedur fiir Eichbosonen wiederholen, lohnt es sich, die Kopplung der Fermionfelder an
die Gravitation zu studieren und die Beziehung (2.27) zwischen den Skalen Mp;, M und k
nocheinmal daraus herzuleiten. Wir benétigen hierzu den Energie-Impuls-Tensor 7', dessen
Komponenten durch die Gleichung

6/d4x/dq§ VG L= /d‘*x/dqb VG TMN(6G yw) (2.59)
definiert sind. Die nachfolgende Rechnung orientieret sich an [37]. Es ist
(5/d4x/d¢ \/@E:/d%/dqﬁ ((5\/5) ﬁ+\/55£>. (2.60)
Es lisst sich zeigen, dass 60G = G GKE5G g, gilt. Somit ist
VG = %% §GKL\/_ 6Gkr. (2.61)
Die Variation der Lagrangedichte liefert
5L = 5GMNE}(}% b Y (Onr — D 1 ). (2.62)

Aus der Variation von GMEG e = 6 folgt GMYN = —GMLGEN§G , und wir erhalten
aus (2.61) und (2.62) die linke Seite von (2.59)

- = -
[t [0 VG (GERHEYL 53O~ Tt~ m san(é)iv)
—GMLGKNE}Z}% b YOy — D a1} G, (2.63)
Durch Vergleich mit der rechten Seite finden wir schlielich

T = L (G4 = 3GM ) 9™ (0 — Taho — G sgnle)iv ) . (260
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Betrachten wir nun Fluktuationen um die klassische Losung der Einstein-Gleichungen
(2.22) und setzen (siehe [7])

ds? = e *T@0l(y 4 b, (2))datds” — T (2)de?. (2.65)

Hierbei entspricht h,, (z) dem physikalischen masselosen 4D Graviton und gleichzeitig der
Nullmode der KK-Zerlegung

by, 8) = \if SR (@)X ™). (2.66)

Der Kompaktifizierungsradius r ist gerade der Vakuumerwartungswert des skalaren Feldes
T'(x). Die Wirkung fiir die Kopplung der Fermionen an die Gravitation lautet

Sint = % / d*z / doN'G T (x, )by () /N. (2.67)

N einem Normierungsfaktor, den wir in Kiirze berechnen. Wéhlen wir die Eichung hf =
h*1n,,, = 0 und setzen die KK-Zerlegung (2.54) ein, so verbleibt

1 F(m)* p(n (A m U v n
Sui =35 3 [ ' [ do e F Fi 5 0O = T /N
]. — Z’ «—
= BN Z/d4x e 5 10" -9 VO By ). (2.68)

Hierbei haben wir Gebrauch von der Orthonormierungsbedingung (2.57) gemacht. Den
Normierungsfaktor IV erhalten wir, indem wir den Vakuumerwartungswert des Warpfaktors
e 2T@I9l den wir in (2.65) herausgezogen haben, iiber die 5. Dimension integrieren:

T 1
N= [ rdpe? = E(l — e 2krm), (2.69)
Aus der Fordeung
1 1
— = 2.70
M3N M3, (2:70)

folgt die Relation (2.27). Der néchste Schritt bestiinde nun in der Herleitung der Fer-
mionprofile aus Gl. (2.58). Dies wollen wir jedoch ausfiithrlich im néchsten Kapitel tun.
Schliefflich betrachten wir noch die KK-Zerlegung der Eichbosonen und die daraus folgen-
den Bedingungen an deren Profile.
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2.3.3 Eichbosonen

Wir studieren zunéchst den einfachsten Fall eines U(1)-Eichfeldes. Die Verallgemeinerung
auf nichtabelsche Eichtheorien ist Gegenstand des vierten Kapitels. Das fiinfdimensionale
Eichfeld Aj; setzt sich zusammen aus dem Spinl-Feld A, und dem skalaren Feld As. Da
sich herausstellen wird, dass die Nullmode eine gerade Funktlon der Koordinate ¢ ist und
wir A mit dem Photon identifizieren wollen, muss A, gerade Z,-Paritét besitzen. Es gibt
nun Modelle in denen das Higgs-Teilchen als fiinfte Komponente des Eichfeldes identifiziert
wird (Gauge—Higgs—Uniﬁcation, siehe z.B. [25]). In diesem Fall wiirde man dem Feld Aj;
ebenfalls gerade Zy-Paritéit zuweisen. Wir wollen diesen Weg jedoch nicht beschreiten und
wéhlen negative Paritét:

P(A,) =A,, P(4;)=-4;. (2.71)
In diesem Fall besitzt A; keine Nullmode. Als weitere Vereinfachung wéahlen wir zunéchst
die Eichung As = 0. Der Feldstarketensor ist gegeben durch

FMN :DMAN—DNAM :8MAN—8NAM . (272)

Hierbei haben wir im zweiten Schritt die Antisymmetrie des Feldstérketensors ausgenutzt,
welche bewirkt, dass die beiden zusétzlichen Terme aus dem affinen Zusammenhang sich
kiirzen (die Christoffel sind symmetrisch in den unteren beiden Indizes). Die 5D-Wirkung
lautet in diesem Fall

1
S=— / d'z / dp VG GMEGNLFynFrr

= —% /d%/r do (FWF‘“’ — 26_20:—2%14#3(;514“) . (2.73)

Fiir die KK-Zerlegung wahlen wir nun

1
Au(z,0) = 7 2 AP (z)x ™ (). (2.74)
Fordern wir
/ 46 X" (O™ () = b (2.75)
“1d d
72 dg (e%%x(m) = mpx"™, (2.76)

so erhalten wir die kanonische 4D-Wirkung

1
S = Z / dz ( T F{m pmm EmiAL")AW)“). (2.77)
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Fiir die Nullmode gilt nun m,, = 0. In Gl. (2.76) verschwindet somit die rechte Seite.
Ungerade Funktionen miissen nun an den Orbifoldfixpunkten 0 und 7 verschwinden, da
wir Periodizitét in der 5. Dimension fordern. Eine solche Losung existiert jedoch nicht. Fiir
gerade Funktionen muss nun die Ableitung nach ¢ an den besagten Stellen verschwinden.
Die Losung ist schlicht x(*) = const. Die Orthonormierung (2.75) liefert schlieBlich

1
0 __- 2.78
= (2.78)
In Analogie zu den skalaren Feldern setzen wir z, = ¢ und 1™ = e~y Es ist somit
d , d
— =0z, — 2.79
do ~ C"dz, (279)
Dieses zusammen mit den obigen Definitionen in (2.76) eingesetzt, ergibt
d /1 d
ik s (4 )X =k 2 X 2.80
m Zdzn Zn+dZnX Hin ¥ En X ( )
(0> = k*r?), beziehungsweise
sz—2+z i+(z2—1) ™ =0 (2.81)
"dz2 "dz, " ' '

Dies ist eine Bessel’sche Differentialgleichung erster Ordnung, deren allgemeinste Losung
nach Riicksubstitution auf y durch
60'

() = = (

My

) + BYi(Se)) (2.82)

gegeben ist. Hierbei bezeichnet NN,, eine Normierungskonstante. Den Koeffizienten 3, be-
stimmt man aus den Randbedingungen

d NG
do

=0, (2.83)

0,7

welche die Hermitizitdt des Differentialoperators in (2.76) garantieren, und findet
L@@+%ﬂ@@+&@ﬂ%ﬂ%ﬁﬂ%”z& (2.84)

wobei x, = %2 fiir ¢ =0, bzw. x,, = %ek” fiir ¢ = 7 gilt. Die Gleichung fiir ¢ = 0 liefert
den Koeffizienten 3, fiir ein gegebenes Verhéltnis **. Entwickeln wir

(2.85)
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nach #* < 1 und setzen absofort z,, = %ekm, so erhalten wir

d T
e 2(In(Z) 4 vp)  2(In(Z) — krm 4+ ye) (2.86)

Fiir k ~ 10GeV ergibt sich 8, =~ 0, 1. Die Gleichung fiir ¢ = 7 ist nun lésbar fiir diskrete
Werte ,, und wir erhalten das Spektrum der KK-Massen

My = ke "%, | (2.87)

Einige numerische Werte finden sich in [12]. Im Gegensatz zu einem Szenario mit einer
zusétzlichen flachen Extradimension (siehe z.B. [32]), ist das Spektrum nicht dquidistant.
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Kapitel 3

Bulk-Fermionen

Das Ziel dieses Kapitels ist es, die Massenmatrix der Fermionen, welche sich aus Yukawa-
termen und KK-Massen zusammensetzt, zu diagonalisieren um somit die Masseneigenwerte
der frei propagierenden Zustédnde zu bestimmen. Hierbei wird man neben der aus dem Stan-
dardmodell bekannten Flavormischung zusétzlich eine Mischung der KK-Moden finden.

3.1 Herleitung der Fermionprofile

Die Herleitung der Fermionprofile erfolgt im Grunde demselben Verfahren, welches fiir
die Eichbosonen verwendet haben. Wir orientieren uns jedoch an der Arbeit von Grossman
und Neubert [14], in welcher durch geschickte Umdefinition der Variablen das Ergebnis eine
einfache, numerisch gut zu handhabende Form annimmt. Da die Wirkung gerade unter Z,-
Paritét ist, wird zunéchst die Integration iiber ¢ auf das Intervall [0, ] eingeschrénkt. Will
man die Felder iiber den gesamten Orbifold normieren, multipliziert man das Integral mit
einem Faktor 2. Daraufhin fithrt man die Variable ¢t = ee? € [¢, 1] mit € = e *"™ ~ 10716

ein, und reskaliert das Fermionprofil fé"})%(qﬁ) — Vkre fén,)%(t) Desweiteren definiert man

mo M M
E*T" ek k ‘
Die zweite Definition ist uns bereits durch die Eichbosonen vertraut. Die Relationen (2.57)
und (2.58) nehmen nun mit d¢ = (krt)~'dt folgende Gestalt an:

(3.1)

CcC =

1
2 / dt FE (0 £ = D, (3.2)
(0, — o) f"(t) = —xat f (). (3.3)

Die Randbedingungen lauten f™*(e)f%(e) = fU™*(1) 5" (1) = 0. Fiir die Nullmode ist
x, = 0 und die Differentialgleichung GI.(3.3) entkoppelt. Da sie reell ist, kann man die
Profile 0.B.d.A. ebenfalls reell wihlen und findet

0 0 c
Rt = fOR() . (3.4)

27
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Den Vorfaktor bestimmt man aus der Orthonormierungsbedingung:
1 — 61:!:20

1
O =2 [ a2
L.rll) / 1+2c

0 1/2+c .,
= fop(t) =\ 75w (3.6)

In der Tat hat das Profil der Nullmode gerade Zs-Paritét, da ¢ o e mit 0 = kr|¢|
gilt. Die Parameter ¢ werden durch die Theorie nicht festgelegt (der Massenparameter m
in der Wirkung ist beliebig). Demnach miissen wir deren Werte von Hand festlegen. Als
Referenz dienen hierbei die im Experiment ermittelten Massen der Elementarteilchen. Die
Komplikation besteht nun darin, dass auch die Profile der KK-Anregungen von ¢ abhéngig
sind und die physikalischen Standardmodellfelder sich als Uberlagerung der Nullmode mit
den KK-Moden ergeben. Es wird also eine numerische Rechnung mit einer trunkierten
Massenmatrix von No6ten sein, um realistische Werte zu erhalten.

Um die Profile der KK-Moden zu berechnen, multiplizieren wir Gl. (3.3) von links mit
(£t0; + ¢). Es folgt eine Differentialgleichung zweiter Ordnung:

(3.5)

1202 + 2242 — c(c F 1)} ™M@ =0 (3.7)
Setzen wir nun f(t) = v/t g(t), so folgt

Pofg(t) + 1 Du(t) + 2%0(1) — [ +eleF ]gt) =0, (3.8)

bzw. nach Reskalierung der Variablen
1
2212g" (znt) + Tt g (T0t) + [xitQ —(cF Q)Z]Q(xnt) =0. (3.9)

Der Einfachheit halber nehmen wir an, dass ¢ # % -+ n, wobei n eine natiirliche Zahl sein
soll. In diesem Fall lautet die allgemeinste Losung

TR0 = VE [0l Ty ewnt) + Ty o(ant)]. (3.10)

Die Losungen fé”) und fl(%n) sind nun iiber Gl. (3.3) miteinander verkniipft, aus der wir
nun eine Beziehung zwischen den Koeffizienten as-f}% und bg% herleiten. Hierzu setzen wir

zn, = Tt und erhalten

[ 2 — | Vanglih(n) = 2240 )

d 1 n n
&+ [znd— t3F c}g(L%(zn) + zngE%)L(zn) =0. (3.11)
Zn ,

=k
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Benutzen wir die Identitat

dilz [Zk(]k<z>} = 2" (2) (3.12)

so erhalten wir nach Ausfithrung der Ableitung auf der linken Seite

2 (2) + kJi(2) = 2Jk-1(2). (3.13)
Andererseits gilt
d
e [sz_k(z)] = M T () (3.14)
und wir erhalten
2 (2) + kI (2) = —2J g1 (2). (3.15)

Zur Probe kann man in (3.15) —k durch k ersetzen und die daraus resultierende Gleichung
von (3.13) abziehen. In der Tat gilt

2y (2) = 2 [J,H<z> 4 T (2)]. (3.16)
Setzten wir den Ansatz

= alpd b T 3.17
9r.r = AL R %ZFC(ZTL> +0r R —%:ﬁ:c('zn) (3.17)
in (3.11) ein und verwenden die beiden obigen Resultate, so erhalten wir nach Koeffizien-

tenvergleich b(Ln) = ag), sowie bgg) = —a} und damit
T2t = Vi Ty (wat) + 0 Ty (wat)]. (3.18)
™) (1) = Vi [ag)(]%%(:rnt) - a(L”)J_%_c(xnt)]. (3.19)

Um nun die Koeffizienten a(;) zu bestimmen, bendétigen wir die Randbedingungen, welche

aus Zy-Paritdat der Felder resultieren. So gilt fiir ungerade Felder

™) = f™(1) = 0. (3.20)

Nun sind entweder die linkshéndigen oder die rechtshiandigen Felder ungerade (entspricht
¥~ bzw. ¥*) und wir miissen die Losung fiir beider Sitze separat bestimmen. Hierzu
nutzen wir das asymptotische Verhalten der Besselfunktion Ji(x) — 2* fiir  — 0. Man
sieht, dass im Limes ¢ — 0 fiir gegebenes ¢ jeweils ein Koeffizient verschwinden muss,
damit die Bedingung (3.20) erfiillt wird. Es verbleibt eine Gleichung, aus welcher man die
Parameter x,, bestimmt. Der Limes € — 0 ist eine ausgezeichnete Ndherung, es sei denn, wir
betrachten Uberlappintegrale der Profile f é’fl){, die Gewichtsfunktionen enthalten, welche fiir
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Fall a(L") agl) Gleichung fiir x,, | Nullmode
VT, >+ 0 Nijo(zn) | Jeoi(za) =0 R
Y7, ¢ <43 || Na_ () 0 J%,C(xn) =0 R
Yt e> —3 0 Nio(xn) | Jiielan) =0 L
Yt e < =1 || Ni_ () 0 J_%_C(xn) =0 L
krm

Abbildung 3.1: Losungen fiir Bulk-Fermionen im Limes e~

— 0

t — 0 divergieren. Den verbleibenden Koeffizienten bestimmt man durch Normierung. Es

gilt

1
2/ dt t Jk(l'nt)Q - Jk+1(xn)2
0

(3.21)

und wir definieren |N,(z,)|*> = Ju(7,)~2. Die Ergebnisse sind in der obigen Tabelle zusam-
mengefasst. Zum Schluss notieren wir die Profile.

Profile mit gerader Z,-Paritét:

+(n)
L

+(n)
L

12"
17"
Profile mit ungerader Z,-Parit

+(n)
R

f;(”)

1"

() =

(t) =

(1) =
(1) =

at:

() =

() =
() =

Jfl 2+c(xnt) . 1
\/i L/2kerTn ) fir ¢ > ——,
| J3/24c(0)] 2
J1/2_ (l’nt) 1
\/Z e flir c < — =,
| J1/2—c(@n))] 2
J clx,t 1
Vit /el Tn) (za?) flir ¢ > +—,
| J121¢(n)] 2
J_l/g_c(l’nt) 1
—Vt ———= fi —.
\/_ |J3/270(xn)| ur ¢ < +2

Vi J1/24¢(Tnt)

fiir ¢ > ——,

|J3/2+C(17n)| 2

J_1/2—c(xpt) 1

+(n) 1/2—c\+4n ..

)= =Vt =2 fijr e < — 2,
720 Taja-eln)] 2
J_ (xnt) 1
Vi 2T e e 2

| J1 /24 e(0)] 2

J1/2—C(xnt) .. 1
t ———=  f < +-.
V] O

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Wie man sieht, ergeben sich die Eigenwerte x,, als Nullstellen von Besselfunktionen. Die
Ergebnisse haben Giiltigkeit fiir ¢ € [¢, 1], also ¢ € [0, 7. Dies hat zur Folge, dass man bei
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Riicksubstitution auf die alten Koordinaten und Verallgemeinerung auf den kompletten
Orbifold, die Profile ungerader Paritat antisymmetrisieren muss. Im Folgenden betrachten
wir Massenterme, welche durch Yukawakopplung an das Higgsfeld zustande kommen.

3.2 Yukawakopplungen

Zunéchsteinmal wollen wir das Symmetrieverhalten unserer Fermionfelder unter SU(2)-
Transformationen angeben. Hierzu miissen wir die Diracfermionen ¢+ und ¢~ einer Kaluza-
Klein-Zerlegung unterziehen. Das Feld ¢ zerféllt hierbei in ein linkshéndiges Weylfermion
(Nullmode) und eine Kaskade von links- und rechtshéndigen KK-Anregungen, welche Mo-
de fiir Mode einen Diracspinor bilden. Das Feld 1~ liefert eine rechtshéindige Nullmode.
Schematisch gilt also

Pt — @ gF e, (3.30)

Betrachten wir zunéchst eine Generation, so erhalten wir die folgenden Quarkfelder:

+ (0) ul) (n) u™ () _ [ uf
1" — Dubletts Qr, - = | o s 4 =\ m | TR =\ o
L L R

1~ — Singuletts u%o) , d;(o) , uCL(") + u;(”) , ch(n) + d;(”)

Die Felder qg), uz(n und dz(n) haben hierbei negative Z,-Paritdt. Aufgrund der Existenz
dreier Generationen fithrt man weitere Indizes ¢ und j ein. Da wir das Higgsfeld auf der
Brane lokalisieren, gibt es nur Kopplungen mit Feldern gerader Z,-Paritét. Die 4D-Yukawa-
Massenterme in der Lagrangedichte lauten

Ly ukawa = —/ do VG (ZZ )\Zﬂ5 Q(LT)@d + )‘Z5QLZ)(I)CU??J ) + h. c) d(p — )

mmn  4,j

(3.31)

mit ®¢ = igy®*. Wir erhalten somit eine unendlich dimensionale Massenmatrix, deren Ein-
triige zu festem n und m durch 3 x 3-Matrizen (M ™™),; gegeben sind. Nach Reskalierung

des Higgsfeldes H — %ek”H ergibt sich

ey, = [ do

v )\”

V2V

wobei v den (4D-) Higgserwartungswert bezeichnet. Die Profile fg(") und f, ™) Verschwin-
den an den Orbifoldfixpunkten. Wir kénnen daher die Integration auf das halbe Intervall
einschrinken und den obigen Koordinatenwechsel vollziehen und erhalten somit

(6 — 1) f1(0) frl™ (9) (3.32)

tr)y =2 [ 28 st L 00 = ke 0 W),
(3.33)
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wobei wir in der zweiten Zeile ¥ = )\éj /+/T gesetzt haben. Die 3 x 3-Untermatrizen zu
festem m und n haben somit eine Produktstruktur (siche auch [24]). Setzen wir alle \;;
gleich, so ergibt sich beispielsweise

Clel a162 a163
(M(O’O))ij ~ asby asby  asbs G = f;(m)(1)> bj = flgj(m)(l)' (334)
a3b1 a3b2 a3b3

Diese Matrix hat die Eigenwerte (0,0, Y, a;b;). Lasst man jetzt verschiedene Kopplungs-
konstanten der gleichen Groflenordnung zu, so ist die Matrix nichtsingulédr, hat jedoch
eine starke Hierarchie in den Eigenwerten \; < Ay < A3. Wenn man jetzt noch bedenkt,
dass man den Wert der Fermionprofile bei der TeV-Brane durch geringfiige Variationen
der Massenparameter ¢; signifikant verdndern kann, so erscheint die bisher unverstandene
Fermionmassenhierarchie als vollig natiirliche Konsequenz des Modells.
Ungliicklicherweise steht die obige Matrix (M(%9);; nicht in Eins zu Eins Korrespondenz
mit dem Standardmodell. Der Grund hierfiir ist die oben erwdahnte Beimischung der KK-
Moden nach Diagonalisierung der gesamten, unendlich dimensionalen Massenmatrix. Dies
soll nun im néchsten Abschnitt bewerkstelligt werden.

3.3 Diagonalisierung der Massenmatrix

Die Lagrangedichte (3.31) enthélt Massenmatrizen fiir Up- und Down-Quarks verschiedener
Generationen. Wir betrachten nun den Up-Quark Sektor (die Rechnung fiir Down-Quarks
lauft vollig analog). Der Massenterm hat die Gestalt W7 M g, wobei

A A A A AT R (3.35)

W= (@, 660,50 4D ) 40 ) o) el) g (3.36)

Man beachte an dieser Stelle, dass eine Mischung von SU(2),-Dubletts mit SU(2).-
Singletts nach elektroschwacher Symmetriebrechung zulédssig ist, wenn diese die gleiche
Ladung unter U(1)..,,. besitzen. Die Massenmatrix

MO0 0g,5 MOD 05,5 MO
M (1,0) Mg, MOY 04,4 MO2

O3xz  Osxs  Myr  0Osxz  Osxs
M=1 70 Oz MGV Mg, MG ... (3.37)

03><3 O3><3 03><3 03><3 MU2

enthélt aufler den Yukawatermen (3.33) die Matrizen Mg, und My, fir die KK-Moden
der SU(2)-Dubletts und Singuletts [24]. Diese kann man als Diagonalmatrizen ansetzen,
was der Wahl einer speziellen Basis entspricht [30]. Anstatt die Eigenwerte iiber das cha-
rakteristische Polynom zu bestimmen (was fiir die obige unendlich dimensionale Matrix
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recht kompliziert ist), wollen wir die Diagonalisierungsmatrizen durch eine Entwicklung in
Potenzen des Skalenverhéltnisses %LKVI‘; herleiten. Da M nicht hermitesch ist, gibt es keine
unitiare Transformation, die M diagonalisiert. Man kann die Diagonalgestalt jedoch durch
eine biunitiare Transformation erreichen. Es sei daher

M =U} M Ug (3.38)
eine Diagonalmatrix, wobei Uy, und Uy unitdre Matrizen bezeichnen. Bilden wir
MM =Ul MUp UL MY U, =U] MMt UL, (3.39)

so sechen wir, dass eine unitéire Transformation des Produktes MM die quadratischen
Masseneigenwerte der linkshiindigen Zusténde liefert (M MT ist hermitesch fiir jede nicht-
singuldre Matrix M). Andererseits gilt

MM =UL MM U, (3.40)

und wir erhalten die Massenquadrate der rechtshindigen Zustéande.

3.3.1 Entwicklung in erster Ordnung

Es sind nun alle Yukawaterme von der Groflenordnung Mgy &~ 100GeV und demnach um
mindestens eine Grofilenordnung kleiner als die unteren KK-Anregungen (=~ (3 — 10)TeV).
Um die Buchhaltung zu erleichtern, versehen wir diese Terme mit einem Ordnungsparame-
ter €, den man jederzeit in Gedanken gleich Eins setzen kann. Desweiteren ist eine vorlaufige
Trunkierung der Massenmatrix von Noten. Wir beginnen mit einer 3 x 3-Matrix, erweitern
auf 5 x 5 und schliefen auf den allgemeinen Fall. Da die KK-Massen auf der Diagonalen
von M zu finden sind, wihlen wir den Ansatz

U €Un €Uy
UL == €U10 U11 €U12 (341)
€Uy €Uy Uy

und bilden UzM MTU;. Im Folgenden sei My, =M (m.n) Wir finden

O(?) Uy MoMLU11 + O(?) (U My M},
+U3LOM01M{TJ)U22 +0(e?)
U, MoMLUo + O(¢?)  Uf;MMLU1 + O(2) e(Uf; Mo M, U
+US, My M, Usy . (3.42)
+U31M1,1MIBU22) + 0(62)
Uy (My M Usg e(Uf,MoMLU
+My Mg, Uoo) + O(e?) ULy My M Usy Udy My M Uss + O(e)

+U2T2MUM1T71U11) + 0(62)
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Die Forderung nach Diagonalitdt in erster Ordnung verlangt, dass diejenigen Eintrége in
den Nebendiagonalelementen, die nicht von O(€?) oder héherer Ordnung sind, verschwin-
den. Es gilt somit:

UlyMoMyUn =0 = Ulj=0 baw. Up=0. (3.43)

Aus der Forderung nach Unitaritét folgt, dass Uy, in erster Ordnung ebenfalls verschwindet.
Aus UUT = diag(1,1,1) erhélt man die Gleichungen

UooUdy + UoaU, = 0,
UnUJ, + UpUS, = 0,
UsoUdy + UssUdy = 0,
Un U, + UnUf, = 0.

3.44
3.45
3.46

(
(
(
(3.47

)
)
)
)

AuBlerdem gilt UiiU; = 1, d.h. die Diagonaleintrage sind in der betrachteten Naherung
unitar. Kehren wir nun zu der Analyse der quadrierten Massenmatrix zuriick. Der Eintrag
in der 3. Zeile, 1. Spalte verlangt

!
Uy (My MU + My M, Ug) =0

= Uy = —(M(T])AMOEUOO : (3.48)

Lost man Gleichung (3.44) nach Uy, auf, setzt die Adjungierte von Gl. (3.48) ein, so findet
man

Uy = Mo M Uss. (3.49)

Schliefllich betrachten wir den Eintrag 3. Zeile, 2. Spalte (Eintrag 2,3 liefert die gleiche
Bedingung, lediglich h.c.):

U = —(Ugy My M) UL, Mo MEU — (M) 7 M, Uy (3.50)
Einsetzen von (3.47) liefert
Unt = (MyM) " Un Ufy MogMLUn — (M1 M) U (3.51)
Desweiteren findet man
Uiz = MoMLU (U, My M Uss) ™" + My 1 My Us, (3.52)

In einer Basis, in der die KK-Moden bereits diagonal sind, werden U;; und Usy in er-
ster Ordnung der Einheitsmatrix entsprechen (desweiteren gilt M = MT). Man erhélt die
Bestimmungsgleichungen

— UMy M, + MoMLU, + My M, = 0. (3.53)
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Diese lassen sich mit U = —U;rl = X zu einer Gleichung zusammenfassen und die Diago-
nalisierungsmatrix Uy, ergibt sich zu
(O 0 Mo, M;"
UL = 0 13><3 X )
— (Mo MDYUL —XT I3xs
—X My M, + MoM}X + M, M}, = 0. (3.54)

Auf die selbe Art und Weise diagonalisiert man MM und erhilt die zweite Diagonalisie-
rungsmatrix

vk (Mg M)t 0
Up=| —Mg'MyUg L3xs Xt 1,
0 X 13><3

—~XM,Mq + MMy X + M{, Mg = 0. (3.55)

Schliefflich wiederholen wir die Rechnung unter Einbeziehung der ersten beiden KK-Moden
und erhalten

Uk 0  MyM; 0  MyoM;,
0 I3x3 X1 0 X2
UL = *(MO,lMlE)TUOLO *X1T1 I3x3 *X2T1 0 )
0 0 Xo1 13x3 X2,2
_(M072ML721)TU0LO _Xl,Tz 0 _XQ,TQ I3x3

MQmMQTnXm,n — XppnMyn M+ M, M, = 0. (3.56)



36 KAPITEL 3. BULK-FERMIONEN

ofis3 (Mg{mao)t 0 (Mgy My o)t 0
— Mg My oUE 13xs . 0 -X,h
Ur = 0 Xl,l 13x3 X2,1 0
— Mgy My o U 0 ~X,0 lsxs ~X,h
0 Xl,Q 0 ng 13x3
M My X = X Mb, Mgn + M}, Mg, = 0. (3.57)

Die Gleichungen (3.56) und (3.57) gelten bereits allgemein und die zugehorigen Matrizen
lassen sich leicht fortsetzen.

3.3.2 Entwicklung in zweiter Ordnung

Um die Diagonalisierungsmatrizen in zweiter Ordnung zu bestimmen, wahlt man den An-
satz

2 2
Uoo €“Up1 eUop2 €“Uos €Uy
2U 1 — €2 U U U
€ Uio 3x3 — €7511 €U12 € U1s €U14
U = 6U20 6U21 13><3 — 62822 €U23 €2U24 . (358)
2U. 2U. U. 1 —é U.
€"Uso €"Us1 €U3z2 3x3 — €7833 €Us34
2 2
eUsgo Uy €“Us €Uss3 13x3 — €544

Da sich die Bestimmungsgleichungen fiir die in erster Ordnung von Null verschieden Terme
nicht dndern, gilt nach wie vor:

Uy = =Ufy = X110, U = =Uf; = X1 (3.59)
Uso = — (Mo My )'Ugo , Uso = —(Mo2 M) Ung (3.60)
Upo = ]\40,1]\/[511 , Uos = ]\/-[0,2]\4(;21 (3.61)
Usy = —U§3 =Xo1, Uss = —Uls = Xao. (3.62)

Desweiteren findet man nun

— M Mb,Urg = (MyoM{ o + Myt My + My oM ,)Ugo + My M, Usg
+US My (Mo, 1Ugo + M Uso) + My oMy Usg + Ul My (M 3Ugo + M Uso).  (3.63)
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Mit Hilfe der obigen Relationen vereinfacht sich die rechte Seite zu MloMgoUoo. Es gilt
somit

Uro = —(MquMb,) ™ My o M{ gUso, (3.64)
Uso = —(MqaMby) ™ Moo M{ gUso, (3.65)
Uot = —UnoUly — UnU, — UoaU},

= Moo M{ o(MqrMb,) ™" = Moy My XT | — Mo, My XY, (3.66)
Uos = —UnoUdy — UnnUdy — UoaUd,

= Moo M] o(MaMb,)™" = Moy My X3, — Mo, Mpy X5, . (3.67)

Die verbleibenden Nebeniagonalelemente sind erneut durch Matrixgleichungen gegeben,
die man komponentenweise 16sen muss:

Us; = —Uf3 - X2,1XI,1 - X2,2Xir,2 = Yip, (3’68)

—Ya 1 Moi My, + MgaMb,Ya 1 — (Xon X1y + Xop X| ) Mo MY,
+Mag My + Moy MYy + Mo MYy — Moy My XT | — Mop M, XT ) — Xo 1 My M,
— X0 MysM{y + Xoy My M XT | + Xo o Mys M}, X1, =0, (3.69)

Usp = —U3y — (Mo M) Moo My — X{1X10 — X3, X00 = Za, (3.70)

—Z2,1MU1M(T]1 + MUQM(DQZZ,I - (XlT,ng + X;rng)MUlM(Dl
+MU2MJQM01M511 + MU2MIQX1,1 + MU2M§2X2,1 + XI’QMllM(E'l
X3 ) Moy My + XT Moy M X1 + X5 o Moo M, Xa1 =0 (3.71)

Um die Korrekturen auf der Diagonalen berechnen zu kénnen benétigt man UUT = 1. Man
erkennt jetzt, dass in dieser Ordnung Upyg nicht unitér sein kann, da

2
UnoUdy + > (Mo M UsoUdy (Moi M)t = 13,5 (3.72)
=1

gilt. Desweiteren findet man Bestimmungsgleichungen fiir die s;;:

3.73
3.74
3.75
3.76

si+ sl = X1 X] ) + Xi0X] .,
833 + s§3 = X2,1X§’1 + XZ,QX;Qa
S22+ 85y = X1 X114+ X3 Xoy + (Mot My Moy My}
Su+ sy = X1 3 X120+ X35 X0 + (Mox My ) Moo M.

A~~~ I/~ I/~
~— ~— ~— ~—
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Der letzte Schritt besteht nun in der Verallgemeinerung auf den kompletten Tower. Man
findet

Upo = —(MO%M[}%)TUOO n gerade, (3.77)
Upo = —(MQ"T“Mg)nTH>_1M"T“0MgOUOO n ungerade, (3.78)
Uop, = M()%M(j% n gerade, (3.79)
Uon = J\4001\41__2H o(Mgas: Mg?nTH)*l -y MO,CM(;;XL%JC n ungerade, (3.80)
k=1
Upn = —Ul = Xmpr n m,n >0, m ungerade, n gerade, (3.81)
k=1
m,n ungerade wobei m >n >0 (3.83)
Upn = —US - — (MO,%M(;%)TM%%MJ% - ;XTqu,g =Zunx, 3.84)
n ,m gerade wobei n > m > 0, (3.85)
Spn + snfn = ZXnT—H’hXL%l’h n ungerade, (3.86)
h=1

Spn + sntn = ZXT%X;L,% + (M()?%MJ%)TMOV% U_é n gerade, (3.87)
h=1

UnoUdy + > Mon Mg (Mo M)t = 1. (3.88)
h=1

Um zu sehen, wie sich die Eintrage Y, , und Z,, ,, verallgemeinern, muss man die Rechnung
auf die ersten drei Anregungen erweitern. Man findet schlielich

—Y i Mo M, + Mo M, Yo + > My, 1 M,
k=0

+ > (MM X n X, = X Myn M, X ) =0, (3.89)
h=1

~Zo My My, + My M, Zn o + My MG, Mo My,

+ > (MM, X)L X — X[ MonMb, Xi0) = 0. (3.90)
h=1
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Zerlegt man Uy, in das Produkt einer hermiteschen Matrix H mit einer unitdren Matrix U
(dies ist moglich fiir jede nichtsinguldre Matrix M), so ergibt sich H aus

UnUdy = HUUYHY = HH' = HYH =1 =" Moy Mg} (mon M)
h=1

zu

1
H=H'=1- 5 > Mo Mgy (Mo My, (3.91)

Rechtshindige Felder

Die Eintrage der Matrix Ug seien mit W,,,, bezeichnet. Aus den Forderungen U RUT r=1
und U7 LMTMUpR = diag erhiilt man:

W = —Mé% Mn_+1 oWoo n ungerade, (3.92)
Who = —(]\/[T n]\/[Un) "My n 0 MooWoo 71 gerade, (3.93)
Won, (MQ"+1 MnTJrl’(]) n ungerade, (3.94)
Won = MioMo,z (M Myz) ™ — Z(Mcggmko)w*%k n gerade, (3.95)
k=1
Wy = —WI = X'% nir m,n >0, m gerade, n ungerade 3.96)
Wi = =W — ;Xm k)”(T% = ~%,% m, n gerade wobei m >n >0, (3.97)
W = W1 — Mé@ MmTHO(MC;nHMW ZX* X} ni, (3.98)
= ZmTH’nTl m, n ungerade wobei m > n > O
Hierbei gilt
Yo M My + M My Yo + > M M,
k=0
+ > (M My X n X ), = X My, Mo X ) =0, (3.99)

h=1

~Z My Man + My M Zin o + My My o (Mgt M)
+ D (M M Xy X — Xy My Mun Xin) = 0, (3.100)
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Spn + §nT,n = Z)N(g,h)ﬂ% n gerade, (3.101)
h=1
Sum + 3,1 = Z X:LnTHthTH + Mé@MnTHO(Mé@ ]\LLTH’O)T n ungerade, (3.102)

WooWiy + D (Mg M) Mgh Mo = 1. (3.103)

h=1

3.3.3 Interpretation

Abschlielend wollen wir die Struktur der Diagonalisierungsmatrizen studieren. Bleibt man
in erster Ordnung €, so siecht man, dass beispielsweise die linkshdndigen Nullmode, die
dem SU(2)-Dublett zuzuordnen ist, nur Beimischungen von SU(2)-Singulett Moden er-
halten. Ebenso erfahren die zum Dublett gehérenden KK-Moden nur Beimischungen von
Singulett-Zustdnden. Umgekehrt erhalten diejenigen KK-Moden, die zum SU(2)-Singulett
gehoren, nur Beimischungen von Dublett-Zusténden. Die Beimischungen zu einer beliebi-
gen Mode mit gegebener Chiralitéit sind demnach unabhéngig voneinander, das heifit, sie
mischen nicht untereinander. Analoge Betrachtungen gelten fiir rechtshéndige Zustéande.
Hier mischen zu der Nullmode, die nun dem SU(2)-Singulett entspricht, nur Dublett-
Zustande. Auch diese mischen nicht untereinander und liefern somit unabhénige Beitrage.
Die Masseneigenzustéinde der physikalischen Nullmoden (SM-Fermionen) ergeben sich nun
zZu

4O =l (wéo’—Z(Mo,kMJ,i 2+ Mo M o( M My) ™ (L’“))>, (3104)
k=1

@D;éo) _ WJO <¢§$) _ Z <(M§;Mk,o)T %(k) + Mg’kMQ,()(M(T]kMUk)_l g))) . (3.105)

k=1

Berechnet man die Feynmanregeln fiir die Eichkopplung zwischen linkshéndigen Fermionen,
so erhilt man die entsprechende Regeln fiir rechtshiindige Felder, indem man die folgenden
Ersetzungsregeln anwendet, welche man durch Vergleich der Eintrige von Up und Ug
erhélt:

n—n+1, n+1— n (gilt nicht fir Laufindizes) (3.106)
Myq — MY ,; (3.107)
M — M" 4 Vertauschung der Indizes sowie Ersetzung (3.106)  (3.108)

Wir erinnern an dieser Stelle nocheinmal daran, dass aufgrund der angesetzten Diagonalitét
der KK-Moden im Flavor-Raum die Matrizen Mg,y gleich ihrem hermitesch Konjugierten
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sind. Die obigen Regeln implizieren ferner X,Y, Z — XY, Z.

Um die Feynmanregeln fiir die Eichkopplung hinschreiben zu konnen, bendtigen wir den
Zusammenhang zwischen Massen- und Wechselwirkungseigenzustand des Eichbosons. Fiir
Photonen und Gluonen sind diese identisch, da die Massenmatrix keine Nebendiagonal-
eintrdge enthélt. Die massiven Eichbosonen werden jedoch eine Mischung der Moden in
Analogie zu den Fermionen erfahren. Wir widmen daher das néchste Kapitel dem Studium
des elektroschwachen Eichsektors.






Kapitel 4

5D-Eichtheorien

Das Ziel dieses Kapitels ist es, die fiinfdimensionale Yang-Mills Theorie der elektroschwachen
Bulk-Eichbosonen auf eine 4D-Theorie zu reduzieren und Feynmanregeln fiir Propagato-
ren und die Selbstkopplung herzuleiten. Wahrend man die reine Yang-Mills-Theorie fiir
alle Symmetriegruppen simultan studieren kann, ist bei der Herleitung der Propagatoren
im Falle massiver Eichbosonen der symmetriebrechende Mechanismus zu beriicksichtigen.
In unserem Fall wird die abgeleitete 4D-Theorie durch Kopplung an ein Brane-Higgs ge-
brochen.

4.1 Zerlegung des 5D-Eichfeldes

Zunéchst bendtigen wir die allgemeine Kaluza-Klein-Zerlegung des fiinfdimensionalen nicht-
abelschen Eichfeldes Ay = A%, (x, ¢)7°. Sie lautet

1
Al ZA %™ (¢) = 7 ZA;(ATL)X(") (4.1)
n)a a n 1
As(w,9) = W S AP (@)r 0 (o ZA I (4.2)
n=1 n

Die Zerlegung des Feldes A5 hat aufgrund der Ableitung nach der fiinften Koordinate ne-
gative Z,-Paritét, wie in Kapitel 2 gefordert. Es hat nun A,(z, ¢) die Massendimension 3/2
und Ajs(x, ¢) die Massendimension 1/2!. Der Faktor 1/m,, sorgt nun dafiir, dass Aé") genau
wie A die Massendimension Eins hat. Andererseits besitzt A = ¢%A™ die Massendi-
mension 3. Die Ursache hierfiir ist durch unserem Ansatz der Metrik (2.22) begriindet.

Wiirde man die 5. Dimension durch ein dimensionsbehaftetes Wegelement dy = rd¢ para-
metrlsleren so hétten, da man d, durch 0, ersetzen wiirde, A ) und AM5 in Analogie zu

Au und AM™*# die Massendimension Eins. In der Tat wird diese Art der Parametrisierung

'Die Massendimensionen der Felder einer D-dimensionalen Theorie sind gerade so, dass der kinetische
Term die Massendimension D besitzt. Diese wird durch das D-dimensionale Raumzeitintegral gekiirzt und
die Wirkung hat somit Massendimension Null.

43
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in der Literatur hdufig verwendet. Oftmals geht man sogar noch einen Schritt weiter und
verwendet homogene Koordinaten z = z(y). Hierzu substituiert man im Linienelement

ds* = e Wy, datdz” — dy? (4.3)
die fiinfte Komponente durch
e " Wdz = dy (4.4)
und erhélt mit o(y) = k|y|
— 1 iyl —20_<1)2
z = sgn(y)ke = =g (4.5)
und somit
2 1?2 [T S 2
ds” = (E) (Nudatdz” — dz*). (4.6)

Die neue Metrik ist nun konform flach, d.h. sie kann mittels einer konformen Transformation

1\2_ L
JMN = <E> gun mit  gyn =nNuN (4.7)

in die Minkowskimetrik iiberfithrt werden (siehe z.B. [22], [28]). Die Tatsache, dass in

unserer Konvention die Felder Aé")(:c) und A°™(z) unterschiedliche Massendimensionen
haben, bereitet jedoch keine Schwierigkeiten, da in der Wirkung alle Indizes kontrahiert
werden. Bevor wir die 5D-Eichtheorie mit gebrochener Symmetrie behandeln, wollen wir
zunéchst das Verhalten der 5D-Felder unter Eintransformation studieren und dieses dann
auf 4D-Niveau reduzieren.

4.2 5D-Eichtransformationen
Sei 0 eine skalare Funktion aller Raumzeitkoordinaten
0 =0z, )%, Q= -exp(if) (4.8)

und

AM — A/M = 0 (AM + i8]\4) Q_l = LQ DM QT (49)
95 gs

die zugehorige Eichtransformation, wobei

0z, ¢) =Y _ 0" (x)r"x"(¢) = > 9™\, (4.10)
n=0

n=0
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Setzt man die obigen KK-Zerlegungen (4.1) und (4.2) ein, so zerfillt die Transformation
in

n n i . m m . 9s n n . m m
S Amy® ;exp(zzy ) ™) (au _ZWZAEL)X( )) exp(—i 3 6y ™),
m=0 n=0 m=0

n=0
A 9™ —exp(i Y o) |05 —iZ= ) AV —0u "™ | exp(—i Y ).

Beschrankt man sich auf infinitesimale Transformationen, dann sieht man sofort, dass die
Transformationen der einzelnen Komponenten der adjungierten Darstellung durch

1
A(n)a N A(n)a + ) e(n)a + abc e(m)b (m)A(n)c’ 411
W fr /_27Tg4 w f mz::() X m ( )
n)a n)a 1 n)c
Aé ) N Aé ) + mne(n)a + fabc § :e(m)bx(m)Ag ) (412)

V21g,

m=0

gegeben sind. Dieses Ergebnis wird benotigt, wenn wir eine Eichfixierung vornehmen. Im
folgenden studieren wir die SU(2) x U(1)-Theorie der elektroschwachen Wechselwirkung.
Die Ubertragung der Ergebnisse auf die Yang-Mills-Theorie der SU(3)-Symmetrie ist ab-
solut unproblematisch, da diese aufgrund der ungebrochenen Symmetrie formal wesentlich
einfacher ist.

4.3 Eichtheorie mit gebrochener Symmetrie

4.3.1 Zerlegung der Wirkung

Ausgangspunkt ist die folgende 5D-Wirkung

1 1
Ssp = /d%/dqﬁ VG (GKMGLN< — EWJ‘\}NW}I(L — ZBMNBKL)

1
+51Da®3p[20(6 =) = V{(®50)0(6 = 7) + Lar + Lrr), (4.13)
wobei

Wity = OuWg — OnWiy + g [ Wy Wi,
BMN = 8MBN - aNBMa
DM = 8]\/[ - ig5WJ(\l/[Ta - ZgéYBM, D5CI)5(ZL‘) = 0. (414)
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Multipliziert man die Feldstérketensoren aus, so erhélt man beispielsweise fiir den vorderen
kinetischen Term

1

—GMKGLN (5 (OnWEOWE — AW D W) (4.15)
1 1

595 W WOk WE = DLWie) + 1g2f™ FU W WEWHWE ).

Im Folgenden richten wir unser Augenmerk auf die beziiglich der Felder quadratischen
Terme. Aus ihnen wird der Propagator konstruiert. Die kubischen und quartischen Terme,
welche die Wechselwirkungen der Eichbosonen untereinander beschreiben, werden gegen
Ende des Kapitels behandelt.

Der quadratische Anteil des obigen Ausdrucks zerfillt nach partieller Integration in

1 4o a av a av
s (wraowe —wioro,w
g7 (O WO W+ WED, W+ 20,W 0" W) ). (4.16)

Hierbei gilt aufgrund von (2.22) ¢°° = —1/r%. Die Berechnungen fiir den zweiten kinetischen
Term laufen analog. Bevor wir jedoch die KK-Zerlegung einsetzen und die 5. Dimension
ausintegrieren, analysieren wir zunéchst den Higgs-Sektor. Die kanonische Normierung des
Higgstfeldes liefert

1
dsp(x) = We’“"fcp(:c), |Dp®|* = | D, ®|?. (4.17)

Die Integration iiber die fiinfte Raumkomponente ist trivial:

1
5 / dp VG | Dy ®sp[*5(¢ — )
1 o a,__a - ! 2

= 5‘(@ —igsWit" —igsY B,)® o (4.18)
Das Higgspotential V (®) liefert nach Entwicklung um den Vakuumerwartungswert v des
Feldes @ die Higgsmasse. Wir wollen darauf jedoch nicht ndher eingehen, sondern konzen-
trieren uns auf die Eichbosonen. Es empfielt sich, eine neue Notation einzufithren (siehe
auch [39]). Man definiert hierzu den vierkomponentigen Vektor A% a =1,2,3,Y":

. 1
A=W W2 w3 B, fi=— Y =Y=_. (4.19)

Die Generatoren der SU(2)-Felder sind gegeben durch die halben Pauli-Matrizen, der Ge-
nerator des U(1)-Feldes kann als 1 notiert werden. Desweiteren definieren wir

T = —ir®, ¢\ =

{g5fura:1,2,3 (4.20)

gifira=Y
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sowie das Higgsdublett
1 (=i(pi(z) —ipa()) _ 10
o) = V2 (v + (h(x) —i—igog(x))) %o V2 (v) ' (4.21)

Die Goldstonebosonen ¢; beschreiben Feldfluktuationen entlang des Minimums. Das phy-
sikalische Higgsfeld h hingegen beschreibt diejenige Fluktuation, die die Feldkonfiguration
aus dem Minimum herausfithrt. Man berechnet nun die Produkte

(v)=aa™
(0)=a3m
(7)=am

(—Oz) - _2L¢§ "

Hierbei bezeichnen die n; Einheitsvektoren entlang der Feldfluktuationen ¢;. Die Kompo-
nenten des Higgs-Dubletts sollen nun einheitlich durch einen Satz von skalaren Feldern ¢,
beschrieben werden. Das Higgsfeld erhélt einen nichtverschwindenden Vakuumerwartungs-
wert (VEV), der VEV der Goldstonebosonen ist Null. Wir notieren

(i) = (¢0)i- (4.23)

|
IS

I
N <

N <

SN

NS
S

N 88N
>~< w N =
s & & &

(4.22)

Demnach ergibt sich

¢i(x) = doi + xi(), (4.24)

wobei x; die obigen Feldfluktuationen bezeichnet. Es gilt somit y; = ¢; fiir ¢ = 1,2, 3.
Betrachten wir nun die kovariante Ableitung

Du¢i = ,u¢i + g5AZin?‘¢j- (425)

Die partielle Ableitung generiert kinetische Terme fiir die Goldstonebosonen und das Higgs.

Die Wirkung der Kopplungsterme auf den Vakuumerwartungswert ist oben berechnet
(4.22). Indem wir

F = Tijo (4.26)
definieren, erhalten wir
gs 0 0
@pa_ Y] 0 g5 O
g5 FG = 51 0 0 g (4.27)
0 0 —g;
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Substituieren wir nun die Felder in (4.18) durch (4.19) und (4.24) und verwenden die
Definition (4.26), so erhalten wir

(a)
19gs 1 g a n)a. (n
st =5 [ do(@) —2 3 P AP m)
n=0

(a) (b)

g g a m)a v n m n
#30I I A g AL ) () 4V (6)). (4.28)
Wir setzen nun
2\ ab géa)géb) b géa)géb) T\ab
(mmm*) ™ = B 9o pa b ) () ) () = B I5 (T () () (4.20)

r r

und notieren die Wirkung (4.13) erneut, wobei wir das Higgsfeld ignorieren und die Relation
(2.76) verwenden:

1 a v n
Sip = 3 / d“w(; A (P — 00" + m2 g™ )Bndan + (M) ) AP

(a)
B Z(Aén)aaQAén)a o 2mnAén)aa’uALn)a) _9 Z %F%@iéuALn)ax(n)<ﬂ)
n=1 n=0

+(8Mg0)2 + »CGF) + Sgp. (4-30)

Die Mischterme sind nun durch die Wahl einer passenden Eichfixierung zu entfernen.

4.3.2 Eichfixierung und Feldredefinition

Gegeben sei die folgende eichfixierende Funktion:

(a)
1 g
GO (w) = - (9 AL (@) — §(LoF% e (m) — m AT (@)). (431)
\/g H ( \/; 5 )
Auf diese wenden wir nun eine Eichtransformation an. Hierzu verwenden wir die Ergebnisse
(4.11) und (4.12). Definiert man ferner

m,n ab a g(a) abe. (m n)c
(DE7:0)) " = (@ )™ + L fooex ™ ()AL (), (4.32)

so erhélt man nach kurzer Rechnung (die z-Abhéngigkeit lassen wir aufien vor):

ma _, cma . L V7 gu( poma 4\ mm ()™ glm)
G G +\/g<géa)aﬂ(pu (¢)) +§mn<D5 (gzﬁ)) )9 b, (4.33)



4.3. EICHTHEORIE MIT GEBROCHENER SYMMETRIE 49

Die Zusatzterme, die aus der Eichtransformation hervorgehen, sollen nun durch die Wir-
kung sogenannter Geist-Felder kompensiert werden. Néhere Erlduterungen hierzu findet
man beispielsweise in [38] oder [39]. Man definiert daher

(mn) ab B 5G(n)a B 1 \/‘
(MFP (95,@) = S0~ Vg oo

und erhilt die Wirkung der Faddeev-Popov-Geister

o (g (@) + ema(D “”’”(a»)ab) (434

ab

Sep == [ [aoVG Y Y ) (Ml 0, 0)) @) (439)

m,n  a,b

wobei das Vorzeichen fiir die erwiinschte Kompensation sorgt. Der eichfixierende Term in

der Wirkung sei nun Lor = —3 3., (G(”)“)Q. Nach Einsetzen von (4.31) und partieller
Integration findet man

1 1 gt )a
Lop == Z{gfl,f agrg Al +2(\/F “ oM () — mu AP 9 A

(a)?

<«

Definieren wir

(a)

a n 2 na2 29 a n)a
G s () (A7) = =T P (mma AL") | (4360

(a)2 ()2
(o) =B () = S (FTF) (0 () (4.37)
ij T r ij

und setzen den Eichfixierungsterm in (4.30) ein, so heben sich die obigen Mischterme weg
und es bleibt

_1 4 (m)a 2 v _1 YTRAYZ 2 pv ab (m,n)2 ab (n)b
S—Q/dx<;/lu ((ag (1= 20" + g™ Yo + (mmm*) g >AV
_ Z Agn)aa2Aén)ll _ 90i8290@ —+ 2£§nass) + SFP (438)
=1

wobel

(a)
_ E (n,n) 2 ] 2 (n)a g5 a (n) (n)a
mass ( @z( )ijgpj + A A \/_F PiX ( ) TLA5 > . (439)
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Zunéachst konnte man dariiber besorgt sein, dass die Eichfixierung einen neuen Misch-
term zwischen den Goldstonebosonen ¢; und den Aén) produziert hat. In der Tat hat aber
alles seine Richtigkeit, wie sich spéter herausstellen wird.

Fiir die nachfolgenden Uberlegungen halten wir die KK-Indizes fest und richten unser Au-
genmerk auf die Massenterme (m(”’")2)ij und (771(’“’”)2)‘“’7 welche durch die Gleichungen
(4.37) und (4.29) definiert sind. Wir bezeichnen g5 ab sofort als g und berechnen

2 g2 0 0

g<a>2FzFﬂg:g<a>2<FTF) 0 ¢ 0 (4.40)

)
ij 4

sowie

[

0 g 0
(@) ) papb _ (@) () (ppTyab — V- g . 4.41
gugrIE =g gt (FET) T = g Ty gy (4.41)
0 0 —gg g*
Auch der Mischterm kann explizit angegeben werden:
a n)a rra v n n v n n
g VAL g = 59(A§> o1 + AL 0) + 5(91‘% P — g AP s, (4.42)

Die Massenmatrix der Goldstonebosonen ist bereits diagonal. Es gilt also (m("’”)Q)ij =

(m(n’n)Q)ii(Sij. Die Massenmatrix der Eichfelder wird durch Redefinition der Felder A&”)?)
und A,(l")y auf Diagonalgestalt beziiglich der Indizes a,b gebracht. Diese Vorgehensweise

ist uns aus dem Standardmodell wohlvertraut. Schliefllich unterzieht man auch die Felder
Aff)l und AEL")Q bzw. Aén)l und Aén)Q einer Redefinition. Wir setzen

n)t n)l . 4(n)2
Ws® = Al F i), (4.43)
(n) _ # (n)3 1 A(n)Y
A,u,5 - 92 n 9,2 (gAu,E) + g AM,S )7 (444)
1
w_ )3 s 4n)Y
Z.5= o (gA%5 g Au75 ), (4.45)
+ T -
— (o) £ i), 4.46
@ \/5(901 ©2) (4.46)
¢° = 3. (4.47)
Wenn wir die Gleichungen (4.43) und (4.46) umkehren,
n)l 1 n n)— n)2 { n n)—
AL% = E(W,E,sH + W,E,s) ), AL% = E(W;ﬁ,5)+ - W,E,g ), (4.48)
1 iy - 2 Loy -
_ v _ ’ - + 7 4.49
@ ﬁ(so ), ¢ ST +eT) (4.49)



4.3. EICHTHEORIE MIT GEBROCHENER SYMMETRIE o1

und dieses in (4.42) einsetzen, erhalten wir

U n n)— — n
5( g W ot — Wi o) + Vot +g”° Z )900>- (4.50)

Man kann nun die Wirkung (4.38) in vier separate Wirkungen fiir die Felder W™+ Z(®
und A™ zerlegen. Hierbei darf man die Feldbezeichnung 4+ am KK-Index vorbeiziehen,
welcher absofort wieder variabel sein soll. Der néchste Schritt besteht namlich darin, die
einzelnen Massenmatrizen der neuen Felder W+ Z( und A™ beziiglich des KK-Indexes
zu diagonalisieren. Hierbei wird man beobachten, dass im Zuge der Diagonalisierung die
verschiedenen Moden miteinander mischen. Insofern ist auch der Mischterm zwischen A ")
und ¢ nichts ungewohnliches, da man das Goldstoneboson als Nullkomponente eines Vek—
tors A; = (gp,A( ) Ag), ...)T" interpretieren kann. Das Photonfeld hat kein korrespondie-
rendes Goldstoneboson. Daher bleibt seine Nullmode masselos. Man erhélt also folgenden
Satz von Spin-1-und Spin-0-Feldern:

WwE© ot Z " A 0
+(1 +(1) 1 (1) 1 (1)
wiE W z 252 AP A52 (451)

4.3.3 Diagonalisierung der Massenmatrizen

Wir studieren im Folgenden die Wirkung der W-Felder. Man erhélt mit den obigen Sub-
stitutionen

Sip = / (Zwi (@29 -1 - %)8“8”)5mn+(m(m’”)2—i—miémn)g’”)Wf(")

ST WEM R gt o Lfnj;ss> + Spp, (4.52)
n=1
wobel
n)x n v E3 n
»Cfn:l;ss o _g (Sp:t*m(nn) gDi—FWgt( ) miW;:( )_%Emn< + W5 +W5 )X( )<7T)>
n=0
Setzen wir
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so lasst sich L&

S ss durch einen einzigen Term notieren:

Lok = _g FMEWE, (4.54)

M, gﬁ bezeichnet hierbei die gemeinsame Massenmatrix der Spin-0-Felder. Sie lautet explizit

S om0y, 3,

—mm, m? 0 0
Meg? = | —m®Pmy 0 m3 0 | (4.55)
—mB3my 0 0 m2 ..
Hierbei gilt
(ma? _ 939 () (1) ()
myT = 4—7“X (m)x™" (). (4.56)

Desweiteren lesen wir aus der obigen Wirkung die Massenmatrix M.? der W-Felder ab
und finden

m, (0,02 m (0?2 m(0:2)2 m,(0:3)2
m0? 2 4D m(1:2)2 m(1:3)?

M2=| m0? D2 24 e )2 | (4.57)
m (3,02 m G2 m3:2)? m2 4+ m®3)°

Setzen wir nun g4 = g = =, mw = gv/2 und a,, = v27x™ (1) (o = 1), so ergeben sich
die obigen Matrizen zu

2 _,,ma . m2 M3
Y o O oz12mW Qg g
m m
“Olny  wE 0 0
w w 5
m.
M, ~m O iy y (4.58)
ex” = My v m2 ’ :
_ 7”:3 0 0 _23
w My
ol apQy e o3
m? 2
10 —m%‘, +Oél [051e%) 103
2
m2 2
My? =mj, | @200 201 Ftay oy e | (4.59)
m32 2
30 30 e%1e%) — + Q3
My,
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Um nun die physikalischen Massen der Bosonen zu bestimmen, miissen die beiden Matrizen
diagonalisiert werden. Hierbei kommt es zu der oben erwédhnten Mischung der Moden. Sei
B diejenige Matrix, welche die Eichbosonen diagonalisiert und B das entsprechende Pen-
dant fiir die Goldstonebosonen (im Folgenden werden auch die Felder Ag") als Goldstone-
bosonen bezeichnet, da sich herausstellen wird, dass auch ihre Masse proportional zum
Eichfixierungsparameter £ ist). Definiert man ferner den Vektor

Wi = (WO wirEm wEe )T (4.60)

so gilt
W MW = WEHBB" M2 BB"WE = WETMIWE, (4.61)
WM Wit = Wi BeBI M BeBIWE = W Mz Wi (4.62)

Hierbei sind die diagonalisierten Matrizen durch eine Tilde, Masseneigenzustédnde durch
einen Strich gekennzeichnet.

Fiir die Feynmanregeln der Propagatoren bendétigt man nun die Masseneigenwerte A,. In
der Tat werden wir beweisen, dass die Matrizen (4.59) und (4.58) dieselben Eigenwerte
besitzen. Dies ist ohnehin unabdingbar, wenn die Amplitude eines beliebigen Prozesses
unabhéngig von dem Eichfixierungsparameter sein soll, da ndmlich der é&-abhéngige Anteil
im Graphen des Eichfeldes durch den Graph des zugehorigen Goldstonebosons kompensiert
werden muss.

Aufgrund des regelméfligen Aufbaus der Massenmatrizen, bietet es sich an, dieselbigen
zu trunkieren (etwa bei n = 3) und das resultierende charakteristische zu Polynom be-
stimmen. Darauthin extrapoliert man das Resultat fiir den Fall beliebiger n’s. Fiir die
Eichbosonmassenmatrix (4.59) findet man

det(M2 — A1) = [J(mz = X) +m3 Y ol [[(mi - N). (4.63)
n=0 n=0 k#n
Verwendet man mg = 0 und oy = 1, so erhélt man nach wenigen Schritten

det(M2 — \1) = (H(mi - A)) <m§V A= Y mf‘i_ A) L (464)

n=1

Die Matrix MZ, liefert das charakteristische Polynom

det(Mgi—)\l):m%,V((1%—2&2—%)1_[17% —A) — Zam 1;[ )\)>
(4.65)

Nach Ausklammern des Produkts erhalt man

det(MZ. — A1) = (H(mi — A)) <m§V —Atmy > al (1 — %)) . (4.66)

n=1
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Die rechte Seite ist jedoch dquivalent zum charakteristischen Polynom (4.64) und die Eigen-
werte sind somit identisch. Da nun die KK-Massen m,, von den Masseneigenwerten ver-
schieden sind, erfiillen sdmtliche Eigenwerte die transzendente Gleichung

2
o,

D N i Z = 0. (4.67)
n=1

m2 — A
Diese lésst sich zwar analytisch nicht exakt 16sen, jedoch kénnen wir uns die Tatsache zu
Nutze machen, dass wir es mit zwei verschiedenen Massenskalen my, ~ 100 GeV und m,,
mit my; ~ (3 — 10)TeV zu tun haben. So wird beispielsweise der nullte Eigenwert von
der Gestalt m?, plus Korrekturen in Potenzen von mf,/m2 sein, wobei iiber alle n zu
summieren ist. Versieht man in Gl. (4.67) die W-Masse mit einem Ordnungsparameter e,

setzt

2

Ao = €€mi, + €'c (4.68)

in die transzendente Gleichung ein und entwickelt nach €, so findet man

2
an
n=1 n
Indem man den Ansatz auf
)\0 = ezm%,[, -+ 6402 -+ 6603 + e (470)

verallgemeinert, kann man A prinzipiell bis zu jeder gewiinschten Ordnung in € bestimmen.
Es kommen nur gerade Potenzen in Frage, da my und m,, jeweils nur quadratisch in der
Massenmatrix auftreten. Das gleiche Rezept kann man auch auf die Masseneigenwerte der
KK-Moden anwenden. Hierzu setzen wir

Ap =m? + 2 4t 4 (4.71)
und erhalten

M =m2,a? (4.72)

M = miya’ <L + Z i) (4.73)

Kennt man die Eigenwerte, so kann man die Diagonalisierungsmatrizen B und B¢ berech-
nen. Wir beginnen mit der Ersteren:

(M* — \1)E* = 0. (4.74)
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Wir orientieren uns an [40] und wiihlen den Ansatz E* = (1, EA’)‘) Dieser liefert

my — Amiy, +miy Yy B} =0, (4.75)
j=1
2
m1 2
— +af — A oo oo
m2, +aj , 162 163 o
m 2
9 QoYq m—22 + Q5 — A [eD10 %} N 9 (6%))
miy w > EY = —my, . (4.76)
oz oz TS5 40—\ ! a3
3001 3002 w2, 3

Sei die obige Matrix durch A bezeichnet, so erhélt man die Eigenvektoren EJ)‘ durch An-
wendung der Cramerschen Regel. Es ist
T det(A)

(4.77)

Hierbei entspricht A; der Matrix A, wobei die die j-te Spalte durch die rechte Seite von
Gl. (4.76) ersetzt wird. Wir berechnen

det(A) = [ (mi - /\> (1 +tmi mf"%_ A) =TT (m2 - A) @ (4.78)
n=1 n n=1

det(4;) = —miya; H (mfZ — /\> = — H (mi — )\5 :j,v_oz])\ (4.79)
j

n#j n=1

Hierbei wurde oben Gl. (4.67) verwendet. Man erhélt daher

R A R M?
A B, W OB T (4.80)
oA m; T M2-m?

Setzt man dieses Ergebnis in (4.75) ein, so ergibt sich gerade die transzendente Gleichung
(4.67). SchlieBlich berechnet man aus E™ = (1, EM)T den normierten Eigenvektor Bt

n - - ~1/2
j,norm ‘E(n)| Mg I, MQ — m2

J k=1 n k
Mo, 0 _
n J

Mit M? bezeichnen wir den n-ten Eintrag der Diagonalmatrix M?2. Hétte man den Ansatz

EM = (—1, —E("))T gewiahlt, so wiirde das obige Ergebnis sein Vorzeichen &#ndern. Die
Diagonaleintrige wéiren demnach negativ. Da diese fiir Drehmatrizen aber positiv sein
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sollen, war der Ansatz gerechtfertigt. SchliefSlich ist man in der Lage, auch dieses Resultat
in Potenzen von € = my, /m,, zu entwickeln. Mit (4.68) und (4.69) erhilt man

- 04721
M2 = m%v(l —md Y W) (4.82)
n=1 "
und somit nach Entwicklung in € bis zur vierten Ordnung beispielsweise
1 mi
By = E(()Ogorm =1-5 721_‘:1‘/ (483)
2 — my,
(0) miy miy 2 Miy
BjO = Ej,norm = _Oéj_Q(l + 2 Oén—2) <484)

Man iiberpriift, dass die fithrenden Terme in den Entwicklungen von B;, und B};l = B,
entgegengesetztes Vorzeichen haben. Setzen wir O(e?) = 0, so hat die Diagonalisierungs-
matrix B eine sehr einfache Gestalt und ist explizit gegeben durch

m m m
W W w
1 1 —3 No—5 3 —5
1 m% 2752 372
2
—a w 1 Qaiomy, alozmy,
1 m2 m27m2 m27m2
1 5 2 1 3
2
m a1aom a2a3Mm
B=| —amy _cucamy 1 SRR I (4.85)
m22 m27m21 m37m2
—a m_W _Oqozgmw Otgagmw 1
372 m2—m?2 m2—m2
3 3 1 3 2

SchlieBllich berechnen wir noch die Eigenvektoren der Matrix Mg.? (4.58), aus denen sich
die Diagonalisierungsmatrix B¢ ergibt. Zu lésen ist also die Gleichung

(Mes? = M)E2 = 0. (4.86)

Der Ansatz £ = (+1, :I:E?) liefert

m; -
+m3, ( Z af =\ — Z ozjm—VjVEé\j> =0, (4.87)
=0 =1
m3 — A 0 0 army
0 m3 — A 0 . QoM
0 0 mi-A\ Eg=mw [ aym, (4.88)

Die Anwendung der Cramerschen Regel ergibt

S mwm,;Q; ~(n) My m;Q,
EY=—"""7J bhyw EV =" 4.89
5.7 m? _ )\ Al f] m? . MTQL ( )
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Hierbei wurde bereits ausgenutzt, dass Mi = Mg " gilt. Setzt man dieses Ergebnis in (4.87)
ein, erhdlt man wiederrum die Bestimmungsgleichung (4.67) fiir die Eigenwerte. Wir wihlen
nun Eén) = (1, Eén)) fiir n = 0 und Eén) = (-1, —EA'én)) fiir n > 1. Diese Wahl garantiert
einerseits ein positives Vorzeichen der fithrenden Terme der Diagonaleintrige und sorgt
andererseits fiir das erwiinschte relative Vorzeichen beziiglich der Nichtdiagonalelemente.
Wir erhalten somit

Eg(g,)norm = (1 4 Z (mwmkak> > 1/27 (490
0= BT 0 s
B = —(1+ Z (mwm’“o"“) ) 7 (4.92)
o = % ) s > L. (4.93)

Setzen wir wiederrum O(e?) = 0, erhalten wir hieraus

2
1.2 Y W s w W
L—gmiy >y o —0n e —boy —0o % —boy —a % — bog

2 2 2
mw _ 1.2 _my 102y _my 102y
al + blO 1 2'"W m2 mo m% m% mo m%—m2
2 2
_ mw @alagmw 1 a2 _EQQOlng .
B§ - 042 + b20 m1 m3—m3 1 Wm m3 ml—m3 )
W 4], mg Q103 mg % 1— 1p2 2
8% m3 30 m1 m}—m3 ma mi—m3 2" Wom2
(4.94)
wobei
1 .my my  mw aZm?
bOn = __Oéi—lg/ + o, V3V + E 2k W2 ) (495)
2 "mg My M My, — M,
1 .my my> 1my aZm?
boo = —5042—? +tan | % — 3 el (4.96)
m; m; M My,

Man bestétigt, dass die expliziten Ausdriicke fiir B und B die Matrizen (4.59) und (4.58)
in dritter Ordnung diagonalisieren.
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4.4 Feynmanregeln

4.4.1 Propagatoren

Wir beginnen mit der Herleitung der Propagatoren. Sei A, ( ) die n-te Mode des Massenei-
genzustandes eines beliebiges Spin-1/0-Feldes, also W+, Z A oder G*. Es gilt daher

A™ = (BTA,)™, (4.97)

i

A = (BI A5)™, (4.98)

wobei A;(O) = . Fiir Photonen und Gluonen ist die Massenmatrix von vornherein diagonal,
wobei der nullte Eintrag verschwindet und der n-te Eintrag gerade gleich der KK Masse

my, ist. Das zugehorige B bzw. B¢ enspricht einer Einheitsmatrix und es gilt Au g = AL”E))
Wir betrachten die beziiglich der KK-Moden diagonalisierte Wirkung

Sap = / (ZA (an”V — (1 — %)a“ay —+ Mzg“”) A;j(n)
- Z ASND + M)A — (8 + §M3)¢’/> + Srp (4.99)

und wechseln von der Orts- in die Impulsraumdarstellung. Demnach ist % durch —&? und
O"0” durch —kMk" zu ersetzen. Definieren wir

N 1 N
1¥WW”=:—k%f”+'@"g)k“f-%ﬂﬁgwx

so erhalten wir den Propagator D (k) fiir das Eichfeld A aus der Forderung

KM Do (kY = 5k (4.100)
Der Ansatz
DE(k) = agys + bk ko (4.101)
liefert schlieBlich
k

— krEY
(n)pv _ wo__ (1 _
DI () = Mg<g (11— 6Mg) (4.102)
_ a KRV —i kMK
i vl Gl vo) R e 8 2 (4105



4.4. FEYNMANREGELN 29

Die Masseneigenwerte ]\Zg ergeben sich im Falle der W+ und Z-Bosonen aus der transzen-
denten Gleichung (4.67), fiir Photonen und Gluonen sind sie direkt aus der Massenmatrix

abzulesen. Die Herleitung der Propagatoren fiir A;(n) bzw. ¢ lauft analog. Wir finden

k
UQ———»———.V
DW(k) = ; 4.104
o (k) ERySVE ( )
(n) Z
DM(k) = ————. 4.105
5 (k) ERySY? ( )

Man sieht an dieser Stelle sehr schon, dass die Feldkomponenten A;(") sich wie Goldstone-
bosonen verhalten.

4.4.2 Vertizes der nichtabelschen Eichtheorie

Die Feynmanregeln fiir die Kopplung der Eichbosonen untereinander sowie die Kopp-
lung an Goldstonebosonen im elektroschwachen Sektor sind im Wesentlichen die gleichen
wie im Standardmodell. Neu im Repertoire sind jedoch die Kopplungen an die Spin-0-
Feldkomponente Aén). Der Einfachheit halber betrachten wir Gluonen. Wir rekapitulieren
zunéchst die Kopplungsterme der 5D-Wirkung:

Lin == [ d6V=C GG (4.106)
1
{700 A8 AS (00 Ay — 00 M) + Sg2 P Foe Al AS AR A )
:/d¢ /_G{_%fabc(AgnAZ(amAcn_anAcm)

6—20 6—20

——5 (O A5 — Dp AL, AP Ag —

(0,42 — 0,42 AL A™)

7:2
2 —20 —20
95 rabe rade b pAc pAdm pen € b pc Adm ge € b Ac Ad pen
T et ot (A5, AL ATTA — o Al AL AT AG — o ALAS AL ) |

Aufgrund der Antisymmetrie von fo¢ und £ gibt es keine 3- oder 4 As-Vertizes (siche
auch [22]). Als néchstes sind die KK-Zerlegungen der Felder einzusetzen. Im Gluonensektor
wird jedoch nicht iiber die Moden summiert, da die Massenmatrix von vornherein diagonal
ist und somit keine Mischungen auftreten. Im elektroschwachen Sektor hingegen werden die
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Mischungsmatrizen B in den Vertexregeln auftauchen. Hier ist dann jeweils eine Summation
iiber alle Moden durchzufiihren.

Mit g5 = V277 ¢4 findet man, dass die Feynmanregeln fiir 3- und 4-Gluonvertizes die des
Standardmodells sind, welche um entsprechende Uberlappintegrale zu ergénzen sind. Der
3-Gluonen-Vertex lautet

(m), a, 4
1k
[J/,
~
(n), b, v 9 W, cp

G f g™ (k= p)’ + ¢ (p — )" + 9(q — K)"]V2T / " 46 X (6 ()P (9),

(4.107)
der 4-Gluonen-Vertex ist durch
(m), a, u (n), b, v
k), ¢, p o), d, o
—igt N 2 [ o O OO (ON(0) (4.108)

Ngbllc,gd — fabefcde (gupgua o guagup> + face]cbde (guugpa o g,u,agup) + fadefbce (guugpa . gupgua)

gegeben. Schlieflich erhalten wir noch Vertizes fiir die Kopplungen A(m)”A(”)”Aék) und
A(m)“Aén)Aék)

(m), a, p

~

~
~

(n), b, v (E), [4

2 ™ —20
ga fabcg,uu\T/n__:/ d(b er2 ((8¢X(m)) X(n) — X(m) (8¢X(n))) 8¢X(k)7 (4109)
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ga [ (p" X™ 0y ™Mo, ™W, (4.110)

sowie fiir A(m)”A(")”Agk) Ag)

(m), a, (n), b, v

s N
(k), ¢ o), d

2m T
gz (feabfecd feadfecb) py 20 d

)™ 9, 4.111
p— oX M0y x Y ( )

Bei der Herleitung der letzten Regel hat man die Symmetrie der entsprechenden Terme in
der Wirkung unter Umbenennung der Farbindizes benutzt. Man iiberpriift, dass die Aus-
driicke (4.109) und (4.110) in Analogie zu (4.107) Massendimension Eins haben und der
Ausdruck (4.111) die Massendimension Null.

Die Herleitung aller Feynmanregeln des elektroschwachen Sektors ist sehr umfangreich,
folgt aber demselben Rezept: Man nehme die Feynmanregel des Standardmodells®, ergéinze
sie um einen Faktor /2 fiir kubische bzw. 2r fiir quartische Wechselwirkung und notiere
das entsprechende Uberlappintegral, welches aus der Kaluza-Klein-Zerlegung der Felder
folgt. Desweiteren kann man jedes Eichboson durch seine 5. Komponente ersetzen, es sei
denn, der resultierende Graph verschwindet aus Symmetriegriinden (siche oben). In die-
sem Fall wird der Integrand um einen Faktor e2? /r? ergéinzt. Fiir den elektroschwachen
Sektor muss man nun zusétzlich die Mischung der KK-Moden beriicksichtigen, d.h. man
erweitert die Vertexregel um die entsprechenden Eintrdge der Drehmatrizen B bzw. B
und summiert iiber alle Moden.

!Eine vollstéindige Auflistung findet sich in [38].
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4.4.3 Vertizes der Eichkopplungen

Zum Schluss dieses Kapitels sollen die Feynmanregeln fiir die Eichkopplung an Fermionen
angegeben werden. Da diese Uberlappintegrale der Fermion- und Bosonprofile enthalten
werden, fithren wir fiir Letztere ebenfalls den Koordinatenwechsel ¢ — t = ee”® aus
Kapitel (3.1) ein. Die Gleichung (2.82) geht somit iiber in

x™(t) = (Ji(wpt) + BuYi(z,t)) . (4.112)

eN,
Vernachldssigen wir den zweiten Term (fiir hohere Moden ist dies sicherlich zuléssig, da
B, < 1), so ergibt sich fiir die Normierungskonstante zu

Yar st

N? = 2/W do €27 Jy (2 e%)2 ~ 2/ — <—>2J1(x t)? = LJQ(:U )2 (4.113)
0 k o krt \e " kre? "

Hierbei wurde im letzten Schritt Gl. (3.21) benutzt. Somit gilt

"(t) ~ Vkr t{]l;(xn)) (4.114)

Die Vertexregeln (4.107) bis (4.111) lassen sich mit d¢ = (krt)~'dt problemlos auf die neue
Variable umschreiben, indem man die Integration auf den halben Orbifold (¢ € [0, ])
einschrinkt und mit 2 multipliziert. Beziiglich der Quarkfelder fithren wir die Notation

g™ = (¢, ¢V, g?M, ¢® 7@ T (4.115)

ein. Hierbei ist jeder Eintrag von ¢ ein Dreiervektor im Generatlonenraum Wir kenn-
zeichnen dies durch einen zusétzlichen Index 7. Es ist also beispielswise qz ) die zweite
KK-Mode des Singlett-Quarks ¢f. Dieses kann aufgrund des zweiten Satzes an Fermionen
sowohl rechtshéndig, als auch linkshéndig sein. Den Farbindex haben wir weggelassen. Lep-
tonische Felder notiert man auf die gleiche Art und Weise. Die effektiv vierdimensionale
Lagrangedichte fiir die Kopplung an Photonen lautet

(m m,m) (m,n,k n,n) — '(n
Lint = 192V ?2 QL )UE(R il ( ) HILRIZ)A(k( )U[(/,R)quL,(R)j(x)v (4-116)

wobei iiber doppelte Indizes summiert wird,
m,n,k T o plm “(n
[Jg,R zz) = / do e fI(,,R) z(¢)f£,1)% l(¢)X(k)(¢) (4.117)

das Uberlappintegral bezeichnet und die gestrichenen Spinoren fiir Masseneigenzustéinde
stehen. Wechseln wir in die t-Notation, so erhalten wir

I =2 / At J (DI (XD (). (4.118)
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An dieser Stelle muss man jedoch vorsichtig sein. Der Ausdruck (4.117) verschwindet, wenn
der Integrand negative Z,-Paritét besitzt. Beschrankt man hingegen die Integration auf den
halben Orbifold, so ist das Ergebnis ungleich Null. Solche Terme sind dann in den neuen
Koorddinaten von Hand Null zu setzen.

Im Falle eines Gluonenaustauschs benétigt man in der obigen Lagrangedichte zusétzliche
Farbindizes und einen Generator der SU(3) t,, a = 1...8. Die Diagonalisierungsmatrizen
U r sind in Kapitel 3 gegeben. Im Falle eines W-Bosonen-Austauschs gibt es zwei Ver-
schiedene, eine fiir Quarks vom Typ Up, eine fiir Quarks vom Typ Down. Desweiteren
benodtigen wir nun die Mischungsmatrix B (4.85) fiir massive Eichbosonen. Die allg. Ver-
texregel fiir die Eichkopplung an ein (KK-)W-Boson lautet

(m)

k), p
v
(n)
. T m,n,k
(2T (] — PG, (4.119)
Gyl = gl [l pin pr), (4.120)

Fiir Z Bosonen muss man bei der Herleitung der Diagonalisierungsmatrix B die W-Masse
mw durch myy / cos Oy ersetzen. Die Dirac-Struktur der Kopplung lautet

Y gv + 9a7’) = % (7" (L +7°) + (1 =) + g4 (1 +7°) — (1 =9%)). (4.121)

Somit finden wir fiir den Z-Vertex mit gy = 17T S —Q Fsin® 0, g4 = —%T?f

(m)
k), p

(n)

. - n,m,k m,n,k
BT (g + 9a) (L + 7GR 5 + (v — 901 = P)GE0 ), (4.122)

2 cos Oy,

m,n,k T(m,m rh,ﬁ,lz’) n,n /Nc,k)
G(ZL u z?j = UL(il )](ll Ué lj)B(Z )

(mn,k) _ T(m,m) (m,ﬁ,fc) (7,m) (l;,k)
G — pitmm fimak) pm g

ZL d ij L il Ly Pz >
(mnk) _ pri(mm) p(m,nk) rr(fn) o(kk)
GZR wij — UR il I u UR lj BZ )

m,n,k t(m,m) 7(m,7,k) (7,n) o(k.k
G(ZR d gj = DRF il )[(u )Dgz lj)B(Z )-
(4.123)
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Die Kopplungen an Photonen sind durch

(m)
k), u
Y
(n)
ie ,)/,U« v GLmRnifd 75 (4]‘24)
die Kopplung an Gluonen durch
(m)
®), a, u
9
(n)
igs ta Y'V2 GLmRn:d ij (4.125)

gegeben, wobei man By in G r durch 1 ersetzt. Fiir den Austausch von Photon- und
Gluon-Nullmoden kiirzen sich die zugehérigen Uberlappintegrale unter Verwendung von
GL (2.78) und der Orthonormierung (2.75) mit dem Vorfaktor v/27 und man erhilt die
Vertexregeln des Standardmodells. Im Folgenden wollen wir exemplarisch die Kopplung
von zwei Fermion-Nullmoden an eine beliebige Eichbosonmode durch Einsetzen der Dia-
gonalisierungsmatrizen konkret ausarbeiten. Fiir Photonen bzw. Gluonen erhilt man bei
gegebener Chiralitét

0,0,k (0,0,k = 2m,2n,k 1\t
GO = (U 15 Woo)yy + > (Ude) (Mo M k)15 (Mo Mz ), (Uoo)
m,n=1
. (0,2n—1,k)
—Z( Udo)sy (Mo Mo )T (MosMH)! (Uoo)ns + hec. ) (4.126)

Hierbei wird iiber mehrfach vorkommende Indizes summiert und beriicksichtigt, dass Terme
~ I fg 2R bgw, ~ 1 g?ﬁu”’k) aufgrund der Zs-Symmetrie verschwinden. Fiir den W-
Bosonenaustausch kommt nur die Kopplung an linkshidndige SU(2)-Dubletts in Frage. Dies

sind Terme mit einem ungeraden Index n bzw. m. Der zweite Term im obigen Ausdruck
wird daher fiir den geladenen Strom verschwinden. Fiir das Uberlappintegral T é }gl;) im
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fithrenden Term sind wir in der Lage, einen analytischen Ausdruck anzugeben. Mit den
Gleichungen (3.6) und (4.114) erhélt man

T 1
(0,0,k) -~ kT 1 Il: 2CL7R 142¢ ’
IR~ T 1= ®er | dt t=*0R J; (2,t) (4.127)
und somit
Vkr 14 2¢, 3 5 x? 1
7000 _ n [_ L9 2 : __n] fiir ¢p > —— 4.128
L JQ(In) 2(3 + 2CL> 1472 9 +cr; 2, 2 +cr; 4 ur cp, 27 ( )
Vkr 1—2cp 1 3 x? 1 1
00k _ [_ R : ——”} fir — - <cp < =.(4.129
R To(zn) 201+ 2cm) | 22+CR, 72+CR7 g ) W T <cr 2( )

Fiir ¢f, < —% bzw. cg > % geht Ig)’o’k) bzw. Ig]’o’k) gegen Null. Die anderen Uberlappinte-
grale lassen sich leider nicht in solch einer geschlossenen Form angeben.

4.5 Bemerkungen

Aus den oben hergeleiteten Feynmanregeln folgen einige interessante neue Effekte. Mann
geht davon aus, dass verschiedene Fermionen ¢; bzw. [; unterschiedlich im Bulk lokalisiert
sind, und somit unterschiedliche Uberlappe mit dem Higgsfeld besitzen. So sind die leichten
Fermionen eher bei der IR-Brane, die schweren eher bei der UV-Brane anzutreffen. Wir
diskutieren kurz zwei Konsequenzen dieser Annahme.

Verschiedene Massenparameter ¢; fithren zu verschiedenen Uberlappintegralen in den
Vertexregeln. Die Vertexregeln (4.125), (4.124) und (4.122) induzieren flavorverletzende
neutrale Strome (FCNC) bereits auf Baumgraphenniveau durch den Austausch von KK-
Gluonen, KK-Photonen, Z- und KK-Z-Bosonen?. Diese stehen in Konkurenz zu den Box-
und Penguindiagrammen des Standardmodells®, die ihrerseits im RS-Modell zusétzlich mit
ausschliefllich neutralen Eichbosonen konstruiert werden kénnen. Der Beitrag dieser neuen
Physik ist, da es sich effektiv um 4-Fermion-Prozesse handelt, mit dem inversen Quadrat
der Kaluza-Klein-Massen unterdriickt. Da er aber bereits in erster Ordnung der Stérungs-
theorie auftritt, sollte er, falls es diese Effekte gibt, im Rahmen von Préazessionsmessungen
zu erfassen sein.

Die Vertexregel fiir den geladenen Strom enthélt den Term (4.120), der als verallgemei-
nerte, unendlich dimensionale Version der CKM-Matrix verstanden werden kann. Aufgrund

2Fiir Eichbosonen des Standardmodells bzw. Nullmoden mit flachen 5D-Profil gibt es keine solchen
Effekte als Folge des GIM-Mechanismus.
3Diese enthalten geladene Eichbosonen.
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der nichtuniversellen Kopplung ist diese Matrix nicht unitér, was einige Berechnungen mit
Bulk-Fermionen in Schleifen erschwert. Dieses soll am Beispiel des Boxgraphen im néchsten
Kapitel demonstriert werden.



Kapitel 5

Eichinvarianz und Modenmischung

In diesem Kapitel sollen einfache Streuprozesse der abgeleiteten 4D-Theorie studiert wer-
den. Insbesondere wollen wir zeigen, wie der Eichparameter ¢ in der Berechnung der Am-
plitude verschwindet. Es wird sich herausstellen, dass die transzendente Gleichung (4.67)
der Schliissel zum Gelingen dieses Vorhabens ist. Wir werden jedoch die Theorie vereinfa-
chen, indem wir die Fermionen bei ¢ = 7 lokalisieren. Dies erspart uns die Berechnung von
komplizierten Uberlappintegralen. Man muss jedoch die Fermionen iiber die 5. Dimension
normieren. Hierzu reskalieren wir ¢ — % e3/2krm) Dies bewirkt, dass der kinetische Term
in der 4D-Wirkung frei von Warpfaktoren ist (man beachte, dass auch das inverse Vielbein
einen Faktor e*™ liefert). Die Eichbosonen bleiben selbstverstiindlich im Bulk. Andernfalls
hétte man es mit einer trivialen Erweiterung des Standardmodells zu tun.

5.1 Eichinvarianz auf Baumgraphenniveau

Gegeben sei die Amplitude eines Streuprozesses, bei dem ein W~ zwischen den beteiligten
Quarks ausgetauscht wird (sieche Abb.5.1). Wir erinnern an dieser Stelle nocheinmal daran,
dass der Zustand der freien Propagation durch eine Uberlagerung aller Moden der Eigen-
zustédnde der Wechselwirkung gegeben ist. Es werden daher in jedem Vertex die Eintrége
By der Diagonalisierungsmatrix auftreten, welche durch E.” (sieche Gl. (4.81)) gegeben
sind. Der Propagator (4.103) generiert einen von £ abhéngigen Term in der Amplitude:

My (€) = —@g?g (%)Qda(kz’ml _275 up (k) 7 _qgggwg a(p )y _275 da(p)
'ZBnoX(") () BroX ™) () - Via (V.
Hierbei bezeichen a, b, ¢, d Generationenindizes. Es ist
¢ u(p)) v (1 = 7")d(p) = a(p ) (7' —¢") — (7' —¥")7")d(p)
— G(ma — ma)d + @y + ma)yd (5.1)

67
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Abbildung 5.1: Kompensation der £&-Abhéangigkeit auf Tree-Level

und somit

- 1 \2 —i27g; . n o
MVVgO) (5) = ( > ( 1 MQ ‘/cd‘/;b Z BnOX( )(W)Bn’(]x( )(7T>
0 n,n’

2v2/ (g2 — EME)
: ((mu,b - md,a)Jaub + (M + md,a)JﬂSUb)
. ((md,d — mu,c)ﬂcdd + (mu,c + md,d)ﬂcyg‘dd) . (52)

Da wir die Fermionen auf die Brane gesetzt haben, gibt es keine Kopplungen mit den Aén)—
Beimischungen zu (. Desweiteren sind die Feynmanregeln bis auf einen Faktor By, und die
Massenkorrektur diejenigen des Standardmodells (nachzuschlagen in [38]). Vergleicht man

M- = <%>2%qz%§m d, (md,a(l —°) — My p(1 + ’YS)) Up
e (Mue(1 = 7°) = maa(1+7°)) da VeaVay Bigo (5.3)
mit (5.2), so findet man
M? + M, =0 (5.4)
falls
QA;ZE S B m) By ) = B (5.5

Mit ggv = 2 mw, o, = V 27rX(”) (m) und A, = M,f vereinfacht man die obige Bedingung zu

mw
— E Boay, = Beoo. 5.6
o 2 0¥ €00 (5.6)

Auf die gleiche Art und Weise berechnet man die Amplituden M(V];}) und Mék) , wobei k > 1.

Hierbei koppeln die W’ én) lediglich durch ihre ¢-Beimischung. Die resultierende Bedingung
lautet

mw
\//\_k nZ:O €0 ( )
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Man sieht, dass die obige Bedingung (5.6) mit (5.7) identisch ist, wenn man k = 0 setzt.
Mit ng%orm =gl = B, gilt also zu zeigen, dass

VN EPa,=EY Vk=0,12,.. (5.8)
erfiillt ist. Einsetzen von (4.81) und (4.92) liefert

) ) 9\ —1/2 9\ —1/2
Qo kX — (o [ myimog
ZM_W( g(%_mg)) ) ( +Z(T—mg)) .

. (5.9)

Betrachten wir nun die linke Seite der Gleichung. Es ist
Apa? w2 Ak
= = i 5.10
Z)\k—mQ Z)\k—mQ mi; (5.10)

Hierbei haben wir Gebrauch von Gl. (4.67) gemacht. Setzen wir dieses in (5.9) ein, qua-
drieren und bilden die Inverse, so erhalten wir

2 2 2
myy ALY 9 mpog
— |1 =1 A1
Ak ( +Z:;(/\k_ml2> ) i — (Ak_m%) (511

2 20\, _ 2
Mw 4 +m2 <M) = 0. (5.12)

bzw.

Dies entspricht jedoch gerade der transzenden Gleichung (4.67) und die Bedingung (5.8) ist
erfiillt. In der Tat geschieht die Kompensation der Beitrdge Ordnung fiir Ordnung. Hierzu
blicken wir zuriick auf Gl. (5.5). Entwickeln wir M;? = \;* unter Verwendung von (4.68),

so ergibt sich
64)> : (5.13)

r W] N 1
e (T o) -7

Setzen wir ferner die entsprechenden Eintridge aus (4.85) und (4.94) in die linke Seite
der Bedingung (5.5) ein, beobachten wir in der Tat, dass sich die Beitridge in gegebener
Ordnung wegheben:

2
m? m? m? 1 a?
1 22w 1 - 2 W1 — 2 W | 1—-m? —n
(eme) (- xeik) (et ) - (e o
2 ar 4
<1+Z )(1—22 )—(1—mw W>+Oe

=0+ O(e. (5.14)
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Fiir den Austausch von KK-Eichbosonen ist die Bedingung

213 1 5

2 Z Bx™ (W)Bn/kx(" )(7) - ﬁBf(Jk =0 (5.15)
k' nn!
zu erfiillen. Wir entwickeln
1 1 1 2m%,[, 4
ﬁ:m2+a2m2 +...:W<1_akﬁ+0(€) (516)
k k My k k

und erhalten nach Einsetzen der Komponenten aus den Diagonalisierungsmatrizen
myy 2 My 4
a; — « =0+ 0(e). 5.17

Zuguterletzt wollen wir noch einen Schleifenprozess studieren, ndmlich den Boxgraphen.

5.2 Boxgraph

Im Standardmodell liefert der Boxgraph mit zwei W-Bosonen beispielsweise den fiihren-
den Beitrag zur BB-Mischung. Wir wollen nun zum Vergleich die Eichinvarianz fiir den
Ausstausch von Nullmoden (Masseneigenzustand) priifen. Diese entsprechen aufgrund der
Mischung mit den KK-Anregungen nicht dem SM-W-Boson. Da wir in fithrender Ordnung
1/M%  rechnen, diirfen wir alle dufieren Impulse Null setzen um somit die Amplitude zu
vereinfachen. Wir bezeichnen den Schleifenimpuls mit k. Die Fermionen sind erneut bei der
TeV-Brane lokalisiert. Die Spinoren sind aufgrund der verschwindenden dufleren Impulse
nur Zuschauer in der folgenden Rechnung, welche somit bis auf die Eintrage der CKM-
Matrix fiir beliebige duflere Quarkfelder gilt.

Wir betrachten das Beispiel der BY-BY-Mischung und definieren L, = 7.(1 —4°), sowie
Ai = ViVig. Konzentrieren wir uns wiederrum ausschliefllich auf den von ¢ abhingigen
Teil des Propagators, so erhalten wir nach Einsetzen der Zerlegung und Auswertung des
Uberlappintegrals durch die Delta-Distribution

4
2

n,n’ ,m,m’

4D/ dPk bT,() +m)T,d b T, (K + mj)ryd{ k" kY ke kT
(2m)P (k> = mZ)(k* — m3) (k2 — eM2)° M2
1 koK™ kkv KPRV KT
T e 72 (gW g7 -2 )}
(k* — Mg)(k? — £Mg)

e YR fve
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Abbildung 5.2: Kompensationsschema fiir den Boxgraphen: Nullmodensektor

Den oberen Ausdruck vereinfacht man durch Verwendung der Relationen k% = k? und
1
FE Y @ 0 = K07 © (5.19)

Desweiteren nutzt man aus, dass der Boxgraph endlich ist. Rechnet man in dimensionaler
Regularisierung, so kiirzen sich die Pole heraus. Aus diesem Grund diirfen wir eine weitere
Identitat fiir D = 4 verwenden:

Luvorr @ Y YT = 7Ly @77 TH =4 T, @ T*, (5.20)

wobei I'), = 7,(1 — ~°) [36]. Als Resultat erhalten wir schlieBlich

4

g n n' m m’

MWW:(27T>2 (—2\j§> E >\i)\j E BnOX( )Bn’OX( )BmOX( )Bm’OX( )
i’j

sp [ d°k 41_)F”dl_)1;“c7i | - -, K
/ (27T>D (k;2 _ m?)(k;Q _ m?) {2f£(Mo) + gg(M())}M—é’ (5-21)
: oy _ Mg — k*/D -0y k*/D

Fiir die erwiinschte Kompensation sorgen nun eine Box mit zwei Goldstone-Bosonen sowie
zwei Boxen mit je einem Goldstone-und einem W-Boson (sieche Abb.5.2). Die erste liefert

L by dPk  4bT,dbTI*d .
= )\1/\84 4D/ 12 M2 2 2
Moo =143 <2\/§> Zj: 3500 # (2m)P (k% — m2) (k2 — m?) 9e(Mo) mim;,

(5.23)
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die beiden anderen jeweils (man beachte das Vorzeichen)

Muwy = = v2(2\/_> ZA)‘ B&OOZB"OX(H)B"’OX(H)
Pr 4 b F d b Trd m2m?2
4-D M? LI 5.24
/ 5B i ){fg( 3+ g (0)} e 620

Machen wir nun von Gl. (5.5) gebrauch, die wir oben bewiesen haben, so kompensieren
sich die verschiedenen Beitréige gerade dann, wenn

4 2 2

- m m : mZ
> AN G T Z A (14 St — ) =0 (5.25)
1,J J

erfiillt ist. In der Tat gilt aufgrund der Unitaritidt der CKM-Matrix fiir Brane-Fermionen
die Beziehung

D= N=0 (5.26)

und der obige Ausdruck verschwindet. Man erahnt an dieser Stelle, dass sich die Rech-
nung fiir Bulk-Fermionen wesentlich schwieriger gestaltet. So wird man eine transzendente
Gleichung fiir die Fermionen in Analogie zu (4.67) bendtigen und die Bedingung (5.5)
verallgemeinert sich in einer nichttrivialen Art und Weise. Ferner ist die verallgemeinerte
CKM-Matrix nicht unitér, so dass die Beziehung (5.26) durch ein inhomogenes Gleichungs-
system ersetzt wird.

Man kann nun fiir Baumgraphenrechnungen die unitire Eichung verwenden. In diesem Fall
verschwinden die unphysikalischen Freiheitsgrade aus der Theorie und der Propagator fiir
ein KK-Eichboson lautet

g =i - k”k”>
DI (k) = s Ve (g“ ) (5.27)

Fiir Schleifenprozesse fiithrt diese Eichung, die den Grenzfall & — oo beschreibt, in der
Regel zu offenkundig falschen Ergebnissen. Als Indiz hierfiir dient das Skalenverhalten. So
ist ein effektiver 4-Fermion-Prozess, dessen innere (ausintegrierte) Freiheitsgrade Kaluza-
Klein-Teilchen enthalten, nach den Prinzipien der effektiven Feldtheorie mit dem inver-
sen Quadrat der zugehorigen KK-Masse unterdriickt. Rechnet man Schleifenprozesse in
unitérer Eichung, so vernachlissigt man die Beitrdge des Schleifenintegrals fiir £ — oo.
Dies fiihrt in der Regel zu einer falschen Unterdriickung im Resultat.



Kapitel 6
Ausblick

In den vorangegangenen Kapiteln haben wir untersucht, wie man eine vierdimensionale
Theorie aus der allgemeineren 5D Theorie ableitet. Die gefundenen Feynmanregeln erlau-
ben es nun, die Phinomenologie des Randall-Sundrum-Modells zu untersuchen. Hierbei
bieten sich Methoden der effektiven Feldtheorie an. In dieser wird die Lagrangedichte als
unendliche Summe lokaler Operatoren (); dargestellt, welche die Symmetrien der Theorie
respektieren, und somit in der Amplitude eines beliebigen Prozesses den Ubergang vom
Ausgangs- in den Endzustand vermitteln. So gilt

Lepr = Z Ci(p) Qi -

Da der GIM-Mechanismus fiir simtliche KK-Eichbosonen aufgrund ihres nicht flachen 5D
Profils aufler Kraft gesetzt ist, wird eine groflere Anzahl an Operatoren erlaubt sein, als dies
im Standardmodell der Fall ist. So sind FCNC-Prozesse beispielsweise nicht mehr auf den
Austausch von W-Bosonen beschréinkt, und es gibt zusétzliche Operatoren, die jetzt auch
rechtshéandige Felder als &uflere Zusténde zulassen. Da diese Prozesse in der Regel bei Ener-
gien stattfinden werden, die geringer sind als die Ruhemassen der Kaluza-Klein-Teilchen,
entfernt man diese durch Ausintegration der entsprechenden Freiheitsgrade in der Wirkung
aus der Theorie. Um das Hochenergieverhalten der Theorie aufzufangen, versieht man die
Operatoren mit individuellen Koeffizienten C;, welche die Physik oberhalb des gewihl-
ten Cut-Offs p beinhalten. Die Bestimmung dieser sogenannten Wilson-Koeffizienten ist
die Aufgabe, der es sich zu widmen gilt. Fiir die fithrende Ordnung der oben erwidhnten
flavorverdandernden neutralen Strome ist dies trivial, da sie auf Baumgraphenniveau statt-
finden. Geht man in der Bestimmung der Koeffizienten eine Ordnung hoher, so empfiehlt
es sich, die Impulse der &uleren Teilchen Null zu setzen. Dies ist zuléssig, da die Wilson-
Koeffizienten nur die Physik oberhalb des Cut-Offs beschreiben und somit unabhéngig
von den gewihlten Infrarotregulatoren sind. Als Konsequenz werden Schleifenintegrale die

Gestalt
/ dPk k"

annehmen. Dieser Ausdruck verschwindet aber in dimensionaler Regularisierung und die
effektive Theorie enthédlt nur Baumgraphen. Der Vergleich mit der Amplitude der vol-
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len Theorie, welche auf Einschleifenniveau nun sehr viele Terme enthélt, liefert die Ko-
effizienten. Die Ergebnisse miissen dann auf ihre Vertraglichkeit mit den Messdaten ge-
priift werden. Hierbei hat man allerdings einen gewissen Spielraum in der Wahl der Para-
meter, so ist z.B. der Wert des Produktes kr, welches im Warpfaktor auftaucht, nicht
fest vorgegeben. Auch die Massenparameter ¢; der Fermionen sind zunéchst beliebig.
Dariiberhinaus bieten sich andere Moglichkeiten, dass Modell zu erweitern. So kénnte
man beispielsweise dem Bulk eine allgemeinere Symmetriegruppe SO(4) x U(1)p_p ~
SU(2)p, x SU(2)g x U(1)p_, zuordnen, welche durch Randbedingungen an den Orbifold-
fixpunkten auf die SU(2), x U(1)y-Eichgruppe des Standardmodells heruntergebrochen
wird [27]. Man hat also einen gewissen Spielraum, um realistische Theorien zu konstruie-
ren. Das letzte Wort hat jedoch das Experiment.
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