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CO-ORDINATE SYSTEM
Right-handed, curvilinear co-ordinate system (x, s, z) for the beam:
x is directed radially outwards in an anticlockwise ring
s is the direction along the beam
z is the vertical co-ordinate
ρ is the local radius of curvature

y is used as a general transverse co-ordinate that can replace both x and z.

FREQUENTLY-USED SYMBOLS AND ABBREVIATIONS
Subscript  0 denotes a reference value evaluated, e.g. at the origin, on central orbit,

or at rest.
<  > Average over a distribution.
•, ′ differentiation wrt time, differentiation wrt to s or ∆p/p.
Superscript  T denotes transpose of a matrix.
∆, δ, d macroscopic, microscopic and infinitesimal steps.

FWHH full width at half height.
RMS root mean square.
F, D focusing and defocusing lenses.
ES, MS electrostatic and magnetic septa.
i imaginary number.
rf radio frequency.

NOMENCLATURE
A atomic mass in atomic mass units.
A = X2+X′ 2 normalised betatron amplitude.
A0, Ar dc and ripple amplitudes of the particle spill intensity [particle/s].
Am, Bm harmonic coefficients in a 2-dimensional magnetic field
Ab, Asb rf bucket area, stationary rf bucket area [eV rad].
B, Bx, Bs, Bz magnetic induction vector and components [T].
C machine circumference.
Cx, Cx′, Sx, Sx′ etc. principal trajectories (cosine and sine-like).
D, Dx, Dz dispersion vector and components [m].
Dn, Dn,x, Dn,z normalised dispersion vector and components.
D diffusion constant.
e electronic charge.
Ex, Ez emittance (phase-space area) quoted with π apparent

e.g. 10π mm mrad.  Unless otherwise stated the emittance of
a distribution will the RMS value.

E, Ex, Es, Ez electric field vector and components [V/m].
E, E0 total energy, rest energy of a particle [eV].

z

x
s

ρ
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F duty factor for spill quality.
f frequency [s-1].
G space-charge form factor.
h perpendicular distance (normalised) from the separatrix to the origin.
h rf harmonic number.
Hb, Hsb rf bucket height, stationary bucket height [eV].
H hamiltonian.
I identity matrix.
I current [A].
j current density [A/m2].
K improvement factor for speed of crossing into the resonance.
K(s) general focusing constant (equivalent to spring constant for simple

harmonic motion) [m-2].
k = (1/Bρ)(dBz/dx)0  Normalised (by momentum) quadrupole gradient [m-2].
k  ́= (1/Bρ)(d2Bz/dx2)0  Normalised (by momentum) sextupole gradient [m-3].
L thickness of a scatterer [units consistent with Lr].
Lr radiation length [units consistent with L].
"s effective magnetic length of a sextupole [m].
m, m0 particle mass and rest mass[eV] also used as an integer.
me mass of electron [MeV].
M, m11, m12, etc. transfer matrix and elements of transfer matrix.
N number of particles.
NA Avogadro’s constant.
n integer.
p momentum [eV/c].
p, q co-ordinates in a rotating system (rotator).
Q spill quality.
Qx, z betatron tunes.
q = ze charge [C].
re classical radius of the electron [m].
R rotation matrix.
R average radius of machine [m] also used for range of a particle in

an absorber [m].
S = (1/2)βx

3/2
"s k´  normalised (by β) sextupole strength [m-1/2].

T, tD time [s] and dwell time on a mini-voxel [s].
T, T, Tspill kinetic energy, transit time [s], spill length [s].
u,u′,v,v′ co-ordinates in a rotating frame (gantry).
V voltage [V] and volume [m3].
vscan scanning velocity of beam spot [ms-1].
W FWHH of beam spot distribution equal to size of a voxel [m].
W = yTσ-1y  motion invariant.
x, s, z local curvilinear co-ordinate system for the beam [m].
X, X´, Z, Z´ normalised co-ordinates.
Y used to replace X′.
z, zinc net number of electronic charges on a particle, net number of charges

on a particle incident on a scatterer.
Z atomic number and impedance [Ω].
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α adiabaticity factor.
β = v/c relativistic β.
γ = m/m0 relativistic γ.
γt γ at transition.
αx, z, ,βx, z, γx, z = (1+αx, z

2)/βx, z Courant and Snyder functions(β [m], γ[m-1].
ε = 6π.δQ modified tune distance.
φ = dN/dt particle flux [s-1].
φ, φs rf phase, synchronous rf phase [rad].
Φ magnetic flux.
Γ = sin φs

η = γ−2-γt
-2 phase slip factor.

( ) ( ) s
x

B

BC
s x

z
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s
x di3exp
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  resonance driving term.

λ, Λ normalised trajectory co-ordinates measured in units of h.
λ = dN/ds linear particle density in a spill, or entering a resonance.
µx,z betatron phase advance [rad].
θ0 projected RMS (or characteristic) scattering angle [rad].
θs scattering angle [rad].
ρ radius of curvature [m] and linear particle density along the side of

an unstable triangle and in distributions.
σ root mean square value.
σ sigma matrix.
τ time constant [s].
Ωs synchrotron frequency [s-1].
ω angular frequency [s-1].
Ψ = dN/d(∆p/p)  particle density in momentum space.

*  *  *
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I-1 INTRODUCTION

1.1 BACKGROUND
High-energy, ionising radiation has proved to be effective in the treatment of

cancerous tumours by causing double-strand breaks in the cell DNA.  In particular,
hadrons (that is protons and light ions) have the advantageous property of penetrating
the body easily and then depositing their energy at a depth determined by their initial
energy.  This is often referred to as the Bragg-peak behaviour, see Figure 1.1 and, for
example, Ref. 1.  The abrupt cut-off of the beam at a controllable depth and the easy
penetration compares extremely favourably with conventional radiation techniques
using electrons or X-rays that deliver the highest dose at the surface diminishing with
depth.  The Bragg-peak behaviour offers the possibility of a conformal treatment of
deep-seated tumours with minimum disturbance to the surrounding tissue.

Figure 1.1  Bragg curve

Irradiation techniques fall into two broad categories:

• Passive spreading

• Active scanning.

The more usual technique is passive spreading, which uses a specially designed
double scatterer to spread the beam by multiple Coulomb scattering uniformly over a
large area that is sufficient to treat the whole tumour, or a large part of it.  By treating
the tumour in layers, defined by the depth of the Bragg peak, and applying collimators
and shaped absorbers (bolus), a high degree of conformal treatment can be achieved
[2].  This technique is well suited to large tumours and to ones that are difficult to
immobilise.  The second technique, which is of primary interest in this report, is
active scanning, which uses a ‘pencil’ beam to ‘paint’ the tumour in three-
dimensional space with sub-millimetre accuracy [3,4].  Longer times with smoother
beam spills are required for this type of treatment to facilitate the on-line dosimetry
and the accelerator has to produce a well-focused beam with a high spatial precision
and an exact energy.  However, the precision is only meaningful if a high positional
stability can be assured for the tumour.  Under the influence of tumour movements,
active scanning can form ‘hot’ and ‘cold’ spots throughout the treatment volume,
whereas passive spreading still irradiates uniformly and only the boundaries become
uncertain.

Relative
dose

Depth in
tissue

1
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1.2 BASIC DESIGN CONSIDERATIONS
The primary aim of this study is to design a machine that would allow the

direct clinical comparison of protons and carbon ions for cancer therapy* [5] using
high-precision active scanning.  As a secondary aim, the machine should also be
capable of delivering proton beams by passive scattering.

A synchrotron offers the flexibility needed for dual-species operation and the
variable energy needed for active scanning.  The higher rigidity of the ions determines
the size and maximum power of the accelerator, while the protons for the passive
spreading mode dominate the design of the injection system and the low-energy
operation, due to their high space charge.  The use of slow resonant extraction [6,7]
extends the beam spill time sufficiently to perform on-line dosimetry at the patient and
to switch the beam on and off according to the dose required.  Either the half-integer
or third-integer resonance can be used, but the current trend is towards the slower and
more controllable spills from the third-integer resonance.  Higher order resonances are
not used because the angular separation of the separatrices becomes too small.

The principal design requirement is that of a smooth spill.  This directly
determines the performance of the machine.  A poor spill quality makes it necessary to
slow down the treatment by lowering the spill intensity and the scanning speed, so that
the spill imperfections can be corrected by the scanning system on-line.  In the Proton-
Ion Medical Machine Study (PIMMS) design, many of the features are chosen
specifically to ensure a good spill quality [8].

Betatron core
The extraction is activated by accelerating the beam into the resonance with a

betatron core [9].  The extraction time is the time needed to accelerate the beam by its
own momentum spread.  Thus, the favoured configuration for the beam is one of
small emittance and large momentum spread, so that extraction can be extended
smoothly in time.  This technique has the great advantage that it maintains all
transverse optical parameters (and hence all power converters) in the machine
constant.  The only system that changes is the power converter for the betatron core.
Since this is a single unit, special care can be taken with its design and that of its DAC
(Digital to Analogue Converter).  An 18-bit DAC, or a 16-bit DAC with smoothing of
the DAC steps [10] is needed.  The betatron core is a high inductance device and is
intrinsically smooth in its operation.

Hardt condition
The Hardt condition [11] imposes a special configuration on the resonance that

aligns the extraction separatrices for all momenta and thus minimises the beam losses
on the extraction septum.  An acceleration-driven extraction, such as that obtained
with a betatron core, is required to implement this feature and certain optical
conditions have to be carefully integrated into the lattice design [12].

                                                
* In 1946, R.R. Wilson proposed the use of protons for cancer therapy and predicted the future use of
heavier ions, specifically mentioning carbon.
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Intrinsic smoothing
An acceleration-driven extraction with the Hardt Condition has an additional

advantage for the spill quality.  When a batch of particles enters the resonance, they
become trapped for many hundreds of turns in the machine before being released into
the spill [13].  When this occurs, half of the particles are concentrated in a spike and
the other half are spread out in a long tail [14].  The delay between entering the
resonance and emerging in the spike depends upon the initial betatron amplitude of
the particles.  The Hardt condition configures the resonance and the beam in such a
way that a mixture of all amplitudes enter the resonance at all times.  This has the
effect of spreading the spikes and reducing the sensitivity to power converter ripple.

Channelling rf bucket
Ripple in power converters affects the spill uniformity by causing a relative

motion in tune between the beam and the resonance.  One way of making the spill less
sensitive to this motion is to cause the particles to enter the resonance with a velocity
that is much in excess of the ripple velocity.  Changing the betatron core more quickly
is a too small an effect and is, in any case, counter productive, because it shortens the
spill time.  Instead, the technique is to create a region between the beam and the
resonance where the particle velocity is higher, but the density is lower (so that the
particle flux is constant).  This can be done in different ways, for example by
stochastic noise [15], but the method chosen for PIMMS is the channelling rf bucket
[16,17].  The choice is partly justified by the fact that no new equipment is needed.
The main rf cavity that is used for the acceleration of the beam can also be used for
this task.  The action of the cavity is based on a technique known as phase-
displacement acceleration [18].  All particles in the beam are accelerated by the
betatron core and, at the same time, the rf cavity is set so that it would decelerate
particles by the same amount if they were trapped inside the bucket.  The beam,
however, is outside the rf bucket and the influence of the cavity is only felt as the
revolution frequency of the particles approaches that of the cavity.  Close to the cavity
frequency, the particles are compressed into a narrower and narrower region of phase
space and have to move rapidly around the bucket, which remains empty.  This can be
visualised by thinking of a river flowing past the piers of a bridge.  The narrower the
space allowed between the piers, the greater the river’s velocity.

Rotator
The choice of resonant slow extraction has the consequence that the extracted

beam has unequal transverse emittances.  This difference makes it impossible to rely
on the conventional method used for matching gantries to cyclotrons where the beam
emittances and the optics functions are all assumed to be equal and the dispersion to
be zero at the interface between the fixed line and the rotating gantry.  There is, in
fact, a marked difference in the emittances (a factor of 50 would be a practical case
with low coupling from the orthogonal plane) and a more advanced technique is
required for matching to the rotating gantry.  This technique uses a device known as a
rotator [19].  This maps, one-to-one, the optics of the fixed machine directly to those
of the gantry and makes this liaison completely independent of the gantry rotation
angle.  The mathematics of the rotator is simple and rigorous, but the practical design
has to be approached with some care [20].  The rotator not only allows unequal
emittances and optics functions, it also allows finite dispersion functions.
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‘Bar’ of charge
The slow-extracted beam from a synchrotron is not only asymmetric in terms

of emittance, it is also asymmetric in the shape of its emittance (or ‘footprint’) in
phase space.  In the vertical plane, the beam occupies the usual elliptical area,
whereas, in the horizontal plane, it is a narrow bar.  This bar must arrive at the patient
with a known and controllable orientation, since this determines the spot size in that
plane.  The positive aspect of this behaviour is that it provides an independent handle
on the control of the beam size in the horizontal plane.  This opens the way to a new
concept for controlling the beam size, not from the gantry, but from an optics module
set upstream in the transfer line [21].  In the next section, the vertical beam size will
be similarly treated upstream of the gantry, but by a different technique.  Moving the
controls of the horizontal and vertical beam sizes upstream is a new philosophy that
makes it possible to control the spot sizes in all gantries and fixed beam lines in the
complex with just two optics modules.  At the same time, it reduces the number of
optical constraints placed on the gantry design.

Vertical beam size control
The vertical beam-size control is also moved out of the gantry and to a point

closer to the accelerator.  The technique that allows this to be done is the use of one-
to-one and telescopic modules for the extraction line optics [21].  Once the modules
are all of the one-to-one or telescopic type, the vertical betatron amplitude function is
simply handed from one module to the next with a constant magnification (usually
unity) until it arrives at the patient.  One-to-one modules are also very convenient
structures in which to embed closed dispersion bends such as those needed when
turning away from the main extraction line towards a gantry and treatment room.

Extracted beam intensity
The extracted beam intensity can be varied in two ways:

• Varying the rate of field change in the betatron core

• Varying the intensity of the injected beam.

In theory, the rate of field change in the betatron core can be modulated from
approximately four times the nominal rate needed for active scanning (i.e. the rate
foreseen for passive spreading) down to zero.  However, very low rates are not
advisable because the ‘granularity’ of the DAC will become apparent.  For this reason,
a maximum intensity variation of one to ten is foreseen during a spill using the
betatron core.  However, this ratio can be extended from spill to spill by varying the
injected beam current.  Ideally, the accelerator should always be filled in the same way
in order to have reproducible operation, but this ideal is already lost because the low
space-charge carbon-ion beam and the high space-charge proton beam must have
different operational cycles (working line corrections etc.).  Therefore, some
additional cycles for intermediate proton beam intensities will not greatly add to the
existing complexity of the operation.  The delivered dose intensity can be further
regulated at the patient by varying the scanning speed.
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Active scanning
The aim is to provide a maximum speed of 10 m/s for the scanning beam spot.

The boundary conditions for carbon ions and protons differ strongly and a successful
scanning system for the carbon ions is not trivial [22].  The phase-space asymmetry of
the slow-extracted beam makes one important difference with respect to scanning
systems that deploy cyclotron beams.  Since the beam distribution is near-rectangular
in one plane and near-gaussian in the other, it is necessary to scan in the direction of
the rectangular distribution and to keep the gaussian distribution at right-angles to the
spot motion.  In some cases, it is possible to exploit this rectangular shape to bestow a
sharp edge on the scan.  Perpendicular to the scanning direction, the overlap of the
gaussian tails makes the alignment of the adjacent scans lines insensitive to small
errors.

Alternative gantry
Finally, the high magnetic rigidity of the carbon ions led to an investigation of

an alternative gantry design that has become known as the Riesenrad gantry [23,24].
In this variant, the heavy accelerator equipment is kept on the axis while the treatment
room with the patient couch is positioned off-axis.  The treatment room would be
positioned before the entry of the patient and would be accessed from the rear by a
ramp or lift to take into account changes in level.  The reason for inverting the
conventional patient-gantry geometry is one of engineering.  For protons, it is feasible
to build a gantry structure that can carry dipoles and quadrupoles with a total bending
of close to three-quarters of the main synchrotron and still maintain sub-millimetre
accuracy along the whole line while the gantry assumes different orientations, but for
light ions, this is a more difficult task and has yet to be demonstrated.  The point at
which one system becomes more attractive than the other has not been established, but
a first guess is that for a gantry of more than 100 tonnes it is more convenient to move
the lighter treatment room than the heavier magnets.  A major optics constraint for the
Riesenrad gantry, when it was first proposed, was the closing of the dispersion bump,
but this problem is now rendered void by the use of a rotator.

1.3 PERFORMANCE PARAMETERS
The general performance specifications for the machine are based on the

following premises for the clinical requirements [25],

• A treatment will on average be 30 fractions with 2 Gray per fraction.

• An acceptable treatment time is 2 to 2.5 minutes per fraction.

• The maximum size of the treatment volume is assumed to be 2 liter when using active
scanning and 7.5 liter when using passive scanning.

• An acceptable maximum depth is assumed to be ~27.5 cm

• An acceptable minimum depth is assumed to be ~3.5 cm.

The above guide lines lead to the more technical specifications listed in Table 1.1.

The theoretical aspects of this study and, in particular, the considerations
concerned with how to generate a smooth beam spill are presented in this report and
the technical design of a generic machine is presented in a second volume.



PIMMS January 1999

6

PIMMS performance parameters

Active scanning Passive scanning
(Pencil beam) (large area beam)

Extraction energies for carbon ions 120-400 MeV/u -

Extraction energies for protons* 60-250 MeV 60-250 MeV

Beam distributions Spot is gaussian in direction
perpendicular to scan and near-
rectangular in scan direction.

Scanning is parallel over a 20 ×
20 cm2 rectangular area .

Beam is scattered up to an
elliptical  field of 20 × 15cm2

with a ±2% uniformity.
Scatterer has 40-50%

efficiency.

Nominal treatments 60 spills of 1 s +1s to ramp up
and down = 2 minute

120 spills of 0.25s +1s to ramp
up and down =  2.5 minute

Nominal dose delivered 2 Gray in 2 liter  2 Gray in 7.5 liter

Number of protons in one spill 1010 2 × 1010

Number of carbon ions in one spill 4 × 108 -

Start of spill can be synchronised to
breathing

Yes Yes

Spot sizes variation at all energies (FWHH). 4-10 mm -

Intensity levels The spill rate within a spill can be adjusted by the rate of change
of the betatron core.  The maximum rate is for passive scanning,

which will be unsuitable for active scanning.  A minimum
variation of 1:10 is expected within a spill for active scanning.

The number of intermediate levels is more a function of the control
system than a fundamental limit.   Wider variations from spill to
spill can be obtained by changing the beam intensity at injection

Energy levels The number of energy steps is limited only by the control system

*  The top extraction energy for protons is purely nominal.  The accelerator can deliver protons up to 1.2 GeV.

Table 1.1  PIMMS performance parameters
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I-2 THIRD-ORDER  RESONANCE
The third-order resonance can be used to extract particles from a synchrotron

over a large number of turns.  The slowly extracted beam is known as the spill.  In a
medical machine, the spill time is extended to about one second, (~106 turns), in order
to facilitate the measurement and control of the radiation dose delivered to the patient.
A simplified Hamiltonian due to Kobayashi [1,2] describes the important
characteristics of the extraction process and gives a useful insight into the physics.
This method describes the effect of a sextupole magnet as a perturbation to the linear
machine.  Once the basic physics is understood the analytic results can be used to
guide a practical machine design based on numerical simulations.

2.1 SEXTUPOLE MAGNETS
In the current-free region of a magnet gap, the field can be derived from a

scalar potential φ [3].  Assuming that the magnetic field has only transverse
components then the scalar potential of a magnet with 2m poles is given by:

( ) ( )
�� ��� 
	�� ��� 
	

Normal

Im

Skew

Re mm
mm izxBizxA +++=φ (2.1)

and the field components are obtained by differentiation according to

z
B

x
B zx ∂

∂φ−=
∂
∂φ−= and . (2.2)

The transverse fields in a normal sextupole magnet (m = 3) are given by the
differentiation of the imaginary terms in (2.1)*,

( ) ( ) )(3,and6, 22
3z3 zxBzxBxzBzxBx −−=−= . (2.3)

The relationship of the coefficient B3 to the gradient is found by comparing (2.3) to
the Taylor expansion of the magnetic field in the horizontal plane,

B x z B
B
x

x
B
x

xz 0
z zd

d
( , )

! !
d
d

...= = + 



 +







 +0 1

1
1
20

2

2
0

2 (2.4)

so that

B
d B
dx

z
3

2

2
0

1
6

= −






 . (2.5)

The horizontal and vertical fields in a sextupole can then be written as

( )22

0

2
z

2

0

2
z

2

d
d

2
1

and
d
d

zx
x

B
Bxz

x

B
B zx −





=





= . (2.6)

                                                
* * The skew sextupole fields are obtained by the differentiation of the real terms.
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The effect of a sextupole on a particle trajectory can be described in a simple
way by considering the magnet as a thin lens.  For positively charged particles in an
anticlockwise ring (see Co-ordinate System),

( ) ( )22
S

22

0

2
z

2
S

2

1

d

d

2

1
zxkzx

x

B

BB

B
x Sz −′=−





ρ

=
ρ

=′∆ "
""

(2.7)

xzkxz
x

B

B
z ′−=





ρ

−=′∆ S

0

2
z

2
S

d

d
"

"
, (2.8)

where k′ is the normalised sextupole gradient,

0

2

2

d

d1






ρ

=′
x

B

B
k z . (2.9)

2.2 SEXTUPOLES IN NORMALISED COORDINATES
The effect of a thin-lens sextupole in normalised co-ordinates can be found by

applying the transformations for normalised co-ordinates to equations (2.7) and (2.8).
The transformation is simplified since in a thin lens ∆x = ∆z = 0, so that

ZzZzXxXx
z

z

x

x ′∆
β

⇒′∆β⇒′∆
β

⇒′∆β⇒ 1
and,

1
, .

Thus the effect of a thin-lens sextupole in normalised co-ordinates appears as,







β
β

−=





β
β

−

















ρ

β=′∆=∆ 2222

0
2
z

2
S2/3

x
d

d

B2

1
and0 ZXSZX

x

B
XX

x

z

x

z"
(2.10)

XZSXZ
x

B
ZZ

x

z

x

z

β
β

−=
β
β


















ρ

β−=′∆=∆ 2
d

d

B2

1
2and0

0
2
z

2
S2/3

x
"

, (2.11)

where S is the normalised sextupole strength

k
x

B
S xx ′β=





ρ

β= S
2/3

0

2
z

2
S2/3

2

1

d

d

B2

1
"

"
. (2.12)

Unless Z = 0, a sextupole couples the horizontal and vertical motions.  The
strength of the coupling is proportional to the ratio of the vertical and horizontal
betatron amplitude functions (βz/βx) at the sextupole.  For a horizontal extraction, Z is
generally much smaller than X and, provided the vertical tune does not satisfy a
resonance condition, the influence of the vertical motion can be neglected to first
order.  For this reason, only the horizontal motion is considered in the resonance
analysis in Section 2.4 and the equations (2.10) and (2.11) are replaced by,

Simplified form: ∆ ∆ ∆ ∆X Z Z X SX= = ′ = ′ =0 2and (2.13)
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2.3 SIGN CONVENTIONS FOR SEXTUPOLE MAGNETS
The sign conventions and nomenclature that have been used in the earlier

sections are summarised in Figure 2.1.

Figure 2.1  Sign definitions for sextupole magnets

In general, lattice programs suppress the absolute signs of the fields and
particles and replace them by normalised quantities that are defined according to the
geometry of the beam.  Thus, when a lens deflects the beam in the outer part of the
aperture (x > 0) towards the axis, the lens is defined as focusing (F-type) and in the
MAD program [4], for example, the normalised gradient k  ́is defined as positive (see
Figure 2.2 for sextupoles).  For positive ions, this unfortunately leads to a reversal of
sign with respect to the above when using MAD (i.e. k´ = - k´MAD).

Figure 2.2  Conventions for lattice programs
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S
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(no pole on the median plane)
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Trajectories are deflected inwards

Bz negative on median plane
k  ́= - k´MAD
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z
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s

Positively charged ions
Trajectories are deflected outwards

Bz positive on median plane
k  ́= - k´MAD

++

Sextupole D-type
Normal type (no pole on median plane)
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2.4 BASIC THEORY OF THE THIRD-ORDER RESONANCE
The general transfer matrix Mn  for normalised co-ordinates, describing n turns

in the machine is given by:







ππ−
ππ

=
)(2cos)(2sin

)(2sin)(2cos

xx

xx
n nQnQ

nQnQ
M . (2-14)

Consider a particle with a horizontal betatron tune close to a third-integer, i.e.
Qx = m ± 1/3 + δQ,, where m is integer and |δQ|<<1/3).  The tune increment δQ is
defined as the tune distance of the particle from the resonance,

resonanceparticle QQQ −=δ . (2-15)

The explicit transfer matrices for n turns in the unperturbed machine can then be
written as:

( )[ ] ( )[ ]
( )[ ] ( )[ ]





δ+±πδ+±π−
δ+±πδ+±π

=
QmnQmn

QmnQmn

3/12cos3/12sin

3/12sin3/12cos
1M . (2-16)

Thus, the co-ordinates of the particle after one, two and three turns become

1st turn neglecting δQ X
X

X
X′





 ≅ − ±

−




 ′




1 0

1 2 3 2
3 2 1 2
/ /
/ /#

(2-17)

2nd turn neglecting δQ X
X

X
X′





 ≅ −

± −




 ′






2 0

1 2 3 2
3 2 1 2
/ /
/ /

# . (2-18)

3rd turn with δQ X
X

X
X' '





 ≅ −










3 0

1
1
ε

ε , (2-19)

where ε replaces 6πδQ for brevity.  The small quantity ε will be called the modified
tune distance.  It can be seen that a particle with exactly the resonant tune (i.e. ε = 0)
will return to its initial position every three turns.  The effect of the sextupole during
three turns in the machine is now calculated as a perturbation by the linear addition of:

(A)  The effect of 3 turns with a sextupole placed after the 3rd turn,
M3 + Sextupole

(B)  The effect of 3 turns with a sextupole placed after the 2nd turn,
M2 + Sextupole + M1

(C)  The effect of 3 turns with a sextupole placed after the 1st turn
M1 + Sextupole + M2

where the sextupole is represented by the simplified, thin-lens expression (2.13).

∆ ∆ ∆ ∆X Z Z X SX= = ′ = ′ =0 2and . (2.13)

The full evaluation of the three terms (A), (B) and (C) gives:
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(A)  3 turns + sextupole

( )

( ) .2
0003

003

XXSXXX

XXX

′ε++′+ε−=′

′ε+=
(2.20)

(B)  2 turns + sextupole+1 turn
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(2.21)

(C)  1 turn + sextupole+2 turns
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(2.22)

After the addition of the three terms (A), (B) and (C), only first-order correction terms
in ε are retained to give

∆

∆

X X S X X S X X

X X SX S X X S X X

3 0 0 0

2

0 0

2

3 0 0
2

0 0

2

0 0
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2

= ′ ± − ′





− ± ′





′ = − + − − ′





− − ± ′





ε

ε

# #

# .

(2.23)

The cancellation of signs shows that there is no fundamental difference between the
1/3rd and 2/3rd resonances.
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



′+−+





′−−−+ε−=′∆




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
′+−−





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XXSXXSSXXX
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(2.24)

The final expressions for the change of position and divergence of the particle over
three revolutions, known as the spiral step and spiral kick are obtained as:

Spiral step and kick: ( ).
4

3
2

3

2
0

2
003

0003

XXSXX

XSXXX

′−+ε−=′∆

′+′ε=∆
(2.25)
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2.5 KOBAYASHI HAMILTONIAN
The time needed for three revolutions in the machine is short compared to the

spill time and can be safely used as the basic time unit.  The elementary changes
occurring in this time are also the smallest that need to be resolved to understand the
physics of the extraction.  Thus the subscripts are no longer needed and (2.25) can be
treated as a continuous function that is derived from a Hamiltonian H, such that

( )22

 turn)(31
3

 turn)(31
3

4

3
'

2

3

XXSX
Xt

X
X

XSXX
Xt

X
X

t

t

′−+ε−=
∂
∂−=







∆
′∆⇒∆

′+′ε=
′∂

∂=






∆
∆⇒∆

=∆

=∆
H

H

. (2.26)

The Kobayashi Hamiltonian is found by integrating the above partial differentials:

( ) ( )3222 3
42

XXX
S

XX −′+′+ε=H . (2.27)

It should be noted that in this formulation time is dimensionless.

The Hamiltonian is time independent and a constant of the motion.  Contours
of constant H show the particle trajectories in normalised phase space at the
sextupole.  This presentation of the motion is known as a phase-space map.  The first
term in (2.27) describes the unperturbed particle motion in the linear, machine (i.e.
S = 0).  These trajectories are circles of radius √(2H/ε) in normalised phase space.
The second term contains the perturbation that distorts the circular phase-space
trajectories into a triangular form as illustrated in Figure 2.3.  At a certain level of
excitation, the triangle 'breaks' into open phase-space trajectories.  A change in sign of
either the modified tune distance ε or the normalised sextupole strength S is
equivalent to a rotation of the phase-space trajectories by 180º.

1 0.5 0 0.5 1
1

0.5

0

0.5

1

Normalised phase space   ε/S > 0

X’

X

Figure 2.3  Phase-space map calculated from the Kobayashi Hamiltonian
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All the properties of the system can be derived from the Hamiltonian.  In
particular, when H has the value [(2ε/3)3/S2], it factorises into three straight lines

0
3

4
3

3

4
3

64
=





 ε+−′





 ε−+′





 ε+

S
XX

S
XXX

S
, (2.28)

called the separatrices, that define the boundaries between the stable triangle and
unstable regions in phase space.  This situation is exactly analogous to that of an rf
bucket in longitudinal phase space, where the separatrices define the well-known fish-
shaped stability region.  The phase space area of the stable region is the acceptance of
the system at the given momentum.  It could also be regarded as the dynamic
aperture.  The size of the stable region is determined by the ratio |ε/S|.  For a particle
that has exactly the resonance tune the stable region shrinks to zero.  Figure 2.4 shows
the geometry of the separatrices at the sextupole and the four stable fixed points, P0 to
P3






 ε= 0,

3

4
P1

S





 ε−ε−=

SS 3

2
,

3

2
P2





 εε−=

SS 3

2
,

3

2
P3

Q
SS

h δπ=ε= 4

3

2

Figure 2.4  Geometry of the separatrices  and stable triangle at the sextupole

The geometry of the stable triangle is conveniently described by introducing the
distance h between the upright separatrix A and the X′-axis.  A change in the sign of h
is equivalent to a 180° rotation of the stable triangle around the origin.

Q
SS

h δπ=ε= 4

3

2
. (2.29)

The area (i.e. the acceptance) of the stable triangle can also be expressed in terms of h:

( ) πδπ= 2

2
2 348

33= triangletable of e)(acceptanc Area Q
S

hs . (2.30)

X

X´
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P3

P2
B

C
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Stable Region

Unstable Region
surrounding the
'stable triangle'

60°
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Providing the sextupole is powered in an adiabatic way*, the emittance will be
conserved and (2.30) gives the fraction of the original beam emittance that remains
stable.

2.6 A MORE GENERAL HAMILTONIAN
For the purposes of the PIMMS design, it is useful to extend the basic theory

to off-momentum particles and to machines with closed-orbit distortions [5].  To first
order in the momentum deviation δp/p, the equilibrium orbit in normalised co-
ordinates is given by:

p

p
DX

p

p
DX nn

δ′=′δ= EQ.OEQ.O , , (2.31)

where (DNA, D′n) is the normalised dispersion function.  A second co-ordinate system
(Xβ, X′β) is introduced with its origin on the off-momentum equilibrium orbit.  The
particle co-ordinates are then split into a constant term, given by the dispersion
function, and a betatron term as shown in Figure 2.5.

p

p
DXX

p

p
DXX

δ−=⇔δ+= ββ nn (2.32)

p

p
DXX

p

p
DXX

δ′−′=′⇔δ′+′=′ ββ nn (2.33)

Figure 2.5  Co-ordinates of the betatron motion

The general Hamiltonian is derived following the same steps as for the Kobayashi
Hamiltonian except that the betatron motion and the total motion now have to be
separated.  The analysis starts with the betatron motion for n turns in the unperturbed
machine,

0

n

k






′=





′ β

β

β

β

X

X

X

X
M . (2.34)

The main difference appears when calculating the kick of the sextupole that depends
on the total motion of the ion:

Dispersion region:
2

2,0 




 δ+==′∆=∆ βββ p

p
DXSSXXX n  (2.35)

                                                
* Strictly, the emittance is conserved under all conditions, but if the excitation rate is too great the
phase-space ellipse becomes distorted.  The distorted ellipse has the same area, but later it filaments to
cover a larger phase-space area.

X

X´

Xβ

X´β

X
Xβ

Dnδp/p
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This yields a more general Hamiltonian in the betatron co-ordinates (Xβ, X´β):

( ) ( ) ( )22
n

3222

2

3
3

42 βββββββ ′+




 δ−−′+′+ε= XX
p

p
DSXXX

S
XXH . (2.36)

Re-ordering the terms in (2.36) shows that the dispersion-dependent term affects only
the 'circular' trajectories and this can be considered as a change in the tune distance, ε.

General form: ( ) ( )3222
n 3

4
3

2

1
βββββ −′+′+













 δ−ε= XXX
S

XX
p

p
DSH . (2.37)

Let Q
~δ x be the change in tune implied by the dispersion-dependent term, so that

p

p
Dk

p

p
DSQx

δ′β
π

−=




 δ
π

−=δ xSxn 4

1
3

6

1~
" . (2.38)

By introducing the chromaticity Qx′ as the linear change of the betatron tune with
momentum, the chromatic effect of a sextupole can be expressed as
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π
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
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which corresponds exactly to the well-known linear form for the tune shift introduced
by a sextupole.  Although the above derivation is restricted to the region in tune close
to the third-order resonance the result is in fact more general and the 'tilda' on the tune
can be omitted.

The general Hamiltonian (2.37) describes correctly the physics of a third-
integer resonance to first order in a perfect lattice without any further restrictions on
sextupole locations or particle momenta.  The phase space at the sextupole has the
same qualitative shape as the earlier simple theory, but it is scaled by the tune shift
introduced by the sextupole.  For completeness the geometry and general equations of
the separatrices are given in Figure 2.6.  From these results, it is clear that the
resonance sextupole is best put in a dispersion-free region, otherwise any change in
the sextupole strength will also change the tune distance of the particles and therefore
the scale of the extraction phase space.



PIMMS January 1999

18

h
p

p
DX n −=δ−A (2.40)

h
p

p
DX

p

p
DX nn =




 δ−+




 δ′−′−
2

1

2

3
B (2.41)

h
p

p
DX

p

p
DX nn =




 δ−+




 δ′−′
2

1

2

3
C (2.42)

Figure 2.6  Geometry of the separatrices at the sextupole for an off-momentum beam

2.7 CLOSED-ORBIT DISTORTION AT THE SEXTUPOLE
In practice, the equilibrium orbit will be distorted by magnet imperfections and

misalignments.  The effect will be similar to that caused by the dispersion function,
except that the orbit distortion will be independent of particle momentum to first
order.  It is straight forward to include the orbit distortions at the sextupole in the
Hamiltonian.
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The geometry and dynamics of the phase space can be analysed as in the previous
section.  The shift in tune consists of the momentum-dependent dispersion part and
the constant offset given by the closed-orbit distortion:
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2.8 PHASE-SPACE MAPS ALONG THE MACHINE
When designing an extraction scheme, it is essential to know how the phase-

space map changes with longitudinal position in the machine.  All the considerations
are based on the general Hamiltonian (2.37) derived earlier.  It is assumed that there is
only one sextupole*, defining the reference position (µ = 0) in the machine.  In
general, it is sufficient to describe the evolution of the separatrices around the
machine as all the relevant physics of the slow-extraction process can be obtained
from this.

                                                
*  This is not a restriction on the generality of the theory at the level of approximation being used.  It
will be shown later that from the standpoint of resonance excitation (described on a time scale of 3
turns) many sextupoles can be replaced by a single virtual sextupole.
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Shift of equilibrium orbit:
∆X = Dn δp/p∆X  ́= D´n δp/p
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There are two contributions to the evolution of the separatrices and the stable
triangle when tracking around the machine (see Figure 2.6).  The momentum-
dependent equilibrium orbit defines the centre of the stable triangle at any position s
in the machine according to,

( ) ( ) ( ) ( )
p

p
sDsX

p

p
sDsX nn

δ′=′δ= EQ.OEQ.O , (2.45)

and the phase advance ∆µ from the sextupole to a position s determines the
orientation of the stable triangle according to simple rotation in the normalised phase
space,
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The size of the stable triangle is determined by the normalised sextupole strength S
and the modified tune distance ε (including chromatic effects) and remains unchanged
in normalised phase space at all positions around the machine.  A schematic example
is shown in Figure 2.7 of the evolution of the map over a 90° phase advance from the
sextupole with a typical change in the dispersion vector.

Figure 2.7  Maps separated by ∆µ = 90°

2.9 GENERAL EQUATIONS FOR THE SEPARATRICES
A general equation of a separatrix in the phase-space map can be constructed

from the standard form for a straight line that uses the perpendicular distance (in this
case h) from the origin combined with a shift of the origin corresponding to the
dispersion vector.

hyx =α+α sincos (2.47)
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xh α [Angle α is measured anticlockwise from
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Phase space map at sextupole Phase space map at ∆µµ = 90°
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Figure 2.8  Perpendicular form for a straight line
Thus, the general equation for a separatrix has the form:
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By inspection of Figure 2.4, the values for α0 at the sextupole are:

(A) α0 = 180° (anticlockwise)
(B) α0 = 300° (anticlockwise)
(C) α0 = 420° (anticlockwise)

The separatrices rotate clockwise with the betatron phase advance ∆µ measured from
the sextupole.  At a given position α = (α0-∆µ), but for convenience, it is easier to
think in terms of ∆µ appearing as a positive term, which gives:

General equations of the separatrices at any position s with phase advance from the
sextupole of ∆µ:
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2.10 RESONANCE EXCITATION BY SEXTUPOLES
In a machine, there are likely to be several sextupoles as well as distributed

sextupole errors (mainly in the dipoles), whereas the theory presented so far is based
on a single sextupole.  The combined effect of many sextupole fields on the resonance
is described by the so-called driving term κ [6].  For the third-order resonance 3Qx = n
the driving term is,
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The integral is made around the full machine circumference and includes all sextupole
fields.  For short sextupoles, the above can be rewritten as a sum, using the normalised
sextupole strength, S, as defined earlier,
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An equivalent sextupole can be found by evaluating the above driving term and
equating to a single virtual sextupole, so that

( ) ( )nx,nvirtx,virt i3expi3exp µ=µ ∑
n

SS .

By separating the real and imaginary parts,
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Two standard configurations should be noted.  Arranging an even number of
sextupoles with the same normalised strength, S0 and a regular spacing in phase of
∆µ = π/3 leads to cancellation of the resonance driving term in equation (2.55).
Similarly, a spacing of ∆µ = 2π/3 leads to a reinforcement of the driving term,

Cancellation:
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2.11 CHROMATIC EFFECTS OF SEXTUPOLES
The tune shifts on an off-momentum orbit due to sextupoles are given by,
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For short lenses, the integrals can be replaced by summations  to give
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Expressions (2.58) and (2.59) describe the accumulated chromatic effect of all the
sextupoles in the machine and the modified tune distance ε of a particle with a
momentum deviation δp/p becomes

p

p
Qx

δ′∆π+ε=ε 60 . (2.60)

For an independent adjustment of the horizontal and vertical chromaticity in a
machine at least two independently powered sextupoles are needed.  It can be seen
from (2.59) that ∆Q′x depends on βx while ∆Q′z depends on βz.  Since strong focusing
lattices often have positions with large ratios of βx/βz and βz/βx, it is possible to
combine two or more lenses to obtain a desired combination of ∆Q′x and ∆Q′z and to
have a reasonable degree of orthogonality between the series or families.  In most
cases, a family of F-type sextupoles is used with a family of D-type sextupoles.
Assuming that all the magnets are of the same construction, the expressions for
controlling the chromaticities are,
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where NF and ND are the numbers of lenses in each family.

2.12 PLANNING SEXTUPOLE FAMILIES

Medium and large machines
When planning a machine lattice, it is desirable to keep the resonance

excitation and the chromaticity correction separate.  The first choice is to place
resonance excitation sextupoles in dispersion-free regions.  In this way, they do not
affect the chromaticity and the phase-space map of the resonance.  The two families
for the chromaticity control should contain even numbers of lenses separated in phase
by π/3 so that the resonance driving term vanishes.  Furthermore the F-type family
should have large and equal ratios of βx/βz and the D-type family large and equal
values of βz/βx  to give some degree of orthogonality.

Small machines
In small machines, it is not possible to have several sextupoles in a family, or

even several families, and some specially tailored combination is required.  One
example is given below for the case of slow-extraction on a third-order resonance.

The following is based on a lattice comprising two equal 180° arcs joined by
two equal dispersion-free straight sections.  The sextupole(s) controlling the resonance
excitation are placed in one, or both, dispersion-free straight sections so that they can
be used without affecting the chromaticity.  One chromaticity sextupole is placed in
each arc at symmetrically opposed positions (with equal lattice functions).  Since the
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lattice is adjusted for slow extraction the tune will be close to Qx ≈ n±1/3 and the two
sextupoles will be mutually separated in betatron phase by ∆µx = Qπ ≈ (n±1/3)π.  The
effect on the resonance and the chromaticities can now be evaluated from (2.55),
(2.61) and (2.62).  For resonance excitation:

( ) ( ){ } ( ) ( ){ }2
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2
virt 3sin0sin 3cos0cos π++π+= QSSQSSS
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The sine terms are close to zero and the cosine terms are close to unity.  The upper
sign is for n odd and the lower sign for n even.
For chromaticity control:
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For n even, (S1-S2) excites the resonance, but not the chromaticity and (S1+S2) does the
converse.  The control on the chromaticity is not universal, but since the horizontal
chromaticity is the more important parameter for extraction, a workable scheme could
be built.  For n odd, the separation of the functions no longer occurs.
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I-3 RESONANT  SLOW  EXTRACTION
A slow extraction scheme requires a mechanism for moving the beam into the

resonance.  The separatrices and extraction equipment have to be configured for low
loss, reasonable apertures and practical septum strengths.  The possibilities are
numerous and there are definite preferences for choosing different schemes for
different applications.  Once chosen, the extraction scheme imposes requirements on
the momentum spread and emittance of the beam that is waiting to be ‘fed’ to the
resonance and this in turn has consequences for the method of injection and the rf
equipment.  The characteristics of the extracted beam will only be partially treated in
this Chapter and will be continued in Chapter 4.  For simplicity, it is assumed that one
sextupole is used to excite the resonance and that it is located in a zero-dispersion
region.  It is also assumed that the resonant tune is located on the central orbit.

3.1 STEINBACH DIAGRAM
Frequent use will be made of the Steinbach diagram, which shows the beam

and resonance in amplitude-momentum space (see Figure 3.1).  The abscissa is the
momentum deviation with respect to central orbit, which can equally be the position
across the aperture in dispersive regions and the tune in machines with finite
chromaticity.  The ordinate is the effective, normalised amplitude of the ion’s betatron
motion, A = √(E/π), in normalised co-ordinates calculated from its single-particle
emittance.  Assuming that the sextupole has been applied adiabatically, then A is equal
to the unperturbed circular motion in normalised phase space.  In Figure 3.1, the
particle density, expressed as dN/dA, has been added on the left-hand side for a typical
beam.  The large grey arrows indicate the motion of the beam into the resonance and
the outward movement of the unstable particles that form the spill.  The spill slopes
slightly as these particles are still accelerated at the same rate as the main beam.

Figure 3.1  Steinbach diagram showing a beam entering a resonance

In Figure 3.1, the resonance appears as a ‘V’-shaped region centred on the
resonant tune and the beam is cut off by the sloping side of the ‘V’.  A particle will be
stable if its emittance is smaller, or equal to, the acceptance of the stable triangle
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defined in Section 2.5 and equation 2.30 and it is this equation that defines the sloping
lines of the ‘V’.  The width of the ‘V’ at a given emittance defines an interval in tune
known as the stopband.

From (2.30) ( ) πδπ≤π= 2
stopband2
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3.1.1 Distribution in the extracted beam
As the beam is moved into the resonance in Figure 3.1, the large emittance

ions become unstable first.  Due to the chromaticity, there is a one-to-one
correspondence between the emittance at which each ion becomes unstable and its
momentum.  In this way, the particle density distribution in betatron amplitude
(dN/dA) is converted into the particle density distribution in momentum space
(dN/dp/p) in the extracted beam.

3.1.2 Special case of zero chromaticity
As the chromaticity approaches zero, the ‘V’ in Figure 3.1 becomes wider and

flatter.  If the tune of the machine is then set just off-resonance, the resonant tune
moves away to infinity and the resonance appears as a straight line quasi-parallel to
the horizontal axis (momentum).  The height of the line above the axis defines the
boundary of the unstable region.

3.2 OVERVIEW OF EXTRACTION METHODS
A beam is first accumulated and positioned on one side of the resonance.  To

extract, either the resonance has to be moved towards the beam, or vice versa.  This
distinction provides a first way of classifying extraction methods.  An alternative
classification is based on how the ions are selected by the resonance.  The selection
can either be according to amplitude, or according to tune (momentum).  Thus ions
with large amplitudes would enter the resonance before those with smaller amplitudes,
or those with a higher (or lower) momentum before those with a lower (or higher)
momentum.  There will also be hybrid situations, especially for the amplitude and
momentum selections, which will nearly always be mixed to some degree.

3.2.1 First classification

Moving the beam
This method has the great advantage of leaving the optical parameters of the

machine constant, and hence also those of the resonance, during the extraction.  How
the beam is moved can be further sub-divided into the two most promising categories
for future machines:
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♦ Acceleration-Driven  The beam is accelerated towards the stationary resonance by
a betatron core, or by stochastic noise, or possibly by a phase displacement or a rf
micro-bucket acceleration system.

♦ RF ‘knockout’   The beam is excited by transverse stochastic noise or rf excitation
at the revolution frequency, so that its betatron amplitudes grow.  The chromaticity
is set to zero, or a low value, so that the resonance line acts as a threshold in
amplitude above which the ions become unstable [1].

Moving the resonance
There are two ways in which the resonance can be moved:

♦ Quadrupole-driven The tune of the machine is changed so that the resonance
region moves towards the beam.  This is the conventional way to operate a slow
extraction scheme.  It requires no additional equipment and its basic idea is
simple.

♦ Sextupole-driven  The resonance excitation is changed by increasing the sextupole
strength.  This method is included only for academic completeness and is not
suitable for a medical application.

3.2.2 Alternative classification
An alternative method of classification is to look at how the particles are

selected by the resonance.  This divides the extraction systems into two different
broad categories:

♦ Amplitude selection  In this case, the large betatron amplitude ions enter the
resonance first followed progressively by the smaller and smaller amplitudes.
This implies either a rather flat resonance line in the Steinbach diagram or a
narrow momentum spread in the beam.

♦ Momentum selection  In this case, the high (or low) momentum ions enter the
resonance first and are progressively followed by lower and lower (or higher and
higher) momentum ions.

The most interesting possibility is a hybrid method, which correlates the
amplitude to the momentum in a precise way* that imposes the same extraction
trajectory on ions of all momenta.  This is the proposed extraction technique for
PIMMS and will be referred to as the amplitude-momentum selection method that is
acceleration-driven.

3.2.3 Extraction schemes
The various possibilities are schematically presented in Figure 3.2.  From the

five cases, an initial choice can be made.  Method (II)  ‘Momentum selection by
moving the resonance’ and method (III)  ‘Amplitude selection by moving the beam’
are less attractive because the momentum of the extracted beam varies during the
extraction.  Method (IV)  ‘Amplitude selection by moving the resonance’ is also less
attractive because the spiral step varies during the extraction.  Finally, the choices

                                                
*  The correlation is known as the Hardt Condition and will be discussed in Sections 3.6 to 3.8
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with the best extracted beam characteristics are (I)  ‘Momentum selection by moving
the beam’ and (V) ‘Amplitude selection by amplitude growth’.
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Momentum selection by moving the beam Momentum selection by moving the resonance

                                                         (I)

‘Waiting’ beam : Small Ex, large ∆p/p.
Extracted beam: Constant p, small ∆p/p and
constant spiral step

                                                           (II)

‘Waiting’ beam : Small Ex, large ∆p/p.
Extracted beam: Varying p, small ∆p/p and
constant spiral step

Amplitude selection by moving the beam Amplitude selection by moving the resonance

                                                        (III)

‘Waiting’ beam : Large Ex, small ∆p/p.
Extracted beam: Varying p, small ∆p/p and
varying spiral step

                                                          (IV)

‘Waiting’ beam : Large Ex, small ∆p/p.
Extracted beam: Constant p, small ∆p/p and
varying spiral step

Amplitude selection by amplitude growth

                                                          (V)

‘Waiting’ beam : Large Ex, small ∆p/p.
Extracted beam: Constant p, small ∆p/p and
constant spiral step

Figure 3.2  Schematic review of extraction
configurations
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Choosing between the last two possibilities depends on subjects that will be
treated later and upon the type of treatment that is envisaged.  In anticipation of a
fuller explanation, the following points can be noted:

(I)  Acceleration-driven momentum selection (moving the beam)

Advantages Disadvantages
• Lattice parameters and spiral step are

constant during the spill.
• Less convenient for starting and stopping the

spill at the level of the resonance.
• Hardt condition can be applied (Section 3.6).• Additional constraints on the optics.
• A front-end acceleration mechanism can be

added (Chapter 6).
• Extraction takes place from a range of

emittances and this smoothes the spill.

(V) RF knockout amplitude selection (amplitude growth)

Advantages Disadvantages
• Lattice parameters and spiral step are

constant during spill.
• The near-zero chromaticity may cause

stability problems in the ‘waiting’ beam.
• Spill can be turned on and off very cleanly

and easily by the rf kicker, which is
convenient for breathing synchronisation

• Not possible to add a front-end acceleration
mechanism.

Method (I)  is that proposed for PIMMS and Method (V) is used at HIMAC for
treatments with respiration gating [2].

3.3 THE MECHANISM OF EXTRACTION

3.3.1  Jumping into the electrostatic septum
In the theoretical model built in Chapter 2, all the separatrices are essentially

equal and they rotate clockwise, simply exchanging their positions from turn to turn.
However, when analysing the extraction process, it is more convenient to consider the
separatrices as geometrically fixed in phase space.  An unstable particle then moves
steadily outwards while jumping from one separatrix to the next at every turn.  After
every third turn the particle returns to its initial separatrix, but at a position more
distant from the centre.  The change of the particle co-ordinates after three revolutions
in the machine was derived as,

( )2
0

2
003

0003

4

3
2

3

XXSXX

XSXXX

′−+ε−=′∆

′+′ε=∆
(2.25)

and these changes were called the spiral step and the spiral kick.  The change in
amplitude of the particle can be written as,

( ) ( ) ( )222 XXA ′∆+∆=∆ (3.3)

where ∆ indicates the change over three turns.  To find the maximum change in
amplitude, an on-resonance particle is considered (i.e. ε = 0).  This simplifies (2.25)
and once substituted into (3.3) yields,
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Maximum change: 2

4

3
SAA =∆ . (3.4)

Equation (3.4) shows that the growth increases rapidly as the particle progresses along
the unstable separatrix.  After a certain number of turns the particle amplitude has
increased so much that the particle can ‘jump’ by ∆A into an electrostatic septum and
be extracted.

Figure 3.3 gives a schematic view of the normalised phase space at the
electrostatic septum.  A particle at point 0 is just passing the electrostatic septum on
the machine side.  One turn later, at the electrostatic septum, this particle has jumped
to point 1 on the next separatrix that is 120° ahead.  One more turn later, still at the
electrostatic septum, the particle re-appears at point 2.  Finally, after three turns, the
particle returns to the initial separatrix, but at point 3.  The growth in amplitude that
has taken place during the three turns brings the particle inside the aperture of the
electrostatic septum where it is deflected and extracted.

Figure 3.3  Amplitude increase during the last three turns before extraction

The maximum possible amplitude, Alast, of a particle, which is not extracted, can be
calculated from the normalised position of the electrostatic septum, XES, and the angle
ϕ between the extraction separatrix and the horizontal axis,

A Xlast ES= 1
cos( )ϕ

. (3.5)

Three turns later the particle will have increased in amplitude by, ∆A found from (3.4)
and (3.5).

∆A SA S
X= =
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From (3.6), it can be calculated how far the particle jumps into the septum, the so-
called spiral step ∆R, and the spiral kick ∆R′,

Maximum spiral step: 2
ESlast cos

1

4

3
cos XSAR

ϕ
=ϕ∆=∆ , (3.7)

Maximum spiral kick 2
ESlast cos

tan

4

3
sin XSAR

ϕ
ϕ=ϕ∆=′∆ . (3.8)

The spiral step and kick define the size (emittance) of the extracted beam.  It
should be noted that (3.7) and (3.8) are only valid for particles that are exactly on
resonance (δQ = ε = 0).  Particles with a finite tune distance already have a finite
amplitude when they become unstable, they spend fewer turns on the separatrix before
they reach the electrostatic septum and their spiral step and kick are smaller.  Thus the
extraction separatrix will be continuously populated along its length by particles with
different starting conditions.  Some of the particles will hit the septum wall and will
be lost.  Thus the extraction efficiency depends critically on the thickness of the
septum wall compared to the average spiral step.  This is the main reason for the use
of an electrostatic septum, which is usually built as a wire septum with a wire
thickness of the order of 0.1 mm.  Electric fields of up to 100 kV/cm can be obtained
in such septa, but the kick obtained is rarely sufficient to extract the beam directly out
of the machine, so a further step is required in the extraction process.

3.3.2  Introducing the magnetic septum
The small deflection provided by the electrostatic septum translates with phase

advance into a physical gap between the circulating beam and the extracted particles.
This gap can be used to introduce the wall of a magnetic septum, which can
definitively extract the particles.  The action of translating the deflection φ of the
electrostatic septum into a gap for the magnetic septum wall is illustrated in Figure
3.4.

Figure 3.4.  Effect of the kick of the electrostatic septum in normalised phase space
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The gap size is calculated by comparing the trajectories of two on-momentum
(δp = 0) particles from the electrostatic to the magnetic septum.  Particle A starts just
inside the electrostatic septum and particle B starts just outside, as shown in Figure
3.4.  The thickness of the electrostatic septum (typically 0.1 mm) is neglected, both
particles are assumed to start from the radial position of the septum xES, and with the
same angle x′ES, but only particle A receives the kick φ.  The positions and angles of
the particles at the magnetic septum are obtained as,

Particle A:
φ⋅+⋅+⋅=

φ⋅+⋅+⋅=

222221

121211

''

'

mxmxmx

mxmxmx

ESESMS

ESESMS (3.9)

and

Particle B:
ESESMS

ESESMS

''

'

2221

1211

xmxmx

xmxmx

⋅+⋅=
⋅+⋅=

(3.10)

where the coefficients m11, m12 etc. are elements of the transfer matrix between the
electrostatic and magnetic septa.  Thus, the effect of the kick appears at the magnetic
septum as a difference in position and angle between the two particles of,

φ⋅=∆
φ⋅=∆

22

12

' mx

mx

MS

MS (3.11)

where ∆xMS is the gap, available for the wall of the thicker magnetic septum.  This gap
is explicitly given by,

µ⋅β⋅β⋅φ=∆ sinMSESMSx (3.12)

where µ is the phase advance between the two septa.

It follows from (3.12) that in order to create the space for the magnetic septum
efficiently, the lattice functions of the machine and the positions for the septa have to
be chosen such that:

• The phase advance between the septa is close to 90° +  n⋅180°.

• The beta-functions at the septa have reasonably large values.

3.4 SEPARATRIX GEOMETRY AT ELECTROSTATIC SEPTUM
At first sight, the principle of transforming the angular kick of the electrostatic

septum to a physical displacement looks to be equally applicable starting in any of the
four quadrants.  In fact, only the first and third quadrants are usable.  This follows
from purely geometrical considerations as shown in Figure 3.5.  First, the septum kick
must always be directed away from the X-axis, otherwise it tends to overlap the two
sections of the separatrix rather than separating them.  Secondly, when X is positive,
the kick must also be positive and, when X is negative, the kick must be negative,
otherwise the kick drives the separated section of the separatrix towards the axis of the
machine and back into the wires of the septum.  Once these restrictions are taken into
account only the 1st and 3rd quadrants remain useful.
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Figure 3.5  Possible working quadrants for the electrostatic septum

The next parameter to be considered is the angle the separatrix in phase at the
electrostatic septum.  From equation (3.12), it was found that for the optimum usage
of the electrostatic septum’s kick, the phase advance to the magnetic septum should be
90° + n·180°.  Figure 3.6 shows a logical layout for first quadrant operation with the
extraction separatrix at 45° at the electrostatic septum and a phase advance of 90° to
the magnetic septum.

Figure 3.6  Ideal separatrix geometry for first quadrant operation

Figure 3.6 shows that the 120° separation of the separatrices leaves a margin of
security first at the electrostatic septum and then later at the magnetic septum.  The
extraction separatrix could be rotated by a maximum of 15° anticlockwise before the
preceding separatrix hits the electrostatic septum as shown in Figure 3.7 (a), or by 15°
clockwise before the following separatrix hits the magnetic septum, Figure 3.7 (b).
This limits the possible angles for the extraction separatrix at the electrostatic septum
to 45° ± 15° for first quadrant operation and to 225° ± 15° for third quadrant
operation.
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Figure 3.7  Limitations of separatrix geometry by electrostatic and magnetic septa

Alternative layouts to the above are limited.  They include:

• To accept a much smaller phase advance.  This may be imposed by lack of space, but it
requires a stronger electrostatic septum, which may have implications for the reliability.
This solution fits the lower energy proton machines better, where the extraction could then
be easily made in a single straight section.  However, it was proposed for the EULIMA
light-ion medical machine [3].

• To use a 270° phase advance.  This has two unfavourable aspects.  Firstly, the extracted
beam has to be transported for a longer distance in the machine, which for a small
synchrotron means that the crossing of non-linear magnetic elements (e.g. chromaticity or
resonance sextupoles) is almost unavoidable.  Any change of these elements would result
in a change of the extraction geometry.  Secondly, a phase advance of 270° (more
general 270° + n·360°) means that the electrostatic and magnetic septa are on opposite
sides of the vacuum chamber.  This may have the drawback that aperture is lost for the
circulating beam by ‘encasing’ it between the septa.

3.5 PHASE-SPACE REPRESENTATION OF BEAM AND RESONANCE
The beam that is waiting to enter the resonance will have a certain momentum

spread ∆p/p and, due to the chromaticity in the machine, this momentum spread will
translate into a tune spread according to
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∆ ∆
Q Q

p
p

= ′ . (3.13)

The ‘size’ of the beam in an accelerator is characterised by the emittance, which is
defined as the area in phase space that contains a certain percentage of the beam
particles of a given momentum.  In general, the beam will contain particles with
amplitudes between zero and a maximum amplitude, which corresponds to the total
emittance of the beam.  At a given azimuthal position s in the machine, the beam can
be represented in phase space by a series of ellipses (circles in normalised phase
space), centred on the dispersion vector D(s)·∆p/p, as shown in Figure 3.8.

Figure 3.8  Representation of a beam in phase space and normalised phase space

The circles, that represent the beam emittance in normalised phase space, become
triangles under the influence of the resonance as shown in Figure 3.9.  The size of a
triangle corresponds to the last stable orbit and is graded according the its distance in
tune from the resonance.  Any particles outside the last stable triangle are lost along
the outward separatrices.  Equation (3.13) gives the tune for each momentum and
hence also the tune distance from the resonance.

Figure 3.9  A beam under the influence of the resonance in normalised phase space

When considering the interactions of the beam and the resonance, it is
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integer resonance (see Section 3.1).  With (3.13) the expression for the stopband (3.1)
can be rewritten with the momentum spread and the chromaticity as

p

p

S

Q
A

∆⋅
′

π= 348 . (3.14)

It is sometimes more convenient to use the momentum spread rather than the tune for
abscissa, as the momentum spread is an independent beam parameter (changing the
chromaticity will change the tune but not the momentum).  Figure 3.10 (a) shows the
circulating beam before extraction, corresponding to the phase-space representation in
Figure 3.8.  Figure 3.10 (b) shows the beam during the extraction process,
corresponding to the phase-space diagram in Figure 3.9.

Figure 3.10.  Steinbach diagram of the beam before and during extraction

Providing the beam is wide in momentum and small in amplitude a quasi-static
situation is reached in which a band of particles of all amplitudes continuously enters
the resonance (see Momentum selection by moving the beam in Figure 3.2).  These
particles have different momenta and, due to the chromaticity different tunes, which
means the corresponding stable triangles are of different sizes.  Figure 3.11 shows the
separatrix geometry for the zero and maximum amplitude particles that define the
unstable band at the resonance sextupole and the electrostatic septum in normalised
phase space.

Figure 3.11  Separatrices at the resonance sextupole and electrostatic septum
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The dotted lines are the separatrices corresponding to the zero amplitude particles P0

in Figure 3.10 (b), the full lines are the separatrices of the maximum amplitude
particles, P2.  The separatrices of all other particles are found in between these two
extreme cases.  The instantaneous momentum spread of the extracted beam can be
calculated from (3.14) with the maximum amplitude Amax as

Q

S
A

p

p
′π

=∆
348

1
max

inst.

. (3.15)

3.6 HARDT CONDITION FOR SUPERPOSITION OF SEPARATRICES
In Figure 3.10 of the previous section, particles of all amplitudes become

unstable at the same time and are extracted along separatrices from stable triangles of
different sizes.  Figure 3.12 shows this general case when the separatrices at the
electrostatic septum are not superimposed and the particles move outwards along
different trajectories and therefore reach the electrostatic septum with different angles.
This angular spread increases the effective thickness of the septum wall and increases
the beam losses.

Figure 3.12  Particle losses on the electrostatic septum due to angular spread of separatrices

Figure 3.12 (a) shows phase space map at the septum.  This is like a cross-section of
the beam with the particles moving perpendicular to the paper.  Those particles
arriving exactly on the thick line denoting the electrostatic septum are lost on the entry
face of the septum wall (wire).  Those arriving in the grey areas (shadow regions) hit
the septum wall (wires) somewhere along the length of the septum.  The boundary
between survival and loss is curved for the those particles that arrive with a radial
position inside the septum aperture (x > xES) and directed towards the axis with respect
to the septum (x′ < x′ES), because the electric field of the septum deflects these
particles away from the wires and in some case this is sufficient to prevent them from
being lost.  Figure 3.12 (b) shows a longitudinal view with the limiting trajectories
that separate the survival and loss regions.

Minimum losses would be obtained if all the separatrices could be super-
positioned and directed through the point between the two shadow regions.  This is
achieved by the Hardt Condition.  It was mentioned earlier that stable triangles of
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different sizes correspond to different momenta.  At positions in the machine where
the dispersion is non-zero, the triangles will be shifted according to their momentum.
With a suitable dispersion vector at the electrostatic septum, this effect can be used to
superimpose the extraction separatrices and to avoid the shadow regions.  It should be
noted that in Figures 3.11 and 3.12 (a) all the triangles are centred which means that
the dispersion was assumed to be zero at the electrostatic septum.

The restrictions on the lattice functions to satisfy the Hardt Condition can be
derived with a purely mathematical approach from the general expression for the
separatrix (2.48) in Section 2.9.

( ) ( ) ( ) ( ) h
p

p
sDX

p

p
sDX nn =µ∆−α



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


 δ− sin''cos . (2.48)′

The angle α describes the orientation of the separatrices at the sextupole, ∆µ is the
phase advance from the sextupole to the electrostatic septum and h is the distance
from the side of the stable triangle to its centre given in (2.29).
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With (3.13), the above expression can be rewritten as
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h

δ′π= 4
. (3.16)

The substitution of (3.16) into (2.48)′ gives the general expression for a separatrix as a
function of particle momentum and the chromaticity of the machine,
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To superimpose the extraction separatrices, the momentum dependence has to be
removed from (3.17).  This is true if,

Hardt Condition: ( ) ( ) Q
S

DD ′π−=µ∆−α′+µ∆−α 4
sincos nn . (3.18)

Neglecting, for the moment, the mathematically trivial case of zero dispersion and
zero chromaticity that will be discussed in Section 3.13, the flexibility of this equation
is somewhat limited.

• The dispersion function is a fundamental property of the lattice depending on the layout of
the dipoles.  If the lattice already exists, or is determined by other factors, this could be a
very severe disadvantage.

• The choice of (α-∆µ) is restrained by the geometry of the extraction.  For optimised
operation in the first or third quadrant (see Section 3.4), it can be shown that the phase (α-
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∆µ) is either 135° for particles with tune values below resonance (δQ < 0), or 315° for
particles above resonance (δQ > 0).

• The sextupole strength cannot be used as a variable, since it determines the spiral step and
spiral pitch and therefore the horizontal size of the extracted beam.

• For small, low-energy machines working below transition, the chromaticity should be
negative to ensure the stability of the coasting beam [4].  However, the chromaticity can
still be varied over a wide range and this is the main source of adjustment.

To understand better the Hardt Condition, the left hand side (LHS) of (3.18) can be
regarded as a scalar product of two vectors,
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


µ∆−α
µ∆−α

′ (3.19)

where the (cosine, sine) vector is the unit vector, perpendicular to the extraction
separatrices as shown in Section 2.9.  The LHS is zero, if these two vectors are
perpendicular, which means that the normalised dispersion is parallel to the
separatrices.  In this case, it is clear that the separatrices cannot be superimposed for
any finite value of chromaticity.  (The case of a zero-chromaticity extraction is
considered separately in Section 3.13).  The absolute value of the LHS will be
maximum for parallel vectors, which means the normalised dispersion is at right
angles to the extraction separatrices and the shift of triangles with different momenta,
relative to each other, is then the most effective.  Thus, the underlying principle for an
efficient lattice for the Hardt Condition is that the normalised dispersion vector should
be at an angle close to 90° with respect to the extraction separatrix at the position of
the electrostatic septum.

The RHS of (3.18) adjusts the scalar amplitude of the correction by varying the
horizontal chromaticity.  Providing the vectors forming the LHS are well positioned
the correction will be possible without extreme values.  Unfortunately the horizontal
chromaticity is not entirely free, since its also affects the width of the stop band (the
slope of the resonance line) and therefore the extracted momentum spread.  Thus,
there is a certain amount of trial-and-error adjustment needed to reach a satisfactory
situation.  In general, the extraction should be arranged such that the momentum
spread of the extracted beam is small for two main reasons:

• The optics of the beam delivery system towards the patient is complicated and a small
momentum spread reduces beam sizes in the bends.  The momentum spread can be
artificially increased at the end by a ridge filter to create a spread-out Bragg-peak.

• The transfer between electrostatic and magnetic septum is in general chromatic.  These
chromatic effects can be partially compensated by a higher voltage in the electrostatic
septum, but are less important for a small momentum spreads.

The following Figures 3.13 and 3.14 illustrate how the Hardt Condition is
applied at the electrostatic septum for first quadrant operation.  The full lines represent
the extraction separatrices corresponding to zero amplitude (zero-size triangle) and
maximum amplitude (maximum-size triangle) particles.  The dotted lines indicate the
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position of the maximum-size triangles if the dispersion function were zero.  In Figure
3.13, the normalised dispersion vector is almost parallel to the separatrices, thus the
absolute value of the LHS in (3.19) is small, whereas, in Figure 3.14, the normalised
dispersion is perpendicular to the separatrices and the LHS is large.  In Figures 3.13
(a) and 3.14 (a) the chromaticity is not adjusted to fulfil the Hardt condition (RHS of
(3.19) is equal for both diagrams).  In Figures 3.13 (b) and 3.14 (b), the chromaticity
has been adjusted in order to superimpose the separatrices.  In Figure 3.13 (b), the
dispersion vector is not well suited; the final absolute chromaticity is small and the
extracted momentum spread is large as can be seen from the Steinbach diagram.  In
Figure 3.14 (b) the normalised dispersion vector is perpendicular to the separatrices
which are superimposed for a small momentum spread of the extracted beam and a
large absolute chromaticity.

3.7 1ST  AND 3RD QUADRANT OPERATION WITH THE HARDT 
CONDITION
Figures 3.15 and 3.16 summarise all the possible extraction layouts for

optimised first and third quadrant operation.  The arrows indicate the required
direction of the normalised dispersion vector to fulfil the Hardt condition with the
smallest possible momentum spread of the extracted beam.  The dotted lines are the
extraction separatrices for the zero-amplitude particles which are exactly on resonance
(δQ = 0, δp = 0), the full lines correspond to maximum amplitude particles with a
momentum deviation δp and a tune deviation δQ = Q′δp/p.  The choice may appear
large, but it quickly reduces in the following way:

• It was mentioned earlier that for small, low-energy machines that work below transition,
the chromaticity should be negative in order to ensure the transverse stability of the beam.
This constraint leaves only four possibilities for the extraction geometry at the
electrostatic septum that are in Figures 3.15 and 3.16 in (b) and (d).

 

• In Figures 3.15 (b) and (d) the electrostatic septum is on the outside of the vacuum
chamber, the dispersion required for the Hardt condition is Dn > 0 and D′n < 0.  In Figures
3.16 (b) and (d) the electrostatic septum is on the inside of the vacuum chamber, the
dispersion required for the Hardt condition is Dn < 0 and D′n > 0.  In general, in small
machines the dispersion is positive.  This leaves only the two layouts, 3.15 (b) and (d), for
the extraction.

 

• The position of the ‘waiting’ beam in the tune diagram determines the last choice between
(b) and (d) in Figure 3.15.  The PIMMS proposal is to place the ‘waiting’ beam above the
diagonal (Qx = Qz) and above the resonance Qx = 5/3.  The last choice is indicated by the
‘heavy’ box in Figure 3.15 (d).
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Figure 3.13  Hardt condition for small chromaticity and large momentum spread of extracted
beam

Figure 3.14  Hardt condition for large chromaticity and small momentum spread of extracted
beam
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Figure 3.15  Separatrix geometry for first quadrant operation with an ideal normalised
dispersion vector

Figure 3.16  Separatrix geometry for third quadrant operation with an ideal normalised
dispersion vector

3.8 CHOOSING THE DISPERSION FUNCTION
Figure 3.17 shows the qualitative shape of the normalised dispersion curve in
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electrostatic septum is on the downward slope of the dispersion (shaded areas), where
Dn > 0 and D′n < 0.

Figure 3.17  Qualitative shape of the normalised dispersion for typical lattice structures

3.9 POSITIONING THE ELECTROSTATIC AND MAGNETIC SEPTA
In Figures 3.15 (b) and (d) the electrostatic septum is in the outer half of the

chamber.  Earlier, in (3.12), it was shown that the ideal phase separation between
electrostatic and magnetic septa is µ = 90° + n·180°.  An even value for n (i.e.
µ = 90°, 450° etc.) puts the two septa on the same side of the vacuum chamber and an
odd number of n (i.e. µ = 270°, 630° etc.) puts the septa are on opposite sides of the
vacuum chamber.  Figure 3.18 shows these two situations schematically.

Figure 3.18  Positioning the magnetic septum with respect to the electrostatic septum
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The area occupied by the beam in Figure 3.18 is shared by the ‘waiting’ beam and the
separatrices.  The separatrices grow symmetrically from the resonance so the aperture
is best used by placing the resonance at the centre.  Intuitively, one feels that the
aperture is likely to be restricted for the ‘waiting’ beam, if the septa are on opposite
sides of the chamber.  In addition, since the electrostatic septum will be in the outer
half of the chamber, putting the magnetic septum in the inner half means that the
extraction will be to the inside of the machine.  This is undesirable because of the high
magnetic rigidity of the beam.  For these reasons, a phase separation of around 90°
with both septa to the outside of the chamber has been chosen.  A larger phase
advance of 90°+ n·360° is less convenient as the extracted beam has to be transported
for a longer distance inside the machine.

With these considerations, a schematic picture of the aperture starts to emerge
(see Figure 3.19).  During the extraction set-up, the beam has to be kept sufficiently
far from the resonance not to be prematurely extracted.  With both septa being on the
outside of the vacuum chamber, it is natural to position the beam in the inner half of
the chamber to avoid aperture limitations.  In this case, the beam is below the
resonance in momentum, but due to the negative chromaticity, it is above in tune.  At
extraction, the resonance is reached by accelerating the beam and reducing its tune.
Figure 3.19 indicates two approximate dimensions.  The electrostatic septum
intercepts the growth of the separatrices at 30 to 40 mm from the axis and the spiral
step is about 10 mm.  Some justifications for these figures will be given later.

Figure 3.19  Schematic view of aperture

3.10 TRANSFER OF OFF-MOMENTUM PARTICLES BETWEEN SEPTA
If the Hardt Condition is fulfilled, all the extraction separatrices will be

superimposed at the electrostatic septum and all particles will reach the septum on the
same separatrix independent of their momentum.  It would be ideal if this state of
affairs could be maintained by an achromatic transfer from the electrostatic to the
magnetic septum.  The simplest way to achieve this is to avoid all magnetic elements
and to place the two septa in the same drift space.  Inevitably, the electrostatic septum
then needs a bigger kick, because the phase advance between the septa will be smaller.
This was already pointed out in Section 3.3.2 when the transfer of on-momentum
particles was discussed.  Owing to the necessity for a stronger kick in the electrostatic
septum, this method is better suited to proton machines than light-ion machines.
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The more difficult case where the beam is transported through the section of
the machine between the septa will be considered here.  If particles of different
momenta arrive at the magnetic septum on different orbits, then there will in general
be a reduction of the gap calculated in (3.12).  This is the gap that has been opened
between the main beam and the extracted segment of the separatrix in order to
introduce the wall of the magnetic septum.

Consider the transfer of two off-momentum particles C and D that start from
the radial position of the electrostatic septum, xES with the septum angle x′ES, but only
particle C receives the kick, ϕ, of the septum.  In a linear lattice, the movement of
particles with a momentum deviation can be described by a 3x3 transfer matrix
formalism.  The horizontal co-ordinates of the particles at the magnetic septum are
derived as

Particle C:
( )
( )ppmmxmxmx

ppmmxmxmx

/''

/'

23222221

13121211

δ⋅+ϕ⋅+⋅+⋅=
δ⋅+ϕ⋅+⋅+⋅=

ESESMS

ESESMS (3.20)

and

Particle D:
( )
( )ppmxmxmx

ppmxmxmx

/''

/'

232221

131211

δ⋅+⋅+⋅=
δ⋅+⋅+⋅=

ESESMS

ESESMS . (3.21)

.

Comparison of (3.20) and (3.21) with (3.9) and (3.10) shows that the separation
between circulating and extracted particles is the same as calculated for on-
momentum particles, but the gap appears at a different position and angle.  The shift
in position reduces the effective gap width for the magnetic septum.  Figure 3.20
shows the transfer between the septa for particles representing the full momentum
spread of the extracted beam.  The grey shaded areas represent particles with momenta
in between these limits.

Figure 3.20  Transfer from electrostatic to magnetic septum
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A non-zero m13 causes a loss of space for the magnetic septum and has to be
compensated by a stronger kick from the electrostatic septum.  The effective gap
width is

( )ppmm /Gap 1312eff δ⋅−ϕ⋅= . (3.22)

The horizontal width of the extracted beam is also increased and, to avoid losses
inside the magnetic septum, the horizontal aperture has to be enlarged.

( )ppm /Width 13extraction δ⋅=∆ . (3.23)

A non-zero m23 is leading to a larger overall divergence of the extracted beam at the
magnetic septum and also requires an enlarged horizontal aperture to avoid losses.

( )ppm /Divergence 23extraction δ⋅=∆ (3.24)

At the electrostatic septum, any angle error of the extraction separatrices, however
small, will directly increase particle losses, but at the magnetic septum, it is usual to
foresee a small clearance of a few millimetres between beam and septum and
therefore angular spreads up to 1mrad (approx.) can be tolerated without loss.  For this
reason, only the m13 term will be considered in the following discussion.

3.11 MINIMISATION OF CHROMATIC EFFECTS
By keeping the momentum spread of the extracted beam small, the above

mentioned disadvantages can be minimised.  However, the momentum spread is not a
free parameter if the Hardt-condition is applied to avoid losses at the electrostatic
septum.  It is therefore important to optimise the lattice in such a way that the
superposition of the extraction separatrices results in a small momentum spread of the
extracted beam (as already discussed in Section 3.6).  The explicit form of the element
m13, expressed in terms of normalised dispersion,

( )µ⋅−µ⋅−⋅β= sin'cos nESnESnMSMS13 DDDm , (3.25)

shows that the loss of space for the magnetic septum is proportional to √βMS.
Although decreasing βMS does reduce the influence of m13, it also reduces the gap
created by the electrostatic septum (3.12), since this is also proportional to √βMS.  As a
result, the effective gap (3.22) for the magnetic septum is in fact reduced by
decreasing βMS.

( ) 






 δµ′−µ−−µββ=

δ−ϕ=

p

p
DDD

p

p
mm

nnn sincossin

Gap

ES,ES,MS,ESMS

1312eff

(3.26)

The only effective way therefore to reduce chromatic effects is to minimise m13

directly.
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3.12 ACHROMATIC TRANSFER BETWEEN EXTRACTION SEPTA
A momentum independent transfer between electrostatic and magnetic septa

requires the chromatic term m13 in the general 3x3 transfer matrix to vanish.
Inspection of (3.25) shows that the size of m13 is determined by the normalised
dispersion functions at the septa.  In order to reduce m13, the lattice needs to provide
suitable values of the dispersion at the two positions of the septa.

The shape of the dispersion function in a lattice is determined by the
distribution of the dipole magnets.  In the analysis below, the effect of the dipoles is
approximated as point kicks.  In this model, every passage of a dipole adds a kick D′n,0

to the actual value of the normalised dispersion function, according to

���
	�
	�
	

ee

nn

n

nn

n

DD

D

DD

D

dipol
ofExit

dipoleof
kickPoint

dipolto
Entrance

0,0,

0






′+′=





′+





′

. (3.27)

In a bending-free region, the dispersion function acts like a betatron oscillation of a
particle and can be described with the Courant and Snyder matrix formalism. The
transformation of the dispersion function between two lattice elements, denoted by the
suffices 1 and 2, without crossing dipoles, is given by

D
D

m m
m m

D
D' '





 = 



 ⋅


2 1

11 12

21 22
. (3.28)

In normalised phase space, the normalised dispersion vector simply rotates by the
phase advance, µ12, between the elements, according to

12






⋅





µµ−
µµ

=





'cossin

sincos

' 1212

1212

n

n

n

n

D

D

D

D
. (3.29)

The combination of (3.27) and (3.29) allows an approximate analysis of the transfer
between the extraction septa.  Some particular cases are demonstrated below.

Both septa in a bending-free dispersion region

Figure 3.21  180°dispersion bump
(a) Normalised co-ordinates (µ, Dn), (b) normalised phase space (Dn, D′n).
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Figure 3.21 shows a dispersion bump as created by two dipole point kicks of
identical strength, spaced by 180° in phase.  The electrostatic septum is positioned in
the first half of the bump and the magnetic septum 90° in the second half.  To prove
that in such a case the transfer is always achromatic, the closed orbit for particles with
a momentum deviation δp is considered.  The closed orbit at any position s in the
machine is, to first order, defined by the product of dispersion function and
momentum deviation,

( ) ( ) ( )ppsDpsx /, δ⋅=δ     and    ( ) ( ) ( )ppsDpsx /',' δ⋅=δ . (3.30)

A 3x3 transfer matrix links the orbit co-ordinates between two positions 1 and 2 in the
machine according to


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
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
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
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




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
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




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
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
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The insertion of (3.30) into (3.31), provides general expressions for m13 and m23, in
terms of the dispersion functions and the 2x2 matrix elements,

m D m D m D13 2 11 1 12 1= − ⋅ − ⋅ '         and        m D m D m D23 2 21 1 22 1= − ⋅ − ⋅' ' . (3.32)

In regions without bending, the dispersion function transforms according to (3.28)
and, by inserting this into (3.32), it follows directly that m13 and m23 are zero and
therefore:

• The transfer via a dispersion region without crossing bending magnets is always
achromatic with respect to position and angle.

It should be noted that this result is exact and valid, not only inside a dispersion bump,
but in any lattice section without bending.

A typical structure where this result can be applied is the so called ‘square’
lattice in which the dipole magnets are grouped in the corners, to create dispersion
bumps on two opposite sides and dispersion-free straight sections on the remaining
two sides.  With the above principle that allows fully achromatic transfer between the
septa in the straight sections with dispersion, it may appear that such a structure is
ideally suited for slow extraction, but there are two major problems with a square
lattice:

• The natural position for the electrostatic septum would be the first half of the dispersion
bump, but this is the ‘worst’ place to put it when adjusting for the Hardt condition.  It was
shown in Section 3.8, that for ideal operation Dn > 0 and D′n < 0, is required and this only
occurs in the second half of the bump (see Figure, 3.17).

 

• The second problem is that in general there is too little useable phase advance inside the
dispersion straight-section.  An important fraction of the 180° is lost because of the finite
length of the corner dipoles.  To get the maximum phase separation between the septa,
they have to be positioned close to the corners on either side of the straight section, but
then the magnetic septum has to kick strongly to clear the dipole magnets of the
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downstream corner.  If the magnetic septum is moved upstream then the electrostatic
septum must kick harder.

Both septa in regions with dispersion and bending

Figure 3.22  Extended dispersion bump
(a) normalised co-ordinates (µ, Dn),  (b) normalised phase space (Dn,D′n)

Figure 3.22 shows a so called extended-dispersion-bump.  The free space within the
dispersion bump is increased by adding a central dipole in order to overcome the
problems of the ‘square’ lattice.  The disadvantage of such a structure is that, in
general, the transfer between the extraction septa is chromatic, as a bending magnet
has to be crossed.

Some design guidelines can be found for an extraction layout with optimised
phase advances of µ=90°+n⋅180° between the septa.  Using expression (3.25) for the
chromatic term,

( )µ⋅−µ⋅−⋅β= sin'cos13 ESn,ESn,MSn,MS DDDm , (3.25)

and assuming a phase advance µ = 90° + n⋅360° between the electrostatic and
magnetic septa gives

( )ESn,MSn,MS '13 DDm −⋅β= . (3.33)

To make the transfer achromatic (i.e. m13 = 0),

D Dn,MS n,ES= ' (3.34)

is required, but as shown earlier, one needs to work with a negative D′n,ES for
adjusting the Hardt condition and therefore m13 can only be made zero by having
negative dispersion at the magnetic septum.

For a phase advance of µ = 270° + n⋅360° (septa on opposite sides of the
vacuum chamber) it follows that

( )ESn,MSn,MS '13 DDm +⋅β= (3.35)
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and therefore to make the transfer achromatic requires,

D Dn,MS n,ES= − ' . (3.36)

In this case, m13 can be made zero by having a positive Dn,MS and a negative D′n,ES just
as required for the Hardt Condition.  A disadvantage of this solution might be that the
particles which are extracted have to be transported for a longer distance inside the
machine (e.g. crossing of sextupoles between the septa would be more difficult to
avoid)∗.

Electrostatic septum in dispersion region and magnetic septum in zero-dispersion
region

Figure 3.23  180°dispersion bump
(a)  Normalised co-ordinates (µ, Dn),  (b) normalised phase space (Dn, D′n).

Figure 3.23 shows a 180° dispersion bump, but contrary to the extraction layout in
Figure 3.21, the electrostatic septum is positioned in the second half of the bump
where Dn > 0 and D′n < 0, as required for the Hardt condition and the magnetic
septum is positioned in the dispersion-free straight section after the dipoles that close
the bump.  As for the extended dispersion bump, the transfer between the septa is in
general chromatic due to the passage through dipoles.  Assuming that the dispersion
bump is created by dipole point kicks, the normalised dispersion function can be
described with (3.27) and (3.29) as

( ) ϑ⋅′=ϑ sin0,nn DD      and      ( ) ϑ⋅′=ϑ cos' 0,nn DD , (3.37)

where ϑ  is the phase advance counted from the first dipole kick and D′n,0 is the
strength of the kick.  With Dn,MS = 0 in (3.25), the chromatic term m13 can be written
as

( )µ⋅+µ⋅⋅β−= sin'cos13 ESn,ESn,MS DDm , (3.38)

and by inserting (3.37) into (3.38) a simple expression for m13 is obtained,

                                                
∗ If a sextupole is crossed (either resonance or chromaticity) between the ES and the MS, then there is a
variable optical element in the extraction channel. Any change in the Q’ or resonance-strength alters the
extraction geometry
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( )µ+ϑ⋅⋅β−= sin13 ESn0,MS Dm . (3.39)

It follows immediately that the transfer between the septa will be achromatic,
( m13 0= ), for

( ) 0180⋅=µ+ϑ n . (3.40)

Obviously it is impossible to use exactly n = 1, since this gives the position of the
dipole which is closing the dispersion bump.  To keep m13 small, the magnetic septum
has to be positioned as close to the dipole as possible.  For larger n, there is again the
problem of transporting the extracted part of the beam through a large distance in the
machine.

Transfer for un-fulfilled Hardt Condition
Adjusting the Hardt Condition fixes the chromaticity and therefore the slope of

the resonance line (3.14) and the momentum spread of the extracted beam (3.15).
Alternatively, instead of superimposing the extraction separatrices at the electrostatic
septum, the chromaticity can be used to superimpose the orbits of the different
momenta at the magnetic septum.  With a proper choice of starting conditions, the
available space for the magnetic septum can be maximised even if the transfer
between the septa is chromatic but, of course, the separatrices then arrive at the
electrostatic septum with different angles.  This method is used in the present CERN-
PS slow extraction scheme [5].

Transfers between zero-dispersion regions
By inspection of the general expression (3.25) for m13, it follows immediately

that the transfer between zero-dispersion regions is always fully achromatic.
However, with the electrostatic septum located in a zero-dispersion region, the
separatrices can be superimposed only for zero chromaticity, which will be discussed
in the next Section.

3.13 ZERO CHROMATICITY AND THE HARDT CONDITION
In Section 3.2, the extraction method of Amplitude selection by amplitude

growth was described as having near-zero chromaticity, in Section 3.6 it was noted
that a mathematically trivial solution for the Hardt Condition (3.17) was zero
dispersion and zero chromaticity and finally, in Section 3.12, it was pointed out that
an extraction made between two dispersion-free regions, or within a single dispersion-
free region, would be achromatic for the transfer between the septa.  The combination
of these three points leads to a complete scenario for a zero-chromaticity extraction,
with the Hardt Condition fulfilled and achromatic transfer between the septa.
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I-4 SPILL  CHARACTERISTICS
A detailed knowledge of the extracted beam (or spill) is essential in order to

obtain the quality that is required for high-precision active scanning.  The momentum
spread and emittance of the spill must be well understood to ensure a reproducible
spot size and to correctly adapt the focusing and apertures in the transfer lines and
gantries under all conditions.  The transverse distribution of particles within the spill
affects the dose calculations and the way in which the beam spot is scanned.  The
transit time, or storage time, in the resonance is the principal problem for feedback
systems, but it also has the mitigating effect of smoothing the spill at high frequencies.
The uniformity of the spill is probably the most important aspect of all and analysing
the deleterious effect of tune ripple is a major aim of the present chapter.  By first
studying the behaviour of a single particle and then the strip of particles sitting along
the edge of the stable triangle in phase space and finally the ‘band’ of particles that
comprise all the strips of different momenta that become unstable at any one time, it
has been possible to build up simulations of the micro-time profile of the spill under
the influence of tune ripple [1,2].  These simulations have been made and compared
for the different extraction techniques.

4.1  TRANSLATION OF THE HAMILTONIAN
In order to study the motion of a single particle as it leaves the machine under

the influence of the resonance, it is convenient to shift the origin of the Kobayshi
Hamiltonian (2.27) to the fixed point used for extraction.

Shifted Hamiltonian: ( )3223 33664
4

XXXXXhXhh
S −′+′++=H (4.1)

where Q
SS

h δπ=ε= 4

3

2
(2.29)

and the ‘‘ indicates the variable is referred to new origin.  However, to simplify the
notation, the convention of adding the bar will be dropped and X′ will be replaced by
Y from now on.  This situation is drawn in Figure 4.1.

Figure 4.1  Phase space with the origin on the extraction fixed point
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In the translated frame of reference, the equations of motion are:

( )

( ) )(.333612
4

)(
636

4

22 bXYhYhX
S

X

H

dt

dY

a
XYhX

S

Y

H

dt

dX

−++−=
∂
∂−=

+=
∂
∂=

(4.2)

Time is dimensionless in (4.2) and is measured as a number of sets of three turns.
This is a heritage from the derivation of the Kobayashi Hamiltonian that was derived
by considering the displacement that a particle undergoes when viewed every third
revolution.  Thus, the elementary time dt corresponds to 3 TREV, but it is
dimensionless.  Thus, if an extraction time is found to be 100, this means that the
particle being considered needs 300 revolutions in the accelerator to reach the
electrostatic septum and be extracted.

The time scale of the slow extraction process is such that the extracted
particles will follow paths that are close to the separatrices and it is convenient to
express the co-ordinates of these trajectories in terms of the apothem of the stable
triangle, h, such that

00000 32and Λ−=Λ−=λ−= hYYhX B , (4.3)

which effectively define the new quantities λ and Λ.  Thus, the motion in X is
measured in units of h and the motion in Y is measured in units of the length of the
side of the stable triangle.

The strategy for finding the transit times is to first analyse the motion of
particles travelling along the outgoing separatrix from O′ to the electrostatic septum
under static conditions i.e. while the stable triangle remains constant in size and
position.  The next step is to find an expression for the travel time of particles moving
close to the side of the stable triangle from an arbitrary point towards the stable fixed
point O′, again under stable conditions.  Finally, these expressions must be modified
to take into account the dynamic conditions of a shrinking stable triangle.  An
important stage in this analysis is the definition of the ‘hand-over’ point between the
trajectory associated with the side of the stable triangle and the trajectory associated
with the outgoing separatrix.  For convenience, these separate components of the
travel times will be defined as follows:

T static = T corner, static + T side, static   and   T dynamic = T corner, dynamic + T side, dynamic

To help the understanding of some of the approximations made in the
following, some tentative values of the main quantities are given:

Revolution time, TREV = 0.5 µs and Spill length = 0.5 s = 106×TREV.

Tune separation from the resonance, δQ = 3×10-3 and ε = 6πδQ = 5.65×10-2.
S = 36.7 m-1/2 and h = (2/3)(ε/S) = 1.03 10-3 m1/2.
λ = 15×10-6.
δQbeam = 15×10-3 and dQ/dt = δQbeam /(106/3) = 45×10-9



PIMMS January 1999

55

4.2  TRANSIT TIMES UNDER STATIC CONDITIONS

4.2.1  Transit time from the fixed point to the electrostatic septum

While δQ, S and ∆p/p are constant, the particle will follow a trajectory with
constant, H.  This trajectory will be given directly by (4.1):

)33664(
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)33664(
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In the vicinity of the fixed point O′, that is for |X|, |Y| << h, the third-order terms in X
and Y can be neglected.  Thus:
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The substitution of (4.5) into the motion equation (4.2) (a), yields
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Fortunately, this equation has a standard form* and can be integrated.  Within the
strict assumptions made above, the simplified trajectory equation (4.5) is only valid
close to O′, but, since the particle approaches the separatrix asymptotically and

XY
3

1−⇒ , the third-order terms in the Hamiltonian cancel out, so luckily they can

also be neglected far from O′ along the outgoing separatrix and the integration can be
extended right up to the electrostatic septum.  Thus, the transit time Tcorner,static is
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with expansion of square roots to 1st order.
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It is useful to express all the distances in terms of h.  In correspondence with
the definitions of λ and Λ in (4.3), the position of the electrostatic septum is written as
XES = -nh, and the starting positions are written as X0 = -λ0h and Y0 = 2√3hΛ0.  Both
X0 and Y0 will be small and close to the stable fixed point.  By neglecting the terms in
λ0 with respect to unity and λ0Λ0 with respect to λ0 the final result obtained is,

Transit time from ‘corner’:     
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This formula works well for particles at positions up to Λ0 = 0.1 and within this range
the extraction time is independent of the initial Y0 co-ordinate.

4.2.2  Extraction time from the side of the stable triangle
To evaluate the time needed to reach the electrostatic septum for a particle that

has just become unstable, it is necessary to add the time spent moving along the side
of the stable triangle to reach the fixed point O′ before moving along the outgoing
separatrix.  The motion in Y between a starting position close to the side of the
triangle (so that X and X2 can be neglected) and a point that is ‘near’ to O′ can be
obtained from (4.2) (b).
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Equation (4.9) has the same basic form as (4.7),
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which yields,
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where the integration has been made between the starting point hY 00 32 Λ−=  and

hY FF Λ−= 32 ∗ and the point defined by -ΛF has to be ‘near enough to O′ to allow
the use of Tcorner,static’ (derived in the previous sub-section).

4.2.3  Matching the ‘side’ and ‘corner’ trajectories
In order to complete the present calculation, it is necessary to define a ‘hand-

over’ point between the trajectory coming from the side of the stable triangle and the
trajectory that extends out to the electrostatic septum.  The general expression for the
end-point co-ordinates of the first trajectory is obtained by equating the Hamiltonian
at the start (-λ0h,-2√3Λ0h) and the start and end of the trajectory.

                                                
*  Note that in Ref. 1 the parameter AF = 2√3ΛF is used to define the end point of the track.

(static conditions)

(static conditions)
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By rewriting XF = λFh and hY FF 32 Λ−=  and by neglecting the higher order terms in

λ0 and λ0Λ0, a relation is obtained between the starting co-ordinates and the finishing
co-ordinates,

( ) FF Λλ≈λΛ−Λ 000 1 . (4.11)

At this stage, an expression for the X-position of the hand-over point, XF, is noted for
future use.
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The addition of (4.8) and (4.10) yields,
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And finally, with the introduction of (4.11)
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which no longer depends on ΛF or λF.

4.3  TRANSIT TIMES UNDER DYNAMIC CONDITIONS

Resonant slow extraction can be ‘activated’ in many ways (see Section 3.2.3),
but the easiest to understand is the variation of the tune Q of the machine, by changing
the focusing quadrupoles, to bring the beam into resonance.  An equivalent method, in
terms of the present analysis, is to vary the momentum of the particles, as
δQ = Q′ ∆p/p.  Varying δQ, by either method, causes the stable triangle to shrink.  The
size of the triangle is directly proportional to the apothem h, which is proportional to
the tune shift via ε = 6πδQ.  Reducing the size of the triangle causes the particles on
the largest orbits to pass from the stable region inside the triangle to the unstable

(static conditions)
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region outside and thence to be extracted.  A linear variation of the tune with time
(Q�  = constant) will be considered.  The main approximations used are the following:

• The relative variation in the size of the triangle during the extraction time will be
small, that is ∆h << h;

• Instead of considering the movement of the separatrices as the triangle shrinks, the
relative movement of the separatrix with respect to the particle, will be considered
as an additional contribution to the particle velocity and the triangle will be
considered as fixed during the extraction time.  This is illustrated in Figure 4.2,
where the situation is sketched at two different times t1 and t2 with t2 > t1.

Figure 4.2  The relative motion of an unstable particle and the stable triangle

4.3.1 Transit time from the fixed point to the electrostatic septum under 
dynamic conditions
It was shown in the static case in Section 4.2.1 that in this region the extraction

time does not depend upon the initial value of Λ for values up to 0.1.  Following this
hint, Λ0 is set to zero and the particle is assumed to move on the outgoing separatrix

XY
3

1−= .  With this assumption equation 4.2(a) becomes:
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To this velocity, it is necessary to add the velocity of the separatrix as it recedes from
the particle.  It is easy to evaluate the velocity in the non-translated frame and to note
that it has to be the same in both frames.  In the non-translated frame, the separatrix
equation is given by X = -h.  Thus:

dt

dQ

St

h π−= 4

d

d
(4.15)

so that:

Stable region at t2

Particle position
at t1 Stable region at t1

∆h

Real Situation

Particle position
at t2

Stable region at t1 and t2

Particle position
at t1

∆h

Approximation

Particle position
at t2
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This integral can be evaluated using the same standard form as in the static case, to
give,
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which is obtained using the assumption ∆h << h which translates into
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The term in λ0 in the denominator has been kept in order to recover the static
expression when Q�  = 0.

4.3.2 Extraction time from the side of the stable triangle under dynamic 
conditions
As in the static case, it is necessary to evaluate the time spent moving along

the side of the stable triangle.  In equation (4.2)(b) for the motion in Y, the X and X2

terms are neglected and the velocity of the separatrix (i.e. the approach velocity of the
stable fixed point) is added to give:
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When integrated between hY 00 32 Λ−=  and hY Fdynamic F, 32 Λ−= , this gives:
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which is exactly the same as in the case of the static situation in (4.10).  This is
reasonable, considering the approximation used in which the velocity in Y does not
depend on X and in which the variation in the length of the triangle’s side is negligible
in the time considered.

Transit time from ‘corner’:
(dynamic conditions)

(dynamic conditions)
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4.3.3  Matching the ‘side’ and ‘corner’ trajectories under dynamic conditions
It now remains to evaluate the ‘hand-over’ point where the two trajectories

coincide.  This can be approximated by adding the XF-position of the static case in
(4.12) to the movement of the separatrix, which will be the product of the velocity of
the separatrix and the time spent by the particle moving along the side of the stable
triangle.  The YF-position will be unchanged from that of the static case to this level of
approximation.
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Thus, the total time to reach the electrostatic septum for a particle starting far from O′,
is the sum of (4.17) and (4.19) with the appropriate value of λF, dynamic from (4.20),
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Unfortunately in the dynamic case, ΛF does not disappear as it did in the static case,
but it turns out that particles with 0 < Λ0 < 0.1, come out approximately together.
Thus, Tcorner, dynamic can be considered to be correct up to Λ0 = 0.1 and it seems natural
to choose ΛF to correspond to this value.  The approximation of ΛF = 0.1 is based on
the simulations summarised in Table 4.1 that also compare the static and dynamic
formulae to simulations over a wider parameter range.

Comparison of the various formulae for the transit time shows that they all
have the form,
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and that the order of magnitude of the transit time is given by 1/ε.  The various transit
time formulae have been checked against numerical simulation and have been found
to be correct to within five percent, provided the relative variation of the parameters is
small during the transit time.  Table 4.1, shows a sub-set of the comparisons made
with the static and dynamic formulae.  The initial values for these calculations were
λ = 15 × 10-6 ε = 5.65 × 10-2.

Transit time:
(dynamic conditions)
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Comparison of numerical simulations and analytical results for the transit time

Starting position, Λ0 Transit time (no. of revolutions)
(Y0 = 2√3Λ0h) Numerical simulation T corner, static T static

0 384 364 -
0.1 390 364 370
0.5 426 406
0.9 531 505

0.999 843 787

T corner dynamic T dynamic

0 306 290 -
0.1 309 290 290
0.5 327 322
0.9 381 375

0.999 531 501

Table 4.1  Numerical simulations and analytical results for the transit time

4.4  BEAM MODELS FOR THE SPILL

4.4.1  Time profile of a ‘strip’ *

In the previous sections, expressions have been derived for the time needed
(transit time) for individual particles to leave the machine.  The aim now is to use
these basic results to predict the time profile of the spill from an elementary ‘strip’ of
particles sitting along the side of the last stable triangle that are made unstable by the
recession of the separatrix during three turns (see Figure 4.3).  Ultimately, it will be
possible to integrate over the elementary strips to form ‘bands’ that will include all the
different momenta that become unstable at any one time.  Once this is done, the full
simulation of the time profile of a spill can be attempted.

Figure 4.3  Shrinking the stable region leaves a narrow ‘strip’ of particles unstable
[In the figure, only one of the three sides of the triangle is considered and the motion of the particles

and separatrices are shown by arrows.]

                                                
* The name ‘strip’ will be reserved for the narrow region of mono-energetic particles on the side of a
stable triangle. The name ‘band’ will be introduced later for the series of strips in a beam with a
momentum spread.

Λ=0

Λ=1

X

Y

B

C

O´
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The first particle will reach the electrostatic septum at t0 = T(Λ=0) and the last one at
tL = T(Λ=ΛL).  Note that the maximum time does not correspond to Λ = 1. This is due
to the fact that the particles that start near to the stable point B will be overtaken by
the inward movement of the separatrix BC.  These particles will be extracted along
the following separatrix.  This is equivalent to considering them as starting near O´
(they are in fact replaced by particles from the separatrix OC that are overtaken by the
movement of OB).  The delay with which they appear near O´ will not be considered,
for the moment.  The value of ΛL will be given later.

As noticed in Section 4.3.3, all the particles starting with 0<Λ<0.1, reach the
electrostatic septum at virtually the same moment, so the spill will start with a spike at
t0 = Tcorner, dynamic(δQ, �Q).  If ρ(Λ) is the linear probability density of particles in the
strip, and NT is the total number of particles contained in the strip, the spike will
contain Nspike particles, where:
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where 1d)(
1

0

=ΛΛρ∫ .  Thus the initial spike can be described by

Initial spike: NT Pspike(t)dt = Nspike δ(t-t0)dt (4.24)

After the initial spike, the spill shape can be evaluated by noticing that the particles
coming out between T(Λ) and T(Λ)+dt are the ones which started between Λ and
Λ+dΛ. This means

Spill tail: t
t

NNtTPNttPN d
d

d
)(d)(d))((d)( TTtailTtailT

ΛΛρ=ΛΛρ=Λ= (4.25)

for t0 < t < tF, which corresponds to 0.1 < Λ < ΛL.  The time profile for the elementary
strip is then given by the sum of Pspike and Ptail.

Strip profile: Pstrip(t)dt = Pspike(t)dt + Ptail(t)dt (4.26)

Once ΛL, ρ(Λ) and Λ(t) are known, the time profile of the elementary spill can be fully
evaluated. The shape of this elementary spill is the key to calculating the spill profile
for the whole beam and for including the influence of ripple.

Evaluation of the linear probability density ρ(Λ)
Assuming that the initial beam is smoothly distributed in phase space and that

the resonance is applied adiabatically, then the density probability ρ(Λ) in the strip
will be proportional to 1/v(Λ), where v(Λ) = dY/dt and is the velocity in normalized
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phase space of the particles. With the Kobayashi Hamiltonian translated to the fixed
point O´, v(Λ) is given by (4.2)(b):
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Restricting (4.2)(b) to trajectories close to the separatrix O´B and re-expressing the
co-ordinates according to (4.3), but neglecting the terms in λ2, yields,
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=ΛΛρ∫ d , the constant k is found to be ,
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Inverting T(Λ)
The second element that is necessary for the evaluation of Ptail, is dΛ/dt.  This

will be derived from the time, Tdynamic needed for a particle to reach the electrostatic

septum starting from X0 = -λ0h and hY 00 32 Λ−=  close to the separatrix O´B.  This

transit time can be found in (4.21)
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The re-arrangement of (4.21) to solve for Λ (the 0 subscript is now dropped as Λ
becomes a variable) and the use of t instead of Tdynamic to stress that it is now the
independent variable, yield
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and
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As λ0 is of the order of 
ε
ε−
�

, and ε << 1, the first term in the denominator of the last

fraction in (4.31) can be neglected with respect to the second. Equation (4.31) can
then be rewritten as
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In order to invert T(Λ), it is necessary to solve (4.32) with respect to R.  This equation
has real solutions only when K ≥ 1, which corresponds to t ≥ t0. This is to be expected
since no particle is extracted prior to t0.  Let R = R(K) be the solution of
equation(4.32), then:
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Referring back to equation (4.25) the aim is to evaluate ( )
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The substitution of expression (4.34), yields:
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which no longer depends on ΛF.  Note that neglecting λ with respect to (Λ2 - Λ) in
equation (4.35), means that Λ >> λ, which is always true for Λ > 0.1, and
(1 - Λ) >> λ.  This will be shown later to be also true for Λ < ΛF.  The derivation of
(4.32) with respect to time, gives
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which, when substituted into (4.36), gives
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Note that neglecting the derivatives of n and ε was already included in the model
when it was assumed that the stable region does not change during the extraction time.
A plot of expression (4.38) is shown in Figure 4.4.  When K >> 1,  R >> K and K can
be neglected in the denominator of (4.38).  From (4.32), (1+ln(R))/R = 1/K and for
K >> 1, the asymptotic value of the spill density in the tail becomes,
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Figure 4.4  Shape of the tail profile Ptail(t) for δQ = 3 10-3 and �Q  = -9 10-9

Spill length
The end of the spill (and also the spill length) can be evaluated by noticing that

the separatrix BC, in its movement, overtakes some particles with values of Λ
sufficiently close to unity that their velocity is slower than the velocity of the
separatrix itself.  Those particles will then be extracted along the following separatrix.
The effect is that some particle near B will disappear to reappear near O′.  The spill

Ptail (t)

t

Start of leading ‘spike’

‘Tail’ profile
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therefore ends with the particle whose velocity is equal to the velocity of the
separatrix.  The Y co-ordinate of this particle is given by

( )
���
	

�

������ ������� 
	
 velocitySeparatrix velocityParticle
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8
333612
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d
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S
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t
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Neglecting the term in X and X2 with respect to the right-hand side, and substituting

hY Λ−= 32 , yields
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whose solutions are
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The solution of interest is the one close to the stable point B, so that
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Note that 1-ΛL >>  λ.  This justifies the omission of λ in equations (4.35) and (4.40).
The spill will thus end at
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where the term in λ in the last fraction has been neglected as in (4.31).  Expressing
this time in units of t0 = Tcorner, dynamic(δQ, �Q), yields
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Where all the addenda have been considered negligible with respect to εε �2ln .

Hence this complicated derivation converges to a beautifully simple result,

Spill end: ( ) 0Ldynamic 2tT =Λ . (4.44)

Thus, the first particle reaches the electrostatic septum at t0, the last particle arrives at
2t0, and the spill length is t0.

Width of the initial spike.
It is now possible to evaluate the time needed for the last particle to be

overtaken by the separatrix.  Consider the velocity of the particle along the side of the
stable triangle and add the velocity of the separatrix as in (4.18) and re-write using λ
and Λ:
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The integration of (4.45) gives the time for the separatrix to overtake the last particle,
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As Λi approaches ΛL, T goes to infinity as expected, since this is the time needed for
the separatrix to reach a particle, which moves with the same velocity.  It is therefore

necessary to consider Λi = ΛF + 32λ , that is one step of the separatrix away from

ΛL.  Then,

εε
=
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1
ln

3

1
T , (4.47)

which may be a large fraction of t0 for small ε. However, for the sake of simplicity,
and considering that most of the particles are near the stable points and thus will be
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overcome in a few turns, this delay will be neglected and all the particles starting near
B will be considered as if they were starting near O´.

Population of the spike and the tail of the elementary ‘strip’
The evaluation of the fraction of the beam contained in Pspike and Ptail can be

done in a straightforward way by integrating the density ρ(Λ).  It is easier to integrate
Ptail between the hand-over point at Λ = 0.1 and the point at which the last particle

escapes the advancing separatrix, Λ = ΛL, as in this range λ can be neglected in the
density.  This results in,

Fraction in tail: ( )
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ε
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=ΛΛρ∫
Λ

(4.48)

It is reasonable to neglect ln(27√3 ε) and ln(3) with respect to ln(λ), which yields the
very simple result that 1/2 of the spill is in Ptail and thus 1/2 in the initial spike.

This result is of consequence for the response to ripple and the efficiency of
feedback systems.  For perturbations up to frequencies corresponding to the width of
the initial spike (of the order of 100 kHz for revolution periods of the order of 1 µs),
half of the beam behaves coherently with a definite delay while the other half is
extended over a period that will cause overlap with ripple frequencies as low as
1 kHz.

4.4.2 Time profile of a ‘band’ *

Up to now, only the microscopic behaviour of an elementary strip of particles
that are marooned just outside the stable triangle has been considered.  In general, the
spill will contain a continuous range of momenta with different emittance triangles all
contributing elementary strips into the spill.  The continuous range of strips entering
the resonance will be called a ‘band’.  A schematic view of this situation is shown in
Figure 4.5 with an arbitrarily shaped beam.

Figure 4.5  Elementary strips forming a ‘band’ in the Steinbach diagram

                                                
* Here the word ‘band’ is used to indicate the series of strips corresponding to different momentum and
amplitude that become unstable simultaneously.

∆p/p

Amplitude

BEAM

Elementary strips forming a band

Stable region

Resonance region
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The total time profile of the spill arising from a band is obtained by summing
the contributions of all the different elementary strips.

( ) ( )tPtI
i

∑= i strip, . (4.49)

This is shown in a schematic way in Figure 4.6.

Figure 4.6  Summing strip spills to form a band spill

The evaluation of I(t), can be greatly simplified when the total extraction time
is much longer than the duration of a strip.  In this case, all the terms Pstrip,i(t) are
contributing to the total extracted current equally.  The sum of all these terms is then
given by the integral over one of them, which is simply the number of particles that
become unstable as a function of time NT(t).  This means that:

• If the extraction is performed in amplitude the time profile is the amplitude distribution,

• If the extraction is performed in momentum the time profile is the momentum distribution,

• Combinations of amplitude and momentum yield the combined distribution.

This is, of course, intuitively obvious for perfectly smooth spills.  It will
become clear later that the strip and band analyses are useful for understanding the
response to ripple, but first the spill profile will be analysed for a band in the
extraction method that moves the beam in momentum into a fixed resonance (i.e.
‘Momentum selection by moving the beam’ see Section 3.2.3).

Elementary ‘band’ for a wide momentum spread
Consider the momentum selection case, in which the beam is wide in tune so

that a quasi stationary situation develops in which all betatron amplitudes become
unstable simultaneously.  In Figure 4.7, an amplitude-momentum selection extraction
is shown and the elementary band of beam that becomes unstable in one step is
highlighted.

Pstrip,1

t

dN/dt
Pstrip,2

Pstrip,3

Pstrip,4

t0,1

t0,2

t0,1

Delay ≈ Length of spill
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Figure 4.7 A band of particles that becomes unstable in one step
(Amplitude-momentum selection extraction)

A hollow beam is considered in order to set a minimum ε, which can be
considered large with respect to its variation in the transit time.  If the number of
particles which would normally be in the hole is small, then a good representation for
the beam with no hole will be found.  This approximation is not so restricting since
firstly the radial particle density across a beam rises from zero at the centre and
secondly particles with a sufficiently small amplitude will cross the resonance without
being extracted.  Let the band that is extracted contain particles with tune shifts
between δQmin and δQmax.  The time profile of this band, is given by considering the

time profile (4.26) for each ε value between εF = 6πδQmin and ε0 = 6πδQmax and
summing at each instant all these contributions, as shown in Figure 4.8

Figure 4.8  The total flux of particles is obtained summing the ‘strip profiles’ for all the
amplitudes present

Band Profile:
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where NB is the total number of particles in the band and NT(ε)dε is the number of

particles marooned with detuning between ε and ε + dε.
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Simplified model
The exact integral (4.50) is too complicated to be evaluated analytically. So, to

facilitate the task, each Pstrip(t) is approximated by one delta function plus a rectangle
representing Pspike and Ptail respectively.  The width of the rectangles, as mentioned in
a previous section, is equal to the time needed for the first particle to reach the
electrostatic septum, that is Tcorner, dynamic, and hence the height is 1/Tcorner, dynamic.

Not all the elementary strips, Pstrip(t, ε), are contributing at a given instant.  Most of
them are zero, either because they have not started, or because they have already
finished.  At time T, only the ε, for which T/2 < Tcorner, dynamic(ε) < T give a non-zero
contribution.  Thus the part of the integral for Ptail, becomes
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To be correct the integration limits should be max(ε(T), εL), which corresponds to

min(T, TL), and min(ε(T/2), ε0), which corresponds to max(T/2, T0).  After a change
of the integration variable,
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It is necessary to invert the expression for T corner, dynamic (4.17) to find ε(T),
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To simplify the calculation, it is assumed that the electrostatic septum is far away so
that n >> 1 and n/(n+3) ≈ 1.  After neglecting λ and re-arranging into the form
V = ln(U)/U, the relation becomes,
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32

1
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A simple fit to the inversion, valid to within 10% in the range 4 < U < 30 000, is

U = -1.42 ln(V)/V. (4.54)

Note that U = 10 corresponds to 22 105/ −⋅≈εε�  and values of U smaller than this
should be avoided to stay within the validity limits of the transit time formulae
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( 2εε� measures the relative variation of the stable region during the transit time).
Thus

T

T 




 ε−
⋅−=ε

32

1
ln

3

2
42.1

�

(4.55)

from which
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It is now necessary to estimate NT(ε)dε.  This is the number of particles that are in the

border of thickness dh of a triangle of surface 
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corresponds to the circular corona of width dR around a circle of the same surface πR2

in the initial beam. Thus,
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where NB is the total number of particles in the band.  Two beam distributions
(uniform and gaussian) will now be analysed using the simplified model described
above.

Uniform distribution in phase space
In the first example, a uniform, phase-space distribution in the initial beam, of

value ρ0 = 1/Triangle Area = 
3

4 3
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ε
 is assumed and this yields for the integration of

the tails from all the differential strips in the band,
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Fortunately, this integral can be evaluated using standard forms*
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and finally, for times 2T0 < t < TL, in the middle of the spill
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To correctly evaluate the initial and the final part of the band spill, the correct
integration limits have to be considered.  In fact, for times t < T0, no particle has
reached the septum and Pband, tail = 0.  For times T0 < T < 2T0, the integral has to be

performed between T and T0 (there are no particles with ε = ε(T/2)). For  the same
reason, for times TL < T < 2TL, the integral has to be performed between TL and T/2.
Finally, for times greater than 2TL, Pband, tail = 0 again.

The contribution from the initial spikes of the strips in the band, gives,
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The graph of the spill shape for a particular case is drawn in Figure 4.9.  This curve
has a characteristic ‘shoulder’ that can be seen in measurements of spikes in slow
extracted spills.
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Figure 4.9  Spill profile for a ‘band’ from a uniformly distributed beam

[δQmax = 3×10-3, δQmin = 3×10-4, �Q  = -9×10-9, S = 15.33 m-1/2, Ex = 10 π mm mrad]

Gaussian distribution in phase space
In the second example, the frequently-used gaussian distribution in phase

space is used, rather than the uniform distribution as assumed in the earlier example.
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where Ex is the horizontal RMS emittance.  Assuming that the area of the largest
stable triangle (i.e. the acceptance imposed by the separatrices) corresponds to an
emittance of the beam of n-σ, the one-σ emittance is given by,
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The resulting integral of (4.61)

Sum of the leading peaks

Sum of the tails

Total current

Pband(t)

t



PIMMS January 1999

75

∫
εε=

),2/max(

),min(

T
 tailband,

0

d
d

d1

2

))((
)(

Tt

Tt F

T
TT

TN
tP (4.62)

has to be integrated numerically (see Figure 4.10).
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Figure 4.10  Spill profile for a ‘band’ from a gaussian beam

[δQmax = 3×10-3, δQmin = 3×10-4, �Q  = -9 10-9, S = 15.33 m-1/2, Ex = 10 π mm mrad]

If the gaussian and the uniform cases are plotted on the same graph, the
comparison in Figure 4.11 is obtained, which shows that the width is not very
different.
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Figure 4.11  Band profiles for gaussian and uniform beams
[The 2σ emittance of the gaussian beam is set equal to that of the uniform beam]
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From the plot above, it appears that the width of the ‘band profile’ is of the
order of T0.  Thus, it can be expected that when the ripple period is of the order of T0,
the width of the profile partially fills the time interval during which no beam enters
the resonance and smoothes the modulation of the extracted beam. This is an
approximation that neglects the instantaneous variation of �Q  and uses an average

value ( �Q= �Q0 + ω δQR cos(ωt) ≈ �Q0).  This is reasonable because �Q  appears in the
expression for the transit time inside a logarithm.  The relative insensitivity of the
logarithm is illustrated in Figure 4.12 where the time profiles are compared for a
variation in �Q  of 2 orders of magnitude.
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Figure 4.12  Time profiles for gaussian and uniform beams for different values of �Q

4.5  TUNE RIPPLE
The time profiles for the spills from elementary strips and bands provide the

keys to understanding:

• How well feedback systems on the spill will work.

• The relative sensitivity of the different extraction methods to tune ripple.

• How to simulate the spill under specific conditions.

4.5.1 Comparison of the extraction methods
For simplicity and clarity, the three main extraction methods with

diametrically opposed characteristics will be considered:

Amplitude selection by moving the resonance: the beam is narrow in momentum and
the betatron tune of the particles is changed by varying a quadrupole.  The separatrix
cuts through the beam from large to small amplitudes, see Figure 4.13(a).

RF knock-out: the chromaticity is zero (or near-zero), so that all particles have the
same betatron tune. The particles are made unstable by blowing up the beam with
transverse rf excitation. Thus, the resonance is reached in amplitude, see Figure
4.13(b).

Amplitude-momentum selection by moving the beam the beam is wide in momentum
and the tune is changed via the chromaticity when accelerating the particles into the
resonance (e.g. by a betatron core), see Figure 4.13(c).

Pband

t

Pband

t
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Figure 4.13  Comparison of the main extraction methods:
(a) Moving resonance, (b) Increasing particle amplitude, (c) Moving beam,

In the amplitude-selection case (a), the movement of the resonance maroons
the particles with large betatron amplitudes first.  Since the momentum spread is
small, the basic element of spill marooned in the elementary extraction process (one
movement of the resonance) is simply the ‘strip’ profile.  So the ‘building block’ of
this particular spill starts with a very narrow peak containing half of the particles
involved.  Moreover in the initial phase the transit time is very short (betatron
amplitude large), the tails are equally short and sensitivity to the ripples is high.  At
the end of the spill, the transit times are longer (betatron amplitudes small), the
particles in the tail are distributed over a longer period and ripple sensitivity reduces.

In the RF-knockout case (b), the blow-up velocity is fixed by the spill length.
A ripple on the resonance excitation moves the resonance line up and down. As the
particles enter the resonance at high amplitudes, and thus large tune distances, the
transit time is short and the sensitivity to ripples is high.  The situation is rather
similar to the amplitude-selection case above, except that the sensitivity to ripple
remains at a maximum throughout the spill because the extraction takes places
constantly at maximum amplitude.

In the amplitude-momentum selection case (c), particles with all possible
amplitudes become unstable at the same time.  Thus the ‘building block’ of this
particular spill is the ‘band’.  This leads to an enlarged leading peak, which tends to
smooth ripple by filling the time intervals during which no beam enters the resonance
in a much more efficient way.
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4.5.2 Reducing the effect of ripple
This subject will be discussed later in more detail, but some comments can be

made on the basis of the present knowledge:

• The amplitude-momentum selection case has the lowest intrinsic sensitivity to ripple

• Large betatron amplitudes means short transit times.  This can be seen as a positive
feature for a feedback system, but as a negative feature for the sensitivity to ripple.  The
present tendency is to use the beam feedback only for low frequencies (<1 kHz) and for
the general spill shape.  Other methods will be proposed to smooth ripple.  Thus, small
emittance beams appear preferable, which favours single-turn injection schemes over
multi-turn injection schemes.

• A narrow resonance width (strength) means longer transit times and less sensitivity to
ripple.

4.5.3 Spill simulations with ripple
To verify the analysis in the previous sections, numerical simulations have

been made of the extraction processes with amplitude selection and with amplitude-
momentum selection.  The relevant numerical values are summarised in Table 4.2.

Values for numerical simulations

Horizontal RMS emittance, Ex 10 π mm mrad
Normalised sextupole strength, S 15.33 m-1/2

Revolution time 0.5×10-6 s
Max. detuning from resonance, δQmax

3
103

5
10

334

−
⋅=

−π

π

S

Min. detuning from resonance, δQmin 3×10-4

εmax 6πδQmax = 5.65×10-2

εmin 6πδQmin = 5.65×10-3

For transit time formulae to be valid

12 <<
ε

ε� 2
1052

min

−
×=

ε

ε�

Acceleration 8
1047.8and

6
106.1

−
⋅=

−
⋅= Q��ε

Tune step per turn 2.8×10-8

Table 4.2  Values for numerical simulations

For the amplitude-momentum extraction, only a small slice of the beam of
width ∆Qbeam = 3×10-4, as illustrated in Figure 4.14, is considered.  The number of

revolutions needed to bring all the particles into the resonance is 106263 beam =
∆

Q

Q
�

.

A particle starting with the smallest amplitude that is considered has δQ = 3×10-4 and
with the above set of parameters needs 1400 turns to reach the electrostatic septum.  A
maximum amplitude particle, starting with δQ = 3×10-3, needs only 260 turns.  This
large range of transit times is a feature that gives smoothing of the ripple.
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Figure 4.14  Initial beam distribution for amplitude-momentum selection simulations
(not to scale)

A ripple frequency of 2 kHz has been considered.  This is comparable to the
longer transit times in the beam.  The amplitude of a ripple has been adjusted to give
100% modulation.

Case 1  Amplitude-selection with a mono-energetic beam
In this case, only large amplitude particles, which have short transit times, are

involved in the extraction simulation and only the first turns of the extraction are
simulated.  The modulation of the spill is 100%, as foreseen by the instantaneous
transfer approximation.  Figure 4.15 shows a beam without tune ripple and Figure
4.16 with ripple.
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Figure 4.15  Spill for a mono-energetic beam without tune ripple
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Figure 4.16  Spill for a mono-energetic beam with 2 kHz tune ripple

Case 2  Amplitude-momentum selection with a uniform beam distribution in phase
space

In this simulation, the simultaneous extraction of all the amplitudes (band
profile) smoothes the modulation in the extracted spill.

0

10

20

30

40

50

60

70

80

90

10
31

9

10
69

6

11
07

2

11
44

9

11
82

6

12
20

3

12
57

9

12
95

6

13
33

3

13
71

0

14
08

6

14
46

3

14
84

0

15
21

7

15
59

3

15
97

0

16
34

7

16
72

4

17
10

0

17
47

7

17
85

4

18
23

1

18
60

7

18
98

4

19
36

1

19
73

8

20
11

4

20
49

1

20
86

8

21
24

5

21
62

1

Figure 4.17  Spill for uniform distribution in phase space without ripple
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Figure 4.18  Spill for uniform distribution in phase space with 2 kHz ripple

Case 3  Amplitude-momentum selection with a gaussian beam distribution in phase
space

The gaussian ‘band’ profile is slightly wider and less peaked than the uniform
one.  The result is that the modulation is less pronounced.
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Figure 4.19  Spill for gaussian distribution in phase space without ripple
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Figure 4.20  Spill for gaussian distribution in phase space with 2 kHz ripple

4.6  EMITTANCE OF THE EXTRACTED BEAM

4.6.1 A simple approach
The conservation of phase space (Liouville’s Theorem) affords a simple and

quick method for estimating and understanding the emittance of the extracted beam.
In a linear machine, the (x, x’), (z, z’) and (∆p/p ,t) phase spaces are uncoupled and
independently conserved, but the presence of a sextupole introduces two couplings:

(A)  Firstly, between (x, x′) and (∆p/p, t)
(B)  Secondly, between (x, x′) and (z, z′).

(A) is an essential part of the mechanism of extraction and arises from the time
variation of the positions of the separatrices, which ‘cut’ the phase space and ‘peel’
off the particles from the waiting beam.  As mentioned in Section 3.1, the amplitude
distribution (x, x′) is converted into a momentum distribution (∆p/p).

(B) is an effect that couples the emittances of the two transverse planes.  It can
be minimised by making the vertical excursions of the particles small compared to the
horizontal ones in the resonance and chromaticity sextupoles(βz<<βx).  The effect is
due to the high-order and cross terms in the magnetic fields (see equation (2.6).

To evaluate the emittance consider a coasting beam with a relative momentum
spread of say ∆p/p = 0.005 and let this beam be driven into the resonance over say
500 ms.  Assume that the Hardt Condition is arranged so as to give a δp/p for the
extracted beam of 0.001.  This determines the slope of the resonance line.  Over the
time of the extraction the separatrix acts like a knife shaving off the beam and the
phase space.  The transverse phase space and the longitudinal phase space (∆p/p, t) are
jointly conserved as a phase-space volume.  For the transverse plane, one can either
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neglect the coupling to the vertical plane, or consider the full volume (x, x′, z, z′).  By
virtue of the phase space conservation, the effect of the extraction can be seen by
equating the phase-space volumes before and after the extraction and then looking
how the horizontal emittance in particular was affected.  This illustrated schematically
in Figure 4.21 and expressed quantitatively in (4.63).

Figure 4.21  Schematic view of the phase-space volumes during extraction
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 ∆
. (4.63)

To give a quantitative impression, some orders of magnitude would be,
Ex,beam = 10π×10−6 [m rad], (∆p/p)beam = 0.005, Trev = 0.5×10−6[s], (δp/p)spill = 0.001,
Tspill = 500×10−3s, so that Ex,spill = 50×10−12π [m rad].  Thus, the long spill time
compared to the short revolution time is balanced by the small transverse emittance of
the spill compared to the much larger emittance of the ‘waiting’ beam.  When dealing
with small numbers of particles in irregularly shaped regions of phase space as occur
in the spill, the statistical expression for the emittance, given below, is perhaps more
meaningful, but the above can still be used as a guide to the extracted emittance.

222
x XXXXE ′−′= (4.64)

Thus, the extracted emittance in the plane of the resonance will be extremely
small.  In fact, under ideal conditions (no noise and low coupling), it will be near zero.
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4.6.2 The maximum emittance that can be extracted
As an illustrative exercise, it is interesting to calculate the maximum emittance

that can be extracted.  This is done by considering the rather impractical case of a
mono-energetic beam that is exactly on the resonance tune and is suddenly subjected
to the full sextupole field.  The beam then finds itself instantaneously sitting on phase-
space trajectories that leave the aperture as shown below.  The stable triangle referred
to earlier has collapsed infinitely quickly and left all the particles ‘marooned’ and
unstable (see Figure 4.22).

Figure 4.22  Hypothetical beam sitting exactly on resonance

The phase space trajectories are given by the Kobayashi Hamiltonian (2.27),

( ) ( )3222 3
42

XXX
S

XX −′+′+ε=H . (2.27)

Since it was assumed that the whole beam is exactly on resonance ε = 0.  On the
limiting phase-space trajectories, the Hamiltonian can be evaluated at the points A and
B as the beam leaves the aperture.
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
 π−ππ=H (4.65)

After the substitution of (4.65) into (2.27) the diagram in Figure 4.22 is rotated by 90°,
for convenience and X becomes X’ and X’ becomes X.  One third of the beam leaves
along each separatrix (see Figure 4.23).

( )323
0 3 XXXA ′−′= # (4.66)

The transverse emittance in the spill is found by integrating between X0 and X0+∆R
(the aperture of the electrostatic septum).  Once the beam is as far out as the
electrostatic septum X′<<X and the X′3 term can be neglected.  Thus,
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Figure 4.23  Hypothetical beam exactly on resonance being extracted exactly on resonance
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Now express this area as a fraction of the initial emittance, (πA0
2) and make the

approximation (1+∆R/X0)
-1 = (1-∆R/X0), to get

2
0

0

3

2
extracted becan  that  offraction  Max.

X

RA
Ex

∆
π

≈ . (4.68)

Assuming the approximate dimensions for the spiral step (10 mm) and the position of
the electrostatic septum (35 mm) given in Figure 3.19, then ∆R is 0.01/√β [m1/2] and
Xo will be 0.035/√β [m1/2] or very close to these values.  If A0 is also chosen as
0.01/√β [m1/2] then the absolutely maximum emittance that can be extracted under
these conditions is just 1.7% of the original beam.  Thus, it appears that whatever is
done there will be a strong asymmetry in the beam emittances.
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I-5 RIPPLE
There are at least two established conventions for quantitatively expressing the

quality of a spill.  The CERN convention uses a parameter of merit called the Duty
Factor, which has the advantage of being analytic in form, but its name is an
unfortunate accident of history and it should not be confused with the more widely
used ‘Duty Factor’ and ‘Duty Cycle’ that describe the ratio of the ‘on’ to the ‘off’ time
for linacs, etc.  In addition, it does not give a very intuitive picture of the spill quality.
The second convention is the GSI convention that is linked directly to the needs of an
active scanning system and has the advantage that it gives a clearer picture of the
quality.  A third model is also used here that quotes equivalent sinusoidal modulation.

5.1 CONVENTIONS

5.1.2 Duty Factor, F
The irregularities of the spill are often quantified by a Duty Factor, F,

Definition:
spill

  over time,  ,
2

2

TF
φ

φ
= (5.1)

where φ = dN/dt, the particle flux in the spill (see Figure 5.1).  In cases where it is
more suitable to think of a continuous flux, φ will be used and (5.1) will be expressed
in integral form.  In cases where the granular nature of the beam is more evident,
dN/dt will be used and (5.1) will be expressed in differential form.

Figure 5.1  Particle spill

5.1.2 Spill Quality, Q
An alternative figure of merit used for a spill is the spill quality, Q, defined as

spill
  over time,  , TQ

φ
φ=
�

(5.2)

where φ
�

 and φ  are peak and average values of the spill rate respectively.

Spill time, Tspill

Time, t

Spill or particle
flux, φ = dN/dt
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5.1.3 Sinusoidal modulation of a spill
Unfortunately, the image conjured up by a certain duty factor of say 0.97 is not

very clear, so to get some idea of what this means, consider a sinusoidal modulation of
the spill,

( )tωφ+φ=φ cosr0 . (5.3)

where φ0 is the unmodulated level of the spill and φr is the modulation amplitude.  The
duty factor in integral form is then,

( )[ ]
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+
=

φ+φ

φ
=F . (5.4)

The evaluation of (5.4) for a range of sinusoidal modulations is tabulated in Table 5.1
to give some impression of the meaning of the duty factor.  Although the duty factor
does not easily invoke a mental picture of the spill quality it does have the advantage
of being able to describe distributions in an analytical way.

Duty Factors for a sinusoidally modulated signal

φr/φ0 100% 80% 50% 20% 10% 5% 1%

F 0.67 0.76 0.89 0.98 0.995 0.999 0.99995

Table 5.1  Duty factors for a sinusoidal modulated signal

5.2 OVER-MODULATION OF A SPILL
If the modulation of the spill is greater than 100%, the spill will be

intermittent, or ‘chopped’ and, in the extreme, it will become a series of spikes.
Whatever the modulation level, the average number of particles leaving the resonance
per cycle will remain the same, but the integral over the square of the spill intensity
will change dramatically.  Let the form of the spill be described by,

( )tωφ+φ=φ cosr0 (5.3)

as before, except that now φr > φ0.  The ripple will clear a space between the beam and
the resonance and the spill will only be active during the peaks of the oscillations (see
Figure 5.2).  The average flux rate in the spill will still be φ0, but it will be
concentrated in the spikes.
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Figure 5.2  Formation of spikes in an over-modulated spill

The integrals needed for the duty factor are
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where the integration limit, τ, is found by equating the beam extracted in the peaks
during one cycle (see Figure 5.2) to the beam extracted in a smooth spill.  This leads
to the relation,

( )( )∫ ωφ+φ=φ
ω
π τ

0
r00 dcos2

2
tt

( )ωτ
φ
φ

=ωτ−π sin
0

r .

The integration of equations (5.6) (a) and (b) is straightforward.  Equation (5.6)(a)
reduces to φ0

2 as expected and the duty factor becomes
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where ωτ is defined above and has to be calculated numerically.  This has been done
for a range of over-modulation (φr/φ0) from unity to ten and the results from (5.7) and
the time for which the beam is switched off by the modulation are presented in Table
5.2.  The last entry in Table 5.2 corresponds to a modulation amplitude φr that is ten
times the constant level φ0 and the beam is cut off for ~80% of the ripple cycle.  If the
spike were to be approximated by a triangular shape, then the average width would be
10% of the ripple period for a height of 10 times the dc level, which agrees well with
the more detailed calculation.  In practice, the situation of over-modulation is more
likely to occur at kHz frequencies.

φ0+φrcos(ωt)

φ0

Time, t

Ripple
period, ω/2π

Particles extracted in spikes

τ

Equivalent number of
particles extracted in a

smooth spill

Point at which beam
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end of oscillation
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Duty Factors for a sinusoidally, over-modulated signal

φr/φ0 100% 200% 300% 400% 500% 700% 1000%

ωτ π 0.396π 0.275π 0.212π 0.174π 0.128π 0.092π
F 0.667 0.386 0.272 0.212 0.173 0.128 0.092

∆t/Tp* 0.0 0.208 0.450 0.576 0.652 0.744 0.816

* where ∆t/Tp is the fraction of the ripple period for which the beam is switched off by the over-modulation.

Table 5.2  Duty factors for a sinusoidally, over-modulated signal

5.3 POISSON STATISTICS IN A SPILL
Even if all elements in the extraction system were perfect, there would still be

natural fluctuations arising from the randomness of the particle distribution in the
‘waiting beam’.  Once all artificial effects have been removed, these fluctuations
would obey Poisson statistics (see Appendix IA) and would determine the ultimate
quality of a spill.  A Poisson distribution has the very special characteristic that the
mean of the distribution, N , equals the square of the standard deviation of the
distribution, σ,
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The duty factor can now be re-expressed for the special situation of a Poisson spill as,
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The Poisson nature of a spill will only become apparent under two rather extreme
conditions; firstly, for very low intensity spills and, secondly, when sampling a spill at
very high frequencies.  To give some quantitative idea of the above, the duty factor is
evaluated using (5.9) in Table 5.3 for different expectations of the number of particles
per measurement bin and, for comparison, the sinusoidal modulation amplitude that
gives the same duty factor is also included.

Duty Factors for Poisson and sinusoidally modulated spills

Particles per bin 1 2 3 4 10 20 100 250

Duty factor, F 0.5 0.67 0.75 0.80 0.91 0.95 0.99 0.996

Equiv. mod.φr/φ0 - 100% 82% 35% 44% 32% 14% 9%

Table 5.3  Duty factors for Poisson and sinusoidally modulated spills
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The spill shown in Figure 5.3 was recorded at GSI, Darmstadt.  The spill is
measured in 30 µs bins and the expected average spill rate was 15 particles per bin.
From the above, the best possible spill quality would be F = 0.9375, which is
equivalent to an amplitude modulation of only 36.5%.  Clearly, the modulation is in
excess of this estimate, so there is more than Poisson statistics at work in this spill.
The spike structure indicates that there is strong over modulation in the kHz frequency
range.

Figure 5.3  Slow extracted spill (Courtesy of GSI Darmstadt)

5.4 DUTY FACTOR AND FREQUENCY
Since all beam spills contain discrete particles, it is possible (in theory at least)

to sample the beam at such a high frequency that the Poisson statistics become
apparent.  The duty factor will then deteriorate steadily as the frequency rises.  This,
however, is more of academic interest.  In practice, frequencies in the spill above the
sampling frequency (10 kHz) become increasingly unimportant.  This statement is
based on two approximate calculations:

• For voxel scanning the nominal time to fill a voxel is 5 ms, which would be 50 bins at a sampling
frequency of 10 kHz.  An error of one bin then corresponds to the nominal ±2% specification for
precision in dose uniformity.

• For raster scanning, the finite spot size and scanning speed of the spot combine such that any
point will ‘see’ the beam for a nominal 5 ms.  As before, this corresponds to 50 bins at a sampling
frequency of 10 kHz.

Thus, it is more correct to define the duty factor for frequencies up to a certain
maximum frequency, or for measurement bins down to a minimum time lapse.  The
specification and performance of the medical machine will be treated in this way.
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5.5 EFFECT OF TUNE RIPPLE AT LOW FREQUENCIES
A simple analysis of the effects of ripple at low frequencies can be made by

assuming that the particle flux that enters the resonance from the ‘waiting’ beam
appears instantaneously in the observed spill.  This is a fair approximation when the
transit times in the resonance are small compared to the ripple frequency.
Unfortunately the transit times depend upon the circumference of the machine, the
strength of the resonance, the emittance and so on.  For a small medical synchrotron,
the transit times typically vary from 100 turns up to 4000 turns.  There will always be
a few particles outside this range, since particles can, in theory, take as little as a few
tens of turns right up to an ‘infinite’ number of turns to leave the machine, but the
range 100 to 4000 will include the majority of the beam.  Now for ease of
computation, assume that most particles leave the machine within 2000 turns.  For a
revolution time of 0.5 µs, this represents a generous delay of 1 ms.  Thus, for 50 Hz,
100 Hz and 300 Hz ripples (common in power converters), it is reasonable to say that
extraction is instantaneous.  With this simplified picture in mind, consider the
schematic model shown below in Figure 5.4, in which the ‘waiting’ beam is being
consumed by a resonance.  Whether the relative motion between the beam and the
resonance is due to one partner, or both, is unimportant for the moment.

Figure 5.4  Simple model for ripple

The relative motion between the beam and resonance will comprise a constant
velocity, ( )

0
d/d QtQ �=  plus a ripple term that may come from either the position of

the beam via the main dipole field or from the resonance via the tuning quadrupoles.
Let the ripple have the form,

( ) ( )tQQtQQ rr ωωδ=ωδ= cos that  so  ;sin � . (5.10)

The flux of particles entering the resonance will be,

( ) ( )( )tQQQQ
t

N
r ωωδ+λ=+λ==φ cos

d

d
00
��� (5.11)

where λ is the line density in the ‘waiting’ beam.  The duty factor will be,
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Duty Factor for power
converter ripple in the low-
frequency régime (<1 kHz)
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ωδ+
= (5.12)

The above assumes that QQ ωδ>0
� .  In fact, the contrary can and very often, will

exist.  Once QQ ωδ≤0
� , the resonance plunges periodically into the beam chopping

the spill into a series of spikes.  The critical ripple for this ‘chopped’ spill is given by,

( ) 0critical QQ �=ωδ . (5.13)

Equation (5.13) shows how delicately the resonance has to be handled.  For example,
the following parameters would be typical for a small machine,

Qres = 1.666 and Tspill = 1 s.
Thus the tune shift to ‘consume’ the beam;   ∆Q = 0.01
And, the average tune speed, 1

0 01.0 −= sQ� .

Relation of tune ripple to current ripple,   ∆Q/Q = ∆I/I .

The relation (5.13) then shows that the spill will be 100% ‘chopped’ at 100 Hz for a
tune ripple of approximately 10-5.  This translates directly into the current ripple in the
quadrupoles*, which represents a tight specification.

The critical values of the ripple at which the spill changes from being 100%
modulated (F = 0.67) to being separate spikes are given in Table 5.4 for frequencies
up to 1 kHz.  The striking feature is the extremely low values of ripple that are
required to stop the spill from being ‘chopped’.  The levels of ripple needed to ensure
a reasonable duty factor (say better than 0.98 i.e. 20% modulation) would have to be 5
times lower still.  This level of stability is not easily, or cheaply, achieved and clearly
some form of protection other than the ripple filter of the converter itself is needed, if
the spill is not to be chopped at frequencies above 100 Hz.

Conditions for 100% modulation of the spill at low frequencies

Frequency [Hz] (δQ/Qres)critical =∆I/I

50 2 × 10-5

100 10-5

300 3.2 × 10-6

1000 9.6 × 10-7

Table 5.4  Conditions for 100% modulation of the spill at low frequencies
[For dQ0/dt = 0.01, Qres = 1.666]

                                                
*  For the PIMMS design ∆Q/Q = 1.3 ∆I/I.
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5.6. EFFECT OF TUNE RIPPLE AT MEDIUM FREQUENCIES
As the stable triangle for a certain momentum slowly collapses, it maroons a

narrow strip of particles in phase space outside the stable region after each turn.  The
line density of the particles in this strip will depend upon the position with respect to
the three stable fixed points.  In the region of the fixed points, the particle velocities
are low and consequently the particle densities are high.  The net result is;

• About 50% of the particles in the elementary strip leave from near a stable fixed point and will be
the first to emerge in the spill in the form of a narrow spike.

 
• The remaining particles are spread, more or less evenly over the rest of the spill time.  As a rule of

thumb, the spill lasts as long again, as it took for the first particles to emerge.

In general, there will be a range of momenta with different oscillation
amplitudes contributing to the spill,  Thus at any given instant the spill will contain
many elementary strip spills of the type described above.  Large amplitude particles
are quicker to emerge than small amplitude particles.  The net result is that

• A spill will contain concentrations of ‘bands’ of elementary ‘strip’ spills.

The analysis of ‘strip’ and ‘band’ spills that form the basis of the simple model
described above is given in Chapter 4.

Consider first an elementary strip spill as illustrated in Figure 5.5.  For a small
machine, the revolution time is in the range 0.5-1.0 µs and the number of turns before
the particles appear (and also the length of the spill) is typically 1000-2000 turns, i.e
0.5-2 ms.  Thus frequencies of typically 1 kHz and above will be affected by the
transfer function of the resonance and the plateaux in the elementary spills will
overlap, but because the leading peaks are narrow (~10 turns) they remain separate.
For the leading peaks to overlap and smooth out, the frequency must be above
100 kHz.

Figure 5.5  An elementary ‘strip’ spill

Stable

Unstable

50% of particles are near the
corner and leave quickly

Remaining particles leave more
or less evenly over the spill time

Elementary spill has a leading
spike and a following plateau

T0

T0

dN/dt
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The separation of an elementary spill into a narrow spike and a plateau can be
incorporated into the simple ripple theory given in the last Section.  The particles
entering the resonance are, as before, equal to the line density multiplied by the
relative velocity between the beam and the resonance.
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The extra factor of two compared to the low-frequency formula (5.12) is very
welcome, but of limited help.  In fact, it only enters in the amplitude of the ripple as
the square root of 2.  Overall, the situation is worse than for the low-frequency régime
for the same 0Q� , since the increase in ω is squared.  The critical value of the ripple at

which the spill changes from being modulated (F = 0.67) to being chopped is in Table
5.5 for frequencies between 1 and 100 kHz.

Conditions for 100% modulation of the spill at medium frequencies

Frequency [kHz] (δQ/Qres)critical =∆I/I

1 6.8 × 10-7

10 6.8 × 10-8

100 6.8 × 10-9

Table 5.5  Conditions for 100% modulation of the spill at medium frequencies
[For dQ0/dt = 0.01, Qres = 1.666]

Resonance delays all particles and then ejects
50% in a slow spill and 50% in a spike
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5.7. EFFECT OF TUNE RIPPLE AT HIGH AND ULTRA-HIGH 
FREQUENCIES
Above 100 kHz the widths of the leading peaks of the elementary spills will

also begin to overlap, which will finally smooth the ripple effects, but at 1 MHz and
above the sampling rate becomes high enough to see the influence of Poisson
statistics.

Duty Factor for power converter
ripple in the high-frequency
régime (>1MHz)

1+
=

N

N
F (5.15)

For therapy with carbon ions the lowest spill rate would be of the order of
5 × 106 particle/s.  At a 1 MHz sampling rate the expected ‘granularity’ of the beam (5
particle/bin) would cause a minimum duty factor of 0.833, which would be equivalent
to a sinusoidal spill modulation of 63%.

A reasonable sampling frequency for hadrontherapy is 10 kHz, which means
that ‘high frequencies’, as defined here would be invisible to the measuring system.
Even if the sampling frequency were to be increased, to alleviate problems due to the
saturation of counters for example, some fluctuation might then be visible in the
measurements but the relatively long integration times for the dose would make these
fluctuations unimportant.

5.8 SUMMARY OF THE RIPPLE RÉGIMES

Low-frequency Medium frequency High frequency
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Figure 5.6  Summary of the spill régimes
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Since many ripple frequencies will be present in the beam, there may also be
enhancement of the lower frequencies by the higher ones.  Since the average relative
motion of the beam and resonance is unchanged by ripple, the average spill rate will
be unchanged, so the combination of a high-frequency ripple with a lower one will
chop the low-frequency modulated spill into bursts of taller spikes.  This is illustrated
qualitatively below.

Figure 5.7  Interaction of the a low and higher frequency ripple

5.9 DEFENCE AGAINST TUNE RIPPLE
Extremely good quality power converters are needed

Whether it is better to choose conventional or switch-mode units must be
decided case by case.  If the switch-mode frequency can be placed above 20kHz, then
the preference is for switch mode, but this is not always a practical proposition and
depends on the power to be delivered and whether a bipolar supply is needed.  It is
also necessary to install DACs* with the highest number of bits possible (see Section
5.10).

Increase of 0Q�

The next step would be to increase the velocity of the particles as they enter
the resonance.  This can be done in a number of ways and will be described in Chapter

                                                
* DAC = Digital to Analogue Converter.
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6.  This is effective at low frequencies, but for higher frequencies the increase in ω
will eventually outstrip the gain from the enhanced velocity.

The amplitude-momentum extraction technique
 At medium frequencies, there is a distinct advantage in using the momentum-
amplitude selection technique for entering the resonance as described in Chapter 4.
This technique is intrinsically smoother in the most difficult frequency range of a few
kHz.

On-line scanning control
The beam delivery system with the on-line dosimetry system is the last defence

against a poor quality spill.  If it is unable to cope with the fluctuations, then the spill
intensity has to be reduced and the treatment time extended.  Conversely, if the spill
quality is good, the beam intensity can be raised and the treatment time reduced.

5.10 RAMPING POWER CONVERTERS
Conventional power converters are controlled via a DAC and the setting

precision is determined by the number of bits in the DAC (see Table 5.6).  A 12-bit
DAC is commonplace, the 16-bit DAC was developed during the 1970s at the ISR [1]
and is now available commercially.  At the present time, the 18-bit DAC is still more
of a development device than a commercial reality.

DAC precision

DAC 12-bit 16-bit 18-bit

Precision 1 in 4’096 1 in 65’536 1 in 262’144

Table 5.6  DAC precision

To illustrate the potential problem posed by the DAC, consider that the
resonance is being moved into the ‘waiting’ beam by a tune change driven by a series
of tuning quadrupoles.  Let the current range for the tuning quadrupoles be 50% of
maximum and let the spill last 1 s for simplicity.  The heights of the current steps and
their frequencies are recorded in Table 5.7 for different DACs.

DAC frequencies and steps

DAC 12-bit 16-bit 18-bit

No. of bits sent for spill (50%) 2’048 32’768 131’072

Bit frequency [kHz] 2 33 131

Height of step ∆I/I max 2.5 × 10-4 1.5 × 10-5 4 × 10-6

Table 5.7  DAC frequencies and steps
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The bit frequency should be compared to the sampling frequency of the on-line
dose measurement system (typically 10 kHz).  Frequencies below the sampling
frequency are highly dangerous.  Frequencies of 4-5 times this frequency are probably
irrelevant, but the effect of those 2-3 times this frequency depends on their amplitude.
To give some idea of the importance of the amplitude of current steps, Table 5.8 has
been constructed from Tables 5.4 and 5.5 and the ripple formulae derived in the
earlier sections of this Chapter.  Table 5.8 lists the ripple amplitudes that just cause
‘chopping’ (100% modulation, i.e. F = 0.67) over a wide frequency range in an
unprotected machine.  This table is NOT a specification, it is only meant to give some
feeling for the extreme sensitivity of the resonance to ripple.

Conditions for a ‘chopped’ beam in an unprotected machine
(F = 0.67 i.e. 100% modulation)

Frequency [Hz] (δQ/Qres)critical *

50 2 × 10-5

100 10-5

300 3.2 × 10-6

1000 9.6 × 10-7

(6.8 × 10-7)**

10’000 6.8 × 10-8

100’000 6.8 × 10-9

*  For dQ0/dt = 0.01, Qres = 1.666.  For PIMMS, δQ/Q = ∆I/I  within a factor 2
**  The first figure uses the low-frequency formula (5.12) and the second uses the medium-frequency formula (5.14).

Table 5.8  Conditions for a ‘chopped’ beam in an unprotected machine

The relative step height (∆I/Imax) of a single DAC bit in Table 5.7 should be compared
to the critical values in Table 5.8.  The relation between ∆Q/Q and ∆I/I  will vary from
one magnet chain to the next, but is typically close to unity.  In all cases, the steps will
cause 100% chopping of the beam.  However, once the frequency is well above
10 kHz, whether the beam is chopped or not is unimportant.  Thus, in the example
chosen, a 16-bit DAC would be essential.

In the case of a dual species machine, the problem of the DAC is aggravated
by the wide operational range needed to cover both protons and ions.  For example, if
in a proton-ion machine the ions at top energy require a current change of 100% then
the lowest energy protons would only require 17%.  The coarseness of the DAC then
becomes very apparent and the DAC bit frequency may easily come down into the
sub-kHz region.

The above considerations lead to the following recommendations:

• As few as possible power converters should be changing during the spill.
 
• Large inductive loads (e.g. a betatron core) are safer than light inductive loads (e.g.

resonance quadrupoles).
 
• All stationary power converters should be ‘locked’ to prevent them from making single

DAC steps (due to noise or drift in control circuit) during the spill.
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The problem of DAC steps is one of the key reasons why the amplitude-
momentum extraction technique using a betatron core to accelerate the beam has been
chosen for PIMMS.  This extraction technique makes it possible to maintain all ring
power converters constant during the extraction, except for the betatron core.  Since
the betatron core is a single large inductance device it is possible to take extra care
with this single power converter and with its DAC.  By filtering the DAC output and
applying a vector generator method that anticipates and smoothes out the DAC
discontinuities, a factor of 100 can be achieved in the ripple [2].

5.11 DAMPING BY EDDY CURRENTS
The question arises as to how much of the current ripple actually appears as

field ripple seen by the beam.  This can be approached in the first instance in a very
general way by postulating that the instantaneous derivative of a parameter is
proportional to the separation from its equilibrium value and .
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where 1/τ is a constant and τ is better known as the time constant.  If now the
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The second term in (5.17) is transitory and will be put to zero.  The first term in (5.17)
can then be written as,

Field with damping:
( )

( )ϕ−ω
ωτ+

= tBB sin
1

1
20 (5.18)

where the phase constant ϕ  equals tan-1(ωτ).  Thus, the field will lag behind the

sinusoidal current with a phase angle of tan-1(ωτ) and will be attenuated by the square
root term in the denominator of (5.18), unless the time constants of the magnet and
vacuum chamber are zero and then the attenuation and phase lag will also be zero.

The time constants of the magnets and vacuum chambers in the ring therefore
have two conflicting requirements:

• Small time constants for low field distortion during ramping to the extraction energy.
 
• Large time constants to damp current ripple.

For the main ring magnets, the choice must lie with the field distortion during
ramping, but for the betatron core the choice can be tuned for damping the ripple and,
in particular, the damping of the frequencies introduced by the DAC steps.

Anticipating the results of the PIMMS design, a main dipole with its vacuum
chamber will have a time constant of the order of 100 µs.  Table 5.9 lists the
attenuation factors to be expected with this time constant for ripple frequencies up to
10 kHz.  It can be seen that at low frequencies (<1 kHz) the attenuation is negligible,
but between 1 and 10 kHz the attenuation factor increases steadily to a useful value of
6.4 at the top frequency.

Attenuation factors for ripple in the PIMMS dipole

Time constant [µs] 100 100 100 100

Ripple frequency [Hz] 500 1000 5’000 10’000

Attenuation factor 1.05 1.2 3.3 6.4

Table 5.9  Attenuation factors for ripple in the PIMMS dipole

The main PIMMS quadrupole has a time constant closer to 50 µs and a very
low field distortion during ramping.  In this case, 3 mm thick laminations (rather than
1.5 mm) would bring its time constant up to that of the dipole and gain some
smoothing.  However, 3 mm laminations are difficult to stamp and the eddy current
calculation is approximate.  Thus, it might be more reasonable (both for the
quadrupole and dipole) to add an ‘eddy-current shield’ to the vacuum chamber.  This
could then be adjusted experimentally to give a field quality that is just sufficient for
ramping, while giving maximum damping for ripple.  In the case of the betatron core,
it is probably better to adapt the lamination thickness since the field quality is not an
issue.
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5.12 SPILL SPECIFICATION FOR VOXEL SCANNING

5.12.1 Basic strategy
In this section, a specimen specification for spill uniformity will be developed

based on the voxel method of scanning [3].  In Chapter 11, similar specifications will
be derived for the mini-voxel [4] and ‘true’ raster scanning techniques.

In all three methods the particle flux will be monitored as it enters the patient
and the dose will be controlled from this measurement.  This can be done with an
ionisation chamber working at 10 kHz or higher.  It is assumed that measurements are
possible down to a few 104 particle/bin.

The overall uniformity (precision) of the treatment plan is requested to be
±2.5%.  This request will be interpreted in the strict sense as ±2.5% relative to the
current dose rate and not ±2.5% of the maximum dose rate in the tumour.  This will be
implemented by:

• Tailoring the spill intensity and the dwell time for each voxel so that with nominal
parameters the slightly better target precision of ±2% is obtained.

 
• A coarse variation of the spill intensity will be obtained by injecting more or less current

in the machine.  This will enable the average spill for a slice of the tumour to be matched
to the average dose level for that slice.

 
• A finer adjustment will be obtained by varying the ramp rate of the betatron core.
 
• However, the ultimate adjustment must be made by the scanning system itself.

It will be clear from the following analysis that if the on-line measurement
system demands a higher dose and the spill rate is left unchanged, then the relative
precision improves, whereas, if the demand is for a lower dose the relative precision
deteriorates.  The aim will be to match the spill rate by the methods mentioned above
to the prescribed dose closely enough that the margin of 0.5% between the
specification and the target precision is not exceeded when the system calls for a
lower dose.  Within a given tumour the average dose levels required between distal
and proximal slices may vary by a factor of 50 and, in practice, it may sometimes be
difficult to reduce the spill intensity sufficiently to ensure the full relative precision for
very small doses.  However, in these cases, the absolute error will be so small that the
relative error will only be of academic interest.

5.12.2. What duty factors are needed?
Nominal parameters assumed for a voxel system

In voxel scanning, the beam steering between voxels is carried out while the
beam is switched off, so only the measurement ‘quantisation’ coming from the period
of the sampling frequency* and the delay in cutting off the beam are of importance
when estimating the dose uniformity.  Consider a system with the following
parameters:

                                                
* This is referred to as the ‘clock’ error in Chapter 11.



PIMMS January 1999

104

• A sampling frequency of 20 kHz.
• Adjustment of the spill intensity so that a nominal voxel requires 5 ms of beam time, i.e.

100 measurement bins of 50 µs.
• The maximum variation in the beam charge to be expected in one bin is 0 to 200% of the

nominal value (i.e. 100% modulation).
• The order to switch-off the beam is given once the dose exceeds 98% of the desired dose.
• The time delay for switching off the beam is assumed to be 1 measurement bin of 50 µs.
 

The precision obtained is then explained by the following ‘worst-case’ scenarios:

• Let the previous measurement bin show an integrated dose of just less than 98%.
• The next bin can reach any value up to 100% (i.e. twice the expected value added).
• Now the instruction to switch off is given and one more time bin will pass.
• The final integrated dose can then rise to a maximum of 102%.
• Alternatively, let the previous measurement bin be fractionally over 98% and let several of

the following bins be empty.  In this case, the dose will be just 98%.
• Thus, for the assumptions given the ±2% precision can be achieved.

This scenario can be generalised by assuming that a maximum of one time bin
is needed to detect a threshold value and that one more time bin is needed to switch
off the beam.  The precision of the voxel model is then contained in the relations,







+±=

0nom

r

nom

100 100 
[%]Precision 

ANb

A

Nb
(5.20)

( )%]Precision[100%]Threshold[ −= (5.21)

where Nbnom is the nominal number of bins needed to fill the voxel and (Ar/A0) is the
ratio of the ripple amplitude to the dc amplitude of the spill.  Equation (5.20) consists
of two terms.  The first term is independent of ripple and gives the ‘clock’
quantisation error and second adds the precision lost due to ripple.  Thus, with the
nominal 100 bins, the nominal spill rate and 100% modulation (i.e. 0-200% charge in
a bin) the ±2% precision is obtained.  If the nominal values were changed so that only
60 bins were needed to fill the voxel, then by (5.20), either the modulation would have
to be reduced to 20% (i.e. 80-120%) to achieve the same precision of ±2%, or the
precision would have to drop to ±3.33% and the threshold for cutting off the beam
would be at 96.66% of the desired dose.  If the nominal number of bins needed to fill
the voxel is 50 and the precision is maintained at ±2%, then the ripple must be zero.

Equation (5.20) can also be used to evaluate the margin that the 0.5% (between
the specification and the target precision mentioned earlier) gives in the spill rate.
With 100% modulation, an error of 2.5% is obtained with 80 bins.  Thus, the margin
in the spill rate is +20%, i.e.,

Nominal spill rate should fill 1 voxel in 5 ms (-1 ms, +unlimited *). (5.22)

The above is rather general and a more detailed specification needs to be
derived by combining sinusoidal modulations over the full frequency range.

                                                
* The system can always accept lower spill rates, or periods of no spill, because this only means waiting
for more beam and it does not cause an error in the dose uniformity.
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Low frequencies
A low frequency is defined as one where the half period is less than the voxel

filling time of 5 ms.  Thus, 100Hz would be the low frequency limit in this case.  The
effect of low frequency ripple is to cause a general increase (or decrease) of the spill
intensity during the voxel filling time.  This can be interpreted as a reduction (or
increase) in the number of bins needed to fill the voxel and then equation (5.20) is
applicable for calculating the precision.  To keep within the ±2.5% tolerance, low
frequency modulation must not exceed 20%.  Note that the modulation contain several
frequencies, but principally it covers the network frequency of 50 Hz.  Since low
frequencies are easier to control, this appears to be a reasonable limit.

High frequencies
High frequencies are above the sampling frequency.  As the frequency rises

above this threshold, the effect of the modulation is progressively dies away with
periodic dips to zero when an integer number of ripple periods fits into one bin.  The
error peaks occur at integer numbers of half periods.  The first and most important is
at 1.5× the sampling frequency where the acceptable modulation is limited to 300%.

Medium frequencies
Medium frequencies fill the gap between the low and high regions.  If single

frequencies are considered, the modulation must not exceed 100%, which ensures that
no bin receives more than twice the nominal charge (the original premise).  However,
the superposition of frequencies is important in this range.  If the power converter
frequencies (300, 600, 900, 1200 and 1500 Hz) and perhaps four DAC frequencies in
the kHz range for changes during the extraction are considered, then nine frequencies
could be mixed together.  Assuming quadratic addition, this would lead to an upper
limit on single-frequency modulation of 30%.

Specification
• Maximum of 20% modulation for all frequencies combined below 100 Hz.  This is based on the

general level of the spill and is independent of the higher frequency limits.
 
• Maximum single-frequency modulation of 30% in the range 100 Hz up to the sampling frequency.

This assumes the random combination of up to 9 frequencies.
 
• Maximum of 300% modulation at one and a half times the sampling frequency and higher above.

Note that this is the specification for the spill and that this has to be converted
to power converter current ripple specifications for a practical design.
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I-6 ‘FEEDING’ THE RESONANCE
How the beam is moved from the stable to the unstable region is of critical

importance for the quality of the spill.  The methods that can be used are described in
Chapter 3 and the many of the advantages and disadvantages were discussed in
Chapter 4.  The focus will now be placed on the amplitude-momentum method of
extraction and, more precisely, on the techniques that can be used to accelerate the
beam into the unstable region.  Accelerating the beam into the resonance has the
considerable advantage that all the optical parameters of the machine can be kept
constant during the spill.  Another key feature of such acceleration techniques is the
possibility of adding, what will be called, a ‘front-end’ acceleration to increase the
speed in terms of the rate of change of tune with which the particles cross the
separatrix.  As was shown in Chapter 5, the higher the speed, the better the spill
quality.

6.1 BETATRON CORE
Induction acceleration with a betatron core (as opposed to a betatron*) has

been known for many years [1].  It has been used for extraction on a third-order
resonance in Saclay [2] and, for purposes other than extraction, in Heidelberg [3].
More recently, it has been proposed to drive the slow-extraction process in a medical
synchrotron [4].

A betatron core is a closed magnetic circuit in the form of a ferromagnetic ring
through which the beam of a synchrotron passes.  A coil wound on the ring controls
the flux inside the circuit and variations in this flux induces an electric field on the
axis that is ‘felt’ by the circulating beam and changes its kinetic energy (see Figure
6.1).

Figure 6.1  Working principle of the betatron core

The coil of the betatron core and the closed orbit of the particle act as the
magnetically linked windings of a transformer.  Starting from the Faraday-Neumann-
Lenz law,

t
d

t d

d
d

Φ−=∫∫ ⋅
∂
∂−=∫ ⋅ SBsE , (6.1)

                                                
*  The betatron core inverts the geometry of the betatron and so that the magnetic field forms a loop
around the beam rather than the beam forming a loop about the magnetic field.
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where Φ is the magnetic flux within the betatron core that is integrated over the cross-
sectional area of the core S.  Now let E  be the mean value of the electric field, E, that
is induced by the core, along the closed orbit of the beam, so that the average rate of
change of momentum is given by,

Eze
t

p =
d

d
, (6.2)

where ze is the net charge of the beam particle.  The combination of (6.1), (6.2) and
the standard relation for magnetic rigidity, ρ−= Bzep , yields

p

p
BC

∆ρ=∆Φ , (6.3)

where C is the machine circumference and ∆Φ and ∆p refer to the changes over one,
or more, turns in order that the averages defined earlier have physical meanings.  To
obtain a uniform sweeping of the ‘waiting’ beam, which will be assumed to have a
uniform density in ∆p/p, a constant flux variation is needed during the extraction time,
Text,

( )
ext

beamWaiting

d

d

T

pp
BC

t

∆
ρ=Φ

. (6.4)

The theoretical expectation that a betatron core should give a smooth spill is
supported by the experimental result shown in Figure 6.2 [5], which shows a slow
extracted beam from the synchrotron SATURNE II of Saclay that uses a betatron core
to extract protons at 2.4 GeV.  The spill was measured with scintillators on the
extraction line.  The signal bandwidth, obtained by integrating the scintillator signals,
is 2 kHz and the stability of the spill intensity is about ±20% (corresponding to a duty
factor of 0.98).

         

Figure 6.2  Spill extracted with the betatron core of Saturne II.
[Bandwidth of 2 kHz obtained by integrating a measurement bandwidth up to 20 kHz]

50 ms
0 V
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6.2 STOCHASTIC NOISE

6.2.1 The principle
Stochastic extraction was first proposed by S. van der Meer [6].  The potential

of this technique as a low-ripple extraction was realised from the very beginning and
is mentioned in the title of reference.  The principle is to apply rf white noise over a
frequency band ∆f that overlaps the revolution frequencies of the ‘waiting’ beam,
and/or harmonics of those frequencies.  The noise can be applied by longitudinal
kickers or rf cavities.  Under the influence of the noise, the particles execute a random
walk in the longitudinal phase space.  This process is akin to diffusion and can be
treated as such.  There are three main applications,

• Beam shaping and homogenisation.  If the noise is rectangular in power density
over the frequency band, the particles will diffuse towards a uniform distribution
over that frequency band.  This can be used to erase ‘memories’ from the beam
and for making a rectangle distribution for a uniform spill (Figure 6.3).

 

• Stochastic resonant extraction.   The principle of this method consists of
diffusing the particles towards and across the stability limit rather than driving
them across as with conventional extraction.  Particles are randomly accelerated
and decelerated by noise, which causes a blow-up of the momentum distribution;
the ones diffused as far as the resonance will be extracted.  If the initial beam is
gaussian, for example, and a particle sink (the resonance) is placed at one
extremity of the frequency band, then, as the gaussian distribution spreads out, the
particles will enter the resonance and be lost as illustrated in Figure 6.4.  Another
set-up for pure stochastic extraction is when the lower border of the noisy region
is swept across the beam by slowly reducing the carrier frequency [7,8].  In this
way, it is possible to vary the extracted spill length (up to 1 h, as in LEAR) and to
compensate for a non-rectangular distribution of the ‘waiting’ beam.

• Combined resonant extraction.  The beam is driven towards the stability limit by
another technique (for example, by using a betatron core, as described in Section
6.1) and rf noise is applied only in the vicinity of the resonance to hasten the
transit of the particles into the unstable region.  This so-called ‘front-end’
acceleration reduces the sensitivity to Q ripple (Figure 6.5).

Figure 6.3  Beam shaping with band-limited noise
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Figure 6.4  Stochastic resonant extraction with band-limited noise

Figure 6.5  Combined resonant  extraction with band-limited noise

6.2.2 Diffusion equation
The model of molecular diffusion can be used to describe stochastic diffusion

under the influence of rf noise [9].  Consider the elementary cube shown in Figure 6.6
that is inside the diffusion volume.  The net flow of particles will be from the high
density regions to the low density regions.

Figure 6.6  Description of molecular diffusion
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Since diffusion by stochastic noise is a one-dimensional problem, this
simplification will be exploited directly and it will be assumed that variations in
density in Figure 6.6 only occur in the x-direction and that the particle densities are
completely independent of the other transverse co-ordinates y and z.  The
accumulation rate of particles within the elementary volume, V, can then be related to
the particle flows in the x-direction in and out of the volume and also to the density
changes within the volume.

Accumulation in V by flow, ( ) xS
x

j
Sjj doutin ⋅⋅

∂
∂−=⋅−= (6.5)

Accumulation in V by density, xS
t

n
V

t

n
dd ⋅⋅

∂
∂=⋅

∂
∂= (6.6)

where n is the particle density per unit volume and j is the particle flow per unit area.
The combination of (6.5) and (6.6) yields,
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∂
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∂
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. (6.7)

The flow j can be expressed as,

x

n
Dj

∂
∂⋅−= (6.8)

where D  is known as the diffusion constant.  The substitution of (6.8) into (6.7)
gives,

Molecular diffusion equation,
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The same analysis applies for stochastic noise with the substitutions and end result,
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In the frequency domain, (6.10) has damped oscillatory solutions of the form [6],
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where the harmonic coefficients can be found by
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Whereas in the time domain, (6.10) has solutions of the form [8]
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If, for example, at t = 0 all N particles are concentrated at the origin (( ) ( )xx δ=Ψ 0, ),
the solution is then a Gaussian distribution
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If both drift and diffusion take place at the same time (for example, the combined
resonant extraction), the total particle current is the sum of diffusion and drift current

Ψ⋅+
∂
Ψ∂⋅−= 0v
x

Dj (6.15)

where v0 is the drift velocity*.  The Fokker-Planck equation, which describes the
particle density in case of combined extraction, is obtained by substituting (6.15) in
(6.7) and replacing n with Ψ  as before.
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The stationary solution 0Ψ within the noisy region, with the boundary condition

( ) 000 =Ψ  at the resonance ( 0=x ) is [10]
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while outside the noisy region

0
0 v

φ=Ψ . (6.18)

If there is a ripple in the relative velocity between the beam and the resonance of
angular frequency ω and amplitude r, the flux ωφ+φ=φ 0  will be modulated from

ωΨ+Ψ=Ψ 0 .  An estimate for the modulation can be found by factorising ωΨ  into a

part periodic in time and an x-part

( )xt µ+ωΨ=Ψ ωω iexpˆ . (6.19)

                                                
* The drift velocity can be expressed in units of momentum or tune i.e. x ⇒ ∆p/p or x ⇒ δQ.
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From (6.15):
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where 
ω

=λ D2
 is the damping length and ω=ω Dv 2  is the phase velocity for the

diffusion waves.  This results in a modulation of the spill rate 
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6.2.3 Duty factor
The modulation of the spill rate may be described by the duty factor, defined as
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For conventional extraction [6],
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while for stochastic extraction from (6.21)
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The comparison of (6.23) and (6.24) shows that in the second case vω/√2 replaces the
former drift speed 0v .  It is clear that by increasing the diffusion constant, D the phase

velocity ωv  can be kept large without decreasing the spill temporal length.  The

maximum available rf power and the minimum tolerable bandwidth together with the
time a particle takes to diffuse out of the resonance ( DD 1%τ ) define a physical
upper limit of the diffusion constant [9,11].  The choice of D is a compromise
between insensitivity to ripple and extraction efficiency.

6.2.4 Expression for diffusion constant
An expression for the diffusion constant D can be found in analogy with

Brownian motion [9].  Considering the probability of finding a particle at a certain
time t  at a distance between r and rr d+ , one gets:
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dt

rd
D

2

2

1 ⋅= (6.25)

with [ D ] in m2s-1.  For stochastic extraction (diffusion in one dimension) and with the
usual substitution ppx /∆⇒ ,
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with [ D ] in s-1.  The expression for the one dimensional diffusion constant in ∆p/p
space as a function of the rms noise voltage NV  is [6]
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where f∆ is the bandwidth covered by the noise spectrum, ρB  the magnetic rigidity
and R  the machine radius.  This expression is found considering the beam rms
change in energy due to the uncorrelated kicks received by each particle on successive
revolutions and using (6.26).

Analogue expressions can be found in tune space or frequency space using the
following relations:
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where ξ is the chromaticity, Q the tune, p the particle momentum, η the frequency
dispersion and f the revolution frequency.

6.2.5 PIMMS rf noise parameters
The rf noise parameters (bandwidth and power) have been calculated for the

PIMMS medical synchrotron at the maximum proton and carbon ion extraction
energies using the above equations [12].  The situation considered is the one
represented in Figure 6.7 with momentum spread of the beam (∆p/p)s = 0.004 and the
momentum spread between the beam and resonance (∆p/p)s-r = 0.001 (for sake of
simplicity the beam is drawn already shaped).
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Figure 6.7  PIMM extraction configuration in ∆p/p space

The three cases described above have been considered.  The results are listed in the
Table 6.1.

PIMMS rf noise parameters

p @ 300 MeV 12C6+@ 425 MeV/u

Shaping
Bandwidth ∆fs

 [kHz] 4.1 3.3

Voltage rms [V] 150 337
Power/∆f [W/Hz] (Z = 50 Ω) 0.12 0.7
Total power [W] 480 2.3⋅103

Stochastic extraction
Bandwidth ∆f [kHz] 5 4.1
Voltage rms [V] 216 470
Power/∆f [W/Hz] (Z = 50 Ω) 0.18 1.09
Total power [W] 900 4.4⋅103

Combined extraction (noise on the resonance)
Bandwidth ∆fr [kHz] 1.2 1.1

Voltage rms [V] 52.4 120
Power/∆f [W/Hz] (Z = 50 Ω) 45⋅10-3 270⋅10-3

Total power [W] 55 288

Table 6.1 PIMMS rf noise parameters

In the case of shaping in Table 6.1, a shaping time of the order of 0.1 s (~10%

of the flat top) was assumed, which gives 14 s108.0 −−×=D .  The values for
stochastic extraction have been obtained in the hypothesis that the spill length is of the

order of 1 s (which implies 14 s103.1 −−×=D ).  For combined extraction, a
modulation of the extracted spill of %20±  at 2 kHz (duty factor F = 0.98) with a

ripple amplitude in  ∆p/p units 510−=r  has been assumed [12].  In this case,
14108.0 −−×= sD .  For all three cases, the values have been calculated with the

hypothesis of working on the first harmonic to minimise the required total power.
Nevertheless, the noise bandwidth should be big enough to avoid modulation of the

∆p/p
(∆p/p)s (∆p/p)s-r

Beam

Resonance
width

Amplitude
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extracted spill, because the noise signal behaves like a sine wave at the centre
frequency, whose phase and amplitude remain coherent over times of the order

( ) 1−∆f .  In order to reduce modulation from coherency, ( ) 1−∆f should be small
compared to the diffusion time.  This limit can be a problem in the case of combined
extraction with noise on the first harmonic, where the diffusion time is of the order of
ms.

Two possible hardware systems to produce  the noise have been investigated: a
longitudinal ferrite kicker and an rf cavity.  The first is the solution adopted in LEAR
[13]; due to the shorter spill length and therefore the higher power needed for PIMMS
medical synchrotron, high-power amplifiers are necessary to provide powers of 1 kW
and more (Table 6.1).  These are expensive and could cause distortions in the noise
spectrum through inter-modulation.

The second possibility (rf cavity) is the cheaper solution, if it is possible to use
the cavity foreseen for the acceleration of the beam.  With the VITROVAC cavity it is
possible to work up to the second harmonic, as the peak accelerating voltage is around
4 kV in the range 0.4 to 8 MHz [15].  For wider bandwidths, a second dedicated rf
cavity working at higher harmonics should be foreseen.

The estimated cost for the kicker solution is 100 kCHF plus the price of the
power amplifiers, which can be roughly assessed as 100 CHF/W per unit.  For
shaping, extraction and noise on the resonance at the first harmonic, this correspond to
a total cost of the order of 700 kCHF.  The cost for the third solution with a dedicated
cavity is of the order of 800 kCHF.

When the cost estimates are considered together with the technological
problems of:

• Working with such high power levels and
• Ensuring the stochasticity of the process during short shaping and extraction times,

 
the conclusion is that stochastic extraction is not the optimum solution for a medical
spill of the order of 1 s.

6.3 PHASE-DISPLACEMENT ACCELERATION

6.3.1 Motion in longitudinal phase space
Phase displacement [16] is a technique based on the rf system.  It is therefore

useful to recall the theory of particle motion in the presence of an rf field.  This
motion can be described in terms of two first-order differential equations in the
variables ∆E = E-Es,   ∆φ = φ-φs (see for example ref. [17]):
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where ze is the charge, ω0 is the revolution frequency, V is the rf voltage, β = v/c is the
particle normalised velocity, h is the harmonic number, η = 1/γ2-1/γt

2 is the phase slip
factor, γ is the relativistic mass factor, γt the γ at transition, E is the total energy, φ is
the phase of the arbitrary particle and corresponds to the phase of the rf voltage, and
the subscript ‘s’ refers to the synchronous particle.  For small amplitude oscillations,
from (6.30) (a) and (b):
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The particles oscillate around the stable phase, describing ellipses in the phase plane.
Ωs is the frequency of the oscillations and is called the synchrotron frequency.  For
larger amplitudes:
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Increasing the amplitude eventually makes the oscillations unstable.  The set of
trajectories representing stable oscillations is called the rf bucket.  Its area is delimited
by the last stable trajectory, called the separatrix.  The area and the height of the
stationary bucket (φs =0) are given by:

rad] [eV
2

16
sb ηπ

β= hzeVE

h
A ,   [eV]

22
sb ηπ

β= hzeVE

h
H . (6.31)

The area and the height of the moving (accelerating or decelerating) bucket are related
to the those of the stationary bucket by:

rad] [eV)( sbb AA ⋅Γα= ,   [eV]
2

)(
sbb HH ⋅ΓΥ= , (6.32)

where Γ = sinφs, and the functions α(Γ) and Υ(Γ) can be found from tables [18].

Figure 6.8 shows some trajectories in longitudinal phase space for stationary
(φs = 0) and moving (φs ≠ 0) buckets.
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(a)  Stationary bucket φs = 0
[If below transition the motion is anti-clockwise, if above it is clockwise]
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Moving bucket φs > 0
[If below transition the bucket is accelerating
and the particle motion is anti-clockwise, if
above transition the bucket is decelerating

and the motion is clockwise]

Moving bucket φs < 0
[If below transition the bucket is decelerating
and the particle motion is anti-clockwise, if
above transition the bucket is accelerating

and the motion is motion clockwise]

Figure 6.8  Stationary and moving rf buckets

6.3.2 The principle
Phase displacement acceleration was extensively used at the CERN ISR in the

early 1960s [19].  It allows the acceleration (or deceleration) of a stacked coasting
beam using a relatively simple rf system.  Empty rf buckets are created outside the
beam, and then the bucket energy is decreased (or increased) so that it traverses the
beam.  During the traversal, the particles are forced to change their phase and energy
in order to turn around the bucket, without (ideally) entering it.  By Liouville’s
theorem, phase space density must be conserved, so that the beam will be displaced
upwards (or downwards), such that the area of the displacement is equal to the bucket
area. (see Figure 6.9).  Multiple traversals can be made so as to bring the beam to the
desired final energy.  If the beam is close to the resonance energy, this method can be
used to ‘feed’ the resonance.
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Figure 6.9  Principle of phase displacement

The variation of the energy of the beam due to one traversal is given by:

π
=∆

2
b

sweep
A

E . (6.33)

To traverse the beam, the frequency variation ∆frf (i.e. the sweep) that must be
provided by the rf system is given by:

E

E
ff r

∆⋅
β
η=∆ f2rf (6.34)

where ∆E/E is the energy spread of the beam and from (6.30)(b) the speed of variation
of the sweep is obtained as:
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In the approximation that the sweeps are narrow in energy, all the parameters are
referred to the ‘nominal’ resonance energy.  Typical spill lengths for medical
machines are of the order of 1 s and the spill should be continuous and as smooth as
possible.  At typical extraction energies and for typical values of V and Γ, a single
sweep would last a few milliseconds.  This means that it is not possible to accelerate
the beam by a single sweep.  Several sweeps with small buckets of a few volts rf
voltage would be needed, if the extraction time should be about 1 s. The number n of
sweeps needed is given by:

E
AE

E

E

E
n

bsweep

2π∆=
∆

∆= , (6.36)
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where ∆E is the total energy spread of the beam.  Each sweep increases the energy of
the beam bringing the edge of the beam into the resonance.  For a continuous spill, it
is not possible to wait until the first sweep has ended, but the sweeps must continue
one after the other.  According to CERN ISR experience[19], the minimum distance
in energy between buckets, for the effect of the preceding bucket to be over, is twice
the bucket height.  This means that, to have a continuous spill, the resonance should
have a minimum width, in order to always contain a moving bucket (Fig 6.10).
Moreover, this sets the minimum distance at which the voltage of the buckets has to
be switched on and off.

ENERGY

PHASE

Resonance
width

Empty buckets
deceleration

Stack
acceleration

RF on

RF off

width

Stack

Edge of the stack

Figure 6.10  ‘Feeding’ the resonance by phase displacement

If the ∆E/E of the beam is fixed, then it is necessary to choose the rf voltage and the
speed of the sweep.  This would immediately give the energy increase per sweep
∆Esweep and Γ.  The choice should be made with consideration for the following
points:

‘Scattering’
During the sweep the particles vary their trajectories in phase space, since they

are accelerated by different amounts.  This results in a ‘scattering’ of the particles; the
degree of which is a function of Γ.  This will increase the machine aperture occupation
(i.e. the ∆E/E).  The increase in the root-mean square energy of the coasted beam is
given by [20]:

π
⋅Γ=∆

2
bs

rms

A
E (6.37)
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and after n sweeps the total increase in energy spread ∆ET,rms can be calculated by
successive iterations with the formula:

( ) ( ) ( )2

nrms
2

1nrmsT,
2

nrmsT, EEE ∆+∆=∆
−

.

The recommendation is to keep low Γ (i.e. quasi-stationary buckets) and a minimum
number of sweeps.

Variation of bucket parameters
Even if the rf voltage is kept constant, the bucket area is not constant during

the sweep.  If the area increases, some particles may enter the bucket and be lost.  If it
decreases, the stack width increases.  These effects are small, but become evident after
a large number of sweeps.  In the hypothesis that the machine is operating far from
transition, the variation of the area of the stationary bucket is given by:
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where the plus sign is for the case below transition and the minus is for above.  This
means that the area of the stationary bucket increases with increasing energy below
transition, whereas it decreases with increasing energy above transition.  The variation
of α(Γ) is related to the that of Γ by:

Γ
∆Γ⋅Γ=

Γα
Γα∆

)(
)(
)(

G ,

where G(Γ) is a function defined in the above equation and ∆Γ/Γ is given by (recalling
equation (6.35), and again the plus sign is for the case below transition, the minus is
for above transition):
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which means that below transition Γ increases with increasing energy (i.e. Ab

decreases) and vice-versa above transition. (∆frf is small compared to ∆E).  The
corresponding variation in ∆α(Γ)/α(Γ) is given by:
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The variation of the area of the moving bucket can be set to zero, i.e.
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which gives,
 2

1
)( −=ΓG .

Using tabulated values of α(Γ) [18], the required value of Γ is found to be Γ = 0.25.

Unwanted excitation of betatron resonances
Coupling between harmonics of the rf frequency and the betatron frequencies

of the ‘waiting’ beam has to be avoided during the sweep, because this would cause
strong beam losses.  Resonance is excited when:

)()()( beam0sweeprf EfQmhEfm ⋅±=⋅

where Q is the tune, f0(Ebeam) is the revolution frequency for a particle inside the beam
at energy Ebeam, frf(Esweep) is the sweeping frequency corresponding at the energy Esweep

and m is the integer at which the equation is satisfied.  This can be rewritten as:

( ))()()( sweeprfbeam0beam0 EfEhfmEfQ −⋅=⋅ .

A careful choice of the rf parameters is needed to avoid, or at least to reduce, this
effect.

Another consideration is needed for rf phase noise.  Phase modulation causes
diffusion of the particles across the bucket separatrix.  This results in an increase of
the beam width, a variation of its average energy, and a loss of particles that leave
beam inside the bucket.  To keep phase noise down to acceptable levels, a phase-lock
servo loop is needed, which is, in fact, standard practice.

It becomes clear that a compromise has to be taken, in the choice of the
parameters, in order to minimise the ‘scattering’, minimise the variation of bucket
parameters and avoid excitation by unwanted resonances.  The choice of the
parameters is then tested with computer simulations.  Tracking programs such as
ESME [21] are commonly used for this purpose.

6.3.3 Advantages and disadvantages of phase displacement for ‘feeding’ the 
resonance

Advantages:

• No machine parameters are varied, only the rf voltage and the rf frequency change.
• It is easy and quick to start and stop.

Disadvantages:

• To have a quasi-continuous spill, the rf system is quite complicated and expensive since
several frequencies have to be excited at the same time.

• In the case of voxel scanning, the beam has to be switched on and off during the spill [13].
If it were sufficient to slow down the repetition frequency of the rf sweeps, then the
hardware would be less complicated.

• A strong structure in the spill at the repetition frequency of the rf sweep as well as at the rf
frequency cannot be avoided.
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• One of the most important characteristics of the spill for a medical machine is uniformity
(low ripple).  This can be obtained with a fast crossing from the stable to the unstable
region.  With the phase displacement system, there is no means of improving the average
speed of the crossing, i.e. the dp/dt at the resonance, which can be very low for some
particles.

 

6.4 UNSTACKING

6.4.1 The principle
Consider a uniform coasting beam (the stack) from which a small slice of the

energy spread is to be taken and brought to a different energy.  Small rf buckets can be
created (rf voltage of a few tens of volts) with a high harmonic rf system at the edge of
the stack.  A small fraction of the stack is then trapped and accelerated inside the
small buckets to a different energy.  This method is called unstacking.  If the stack is
close to the resonance, this method can be used to transport small numbers of particles
to the resonance energy, see Figure 6.11.

ENERGY

PHASE

Resonance
width

Full buckets
acceleration

Stack width

RF on and
adiabatic
increase

RF off

Energy spread
trapped

Figure 6.11  ‘Feeding’ the resonance by unstacking

In order to have a theoretical 100% capture and to minimise the longitudinal
emittance dilution during the creation of the small stationary buckets, the rf voltage
increase should follow the so-called iso-adiabatic law.  In practice, this means that the
increase should be slow (ideally infinitely slow) with respect to the synchrotron
frequency Ωs.  The law that has to be followed is [22]:
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where and Vinitial and Vfinal are the initial and final rf voltages to be applied, Ts = 1/Ωs,
and α is the adiabatic factor, defined in terms of Ab the bucket area as
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It can be seen from the definition of α that it should be kept small (ideally zero) in
order to have an adiabatic process.  The parameters in equation (6.38) are chosen by
trying to optimise the capture efficiency and to minimise the longitudinal emittance
dilution, which would enlarge the energy spread.  The choice has to be tested by
computer simulations.

Once the desired energy spread is trapped, the acceleration starts and
transports the particles, inside the buckets, to the extraction energy.  The stack has to
be positioned as close as possible to the resonance area, in order to avoid large
frequency swings that could cause particle losses (see paragraph 6.3.2).  In this case,
dilution due to ‘scattering’ is of no concern because the stack is not traversed*.  If
large frequency swings cannot be avoided, when the stack is no longer influenced by
the rf bucket, (minimum distance 2 bucket heights), the rf voltage can be increased
(always following an iso-adiabatic law) before continuing the sweep up to the
resonance energy.  Verification by computer simulations is always needed.

6.4.2 Advantages and disadvantages of unstacking for ‘feeding’ the resonance
Advantages:

• No machine parameters are varied; only the rf system is working.

• It is easy and quick to start and stop.

• Several small bucket trains can be performed at the same time in order to obtain a
continuous spill.

• The particles can be transported deeply into the resonance region, thus avoiding the
possibility of them being liberated and then ‘re-eaten’ by the movements of the resonance
separatrix.  This cannot be avoided with the phase-displacement method.

Disadvantages:

                                                
*  There are two possibilities: unstacking from the top and unstacking from the bottom  In one case, the
stack will be traversed and in the other not.  When the stack is not traversed, then the starting energy
(frequency) has to be stepped on each cycle, but if the stack is traversed then the phase displacement
moves the stack down (up) to fill the space left by the accelerated (decelerated) beam.
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• Unfortunately this method suffers from the same limitations encountered with phase-
displacement (see Section 6.3.3): a complicated rf system and a strong modulation of the
spill at the repetition rate of the sweeps.

• Unfortunately, there is no mean of improving the speed at the crossing of the resonance
separatrix, which is important for the uniformity of the spill.  This will depend on the
position of the particle in the rf bucket, and for some particles the dp/dt can be very low.

• A resonance width less than the minimum distance between trains (2 bucket heights) is not
acceptable, since the spill would become chopped.

6.5 ‘FRONT-END’ ACCELERATION BY EMPTY RF BUCKET 
CHANNELLING
Phase displacement is not a good candidate for accelerating the ‘waiting’ beam

into the resonance, as explained in Section 6.3, due to the poor uniformity of the
resulting spill, but paradoxically, it can be very useful for making the beam particles
cross more quickly from the stable to the unstable region.  The technique is called
empty rf bucket ‘channelling’.  This turns out to be a good candidate for attenuating
the effects of low-frequency tune ripple on spills of the order of one second in length.
Experimental evidence of the improvement has been reported at CERN PS [23] and at
IHEP Protvino, Russia [24].  First consider the beam spill S(t) that can be written as:
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where N is the number of particles and Q the horizontal tune.  The tune change can be
expressed as the sum of two components, 0Q� the constant component and rQ�  the

component due to unwanted ripple, so that:
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The betatron core (see Section 6.1) is used to provide the constant component of the
acceleration 0Q� .  This high inductance device is well suited to delivering a smooth

spill and, since the energy stored is high, it has the characteristic of responding slowly
to transients that could give unintentional beam spikes to the patient.

For a uniform spill S(t), the product of dN/dQ and dQ/dt must be kept
constant.  The form of the stack determines dN/dQ, but this is a slow variation and can
be controlled by feedback on the acceleration rate from the betatron core.
Unfortunately, dQ/dt is affected strongly at all frequencies by rQ� .  The purpose of the
rf bucket channelling is to reduce the effect of this contribution.

Inspection of (6.40) shows that the contribution of rQ�  can be reduced, if 0Q�  is

increased.  However, 0Q�  cannot be changed for the whole stack, since it is fixed by

the spill time, but it can be increased in particular phase-space regions, if the density
of the particles dN/dQ in those regions is decreased accordingly, so as to keep a
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constant S(t) (see equation (6.39)).  The scheme shown in Figure 6.12 has a region of
high speed and low density created close to the resonance.

Amplitude

∆p/p , Q

To ES

‘Waiting’ stack

UNSTABLE

STABLE

HIGH SPEED
LOW DENSITY
REGION

LOW SPEED
HIGH DENSITY
REGION

Figure 6.12  Extraction with a high-speed, low-density region close to resonance

The parameter that indicates the quality of the extracted spill is the duty factor,
see Section 5.1, and is given by,
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confused with the rf phase.  The substitution of (6.40), which is explained more fully
in Section 5.5, gives
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Thus, the duty factor can be improved by an increase in 0Q� .  The increase in 0Q�  need

only be an increase in the ‘local’ acceleration (in the vicinity of the resonance) and
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where rpp �� and0  are the rates of change in momentum corresponding to 0Q�  and rQ� .

6.5.1 General theory and description
An empty bucket is created at the resonance frequency corresponding to the

resonance energy Eres.  The hardware should be set in order to keep the bucket
frequency ‘fixed’ at the resonance frequency for the whole spill time.  At the starting
time, the beam is out of the resonance.  The flux of the extracted particles is set by the
acceleration imposed by the betatron core.

In the longitudinal phase plane, the particles turn around the rf bucket, in the
same way as happens when accelerating a stack by rf phase displacement, except that
on this occasion the stack moves and the bucket remains fixed.  At the energy of the
resonance, the particles are swept between the buckets in the small phase interval ∆φ
limited by the bucket separatrices.  In this channel, dN/dQ is reduced and dQ/dt
correspondingly increased.  In other words, the empty bucket creates a ‘bottle neck’ in
the phase space, through which the particles are swept with increased velocity K 0Q�

see Figure 6.15.
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Eres=0

½∆E bucket

PHASE

∆E

φlow

φlow+2π = φ2

φup= φ1

-½∆E bucket

−2π

Figure 6.13  Particle channelling between buckets (arrow), case of a decelerating bucket
below transition, or an accelerating bucket above transition, and φs < 0

[E is the total energy, Eres = 0 is the energy at which the empty bucket is positioned and
½ ∆Ebucket is the bucket half height.  In the case E = Eres (i.e. ∆E = 0), the bucket limits in

phase are φlow and φup and the channel width is ∆φ = φ2-φ1]

6.5.2 Average multiplying factor K
Since dQ/dt is proportional to dp/dt, and dp/dt is proportional to dE/dt, it is

sufficient to calculate the improvement of dE/dt when particles cross the resonance
energy (separatrix).  Using the Hamiltonian formalism (see for example [17]), the
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motion in the longitudinal phase plane can be described in terms of two first order
differential equations in the conjugate variables (∆E/hω0, ∆φ = φ-φs):
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These equations are equivalent to (6.30) (a) and (b), except that they use conjugate
variables.  The corresponding Hamiltonian H is:
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With the hypothesis that the acceleration is smooth and continuous over one turn,
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where the bucket is empty, but the particles outside are still affected.  A particle that
crosses the resonance when φ = 0 is not affected by the rf voltage.  Its energy will vary
by:
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which is exactly equal to the dE/dt given by the betatron core.  Other particles will be
affected in different ways depending on their arbitrary phase and energy.  On average:
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where φ1 and φ2 are the minimum and maximum phases of the channel (see Figure
6.14).  The average multiplying factor is given by:
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which gives:
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where Γ = sin φs and ∆φ = φ2-φ1.
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Intuitively, it can be seen that the more the bucket obstructs the available phase
space, the faster the particles must move.  Thus, the closer the bucket becomes to a
stationary bucket the greater the particle velocity enhancement.  For this reason, quasi-
stationary buckets will be studied more closely.

In the general case, it is necessary to solve equation (6.47), with values of φ1

and φ2 depending on the value of ∆E (see Figure 6.14).  Only 0 < ∆E < ∆Ebucket/2, will
be considered because this is the useful range (see Section 6.4.3).  It is useful to
calculate the Hamiltonians H1 and H2 corresponding to φ1 and φ2, the phase limits of
the channel.  The Hamiltonian H1 corresponds to the ‘internal’ separatrix, and the
Hamiltonian H2 to the ‘external’ separatrix.  Making use of (6.44) and of the bucket
relation linking φ1 and φ2 in the case ∆E = 0 [25]:

usu1s1 cossincossin φ+φφ=φ+φφ (6.48)

H1 and H2 for the accelerating bucket are found to be:
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Figure 6.14  Position and parameters of the channel for a general ∆E = ∆Ep ≠ 0
[H1 is the Hamiltonian corresponding to the ‘internal’ separatrix,
 H2 is the Hamiltonian corresponding to the ‘external’ separatrix]

For the decelerating bucket H1 becomes H2 and vice versa.

φ1 (φ2) is the root of the equation:
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The solution of equation(s) (6.49) can be found numerically and used to find
the value of the general multiplying factor K as a function of ∆Ε, using
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In particular, for the case ∆Ε = 0, Table 6.2 gives the values of the parameters
concerned for the four different acceleration conditions:

Below transition Above transition

φs ~0 (Γ=sin φs) Accelerating
bucket φs >0

Decelerating
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Table 6.2  Some useful bucket parameters
[cos φs, cos φ1, and cos φu are given by the Taylor series expansions]

From Table 6.2 and equation (6.45)

φ∆
φπ

ω
π

−=




 s

0
AV

sin2

2d

d zeV

t

E

and for the average multiplying factor, K

( )0
thbucket wid2

22

d
d
d
d

0

AV =∆
−π

π=
φ∆
π=















= E

t

E
t

E

K .

The last formula has an easy geometrical interpretation;: in the case ∆E = 0, K is given
by the ratio between the whole phase segment 0-2π and the sub-segment containing
the allowed phase-space trajectories.  In the hypothesis (usually true) that φs << 2π,
using (6.48) and Table 6.2 the channel width becomes,

Γπ≈π+φ−φ=φ∆ 22u1
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and the multiplying factor,

( )0
2 =∆

Γ
π=

φ∆
π= EK . (6.51)

This agrees with the particular case given in reference [23] for the CERN/PS
synchrotron, where an empty bucket is created above transition.

6.5.3 Positioning the rf bucket
It can be seen directly from Figure 6.12 that the resonance energy of the

particles depends on their betatron amplitude, the higher the betatron amplitude the
lower the resonance energy, and vice versa.  Qualitatively, it can be stated that in order
to obtain a high multiplying factor for all the particles, two conditions have to be
fulfilled.  One on the bucket height and the other on the bucket position.

First condition
states that the beam energy spread engaged in the resonance has to be smaller than the
bucket half height, i.e.

bresonance of spread 2
1

HE ⋅<∆ (6.52)

Since the height of the rf bucket is given by:
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where ( ) ( ) ssss cos22sin φ+π±φφ=φY , where the ‘+’ sign is valid when φs >  0.

This condition imposes a constraint on the rf voltage:
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Second condition
relates the position of the bucket to the resonance energy.  In order to have a positive
improvement for all the betatron amplitudes, one should position the bucket as shown
in Figure 6.15.  This is the case of a stack starting from energies lower than the
resonance energy and below transition.
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Figure 6.15  Position of the bucket with respect to the resonance region (in the case of
PIMMS)

6.5.4 Adjusting the rf voltage
The parameters of the rf bucket are determined by considering a fictitious

particle trapped in the bucket at the synchronous phase.  The rf frequency will be the
revolution frequency, or the harmonic, needed to keep the particle energy constant at
the synchronous phase (in this case dB/dt =  0).  The energy losses or gains in the
bucket will be those needed to compensate the changes that take place in the machine
(in this case the energy gain in the betatron)  i.e. (see [26]):
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which can be written as (see [17]):
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where R is the mean radius of the orbit and Bρ is the beam rigidity.  The link with the
beam momentum p is given by [27]:
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(6.55)

where A is the atomic mass number, p is the beam momentum and c is the velocity of
the light.  The combination of (6.54) with (6.55) gives:
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Thus the rf voltage is proportional to the energy change in the core and inversely
proportional to Γ = sin φs.  In order to have a large multiplying factor, K, the rf voltage
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should be kept high in order to have a low Γ, since this shrinks the width of the
channel.  The limit will be fixed by the maximum rf voltage available.

6.5.5 Dependence of K on the ripple and improvement in duty factor
The amplitude of the ripple and its frequency dependence degrade the

improvement in duty factor, as explained in [26].  With the hypothesis of a smooth
and continuous momentum increase during extraction,

0
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T
p

∆=� (6.57)

where p0 is the momentum of the particle (without ripple), ∆p/p is the momentum
spread at extraction energy, Tspill is the spill time in seconds.  The ripple contribution
to the momentum at the frequency ω can be written as:

( ) tppp ω+=ω sinrr0r (6.58)

where pr0 is the constant component, and prω is the modulated component of the
amplitude of the ripple at the particular frequency considered.  By defining:
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The total momentum derivative during extraction is therefore:
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In the general case, (0 < ∆E < ∆Ebucket/2) the average multiplying factor is given by
(6.46).  Inserting in (6.46) the results of (6.55) and (6.58) gives the new multiplying
factor (for simplicity ( ) rr pp �� =ω ):
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The duty factor is given by equation (6.41), inserting the new value for K:
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In the case of ∆E = 0, a new expression for K is found.  Let K0 be the average
improving factor coming from (6.51).  After the insertion in (6.51) of the results of
(6.56) and (6.59)
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and the duty factor can be written as:
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It is also interesting to know the minimum K value and hence the poorest value to be
expected for F.  The minimum K and F values are calculated for ∆E = 0 and for
maximum rp�  and are given by:
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It can be seen that the multiplying factor decreases if the frequency of the ripple
increases, or if the spill time increases.  As an example, the multiplying factor for a
100% modulation (i.e. � �p pr = 0 ) from (6.60) leads to:
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6.5.6 Recommendations
In conclusion, some practical recommendations should be kept in mind:

• The bucket half height should be higher than the energy spread engaged in the resonance,
which sets a minimum value needed for the rf voltage.

 
• The bucket should be properly positioned with respect to the resonance region.
 
• The rf voltage value will depend on the machine, on the available hardware, and on the

beam parameters.
 
• The empty bucket must always give the same magnitude but opposite acceleration rate as

that given by the betatron core.
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Empty rf bucket channelling improves the spill quality during slow extraction
by increasing the dp/dt at the resonance crossing.  The improvement is not the same
for all particles, but depends on their betatron amplitude.  Furthermore, it depends on
the amplitude and the frequency of the ripple.  The method becomes less effective as
the ripple frequency increases.

Another characteristic of this technique is that the particles are extracted in a
small interval of the longitudinal phase interval 0-2π.  This results in a modulation of
the spill at harmonics of the rf frequency (few MHz).  In the case of medical
machines, the degradation of the spill quality at frequencies above 10 kHz is of no
concern, since the modulation coming from such high frequencies is averaged by the
slow extraction process, the physical spot size and the integration time in the on-line
dosimetry system [28].
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I-7 LATTICES
It is useful to review briefly the types of ring lattice that can be used for the

slow extraction schemes discussed in the earlier chapters, as well as some of the basic
design choices.  Note that the three examples of ring lattices are all drawn to same
scale.

7.1 REGULAR-CELL LATTICE
The simplest structures are built by concatenating several identical cells.  The

individual cells may be FODO, doublet, triplet or a variant of these.  Figure 7.1 is an
example of such a lattice taken from Reference 1.  This example is based on a doublet
cell.  The natural choice for this lattice (and that chosen in Ref. 1) is to use a tuning
quadrupole to move the resonance into the beam as illustrated in Figure 3.2 (IV).

The main advantages are:

• Simplicity.
• Small numbers of components.

The main disadvantages are:

• Equipment for injection, extraction, rf etc. has to be adapted to fit the rigid layout of
straight sections.

• No dispersion-free regions in which the resonance sextupole and the rf cavity can be
installed.

• With the quadrupole extraction, the lattice functions are changing during the spill.

The movement of the separatrix during the extraction makes the Hardt
Condition inapplicable, achromatic transfer between the electrostatic and magnetic
septa would require an undesirably large phase advance between septa (see Section
3.12) and ‘front-end’ acceleration is not easily applied.  This type of machine would
be adequate for a beam delivery using passive spreading, but would be less suitable
for active scanning.

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
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Figure 7.1  A regular cell lattice for a medical machine [1]
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7.2 ‘SQUARE’ RING LATTICE
The primary problem with the regular-cell lattice is the inflexibility of its

layout.  Ideally, one would like to adapt the drift spaces to the tasks they are required
to perform.  A first step in this direction is to create the ‘square’ lattice, in which the
dipole magnets are collected into four ‘corners’ separated by four straight sections
with focusing.  Figure 7.2 shows the example of the EULIMA ring taken from
Reference 2.  The sides of the ‘square’ are one pair of long straight sections (on
opposite sides) and one pair of short straight sections.  The lattice is symmetric about
the centres of the long and short straight sections.  Injection and extraction are placed
in the long straight sections with the two remaining short straight sections being used
for rf, diagnostics, etc.  There is no zero dispersion region in this example.  The
underlying cell structure is a split FODO.

The main advantages are:

• The straight sections can be designed with longer or shorter lengths (in opposing pairs)
with relative ease.

• The dipoles are usually combined into either four 90° units, or perhaps eight 45° units,
which makes a compact structure.

The main disadvantages are:

• The magnet yokes and the coils are more difficult to manufacture than say the twelve
smaller units of the regular-cell lattice in Figure 7.1.

• Extracting the beam from within a single straight section may require rather extreme fields
for the extraction elements (since the phase advance is low), which implies that this type
of structure is better suited to protons than to light ions.

The Hardt condition can be arranged and the achromatic transfer between the
electrostatic and magnetic septa is automatically satisfied while the extraction is
confined to a single straight section.  All extraction schemes could be applied in such
a lattice.

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
 0.000

 0.000

59.084

59.084

 25.0000

   8.5000

  -8.5000

Horizontal Vertical

Horizontal plan view [X-Y plane]

Drawn on a    2.0000m square grid

Figure 7.2  EULIMA - A ‘square’ ring lattice [2]
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7.3 CUSTOMISED RING LATTICE
As the optics becomes more sophisticated, the need to customise the lattice

becomes stronger.  Inevitably, the ‘wish’ list for the lattice becomes very long and, in
the case of a medical machine, the main points would be:

• The resonance sextupole should be in a dispersion-free region with the horizontal betatron
amplitude function large and the vertical betatron amplitude function small.

• The phase advances from the sextupole to the electrostatic septum and the electrostatic
septum to the magnetic septum should be chosen according to the extraction scheme.

• The lattice at the septa should have small vertical betatron amplitude functions for
aperture reasons and large horizontal betatron amplitude functions for efficiency reasons.

• The dispersion function needs to be shaped for the Hardt Condition (most probably D>0
and D′<0) at the electrostatic septum.

• If possible, the transit between the two extraction septa should be achromatic.

• To ensure that the longitudinal and transverse oscillations remain uncoupled, rf cavities
should be sited in dispersion-free regions.

• Chromaticities are better made negative below transition and positive above transition for
stability.

• The co-existence of the separatrices and the ‘waiting’ beam in the same machine imposes
more than the usual constraints on the positions of obstacles in the aperture such as
collimators, dumps and septa, but primarily, it is necessary to arrange for the separatrices
to grow in a balanced way in the aperture.

 
Whenever a conflict occurs in the design, the overriding need is that of a stable

reproducible spill and this will dominate the design choices at all levels.  For example,
the overall closed-orbit distortion is not a critical factor, but the local distortions at the
sextupoles and septa are critical.

Operational considerations favour separate-function lenses for focusing and
the provision of separate lenses for correction systems, although this may be counter
to economic and/or space considerations.  The magnets will be ramped and will
therefore have to be laminated to ensure a sufficiently good field quality, but, for
reasons of sensitivity to ripple, it is counter-productive to make the time constants too
short (see Section 5.11).  In general, precision and reproducibility are improved by
avoiding backleg windings and trimming supplies on main lattice magnets.  Individual
correctors are preferable for operation.

Arranging small vertical beam sizes in the main lattice dipole saves ampere-
turns and hence power.  Equally, small vertical beam sizes in septa and kickers can
help the designs considerably.

With the above points in mind, a customised lattice for PIMMS was designed
and is shown in Figure 7.3.  The underlying cell structure is a partially split FODO
where the F is split but the D is not.  This could also be viewed as a triplet structure.
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Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
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Figure 7.3  The PIMMS customised lattice

7.4 BASIC CELL TYPES
Figure 7.4 summarises four types of lattice cells upon which ring designs are

usually based.  It is difficult to compare these cells in an absolute way, but, to give
some idea of the general properties, all the cells have been scaled to give 72° phase
advance in both planes over a distance of 9 m.  Beside each diagram, the data for the
integrated, normalised quadrupole gradients (MAD sign convention) and the
maximum and minimum betatron amplitudes functions are noted.  In terms of the
maximum betatron amplitude functions, the cells vary over a range of 1.30, but this is
not so much when it is realised that the beam sizes are proportional to the square roots
of these values and vary only by a factor of 1.14.  The integrated gradient strengths
vary much more and change by a factor 2.3 between the economical FODO cell (I)
and the triplet (III).  However, the tuning ranges of these cells are so large that it is
unwise to pay too much attention to these generalisations.  In most cases, it is better to
choose the cell type upon which to a base a lattice according to the requirements of the
user.  The PIMMS lattice, for example, resembles the split FODO inasmuch as the F
is split to produce quasi-constant lattice functions inside septa.  The structure also
resembles the triplet and this aspect provides some of the smallest vertical beam sizes
in the machine inside the extraction and injection equipment where large gaps would
be expensive in terms of power and equipment.  It is true that one would expect a
lower overall power consumption in the lattice, if the structure could be modified to a
FODO, but then the septa would not be so well treated and the gradients at injection,
that are already uncomfortably low, would become even lower and more prone to
fluctuations from remanent fields.  In this case, it is felt that the power gain would be
marginal and the disadvantages too important to neglect, but of course in a different
machine, with a different purpose, the final choice could be very different.
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(I)  FODO
Betatron amplitude functions [m] versus distance [m]
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(II)  Doublet
Betatron amplitude functions [m] versus distance [m]
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(III)  Split FODO, or FOFDOD
Betatron amplitude functions [m] versus distance [m]
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(IV)  Triplet
Betatron amplitude functions [m] versus distance [m]
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Figure 7.4  Lattice cell types
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• The FODO cell (I) is perhaps the best known and provides the most efficient
focusing system.  The optimum phase advance in a FODO cell for beam size is
~76°, which is close to the case shown.

 

• The doublet structure (II) conveniently provides one long and one short drift
space, but since the quadrupoles are closer together they must be stronger and the
power consumption increases.

 

• The split FODO, or FOFDOD, structure (III) provides a flexible lattice in which
the FOF and the DOD spacing can be varied over a wide range without instability.
Of the examples shown, it has the smallest beam sizes and the quasi-constant
regions of the betatron amplitude functions, in which one plane is higher than the
other, can be used to create a semi-independence between the planes even over
long pieces of equipment.  However, the power consumption is again higher with
respect to the FODO.

 

• The triplet structure (IV) provides, a low-β-shape for the lattice functions in both
planes in the long drifts.  This is especially useful for equipment that needs small
apertures in both planes.  The peak that occurs at the centre of the triplet is usually
arranged to be in the vertical plane so that the horizontal betatron amplitude
function is kept small at all positions.  In this way, space is created for the
horizontal dispersion function and the two planes end up on aggregate as being
well balanced from the point of view of aperture.

7.5 COMMENTS

♦ The general consensus of opinion is that proton machines for passive
spreading should be made as small as possible with as few dipoles as
possible, which favours the ‘square’ ring with either a quadrupole or an rf-
driven extraction.  The lower magnetic rigidity of the protons reduces the
overall size of the dipoles to a point where the extra complexity of the coil
and yoke design for the large bending angles is not so important.

 

♦ When active scanning is considered, there is an advantage in using light
ions because these particles scatter far less in the body and the spot size
can therefore be controlled more effectively than for protons.  A
synchrotron is then the preferred machine and a customised lattice adapted
to the Hardt Condition with the amplitude-momentum extraction scheme
driven by a betatron core and some form of front-end acceleration will give
the best results as regards a smooth spill.

 

♦ This leaves the case of protons with active scanning.  The recommendation
would be to use a synchrotron with a customised lattice that can apply the
Hardt Condition, a betatron core and some form of front-end acceleration.
If the equipment already exists, or space is a critical problem, then the
betatron core should take priority.  If the betatron core cannot be installed,
then a quadrupole extraction is the next choice, but the quadrupole should
have a time constant of at least 100 µs in order to gain some smoothing for
the multi-kHz ripple.
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♦ The lattice should NOT be chosen without first choosing the extraction
method and the type of treatment to be performed.  The best results are
obtained by making an integrated choice.

The example ring lattices given in this chapter were all machines designed for
use with light ions.  For proton operation only, the lattices would have been smaller.
The progression from the regular-cell lattice to the customised lattice is accompanied
by an increase in the dispersion function.  This is to be expected.  In the customised
lattice, the dispersion function is forced to zero, which means that there is an
oscillation about the average value of 3 to 4 m with troughs going to zero and peaks
going to about twice the average value.  If the lattice were much larger, it would be
possible to use a dispersion suppressor and to avoid this oscillation.
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I-8 MATCHING  TO  GANTRIES
In the extraction line, a rather special situation is met in which a fixed transfer

line must be matched to a section of line, called the gantry, that has to be able to rotate
through a full 360° without affecting the beam spot at the patient [1] (see Figure 8.1).
Emittance inversion insertions are fairly commonplace in accelerator laboratories, but
not lines with full rotational optics as required in this case.  In cyclotron-based
facilities, the problem is solved by making the beam distribution rotationally
symmetric at an interface between the fixed and rotating lines.  A rotationally
symmetric beam requires equal emittances, equal lattice parameters and zero
dispersion.  Unfortunately, the slow-extracted beam from a synchrotron, as described
in Chapter 4, is far from fulfilling these requirements.  The problem is soluble in an
elegant way, but it requires the extraction line(s) and the gantry(ies) to be designed
according to an overall plan.  Finally, the high magnetic rigidity of the carbon beam
makes it desirable to investigate forms of gantries other than the iso-centric gantry
shown in Figure 8.1.

Figure 8.1  Schematic view of an iso-centric gantry

8.1 MATCHING METHODS
A gantry makes it possible to deliver the radiation dose to the tumour from

different angles and hence to spread out the entry dose and to avoid critical organs.
The value of the gantry is clear, but it raises the problem of how to make the optics of
the transfer line and gantry completely independent of the gantry rotation, so that there
is:

• No change in spot size and shape at the treatment volume.

• No correlation between momentum and position.

• No change of the beam optics inside the gantry.

There appear to be only two methods of matching, that satisfy all the above
requirements, and a third method that partially fulfills them.  A brief description of
these methods is given below before the tools are developed for analysing them.

Iso-centre

ϕ

Gantry

Transfer line

Horizontal axis

Accelerator plane  (horizontal)

Gantry plane (rotating)
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Symmetric-Beam Method:
This method requires a fully symmetric beam at an interface point between the

fixed beam line and the gantry.  A fully symmetric beam would have gaussian or KV*

distributions with equal emittances and lattice functions and zero dispersion functions.
These requirements automatically mean that the beam will be rotationally symmetric
in real space.

Round-Beam Method:
In this method the phase advances in the gantry are made multiples of π in

both  transverse planes.  This matrix family has the top right element zero and acts as
a telescope giving constant magnifications of the betatron amplitude functions.  In the
general case, the alpha functions are dependent on the incoming betatron amplitude
functions, which may be acceptable in a gantry design, but is not aesthetic.  In most
cases, the entry and exit alpha functions would be made equal and most probably zero,
so that the transfer matrices for each plane will have all zero off-diagonal terms.  The
one-to-one, or identity matrix is then a special member of this family.  This type of
matrix will map the beam directly to the patient at the exit with a constant
magnification.  If the input beam is round then the output beam will also be round, but
scaled by the magnification, and the rotation of the gantry will not be evident.  In this
case, a round beam means Exβx = Ezβz with gaussian or KV distributions, which is a
slightly less stringent condition than that required for the symmetric beam method.
The dispersion function must also be zero as for the symmetric beam method.  The
only problem that occurs is that the optics inside the gantry changes with rotation,
which could affect the beam steering/scanning in gantries that incorporate scanning in
their optics.  Although each case has to be studied separately, it is often possible to
freeze the optical parameters in the last section of the gantry where the steering
occurs.

Rotator Method:
The complete solution to this problem is the ‘rotator’ which is a section of

quadrupole lattice with phase advances of 2π and π in the transverse planes that is
placed just upstream of the gantry [2]. This module has to be physically rotated by half
of the gantry angle.  Mathematically, the mapping from the fixed line to the rotating
gantry is exactly one-to-one and one-to-minus-one and there are no restrictions on the
lattice functions or the dispersion vectors.  As will be explained later, the practical
design does require some care and beam sizes may impose practical limits.

8.2 TOOLS FOR DESCRIBING THE MATCHING METHODS

8.2.1 σ - Matrix Formalism [3]
Statistical average of a distribution

Let y be a vector containing the transverse phase-space co-ordinates of a
particle.  The statistical averages that describe a distribution of particles in phase
space are then contained in the co-variance σ-matrix defined as,

                                                
* K-V stands for Kapchinskij-Vladimirskij and refers to distributions that are correlated such that
Ex+Ez = constant for each particle.  This form of correlation erases any indication of rotation asymmetry
without skewing the 4-D ellipsoid i.e. <xx′> and similar cross terms remain zero.
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Definition of co-variance matrix, Tyy=σ (8.1)

The elements of the σ-matrix are therefore given by,
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where the < >brackets indicate the estimators for the expectation values for moments
of the N particles of,
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Transformation properties of the σ-matrix
Let M represent a linear transformation, so that,

12 Myy = . (8.3)

The use of this linear transformation with the definition of the σ-matrix gives* ,
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Hence,

Transformation T
12 MMσ=σ . (8.4)

The matrix M can either be a transfer matrix for any linear lattice, or a rotation matrix,
describing the rotation of a section of beam line.  The knowledge of the σ-matrix at
one point in a linear lattice is therefore sufficient to calculate the σ-matrix anywhere
else provided the transfer matrices are known.  This applies equally to lattices where
sections have rotated about their axes.

Invariance
Consider, yyW 1T −σ= , providing 1−σ  (known as the error matrix) exists.

The evaluation of W can be made at two positions related by  y2 =  My1 so that,
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With (8.4) and the standard relationship (a b c)-1=c-1b-1a-1,

                                                
* (a.b)T = bT.aT



PIMMS January 1999

146
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The substitution of this result in (8.5) gives,
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Thus, W is an invariant of the beam,

Invariant, Wyyyy =σ=σ −−
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2 (8.6)

An uncoupled beam
An uncoupled beam is one that has no correlation between the two transverse

phase spaces so that all elements of the matrix that couple the horizontal and the
vertical phase spaces vanish to give the form shown below.
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The invariant W  for an uncoupled beam is formed as before,

yyW 1T −σ= ,
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Thus, for an uncoupled beam the general invariant, W, separates into two independent
invariants, Wx and Wz
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This can also be written as,
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8.2.2 Link between the σ - matrix and the Courant and Snyder formulation
If the beam is uncoupled, it is sufficient to consider just one transverse plane.

The derived invariant for the x-plane from (8.8)

2222
x 2 xxxxxxxx ′+′′−′=W (8.8)′

is strongly reminiscent of the Courant-Snyder Invariant
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With the help of the definition of the statistical emittance,

222
x xxxxE ′−′π= , (8.10)

the invariant Wx can then be rewritten as,
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By comparison with (8.9), the Courant and Snyder parameters can now be defined as,
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It is quickly verified that these definitions satisfy the Courant and Snyder

relationship,  
( )

β
α+=γ

21
.

Finally, the bridge between the σ-matrix and the Courant and Snyder parameters is
completed by writing the σ-matrix for an uncoupled beam in terms of the Courant and
Snyder parameters,
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Hence it is possible to evaluate the σ-matrix for the uncoupled beam, extracted
from the accelerator, in terms of the usual lattice parameters and then to find the
σ-matrices at any position downstream (e.g. in the rotator, gantry, etc.) by the use of
the appropriate transfer and/or rotation matrices.  Once the beam is coupled, either
after a rotation or after a coupling element such as a skew quadrupole, the Courant
and Synder formalism no longer applies, but the sigma matrix maintains a full
description of the beam and the 1-σ beam sizes in the planes of the normal modes can
be found very easily from the square roots of the matrix elements σ11 and σ 33.

8.3 SYMMETRIC-BEAM METHOD
In the symmetric beam method, the gantry is matched directly to the fixed

beam line coming from the accelerator.  This situation is shown schematically in
Figure 8.2.

Figure 8.2  Equipment layout for the symmetric beam method

Assume that the beam coming from the accelerator is uncoupled.  The σ-
matrix at the end of the fixed beam line, just in front of the gantry is then given by,
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If the gantry is rotated by an angle ν, the positions and angles of all particles just at the
junction can be described in the rotated co-ordinate system (u,v) by multiplication
with the rotation matrix Rν,

ν
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The σ-matrix after a rotation can be derived from the original matrix by using the
transformation according to (8.4) to give,
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where s = sinν and c = cosν  and ν = the angle of rotation.

The matrix σ2 gives the various averages in the rotated gantry co-ordinate system (u,v)
in terms of the beam parameters of the fixed beam line co-ordinate system (x,z).

If the gantry is not rotated (ν = 0 and sinν = 0), all terms in the off-axis
quadrants are zero and the main terms regain the form of the uncoupled matrix.
Similarly, for a rotation ν = 90°, the matrix σ2 is of the same form as the uncoupled
matrix but with x and z interchanged.

For the beam to be symmetric with respect to rotations, the matrix σ2 must be
independent of the rotation angle ν and the following constraints have to be fulfilled
at the entry to the gantry:

zzxxzzxxzzxx ;; γ=γα=αβ=β EEEEEE ,

which is equivalent to,

zx EE =
Symmetric beam conditions, zxzxzx γ=γα=αβ=β ;; (8.17)

Dx = Dz = 0;   D′x  =D′z = 0

To these conditions, it is necessary to add that the beam distributions in x and z
must be either gaussian or K-V in order that the rotation of the beam spot is not made
visible by a structure in the beam that does not affect the statistical expectations* .

                                                
* For example, uncorrelated, truncated gaussians would form a square image in real space that would
make rotation visible, although the emittances etc. could still be equal.
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To have the same lattice parameters in both planes is not very limiting in
practice, but the constraint of equal emittances is a more severe problem, especially
for resonant extraction from a synchrotron.  Entering and leaving with zero dispersion
functions is also a fairly strict optical condition for the gantry.

The above conditions demand that the beam be symmetric in real space and in
the two transverse phase spaces.  It is not sufficient to have only a physically ‘round’
beam at the interface point.  This is quickly seen by considering a simple case of a
beam with 0zx =α=α  and zx EnE ⋅= .  To make this beam round in real space,

zzxx β=β EE  is required and from this it follows that zx

1β=β
n

 and because of αx,z

being zero zx γ⋅=γ n .  From the above conditions zzxx γ=γ EE  must also be fulfilled
and it follows that:

zxzzzz
2

zzxx 1 EEnEEnnnEE =⇒=⇔γ=γ=γ=γ ,

which forces the choice of n to be unity for equal emittances.

8.4 ROUND-BEAM METHOD
In this method, the equipment layout is the same as for the symmetric-beam

method (see Figure 8.2), but additional constraints are placed on the gantry optics in
order to relieve partially the constraints on the beam at the interface point.

The general transfer matrix for a section of line can be written as,
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where the subscripts 1 and 2 refer to the entry and exit parameters respectively and ∆µ
is the phase advance through that section.  If the phase advance is adjusted to an
integral number of π, then the matrix simplifies to,
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Although this form could be accepted as a gantry matrix, it is far more likely that the
alpha functions would be made equal at the entry and exit and very probably zero.
Equation (8.19) would then be rewritten as,



PIMMS January 1999

151







±

±
−10

0

m

m
(8.20)

where m is the magnification factor equal to the square root of the ratio of the betatron
amplitude functions at entry and exit.  This type of matrix is known as a ‘telescope’
and will be discussed further in Section 9.2  The identity, or one-to-one matrix also
belongs to this family.

The rotation of the gantry is described with a rotation matrix Rν that was given
in (8.15).  Thus the overall transfer matrix from the end of the fixed beam line to the
treatment volume is then given by the product of (8.15) and (8.20) assuming equal
magnifications in the two planes for simplicity:
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where an even number of π have been chosen for the phase advances for simplicity.

At the treatment volume, the spot size and shape have to be independent of the
rotation angle.  To derive the required beam parameters at the matching point, it is
sufficient to consider only the 2x2 transfer matrix T0 for x and z, (the matrix for x′, z′
being the similar):
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If now the incoming beam had an asymmetry e.g. |x| < x0 and z = 0, then at the
treatment volume the distribution can be described in the gantry co-ordinate system
(u,v) with the matrix T0 as,
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This means that the beam, seen from the gantry co-ordinate system, is rotated at the
treatment volume by the negative gantry angle ν (see Figure 8.3).
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Figure 8.3  Rotation of the beam in the round-beam method

The rotation of the beam at the patient cannot be avoided, but it can be made
of no consequence by entering the gantry with a ‘round’ beam, so that the patient
always ‘sees’ the same particle distribution independent of the gantry angle.  In this
case, a ‘round’ beam in real space requires,

Round beam conditions, zzxx β=β EE (8.24)

Dx = Dz = 0;   D′x =D′z = 0

at the interface point with gaussian or K-V distributions.

This constraint is slightly less strict than that required for the symmetric beam
in Section 8.3, but the optics (beam sizes etc.) are not constant inside the gantry with
rotation.  For gantries using passive spreading after the last bend, the variable optics
are of no consequence, but for gantries which incorporate active scanning, this could
be a problem.

8.5 ROTATOR METHOD
The only truly rotational solution that also includes the dispersion vectors is

the rotator method.  Consider a section of bending-free transfer line with a betatron
phase advance of 3600 in the x-plane and 1800 in the z-plane and νentry = νexit.  The
transfer matrix for this line will be;
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Now let this line be rotated by an angle ν with respect to the normal fixed transfer line
and let ν be just half of the rotation angle of the gantry, 2ν.  The layout of the
equipment is schematically shown in Figure 8.4.
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Figure 8.4  Equipment layout for the rotator method

The transfer matrix from the exit of the fixed beam line to the interface point at the
entry to the gantry is found by multiplying the rotation matrix for the angle ν, the
rotator and a second rotation matrix also for the angle ν.
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Thus, the final overall transfer matrix maps the incoming normal modes directly to
those of the gantry without any cross-coupling and independently of the rotation
angle.
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Since a dispersion vector in a bending-free region behaves as a betatron oscillation to
first order, the rotator will automatically match the dispersion vector (D,D’) into the
gantry at the same time as it matches the normal modes.  Thus there are no
fundamental limitations on the beam symmetry, or on the dispersion functions or any
changes to the optics inside the gantry with rotation angle.  The fact that the rotator
can match a dispersion vector into the gantry opens the possibility of a simplified
gantry design with fewer quadrupole magnets and with the dispersion bump closed in
the fixed part of the beam line.  Note, however, that the beam is coupled inside the
rotator.

The beam distribution is also of less consequence with a rotator.  For example,
although two truncated, uncorrelated gaussians would form a square boundary to the
beam spot, the spot would always have the same orientation with respect to the gantry
system.  This point is relevant to the present study, since the slow-extracted beam will
have sharp parallel edges in one plane and gaussian edges in the other.  The spot will
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therefore not be round and the invariance of the orientation inside the gantry system
will be of paramount importance for the scanning system.

8.6 ROTATOR DESIGN EXAMPLES
So far, the rotator has been represented by its 4x4 transfer matrix and the only

constraint for its design was that the phase advances in the transverse planes must be
2π and π.  The overall transfer matrix, however, cannot give any information about
beam sizes, chromatic effects etc. inside the structures.  In the following Figures 8.5 to
8.7, the lattice functions and structures are shown for three different rotators at the 0°
and 90° points.

Horizontal & vertical betatron amplitudes [m]

0

   7.500

10.000    

Horizontal & vertical betatron amplitudes [m]

0

  90.000

10.000

(a) Not rotated                                        (b) Rotated by 90°

Figure 8.5  Three-cell regular FODO rotator (a) not rotated, (b) rotated by π/2
[Three cells of phase advance per cell µp=1200, µq=600, entry values of βp=2.23m, βq=3.69m,

αp=1.77, αq=-1.85, two quadrupole families]

A rotation by 90° is equivalent to changing all the focusing lenses of the lattice
into defocusing lenses.  When viewed in this way, it is not surprising that the regular
FODO rotator leads to very large fluctuations of the lattice functions.  In the unrotated
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, whereas in the rotated case these ratios increase
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.  This effect is strong when the entry values

for the alpha functions are large and have opposite signs.  This gives the first hint that
rotators are best made with zero alpha functions at the entry and exit.  This is further
supported by the triplet rotator of Figure 8.6, in which the ratios of the betatron
amplitudes functions at 0° and 90° remain exceedingly well behaved at

4 and  4
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.  The p-plane and q-planes swap at 90°.
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   8.500
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Figure 8.6  Three-cell triplet rotator
[Three cells of phase advance per cell µp=1200, µq=600, entry values of βp=βq=4m, αp=αq=0,

two quadrupole families]
In Figure 8.7 a doublet matches symmetric lattice parameters into a FODO

channel that gives the required phase advance.  The lattice functions at 0° and 90° are

again well behaved with 7.9 and  9
q

q

p

p =
β
β

=
β
β

�

�

�

�

.  The exotic behaviour of the FODO

rotator is thus avoided by entering with equal alpha-values set to zero.

Horizontal & vertical betatron amplitudes [m]

0

  12.000

 9.000

Figure 8.7  Doublet-FODO rotator
[Phase advances of µp=3600, µq=1800, entry values of βp=βq=4m, αp=αq=0, four quadrupole

families]

Thus rotators should be designed to have equal alpha functions equal to zero at
entry and exit.  The complete evaluation of beam sizes at all rotation angles will be
dealt with in Section 8.8.

8.7 LENGTH SCALING
So far gantry structures and rotators have been mentioned as examples of

lattice modules with phases advances that are an integral number of π.  In the next
Chapter, similar modules will be proposed for closed-dispersion bends and extension
modules.  Since it is very often that a lattice has to fit an existing building, it is
interesting to know how these structures can be scaled while maintaining their special
phase advance properties.  Starting from the equation of motion for the horizontal
plane:
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(8.27)

where the general focusing constant, )()()( 2 skshsK −= and h(s) is the inverse of the
local radius of curvature and k(s) is the local normalised gradient.  The substitution of

the solution ( ) ( )sssx µβ= cos)(  leads to the well-known equation of the betatron

amplitude function,

( ) 2
3

2

2

d

d −β=β+β sK
s

. (8.28)

This equation determines the β-function for the whole structure and therefore also the

phase advance ( ) ∫ −β=µ ss d1 .  To scale a structure, equation (8.28) is rewritten with

the inclusion of scaling factors (κ, for the length; λ for the focusing and τ for the β
function), so that

( ) ( ) 2
3

22

2

d

d −τβ=τβλ+τβ
κ

sK
s

.

After some re-arrangement, this equation yields the relations between the scaling
factors
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  so that 2, −κ=λκ=τ . (8.29)

Scaling with constant phase advance
κβ⇒βκ⇒κ⇒ − ;; 2KKss .

From 
sd

d

2

1 β−=α , it follows that α remains unscaled and that γ scales inversely with

β.
The quadrupole apertures are determined by the beam size.  Since the emittance is

constant the apertures scale like: βκ⇒β= EEA  the gradients scale

like kk 2

1

κ
⇒ .and, finally, it follows for the pole tip field: pole

2
3

pole BB
−κ⇒ .

8.8 BEAM SIZES IN ROTATORS

8.8.1 With zero dispersion

The σ-matrix formalism can be used to study the beam sizes inside the rotator.
It is assumed that the initial beam coming from the accelerator is uncoupled.  The σ-
matrix then comes directly from (8.7),
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The transformation of the σ-matrix through the lattice was given in (8.4) as
T

12 MMσ=σ , where M can be written as,
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where C and S are sometimes known as the principal trajectories.  The exact forms are
given below and can be found by comparison with the well-known general transfer
matrix given in (8.18).  The subscripts 1 and 2 denote the initial (rotator entrance) and
final (a point downstream in the rotator) values respectively, ∆µ is the phase advance
through the lattice and all four equations exist in both planes with the appropriate
lattice parameters.

( )µ∆α+µ∆
β
β

= sincos 1
1

2C (8.31)

( ) ( ) ( )[ ]µ∆α−α+µ∆αα+ββ−=′ − cossin1 1221
2/1

21C (8.32)

( ) µ∆ββ= sin2/1
21S (8.33)

( )µ∆α−µ∆
β
β

=′ sincos 2
2

1S . (8.34)

Let the initial σ-matrix in the normal transfer line before the rotator be uncoupled.
The effect of the rotation can be expressed as,

T
12 RRσ=σ .

The matrix σ2 can now be transferred along the rotator using the transfer matrix M:

T

2

T
13 MRRM
�
	

σ
σ=σ

where M is evaluated using the principal trajectories of (8.30).

The full expansion of the matrix σ3 can be avoided if only the beam size is
wanted.  The σ1,1 and σ3,3 terms give the rms beam sizes <p2> and <q2> in the co-
ordinate system of the rotator, but expressed in terms of the original beam parameters.
The two terms in the final σ-matrix are given below.
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where, s and c are sine and cosine of the rotation angle and Cp,q and Sp,q are the
principal trajectories of the rotator.  The following Figures 8.8-8.10 show the beam
sizes inside the three rotators as seen in the co-ordinate system of the rotator as a
function of the rotation angle.  Beam sizes in these examples are calculated for
Ex = 2 [π mm mrad] and Ez = 10 [π mm mrad].
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Figure 8.8  Horizontal (a) and vertical (b) beam sizes inside a FODO rotator
when rotating from 0 to π (the form repeats for π to 2π)
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Figure 8.9  Horizontal (a) and vertical (b) beam sizes inside a triplet rotator
when rotating from 0 to π (the form repeats for π to 2π)
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Figure 8.10  Horizontal (a) and vertical (b) beam sizes inside a Doublet/FODO rotator
when rotating from 0 to π (the form repeats for π to 2π)
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8.8.2 With finite dispersion

When calculating the beam size from the σ-matrix using equations (8.35) and
(8.36), the average position of the beam is ignored.  Fortunately, this omission is
easily corrected by tracking the single particle that is exactly on the central or closed
orbit of the beam.  For simple orbit distortion, the normal 2 × 2 matrices with the
appropriate rotation matrices can be used.  For off-momentum beams, the normal
3 × 3 transfer matrices must be used that include the momentum effects.

8.9 SPREADING AND SCANNING SYSTEMS
The last action of the optical system is to ‘spread’ or ‘scan’ the beam over the

tumour.  Beam spreading is the more conventional approach, in which the tumour is
treated either as a volume or in thick slices.  Beam scanning divides the tumour into
thin slices with many pixels and adapts the beam to treat each pixel separately.  These
two main approaches are summarised in Figure 8.11.  Note that Figure 8.11 is far
from being comprehensive and that many variants and combinations exist.  In
particular, no mention is made of systems that move the patient as part of the scanning
procedure or displace steering magnets to economise on magnet apertures.

Figure 8.11  Beam spreading and scanning

Source to surface distance (SSD)
Passive spreading and divergent beam scanning both suffer from a finite

source-to-surface distance (SSD) that leads to an enhancement of the surface dose (see
Figure 8.12).  The maximum angle of divergence is a matter of discussion.  In

Beam Spreading

Passive spreading Wobbling

After gantry optics Inside gantry optics

Pencil Beam Scanning

After gantry optics Inside gantry optics

Specially shaped
scatterer

2-D sinusoidal
movement of beam

Divergent beam Combined with passive
spreading

Divergent beam Parallel scanning
possible

Irradiation field is shaped by collimator and bolus to fit tumour

Pencil beam is adapted in size and energy to each pixel

There are 2 scanning techniques: voxel and raster
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reference 4, the maximum divergence is quoted as ±1° and this criterion is used to
relax on the strict requirement of parallel scanning.  However, for passively spread
beams in Ref. 5 a minimum SSD of 2m is quoted.  If the field of irradiation is ±10 cm
then a SSD of 2 m corresponds to ±2.9°.

Positioning of the scanning magnets
After the last gantry magnet.  In this case, the scanning is forcibly divergent, but this
layout has the great advantage that the gantry magnets do not need enlarged apertures.
Thus, the weight and cost of the gantry are reduced.

Incorporated in the gantry optics.  Once the scanning magnets are moved further
upstream into the gantry the focusing of the last dipole and possibly some quadrupoles
can be used to create a parallel scanning system.  If spaces are available at the correct
phase advances, then parallel scanning is possible with a single magnet in each plane,
otherwise two magnets are needed per plane.  However, a usual compromise is one
magnet per plane with approximately the correct phase advance.  The loss of parallel
scanning is only partial and is offset by the advantage in size and cost gained by
reducing the gap in the last dipole magnet of the gantry.

Figure 8.12  Enhancement of surface dose with divergent beams
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I-9 EXTRACTION  LINES
The particular ‘footprint’ of the slow-extracted beam segment in phase space

and the need to control the beam sizes in a lattice with rotating optical elements create
a rather special problem for the extraction transfer line.  The design concept presented
here regards the whole line from the electrostatic septum inside the ring to the patient
as an integrated system built mainly from ‘telescope’ modules with integer π phase
advances.  The beam size in the plane of the extraction is controlled at the patient by
altering the phase advance in the line in order to rotate the extracted beam segment in
phase space at the patient.  The vertical beam size is controlled by stepping the
vertical betatron amplitude function over a range of values and passing the changed
beam size from ‘hand-to-hand’ through the ‘telescope’ modules to the patient.  The
matching to the gantry is assured by a module called a rotator.  An example of this
optics is given with a preliminary design for the optics of the so-called Riesenrad
gantry.

9.1 DESIGN CONCEPT
The principal ingredients of the design of the transfer line and delivery system

can be summarised as:

• Matching the unequal emittances and non-zero dispersion functions to a rotating gantry by
the use of a rotator.

• Using ‘telescope’ modules that have ‘one-to-one’, ‘one-to-minus one’, or a fixed
magnification with integer π phase advances.  The rotator already fits this category.  A
module from the same family with a 2π phase advance is ideal for embedding a bend with
a closed dispersion bump and this type of structure can also be adapted to the Riesenrad
gantry [1].

• Exploiting the ‘bar’ of charge to create an independent control of the horizontal beam size
by rotating the bar in an unfilled phase-space ellipse using a phase shifter at the entry to
the line.

• Controlling the vertical beam size using a ‘stepper’ that steps the betatron amplitude
function over a range of values, whilst keeping all the parameters in the horizontal plane
constant, and then hands the chosen beam size through the telescope modules all the way
to the patient.

• Placing the phase shifter and stepper at the exit to the accelerator so that they can act for
all gantries in the complex.

• Avoiding unnecessarily large beam sizes in the rotator, for example, by using the
telescope modules to de-magnify and then re-magnify the betatron amplitude functions in
the vertical plane.

This general strategy has been adapted to an example lattice for a cancer
therapy facility.  The layout also includes such practical features as a beam ‘chopper’,
space for diagnostics in a dispersion-free region, a long drift space for a vehicle track
around the ring and a modular layout of the treatment rooms, see Figure 9.1.  The
medical specifications (see Table 1-1) require spot sizes 4-10 mm full width at half
height with either protons between 60 and 250 MeV, or carbon ions between 120 and
400 MeV/u.  The beam at the patient should also be achromatic.
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Figure 9.1  Schematic view of an example extraction layout

9.2 ‘TELESCOPES’
Before describing the individual modules, it is useful to review the properties

of ‘telescopes’ with integer π phase advances.  The general transfer matrix from (8.18)
can be written as,
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where C and S are known as the principal trajectories and the other symbols have their
usual meaning.  The family of telescope modules of interest is characterised by
having:

Definition of a ‘telescope’ module (I):         0and0 =′= CS . (9.2)

From inspection of (9.1) and since β can never be zero, ∆µ must be nπ to satisfy S = 0
and α must equal α0 to satisfy C′ = 0.  Note that both conditions are independent of
the initial values of α0 and β0.  Thus in the Courant and Snyder formalism,

Matching section from ring
reduces dispersion to zero.

Horizontal phase shifter.

Vertical β-stepper

Extension module with non-zero
dispersion switchRotator

Extension module with zero
dispersion switch.

Rotator

Zero-dispersion
diagnostics region

Element-free straight section for vehicle track

Chopper

Gantry with
D=0 at entry

Line terminated by a Dump

Gantry with
D≠0 at entry

Main ring

Branches to
other gantries
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Definition of a ,’telescope’, module (II)     α=απ=µ∆ 0andn . (9.3)

The lattice functions can be transmitted through a structure by a standard
matrix expression,
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This quickly simplifies if S = 0 (9.2),
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When the lattice is matched for C′ = 0 (9.2) and α = α0 (9.3), CS′ will be unity and
(9.5) simplifies further to:
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Thus for any incoming set of lattice parameters, it follows that

‘Telescope’ magnification: 0
2

0

and α=α=
β
β

C . (9.7)

9.3 EXAMPLE OPTICS WITH A RIESENRAD GANTRY
Figure 9.2 shows the ring and extraction line of the example optics.  The line

is modularised with very specific functions for each module.  The base condition for
handing the beam over from one module to the next is βx = βz = 3 m, Dx = Dz = 0 and
αx = αz = 0.  However, the ‘telescope’ modules will locally modify the betatron
amplitude functions by some magnification factor.  As shown in Figure 9.1 the idea is
to match out of the accelerator into a long straight line from which the gantry lines are
derived.  The gantry lines can turn to the left or the right and extra units can be
inserted at will.  It is stressed that the layout in Figure 9.2 is an example and that in
principle there is considerable flexibility within the limits of the modular design.

9.3.1 Initial conditions
To evaluate the beam characteristics at the entrance to the line, simulations of

the extraction process have been made for the PIMMS synchrotron.  By recording the
position of the particles at the entrance to the electrostatic septum, the expected beam
distribution can be studied and used to define the initial conditions at the entry to the
extraction line.  Figure 9.3, is the result of such a simulation in phase space of the
plane of extraction.  The stable triangle can be seen situated at the vacuum chamber
with one separatrix reaching out towards the electrostatic septum.  The segment of
separatrix that is cut off by the septum is indicated.  The procedure followed here to
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situate the segment in an unfilled ellipse rather than fit an ellipse directly to the
segment is treated in the Section 9.3.2.

Synchrotron

Matching Section

Chopper

Phase Shifter-Stepper

Bending Section

Rotator

Gantry

Figure 9.2  Layout of example optics for ring and extraction line
[Horizontal plane drawn on a 9 m square grid]

Figure 9.3  Simulation of the extraction phase space at the electrostatic septum

The extracted segment in Figure 9.3 appears as a simple line, but in practice
this line is composed of many lines coming from the stable triangles of different
momenta (emittances).  The thickness of these lines depends upon the emittance in the
orthogonal plane and the coupling from the sextupoles (mainly the resonance
sextupole).  Figure 9.4 shows in more detail the extracted segments for maximum
amplitude (emittance) in x (short lines) and zero amplitude in x (long lines) and for
maximum amplitude in z (thick lines) and zero amplitude in z (narrow lines).  The
ellipses shown in the same figure are chosen to contain the segments and to have

Unstable region

Extracted
beam segment

Electrostatic
septum

Stable
region

Centre of chamber
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reasonable lattice functions.  The segments can then be considered as rotating in the
unfilled ellipses as the beam goes along the extraction line.
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Figure 9.4  Simulation of the extracted beam and ‘unfilled ellipse’ at the electrostatic septum

The difference in the spiral step for particles with different momentum
deviation (different emittance) causes a shift in the centre of the segment for a
different momenta.  This can be taken into account with an initial dispersion and
derivative of the dispersion defined by the distance between the centres divided by the
momentum difference.  The unfilled ellipses are chosen such that the dimension
perpendicular to the segment is large, so that the width of the segment is unimportant.

Finally the set of initial conditions chosen for the PIMMS extraction line in
this simulation is the following:

βx = 15 m βz = 6.77 m
αx = 0 αz = -0.0814

Dx = 2.09 m Dz = 0 m
D′x = -0.0174 D′z = 0

εx,total = 1.65 × 10-6 π m rad εz = varies with energy

Note that in the horizontal plane the segments, and therefore also the unfilled
ellipses, are determined geometrically by the resonance and are invariant with beam
energy.  In the vertical plane, the emittance comes directly from the circulating beam
(with a small perturbation from coupling) and is beam energy dependent.  This
introduces the rather strange situation where the extracted segment is reasonably
normal in the vertical plane, but in the horizontal plane, it is invariant with beam
energy in one dimension and partially adiabatically damped via coupling from the
vertical plane in the other dimension.

Unfilled ellipse for:
Large emittance, farthest

from resonance

Unfilled ellipse for:
Zero emittance, on resonance.

Zero emittance in z

Large emittance in z
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9.3.2 Direct and indirect fitting of an ellipse
The simulations presented in the previous section show that the phase-space

'footprint' of the slow-extracted beam from a synchrotron differs markedly from the
fast-extracted beam, or a beam from a cyclotron:

• In the plane of extraction, the phase-space shape is close to being a narrow rectangle
(known as the ‘bar’ of charge) that corresponds to the segment of the outward-spiralling
separatrix that is deflected out of the machine by the electrostatic septum.

• In the orthogonal plane, the phase-space shape is the same as that of the circulating beam
to first-order.

Figure 9.5 shows this situation schematically for a mono-energetic beam at the
entrance to the extraction channel.

Figure 9.5  Schematic view of the phase-space 'footprint' of the beam in the extraction
channel

If the severed segment of the separatrix were viewed at the entry to the
electrostatic septum and if it were rotated until it was horizontal, it would be:

• 5-10 mm long depending on the momentum.

• ~0.00005 rad wide.

• The particle density for a given momentum would be quasi-constant over the ‘rectangle’.

Courant and Snyder  representation by 'direct fitting'
The conventional approach to representing beams is to find a closely fitting

ellipse.  In the case of a rectangle, the fitted ellipse would be somewhere in the range
between the inscribed ellipse and the circumscribed ellipse.  This is shown
schematically in Figure 9.6 and the emittances and fitted lattice functions are
summarised in Table 9.1.

X´

X

Z´

Z

Horizontal Vertical

Central orbit for
extraction channel
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Figure 9.6  Direct fitting ellipse
[‘Beam-rectangle’ (full width 10 mm, full divergence 0.05 mrad) = 0.16 π mm  mrad]

Direct fitting of inscribed and circumscribed ellipses

Rectangular beam segment
Full width 10 mm, full divergence 0.05 mrad Ex = 0.16 π mm  mrad]

Circumscribed ellipse, Inscribed ellipse,
Lowest extraction energy

Ex = ∼0.25 [π mm mrad] Ex = ∼0.125 [π mm mrad]
βx = ∼200 [m] βx = ∼200 [m]

Highest extraction energy
Ex = ∼0.13 [π mm mrad] Ex = ∼0.063 [π mm mrad]

βx = ∼400 [m] βx = ∼400 [m]

Table 9.1  Direct fitting of inscribed and circumscribed ellipse

The range in emittance between the inscribed and circumscribed ellipses is
already a factor of two which indicates that the fitting is not a natural action in this
case.  Furthermore, adiabatic damping in the vertical plane reduces the coupling to the
horizontal plane (effect is proportional to the vertical emittance and the resonance
sextupole strength) as the energy increases. Thus, at the top extraction energy, the
horizontal emittance is reduced to approximately 50% of its value at the lowest
extraction energy, which is reflected in a parallel change in the betatron amplitude
function from 200 m to 400 m (see Table 9.1).  This is an extremely strong energy
dependence to take into account in the optics.

The length of the extracted beam segment is well known, but the divergence is
more difficult to calculate and very difficult to measure.  Firstly, it is very small and,
secondly, it is very sensitive to vertical closed-orbit distortions at the resonance
sextupole.  A distortion of 4 mm can increase the beam divergence by a factor 4,
which in turn reduces the betatron amplitude of the fitted ellipse by a factor 4.  Thus,
the fitted ellipse is strongly dependent on machine conditions such as the closed orbit.

The central orbit of the extraction channel is defined as the central momentum
of the extracted beam.  In Table 9.2, the results of a first-draft-lattice design show the

b√2 bX´

X

a√2a

Circumscribed ellipse
Rectangular segment

Inscribed ellipse
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approximate situation at the lowest extraction energy, where the spiral step variation
with momentum alters the length of the extracted segment.  The fitted ellipse must
follow these changes and this results in an extremely strong chromatic effect in the
betatron amplitude function.

Variation of the extracted beam segment with momentum deviation

Full length
 [mm]

Full divergence
[mrad]

βx

 [m]

∆p/p = -0.0006 6 0.05 120
∆p/p = 0.0 8 0.05 160

∆p/p = 0.0006 10 0.05 200

Table 9.2  Variation of the extracted beam segment with momentum deviation

Thus, the chromaticity in the betatron amplitude function is,

∆β/(∆p/p) = 6.7 × 104 (9.8)

The direct approach of closely fitting an ellipse to the extracted beam therefore
leads to a number of undesirable effects:

• A βx that changes with energy (factor 2), because the horizontal size of the beam is
constant while the beam divergence undergoes a quasi-adiabatic damping.

• The absolute value of βx is not well known.  In practice, the coupling from the vertical
plane is very sensitive to vertical closed-orbit distortions at the resonance sextupole and a
distortion of 4 mm can give a factor of four increase in the emittance and a factor of 4
reduction in the horizontal betatron function.

• The variation in spiral step with momentum deviation causes a strong chromatic effect in
βx.

Courant and Snyder representation by 'indirect fitting'
The extracted beam can be treated as part of an ‘unfilled’ ellipse in the

horizontal phase space.  Since the transfer line is short, the motion of the beam will be
coherent and its phase-space shape will be preserved.  The orientation in the chosen
ellipse and hence the beam width will be given by the phase advance down the line
(see Figure 9.7).

The ‘unfilled’ ellipse is chosen from the infinite family of ellipses that have
the ‘bar of charge' as a diameter.  The choice is best made so that,

• The divergence of the ellipse is far greater than that of the beam.  The match between the
‘bar’ of charge and the diameter of the ellipse is then insensitive to the changes in the
'bar’s' divergence.  The larger the divergence of the ellipse the narrower the bar can be
made when turned upright in the ellipse.

• The βx-value of the ‘unfilled’ ellipse should be adjusted so that maximum beam sizes in
the extraction line at the gantry exit are convenient values.
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The different momenta in the beam can be transported in similar ellipses, but of
different emittances to reflect the different lengths of the ‘bar’.  In this scheme, it is
essential to be able to control the horizontal phase advance in order to know and to be
able to adjust the horizontal beam size at the patient.

Figure 9.7  Rotation of the 'bar of charge' with phase advance

9.3.3 Matching section
The first part of the extraction line, from the electrostatic septum to the

magnetic septa, is inside the main ring, but off-axis.  This is known as a ‘distorted’
orbit and has been calculated and introduced as a special section of lattice in which the
quadrupoles, for example, are re-expressed as combined function magnets with edge
angles calculated from the particle trajectory.  After passing the second magnetic
septum, there is a doublet and a long drift space before a final doublet and the bending
magnets needed to close the dispersion bump from the ring.  The long drift has two
functions:

• The small βx provides the phase advance to bring the dispersion function to zero.

• The vacuum pipe can be removed to allow the passage of a vehicle round the ring.

After matching the dispersion to zero, three quadupoles are inserted to match the
lattice functions to the input of the next section while leaving a long drift at the end to
provide space for the chopper.  When the dispersion is zero, the different bars of
charge corresponding to different momenta are overlapped at the centre.  The
geometry and the optical functions in this section of lattice are shown in Figures 9.8
and 9.9.

9.3.4 ‘Chopper’
The ‘chopper’ (see Figure 9.10) is a system comprising four dipoles powered

in series that allows the switching of the beam on and off.  When the dipoles are not
powered, the beam is absorbed in a dump.  On the contrary, when the dipoles are
powered, the beam is translated parallel to itself by the first two dipoles and is brought
back to the axis by the second two.  This circumvents the dump and allows
transmission of the beam.  As the dipoles are powered in series the beam stays on axis

X´

X

Z´

Z

Central orbit for
extraction channel

µx

Beam
width

Beam
height
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downstream of the chopper at all times during the flat top and the rise and fall.  Thus
the beam position at the patient can be guaranteed as soon as transmission starts and is
independent of fluctuations and the ‘rounding’ in and out of the power converter on
the ramp.  This device can be used for scheduled beam interruptions as well as
emergency interruptions.

Horizontal plan view [X-Y plane]

Drawn on a    4.0000m square grid

Figure 9.8  Plan view of the matching section and the ring

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
 0.000

 0.000

33.231

33.231

 30.0000

   6.0000

  -6.0000

Horizontal Vertical

Figure 9.9  Optical functions in the matching section
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The chopper is not a module in the sense of the optics modules, such as the
rotator.  It requires a few metres of free space with a small betatron amplitude function
at the position of the dump block in the direction of the deflection.  In the present
scheme, it is placed between the matching section from the ring and the phase shifter.
Figure 9.11 shows the phase space distributions in the two planes at that position.

Figure 9.10  Schematic drawing of the chopper

Horizontal phase space Vertical phase space

 -0.0050   0.0050  -0.0050   0.0050

x [m] z [m]

  0.0030   0.0030

 -0.0030  -0.0030

dx/ds dz/ds

Figure 9.11  Phase space plot of the beam at the centre of the chopper

9.3.5 Phase Shifter
As mentioned above and discussed in Section 9.3.3, the horizontal beam

envelope is not adequately described by the betatron amplitude function.  This implies
that the standard way of changing the beam size through focusing is not suitable in
this case.  Fixing the values of βx, αx, and εx fixes the unfilled ellipse in which the
‘bar’ of charge is contained, but the ‘bar’s’ orientation depends on the phase advance.
This situation can be used to provide an independent method for changing the beam
size at the patient by varying the phase advance while keeping the lattice functions βx

and αx constant in the line.  A dedicated insertion that changes the phase advance
without modifying the downstream lattice parameters has therefore been designed and
will be referred to as the ‘phase shifter’.  To fully exploit the variation in beam size, at
least 90 degrees of variation in the phase advance is needed (if the footprint of the
beam in the horizontal phase space is parallel to one of the axes at the minimum or

Beam dump
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maximum phase advance).  Since the ellipse in the vertical phase space is filled, the
vertical phase advance is unimportant.  In Figure 9.12, the optical functions inside the
phase shifter are shown for the phase advance ∆µx between 2.2 and 3.9 radians
(97.5°), which allows the choice of any orientation of the bar of charge at the end of
the line.  The beta functions outside the module do not change, whatever phase
advance is selected.  In order to obtain a smooth change in the lattice functions, the
vertical phase advance has been kept constant in Figure 9.12, but this parameter could
be varied to help the matching if needed.

Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 30.0000

Horizontal Vertical

Figure 9.12  Optical functions in the phase shifter
[∆µx = 3.9, 3.8 then in steps of 0.2 down to 2,2 radian,

∆µz = 2.9 radian, βx =βz = 3 and αx = αz = 0 at entry and exit]

9.3.6 ‘Stepper’
To change the beam size in the vertical plane, a dedicated module, called the

‘stepper’, has been designed to vary the vertical betatron amplitude function over a
wide range while keeping all the optical parameters in the horizontal plane, including
horizontal phase advance, constant.  Assuming that at the minimum extraction energy
the vertical, rms, geometrical emittance of the circulating beam is the same for protons
and ions and is equal to 1.65 π mm mrad, then the range needed at the patient for βz is
2-23 m.  Since the gantry and the deflection section out of the main extraction line
will be telescopes in the z-plane in order to contain the betatron amplitude functions in
the rotator, it is possible, to a certain extent, to choose the range of the stepper in βz.
The ratio βmax/βmin does not change, but the absolute value depends on the
magnification factor chosen.  In the gantry, a factor 3 will be applied, while in the
deflection section a factor 0.5 is used.  This implies that the stepper has to cover the
range 2/3 βmin to 2/3 βmax, that is 1.333-15.333 m.  In Figure 9.13, the βz covers the
range 1 to 17 and at the end of the module with an entry value of 3 m, βx = 3 m at
entry and exit, αx = αz = 0 at entry and exit and ∆µx = π.  During the matching, the
vertical phase advance was held constant at 2.9 radian for βz = 1-11 m, but then to
facilitate the minimisation the phase advance was allowed to vary, which interrupts
the continuity between the traces in Figure 9.13.
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Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 25.0000

Horizontal Vertical

βz [m]
17
15
13
11
9
7
5
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1

Figure 9.13  Optical functions in the ‘stepper’
[βz = 3 m at the entry and steps from 1 to 17 m in steps of 2 m at the exit.  ∆µx = π radian, ∆µz

varies from 2.9 to 3.23 radian, βx  = 3 and αx = αz = 0 at entry and exit]

9.3.7 Phase shifter - ‘Stepper’
The modules shown in Figures 9.12 and 9.13 are in fact identical and it is

possible to combine their functions into a single unit.  This is inconvenient inasmuch
as a single module has to span over a two dimensional parameter space, which makes
the operation more complicated and may reduce the global ranges, but it represents a
considerable saving in space.  Figure 9.14, shows the beta functions in the ‘phase
shifter-stepper’ for four extreme cases in the parameter range.

Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 25.0000

Horizontal Vertical

Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 35.0000

Horizontal Vertical

Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 30.0000

Horizontal Vertical

Betatron amplitude functions [m] versus distance [m]

 0.000 13.600

 35.0000

Horizontal Vertical

Figure 9.14  Extreme optical functions in the combined ‘phase shifter-stepper’
[(a), (b) βz = 1 m and ∆µx = 2.2 and 3.9 radian; (c), (d) βz = 17 m and ∆µx = 2.2 and

3.9 radian]

(a) (b)

(c) (d)
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9.3.8 Closed-dispersion bend

A one-to-one structure with a 2π phase advance is a very convenient structure
in which to embed a bend with a closed-dispersion bump.  Figure 9.15(a) shows the
lattice functions of such a lattice module and 9.15(b) shows the geometry.  The lattice
functions are shown with the range of 1 to 17 m in the vertical plane.  Since the bend
is designed as a one-to-one module the maximum values are over 35 m.  This module
would be used with a gantry that requires zero dispersion at its entry and has a
magnification of 1.35.  In the next section, an example has been chosen where the
bend is designed to de-magnify the vertical betatron amplitude function in order to
limit the large vertical beam sizes.

In Figure 9.15(b), the outline is shown of the extension module that would
continue to the next gantry.  The lattice functions in this module would be very similar
to the those in 9.15(a).

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
 0.000

 0.000

11.697

11.697

 40.0000

   0.4500

  -0.4500

Horizontal Vertical

Horizontal plan view [X-Y plane]

Drawn on a    1.5000m square grid

(a)                                                             (b)
Figure 9.15  Deflection section in the form of a one-to-one module

9.3.9 Open-dispersion bend
An open-dispersion bend has to be designed for a specific task, which in the

present example is the matching to a Riesenrad gantry.  As anticipated in the stepper
section, a magnification factor of 0.5 has been chosen for the deflection module in the
vertical plane.  In the horizontal plane, the lattice is one-to one for βx = 3 m αx = 0 to
βx = 3 m αx = 0.  The dispersion has to be matched such that the dispersion bump
closes in the gantry.  Figure 9.16(a) shows the lattice functions in the bend for the full
range of the vertical amplitude function and Figure 9.16(b) shows the geometry.

In Figure 9.16(b), the outline is shown of the extension module that would
continue to the next gantry.  The lattice functions in this module would be very similar
to those in 9.16(a) although an extra quadrupole has been added before the bend.
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Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
 0.000
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19.744

19.744

 30.0000

   7.5000

  -7.5000

Horizontal Vertical

Horizontal plan view [X-Y plane]

Drawn on a    2.0000m square grid

(a)                                                             (b)
Figure 9.16  Open-dispersion bend

[Initial optical functions, βz = 1.333, 4, 8, 12 and 16 m]

9.3.10 Riesenrad gantry
The Riesenrad gantry inverts the conventional iso-centric gantry geometry by

placing the heavy accelerator equipment on the axis and positioning the patient on the
outside as shown schematically in Figure 9.17.  This configuration is felt to be a
possible solution for an ion gantry and will be discussed in more detail in Part II.

Figure 9.17  Schematic view of a Riesenrad gantry

The optical structure is essentially a single bending magnet preceded by a
some quadrupoles to match the optical constraints.  The Riesenrad gantry cannot have
a closed-dispersion bump because there is only one dipole, but, thanks to the rotator,
the dispersion bump can be closed in the deflection section.  Thus, the remaining
constraints are to:

• Maintain reasonable values of βx and βz inside the structure.

• Obtain the desired values for βx and αx.

• Obtain an nπ phase advance in the vertical plane.

Patient

Rotation axis

Beam
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As anticipated, a magnification factor of 3 has been chosen and an example lattice is
shown in Figures 9.18(a) and (b).

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
 0.000

 0.000

16.611

16.611

 30.0000

  15.0000

 -15.0000

Horizontal Vertical

Horizontal plan view [X-Y plane]

Drawn on a    1.5000m square grid

(a)                                                             (b)
Figure 9.18  Plan view (a) and optical functions (b) in the Riesenrad gantry

9.3.11 Verification by tracking
Finally, the whole line has been tested by tracking the extracted particle

distribution with different settings for the phase shifter-stepper.  The phase-space
footprints at the patient are shown in Figures 9.19 and 9.20 for βz = 1.5 m and the two
extreme horizontal phase advances that corresponding to vertical and horizontal
positions of the ‘bar’ of charge.  These two figures demonstrate the efficiency of the
chosen system for varying the horizontal dimension of the beam.  The vertical beam
size is adjusted by varying βz in the stepper that is situated upstream near the
extraction from the synchrotron.  In this way, a single module can control the both
beam sizes for all the gantries in a complex.

Horizontal phase space Vertical phase space
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  0.0030   0.0030
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Figure 9.19  Phase space footprint for ∆µx = 2.39 rad in the phase shifter

Horizontal phase space Vertical phase space

 -0.0200   0.0200  -0.0200   0.0200

x [m] z [m]
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 -0.0030  -0.0030

dx/ds dz/ds

Figure 9.20  Phase space footprint for ∆µx = 3.96 rad in the phase shifter
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I-10 MULTIPLE  SCATTERING
Multiple coulomb scattering is important in medical machines in several

contexts.  First, it plays a role in the stripping foil before injection into light-ion
machines.  In general, the emittances coming from the linac are smaller than those
required to generate the spot sizes at the patient with reasonable values of the betatron
amplitude function and this opens the possibility of using the stripping foil to dilute the
emittance before injection.  In the main ring, scattering and electron capture are
concerns for the quality of the vacuum.  In the beam delivery system, scattering is used
to prepare the beam for the patient.  It is usual to use a ridge filter to increase the
momentum spread to widen the otherwise narrow Bragg peak and, in passive beam
delivery systems, the irradiation field is made uniform by a specially designed double
scatterer.  Finally, the scattering in the patient’s body adversely affects the spot size,
which is more noticeable for protons than light ions.

In this chapter, the basic theory for multiple scattering will be reviewed with
the emphasis on the practical aspects of applying the theory.  The aim is to incorporate
multiple scattering in the traditional Courant and Snyder theory for beam optics, as
well as the usual Monte Carlo single-particle tracking.

10.1 CHARACTERISTIC MULTIPLE SCATTERING ANGLE

10.1.1 Highland’s formula
Charged, high-energy particles traversing an absorber are liable to small

deflections due to attractive and repulsive electrical forces of the orbital electrons and
the nucleus of the absorber.  This single scattering may occur many times during the
traversal of the particle through the absorber and can add up to an appreciable net
deviation from its original path.  In order to calculate how much a particle may be
scattered, it is necessary to know a characteristic scattering angle and its distribution.

There is common agreement in the literature that multiple scattering is best
described by the theory of Molière [1] with the corrections made by Bethe [2], Fano
[3] and Scott [4].  For an extensive review of the different approaches to multiple
scattering see Ref. [5].  The distribution in Molière’s theory is approximately gaussian
for small angles, but for larger angles it behaves more like Rutherford scattering with
larger tails than those of a gaussian distribution.

Unfortunately, Molière’s theory is technically complicated and not easy to
apply, but it is often sufficient to make a gaussian approximation for cases where the
tails of the distribution are not of particular interest.  This is true for most accelerators
and medical applications where the effects of small scattering angles are dominant.  In
most cases, particles with large scattering angles will, in any case, be lost on the
vacuum chamber walls.

A good approximation for the characteristic scattering angle T0 in a gaussian
distribution is the approximation developed by Highland [6].  The Highland formula
gives the RMS value of the distribution of scattering angles when projected onto a
plane. The formula appears in the literature in a number of forms that fit different
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situations with varying degrees of precision, usually in the range of a few per cent.
Highland’s original formula appeared as,
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where L is the scatterer thickness and Lr is the radiation length.  The length units must
be consistent and are usually either [g/cm2] or [cm].  zinc is the charge number of the
incident particle, p is its momentum and  its relativistic beta value.  This formula is a
fit that is meant to take into account the full thickness of the scatterer and the energy
loss.

10.1.2 Improved Highland equation
Another popular description which can be found in [7] was given by Lynch and

Dahl [8], sometimes called the improved Highland equation.  The gain in improvement
is achieved by applying a gaussian fit to a central region of a Molière distribution.
They found that the best results can be obtained for the central 98% of such a
distribution.  This results in:
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According to [5], there is no real advantage in this approach and since the
results from equations (10.1) and (10.1a) only differ for large scatterers no use will be
made of (10.1a) here.  A drawback of using the Highland formula is that it was
obtained using data for 1 GeV protons, yet the literature claims that the accuracy is
better than 5% in the range 10/10 r

3
dd

� LL , except for very light elements and very
low velocities.  However, in the energy range of protons used for hadron therapy the
error is much larger even for relatively small absorbers (< 2Lr).  Figure (10.1) shows
experimental data taken from [5] for 160 MeV protons scattered in lead.  The dashed
line shows the prediction by the original Highland formula.

The situation can be vastly improved by modifying equation (10.1) by taking
into account the rapid change of energy of the incident proton, especially for thick
absorbers.  This yields in a generalised Highland equation [5],
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The integral under the square root in Equation (10.2) has to be evaluated
numerically, yet it is sufficient to perform the evaluation using Simpson’s rule,
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for a number of slices.  The number of slices depends on thickness of the scatterer.
Absorbers where the average energy loss is smaller than 50% of the original particle
energy can be calculated in a single slice.  For scatterers larger than this limit extra

slices should be introduced, but since � �21
cp  changes rapidly for a particle towards the

end of its path, the slices should not be of equal size, but should be chosen in such a
way that the integral steps are roughly equal.  A good choice seems to be to make the
following slice 1.6 times smaller than the previous slice.  In total, no more than 8 slices
are needed for any material for absorbers up to 97% of the path-length of an incident
particle.
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Figure 10.1  Comparison between measured data and the original Highland formula for
160 MeV protons

The term � �21
cp  is dependent on the energy of the particle, which is governed

by the Bethe-Bloch Equation (10.18), which will be discussed later.  Integrating
(10.18) is complicated, however, and it is a lot easier and more accurate to use range
tables to calculate the energy loss, which is also discussed later on.  This makes the
approach of using the Simpson rule for (10.3) for integrating (10.2) even simpler, since
only the initial, final and midpoint energies have to be known.

The improvement of the generalised Highland equation (10.2) can be seen in
Figure 10.2 which shows the same data as Figure 10.1, but with the prediction of
Equation (10.2).
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Figure 10.2  Comparison between measured data and the generalised Highland equation for
160 MeV protons

10.1.3 Sub-dividing scatterers
In general, it is a bad idea to subdivide a scatterer for numerical calculations.  It

neither improves the accuracy, nor does it save any time.

 Whenever possible, calculate the scattering angle in one go, possibly
subdividing the integration into several parts as described above (10.2 - 3).

 Adjust integration steps to be 1.6 times shorter than prior step.

 When dealing with different layers or composite materials, always calculate a
combined absorber using an average atomic number from the composites of the
absorber.

Nevertheless, there are situations where one cannot easily accommodate the
above rules.  One of these situations is when one wants to know the size of a beam
somewhere in the middle of a fairly large scatterer.  Here, the best procedure is to
calculate the positions and angles of the particles always starting from the entry of the
particle into the absorber.  Never use intermediate results to continue the results of the
scattering.  Always restart from the beginning in one go to calculate effects of
scattering at a later point.

10.2 SCATTERING SEEN THROUGH THE TWISS FUNCTIONS
The aim here is to incorporate multiple scattering in the standard Courant and

Snyder beam optics theory.  Once scattering can be parameterised and described by the
phase-space ellipses, it can be included in lattice optics programs and even made part
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of matching routines.  It is then possible, for example, to match to specified emittance
values (providing of course that they are bigger than the original values), or to adjust
the beam size as a function of the emittance and the betatron amplitude function
combined, which is the situation within the patient’s body for the spot size.

10.2.1 A thick scatterer with an uncoupled beam
The sigma matrix explained in Section 8.2 is a convenient way of describing the

beam before and after the scattering process.  Assuming that the beam is uncorrelated
at the entry to the scatterer, the correspondence between the sigma matrix formalism
and the Twiss formalism is given in Section 8.2.2 and is summarised by equation (8.13)
that is repeated below.
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Bearing in mind that for hadron therapy the specification for the dose
uniformity is typically 2%, the Highland formula [6,7] is sufficiently accurate to
describe the multiple Coulomb scattering in a thick scatterer for the energies and
materials normally used.

Although some aspects of scattering in an uncorrelated beam have been
described earlier, this will now be redone using the sigma matrix formalism with
Highland’s formula.  The analysis will start with an uncorrelated beam and will be
extended later to the correlated case.  The approach used here is more rigorous than
that commonly found in the literature, since the correlation between angle and
displacement, which occurs during scattering is taken into full account and thus
provides a more general result.  The earlier work made simplified assumptions which
were well suited to thin scattering foils.

Consider a particle with the co-ordinates (y1, yc1).  After passing through a
scatterer, the particle will suffer a scattering angle Ts and a displacement y and will
assume the new co-ordinates (y2, yc2),  The scattering is completely isotropic and
unrelated to either y1 or to yc1, but there is a correlation between Ts and y [9].  Three
relationships can be established.  Firstly, the change in divergence,

s12 Tyy . (10.4)

By squaring (10.4) and then averaging over the whole beam, the increase in divergence
can be related to the characteristic scattering angle of (10.1).

2
1

2
1

2
2 2 ssyyy TT
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where 2
0

2
TTs  and 02 1Tsy  because yc1 and Ts are uncorrelated.  Thus, the new

divergence is given by,
2
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2
2 Tyy (10.5)

Similarly,
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where Ty
L2
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2

3
 from [9].  Finally, the change in the cross-term yyc is given

by,
� �� �syyyyy T1122

� � yyyyyyyy ss TT 111122 . (10.7)

As mentioned earlier, the scattering is isotropic and has no correlation with y1 or y1c, so
the last two terms in (10.7) average to zero.  The second term, however, makes a finite
contribution, since large scattering angles tend to be associated with large
displacements.  This is intuitively obvious, since to have received a large displacement
the trajectory angle must have been large on average while crossing the scatterer.  If
the angle is large on average while crossing the scatterer, it will on average be large at
the exit of the scatterer.  Reference 4 gives the correlation as 3/2.  Using the
definition of the correlation coefficient,

22
00 yy TT (10.8)

it follows that

T Ts y
L

2 0
2 . (10.9)

Thus (10.7) becomes,

y y y y
L

2 2 1 1 0
2

2
T. (10.10)

The changes due to scattering are described statistically by Equations (10.5),
(10.6) and (10.10) and provide the three relationships needed to solve for the Twiss
functions after scattering.  Thus, using the correspondences in the matrix equation of
(8.13),
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Scattered ellipse for a
thick scatterer;
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The right-hand sides of each equation in (10.11) are fully evaluated by the conditions
at the entry to the scatterer and by the characteristics of the scatterer.  Re-writing
(10.11) with three constants E2 2 = A; E2 2 = B and E2 2 = C and substituting into the
Twiss relation leads to the solution of the three equations by
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Consequently E2 can be evaluated as

Scattered emittance:
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10.2.2 A thick scatterer with a coupled beam

This approach can now be generalised to coupled beams. The sigma matrix for
a coupled beam has additional matrix elements:
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zxzxxxx
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(10.14)

By adding the scattering in each term, squaring and then averaging over the
beam, the overall effect of the scattering can be evaluated as before.  The calculations
for the elements not describing the coupling remain the same, since scattering is
isotropic.  The only additional work to be done is to deal with the three coupled terms
in the matrix.

� �� �zzxxzx 1122

which can be transformed to

zxxzzxzxzx 111122 .

Since scattering does not couple between the x and z planes all correlation
products containing elements from two different planes equal to zero. Therefore,

1122 zxzx .

Similarly all other coupled terms stay unchanged after scattering and only the
uncoupled matrix elements change.
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Thus, it is possible to treat the effect of a scatter on a coupled beam with the
same methods as for an uncoupled beam, which is a welcome simplification although,
at first, a little surprising.

10.2.3 Approximation for a thin scatterer
The above formulation often appears in an approximate form for thin

scatterers.  In a thin scatterer, it is assumed that the position of the particle is
unchanged by its passage through the scatterer so that only the change in divergence
needs to be taken into account.  Neglecting the terms depending on L in (10.11) gives,

Scattered ellipse for a 2
01122 TEE

thin scatterer; 1122 EE (10.15)

1122 EE

Equation (10.12) is still valid and yields,
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The thin scatterer approximation is useful for such applications as stripping
foils and vacuum windows.

10.2.4 Comparison with a simulation
A simple comparison with tracking shows the validity of Equation (10.11).  An

uncorrelated gaussian beam of 100’000 protons at 180 MeV with a momentum spread
of 0.1% and a spatial cut-off at 2  was generated and tracked through a copper foil
3.67 mm thick.  The absorber adds an average RMS angle of T0 = 20.4 mrad (using
Highland’s formula (10.1)).  The beam scatter plot in real space changes considerably
as can be seen from Figures 10.3 and 10.4 that show one phase plane and the real
plane before and after the scatterer.  The uncorrelated beam is rectangular in real
space, but elliptical in phase space, which can be seen from a careful study of Figure
10.3.
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Figure 10.3 Phase and real space of the initial simulated beam

Figure 10.4 Phase and real space plots of the scattered beam
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The numerical data corresponding to Figures 10.3 and 10.4 is collected in
Table 10.1.  The estimated Twiss parameters of the scattered beam obtained by
statistical analysis of the distribution calculated by tracking agree extremely well with
those calculated using the ‘ellipse’ equation (10.11).

Comparison of calculated beam parameters and those obtained by tracking

Input beam Beam after scattering

Parameters for
generated

distribution

Statistical
estimation from

generated
distribution

Calculated by
modified optics

theory

Estimated
statistically from
tracking results

ERMS,x [  mm mrad] 2.30 2.30 77.3 76.5
ERMS,z [  mm mrad] 2.30 2.30 77.3 76.6

x [m] 6.25 6.27 0.19 0.19

z [m] 6.25 6.25 0.19 0.19

x 0.00 0.00 0 0.00

z 0.00 0.00 0 0.00

Table 10.1  Comparison of calculated beam parameters and those obtained by tracking

10.3 MULTIPLE SCATTERING AND TRACKING
This topic will be discussed with reference to passive beam spreading systems

that are based on specially designed scatterers that create a large (typically
20  20 cm2) uniform (ideally < 2%) irradiation field.  The design of such scatterers
can be achieved using Monte Carlo tracking techniques, whereby a few 105 particles
are tracked repeatedly through the scatterer optimisation loop that modifies the shape
of the scatterer according to the particle density field that is created.  Final runs with
the order of 106 particles are needed to assure the specified accuracy to a high
confidence level.  An added complication in the design of such a system is the need to
equalise the energy loss for all particles, which necessitates an additional scattering
layer of adjustable thickness of lucite.

10.3.1 Energy loss from particles passing through matter
The energy loss for low energy particles passing through an absorber is

dominated by ionisation.  For heavy particles, i.e. particles heavier than a muon, this is
well described by the Bethe-Bloch equation [7,12]

2
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Tcm
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ZKz

x
E , (10.17)

where K equals to 2
e

2
eA4 cmrN , Z is the atomic number, A the atomic mass of the

medium, zinc the number of elementary charges of the incident particle,  is the velocity
of the particle in units of the speed of light, I is the mean excitation energy in eV, me is
the mass of the electron and re is the classical electron radius and finally, Tmax is the
maximum transferable kinetic energy that can be imparted to a free electron in a single
collision.
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The equation (10.17) is remarkable in two ways: firstly, it is strongly dependent
on the velocity  and, secondly, it is only very weakly dependent on the mass (via the
maximum transferable kinetic energy Tmax) of the incident particle.  Since the ratio of
A/Z is relatively constant over a large range of elements, it is possible to generate
universal energy-loss curves by plotting the equation (10.17) versus the area density in
g/cm2.  For ultra relativistic particles equation (10.17) can be extended to take into
account shell effects and density corrections.  For low-energy particles these correction
factors can be neglected.

Fig 10.5  Bethe Bloch energy-loss curve

Figure 10.5 shows the dE/dx curve for charged pions in copper.  Note that the
energy loss per path-length is plotted versus momentum and not absorber thickness.  In
this way (10.17) is used for particle identification.  The plot shows that the Bethe-
Bloch equation can be cut conveniently into three regions.  For low energies, which is
the region of interest for medical purposes, the energy-loss is roughly proportional to

�

5
3 .  The curve reaches a minimum at about 1 GeV/c, where a particle is called a

minimum ionising particle (MIP). Finally, the energy loss rises again for ultra
relativistic particles (relativistic rise).

The energy loss of a particle can be calculated by integrating (10.17):
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d
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d0

0
³ (10.18a)

For particles with a kinetic energy larger than that of a MIP, it is usually sufficient to
calculate the energy loss by evaluating:

x
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E
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d
, (10.18b)
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where x is the absorber thickness.  Unfortunately, particles for medical synchrotrons
are well below the level of a MIP and therefore equation (10.18b) cannot be used.
Instead the calculation of the energy loss, E, has to be done using numerical methods.
One of these methods is the use of range tables, discussed below.

10.3.2 The range
Once the energy loss in an absorber can be calculated, it is natural to ask at

what distance 50% of the particles will have lost all their kinetic energy T.  This is
known as the range R of a particle and can be found by integrating the inverse of
(10.17), that is

E
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0

0

³ (10.19)

The particle ranges are often plotted in tables and can be used to efficiently calculate
the energy loss of particles passing through an absorber.  For examples of such tables
see reference [10, 11].

10.3.3 Energy straggling
The energy loss of a particle in matter is a statistical process.  Equation (10.17)

only describes the average energy loss of a particle, but does not describe the energy
loss distribution.  Calculating this distribution is mathematically complicated and is
generally divided into two distinctive cases: thin absorbers and thick absorbers.

The case of thin absorbers it extremely difficult to calculate.  The distribution,
is asymmetric with long tails (see Figure 10.6).  It was first described by Landau[12].
Part of the asymmetry is due to fact that a small energy loss is much more probable
than a large one and that there is a cut-off for large energy losses given by the largest
transferable kinetic energy Tmax.  The Landau theory has to be applied where the
thickness of the absorber is only of a few hundred micrometers, e.g. for stripping foils.

Scatterers used for passive beam spreading on the other hand, can be treated as
thick absorbers.  For thick absorbers, where the number of collisions is large, the
energy loss distribution can be shown to be gaussian.  This follows directly from the
Central Limit theorem in statistics.  This very general theorem states that the sum of N
random variables, all with the same distribution, approach a gaussian-distributed
variable in the limit of N .  The Central Limit Theorem therefore allows the
calculation of the energy loss distribution without any subsequent knowledge of the
distribution for a few-, or for single-scattering collisions.  The width of this distribution
was first calculated by Bohr (for non-relativistic particles)[12] for an absorber of
thickness L:
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cmrN , (10.20)

which can easily be extended to relativistic particles via
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Figure 10.6  Landau plot for the energy straggling in a 300 Pm thick silicon detector using a
RU106 source

10.3.4 Energy loss calculations using range tables
When calculating the energy loss of a particle traversing an absorber, equation

(10.17) is found to be numerically demanding and evaluating the integral (10.18a) may
be prohibitive in the case of many simulated particles.  It may therefore be more
efficient to apply the following method.

A range table with a sufficient number of entries is used to calculate the range
of a given particle with an initial energy E0.  Values of E0 that are not included in the
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table have to be interpolated linearly.  Knowing the value of R0 at E0 makes it possible
to determine the average energy loss by subtracting the absorber thickness L from R0,
resulting in the ‘leftover’ range R1.

LRR 01

Now the range table is inversely searched to find the energy E1 that
corresponds to a range of R1.  Subtracting E1 from E0 results in the average energy loss

E ( E E0 E1).  Again, values not found in the table have to be interpolated
linearly.  If the range table is populated densely enough, an accuracy of 0.13% can be
achieved [10], well within experimental limits.

The computational cost of a ‘look-up’ table is small when using appropriate
algorithms, such as a bisection search on an ordered table.  Despite modern algorithms
for numerical integration, such as Romberg’s method[13], the use of range tables is far
more efficient than the direct approach of evaluation of the integral in (10.18a).

10.3.5 Monte-Carlo recipe for calculating scattering in matter
Equation (10.1) gives the RMS value of the scattering angle when the three-

dimensional scattered distribution is projected onto a plane.  This can now be used to
track a number of individual particles.

Consider a particle traversing an absorber of thickness x and being scattered
along its path (see Figure 10.7). The projection of this path is y x plane, where

planplane
3

1
T . (10.22)

A particle that has received a kick and exits with a non-zero value of Tplane also
has a greater chance of having a non-zero displacement yplane.  There is a correlation
between Tplane and y which is statistically expressed via a correlation coefficient yT. It
has a value [9] of

87.0
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3
y (10.23)

For a Monte-Carlo simulation it is probably most convenient to use two
independent gaussian random numbers (z1, z2) with zero mean and variance one and
then to set
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This ensures that the correlation is properly taken into account.  After the calculation
of the scattering, one has to correct the energy absorbed by the scatterer.  This can be
done using the method described in Section 10.3.4.  Of course the average energy loss
should be randomised as well, using yet a third gaussian number z3 and computing:

30
scattered zEE (10.21)

using the initial beam energy E0 and the width of the energy straggling calculated
according to (10.21).

x/2

planeS Ψplane Yplane
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x

Figure 10.7  Schematic view of a particle traversing an absorber
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I-11 ACTIVE  SCANNING
So far this report has been concerned with the production of a smooth spill

from the third-integer resonance, since this is a fundamental requirement for an
efficient scanning system.  The better the spill quality, the faster and more accurate the
scan becomes.  Fortunately, the scanning system itself is tolerant to high-frequency
fluctuations and can be made to correct on-line for low-frequency fluctuations.  The
system’s ability to compensate for a poor spill quality is the main subject of this
section and is evaluated with reference to a target error of ± 2% in the dose
distribution.  The performance depends on the scanning technique applied and the
technological limitations of the equipment.  Should the spill irregularities overwhelm
the capabilities of the system for compensation, then an alarm message must be issued
and the beam be switch off.

There are three techniques for active scanning:

• Voxel (volume pixel),

• Mini-voxel

• Raster scanning.

Voxel scanning [1] was already discussed in Chapter 5 and will be briefly reviewed
below.  Mini-voxel scanning [2] resembles voxel scanning, except that the voxels
overlap.  Finally, true raster scanning uses a continuous motion of the beam spot that
is modulated in velocity according to the spill intensity.  Thus, mini-voxel scanning is
an intermediate stage between the static voxel scanning and the dynamic raster
scanning.  In this chapter, the three techniques will be discussed and the practical
limitations due to the discrete measurement intervals, the delays in the electronics and
the response time of the power converters will be analysed.

11.1 MINI-VOXEL SCANNING

11.1.1 Comparison of voxel and mini-voxel scanning
It is useful at this stage to recall the main principles of voxel scanning.  Let

each voxel have a physical size W corresponding to the FWHM of the beam spot (see
Figure 11.1(a)).  The full cross-section of the tumour is covered by a mesh of distinct
voxels, which are all irradiated separately.  For each voxel, the scanning magnets are
adjusted while the beam is turned off.  The beam is then turned on until the desired
dose for that voxel is delivered.  After the beam is turned off, the magnets are
readjusted for the next voxel.  This technique is simple and the on-line dosimetry is
relatively straightforward.  However, it is sensitive to the alignment of the voxels with
slow extracted beams.  This is due to the near-rectangular distribution of the beam
spot in one direction which will produce ‘hot’ and ‘cold’ spots with small
misalignments.  The treatments times are also increased by the regular switching off
of the beam.

In mini-voxel scanning, the beam spot crosses from one ‘main’ voxel position
to the next in n discrete steps of size W/n (see Figure 11.1(b)).  The operational
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principle is to dwell at each intermediate position until the required fraction (1/n) of
the full dose for a normal voxel is delivered and then to move on at the maximum
scanning velocity to next intermediate position without switching off the beam.  The
particles that arrive after the decision to move are all attributed to the next mini-voxel
position by the control system.  This may appear strange, since an arbitrary sharing of
say 50% in the last position and 50% in the next position would be closer to reality.
However, the overall dose distribution is better managed, if this flux is attributed to
the next position where there is still a dose deficit.  In principle, a perfect correction
can then be made at this position, except that it is misplaced by the mini-voxel step
size.  This procedure is repeated for the next move and so on.  Intuitively, it appears
that the smaller the mini-voxel step the better the smoothing, which suggests that true
raster scanning could be the ideal technique.  Mini-voxel scanning is quicker than
voxel scanning and more efficient in its use of the beam.

Figure 11.1  Schematic view of voxel and mini-voxel scanning

11.1.2 Influence of the beam distribution
In slow-extracted beams, the particle distribution is practically rectangular in

one transverse direction and gaussian in the other.  The rectangular distribution must
be aligned with the principal direction of scanning.  In this way, the tails of the
gaussians overlap between adjacent scan lines and render the alignment of adjacent
rows insensitive to small positional errors.  In the scanning direction, the multiple
overlap of the rectangular shape smoothes the effect of alignment errors mentioned
earlier with reference to voxel scanning and prevents the formation of ‘hot’ and ‘cold’
spots.

11.1.3 Theory of mini-voxel scanning
With the rectangular beam distribution, it is easy to sum the dose at a given

position as the beam spot steps past.  In this case, the dwell time tD at each mini-voxel
will be proportional to required number of particles Ni and will be related to the full
dose by,

n

N
Nt iD

Desired≈∝ (11.1)
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Scanning
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(n-1) intermediate
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where NDesired is the number of particles that would correspond to the full dose desired
at that position.  The control system must keep a running total of the doses received at
all mini-voxel positions with the goal of reaching the value of NDesired specified by the
treatment planner for each position.  At any given position, the critical step is the last
step the beam makes while covering that position.  The decision to move will be based
on the measured dose at that position reaching a specified threshold.  This is
illustrated in Figure 11.2.

Figure 11.2  Working principle of the mini-voxel scanning

Figure 11.2 shows the expected situation.  The last mini-voxel position at the
trailing edge of the spot has approximately NDesired/n deficit in its accumulated dose.
Once it is full, the beam will step forward.  The discrete measurement intervals of the
on-line dosimetry system will cause small irregularities in the doses of the completed
mini-voxels.  In principle, the mini-voxel positions further downstream, that have yet
to be completely irradiated, have larger deficits in their accumulated doses and it is
not critical for them when the beam moves.  Problems can arise in two situations:

• Firstly, if the dose delivered while the spot is moving exceeds the deficit at the next mini-
voxel position (perhaps due to a beam spike), then there is no way to compensate and the
scan stops with an out-of-tolerance point.

• Secondly, if the treatment planner asks for a dose reduction between adjacent mini-voxels
that is greater than the dose deficit at the next position, then the dose is already exceeded
before the beam has completely stepped past that position.

Thus, there is a limit on the rate at which the dose level can be changed that is further
reduced by the quality of the beam spill.  In theory, it is possible to make quicker
changes and, for example, to create a sharp edge to the scan by shrinking the spot size,
but this is a considerable operational difficulty.  In the following, the analysis will be
based on the case of constant spot size during a scan.

In order to evaluate the performance of a mini-voxel scanning system as
described above, it is necessary to build a mathematical model that represents the
distribution of the beam as closely as possible.  The scan can be adequately
represented in one dimension (see Figure 11.3).  The number of particles delivered to
the line element of length W/n is given by integration of the particle flux divided by

Beam

Desired number of particles

Motion

Step W/n

Tolerable
error

Next beam
position

Completing the dose at
this position

determines when the
beam moves on to the

next position
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number of steps during the crossing time.  Let t0 be the time at which the decision is
taken to move from the position in which the beam does not touch chosen line
element to the first position in which it covers the line element.  Let this be the first
step.  Several steps later at time tn, the decision will be taken to move from the last
position in which the beam covers the line element to the position that is just beyond.
Let this be the (n+1)th step.  Let the power supply delay τ, be the time that the power
converters need to start moving the beam. This delay is given by the internal switching
frequency of the power supply.  The delay of the electronics is small in comparison
with the switching time of the power converter and can be considered as included.
Finally, assume that the velocity of the movement is constant and it is equal to the
maximum scanning velocity vmax.

Figure 11.3  Model of mini-voxel scanning (crossing one spot width)

In this scenario, the number of particles, NL, on the line element of length W/n
will depend on the starting time t0 and contributions from five integrals:

• ),( 001 τ+τ ttN  is the particle flux during the power converter delay in the first step.

• )/,( max001M nvWttN +τ+τ+  is the particle flux during the movement time to the next

position.
• ),( 0 nC ttN  is the main integral that quantifies the total particle flux during the time

t0 of the decision to move onto the line element up to the time tn when the decision
is made to finally leave the line element.

• ),( nnn τ+τ ttN  is the particle flux during the power supply delay for the (n+1)th

step.
• )/,( maxnnnM nvWttN +τ+τ+  is the particle flux during the movement time for the

(n+1)th step.

These integrals are combined to give the best approximation to the particle flux
deposited on the line element,
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Note that during the two movements, half of the integrated flux is attributed to the
previous position and half to the next position, which is exact in the case of a uniform
spill.  Note also that both Nt1 and NM1 are subtracted, since the spot movement has not
yet moved and hence these particles enter the previous line element.  Similarly, the
last two integrals are added, although they occur after the decision to move.

In (11.2), two types of error are shown explicitly.  The first is a ‘delay’ due to
the electronics and power supply, εDelay(t) and the second is the ‘movement’ error that
will be called εMove(t).  The definitions of these errors are,
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where λDesired is the desired line density [particle/m].  These errors appear with
negative signs at the beginning (step 1) and with positive signs at the end (step n+1).
In the ideal case of a uniform spill and a uniform scanning speed, these errors would
cancel.

In a practical system, there will be an additional error that is caused by the
‘quantisation’ of the times t0 and tn.  These times must be ‘locked’ to a clock that
defines the measurement time interval, Tbin and the limits of the main integral will
have to occur at integral numbers of Tbin at T0 and Tn.  There is no problem with t0 and
T0 since this is a choice of origin, but in general tn will be less than Tn, because the
system will only learn that the desired dose has been achieved on the next clock cycle.
An error for this ‘clock’ effect, similar to (11.3), can be defined as,
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A first indication of how a practical a scanning system would perform can be
obtained by evaluating the influence of sinusoidal fluctuations in the spill.  The
fractional errors arising from the ‘delay’ and the ‘movement’ and the ‘clock’ for a
given element of line of length W/n can be expressed as,
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Note that the ‘delay’ and ‘movement’ errors at the end of the irradiation have
been modified to take account of the ‘clock’ time.  If the particle flux is of the form
φ(t) = φ0(1+Ar cos(ωt)), where Ar is the ripple amplitude, φ0 is the nominal flux of
particles and ω  is ripple angular frequency, then
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The error can vary widely according to whether the delay is equal to the ripple
period and so on, but for a given system, the variation depends only on the starting
time.  Figures 11.4, 11.5 and 11.6 show the general forms of these errors and their
relative importance.  The first graph shows the ‘clock’ error, the second shows the
‘delay’ and ‘movement’ errors combined, since these are identical in their effect and
finally the third graph shows the behaviour of the total error.  All graphs have been
plotted against the starting time for the following conditions:

• Sinusoidal fluctuation in the spill of the form φ(t) = φ0(1+Ar cos (ωt)),

• Amplitude ripple modulation, Ar = 0.1,

• Nominal particle flux, φ0 = 2 × 108 particle/s,

• Ripple frequency f = 100 Hz,

• Sampling time bin, Tbin =  100 µs,

• Delay time in electronics and power converters, τ =  100 µs,

• Maximum scanning velocity, vmax = 10 m/s,

• Beam spot size, W = 10 mm

• Number of steps to cross beam spot, n = 10.
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Figure 11.4  Dependence of the ‘clock’ error on the starting time

In Figure 11.4, only the ‘clock’ measurement error is shown.  This is the
principal error in voxel scanning, since the beam is switched off during the movement
between voxels.  For Figure 11.4, the discrimination level for the decision to move (or
to switch off the beam in voxel scanning) was set to 100%.  Thus the minimum
measurement error is equal to 0%.  The plot shows that the error just exceeds the
specified limit of +2% for certain values of the starting time.  This can be solved by
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including an off-set and setting the discrimination level for switching to somewhere
between 98 and 99.5% of the desired dose.
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Figure 11.5  Dependence of the combined delay and movement errors on the starting time for
5, 10, 15 mini-voxels
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Figure 11.6  Dependence of the total error on the starting time

The total error shown in Figure 11.6 exhibits a total excursion of just over 3%.
As with the ‘clock’ error in Figure 11.4, this can be brought within the tolerances by
biasing the discrimination level down to say 98%.

11.1.4 Ripple specification for mini-voxel scanning
It is important to be able to use the analysis of the mini-voxel scanning to

derive a specification for the maximum permissible ripple that the system can accept
in the beam spill.  This specification can then be used to determine the corresponding
specifications for the power converters in the main ring.  One possible approach is to
form an inequality based on the expression (11.6) and to solve

( ) 04.0| 0n ≤TTE (11.7)

where 0.04 is the maximum error ±2 %.  The main inconvenience is that before the
equation can be solved, the time t0 for which the error is maximum has to be found for
each frequency, or an approximated maximum error has to be derived.

For a particle flux of the form φ(t) = φ0(1 + Ar cos(ωt)) the maximum ‘clock’
error can be found analytically.  The maximum number of particles in one time bin
will be obtained at the peak of the particle flux i.e. for time t = 0 in the case of the
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cosine function.  Integration of the particle flux over interval -Tbin/2 to Tbin/2 gives the
maximum ‘clock’ error.
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An example of the variation of the maximum ‘clock’ error with ripple
frequency is shown in Figure 11.7.  The spill ripple is assumed to be a sinusoidal
fluctuation of the form φ(t) = φ0(1 + Ar cos(ωt)) with the amplitude modulation Ar = 1,
the nominal particle flux φ0 = 2 × 108 particle/s, the sampling time Tbin =  100 µs, the
electronic and power supply delay τ =  100 µs, the maximum scanning velocity
vmax = 10 m/s and the number of steps n =  10.
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Figure 11.7  Variation of the maximum ‘clock’ error with the ripple frequency

The maximum ‘clock’ error is bigger for the smaller spot size because the
same particle flux was assumed in both cases.  The dwell time on each mini step is
then shorter and this causes a bigger error when the sampling time, Tbin, is kept
constant.  Thus, the ‘clock’ error is proportional to the spot size and decreases with
frequency in the region 1 to 10 kHz.  For higher frequencies, it oscillates around a
non-zero value that depends on the spot size.

The movement error is maximum and positive when the ripple is at its
minimum value during the initial movement at T0 and at its maximum during the final
movement at Tn, see Figure 11.8.  The maximum error is then given by the shaded
area as,
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Spot size W = 4 mm

Spot size W = 10 mm
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where ω =  2πf.  The delay error has a similar form to the movement error and can be
included in the same expression.
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Figure 11.8  Schematic view of the maximum movement error

The variation with ripple frequency of the combined maximum delay and
movement error is shown in Figure 11.9 for an amplitude modulation Ar = 1, the
nominal particle flux φ0 = 2 × 108 particle/s, the sampling time Tbin =  100 µs, the
electronic and power supply delay τ =  100 µs, the maximum scanning velocity
vmax = 10 m/s and the number of steps n =  10.
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Figure 11.9  Variation of the combined maximum delay and movement error with the ripple
frequency

The combined maximum delay and movement error is largest at low frequency
and tends to zero at high frequencies.  This behaviour does not correspond exactly to
the original model.  The expression (11.9) is fully valid for high frequencies or low
flux intensities where the time of integration tn is longer than the half period of the
ripple.  Under the conditions mentioned above (φ0 = 2 × 108 particle/s), the average
value for tn is 5 ms, which corresponds to a frequency of 200 Hz i.e. that for
frequencies lower than 100 Hz the expression (11.9) is not valid because the time tn is
shorter than time between minimum and maximum of the ripple oscillation and the
maximum error can not be reached.  The correct ‘low-frequency’ formula has the
form,
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The low-frequency dependence of the combined maximum delay and
movement error under the chosen conditions (i.e. Tn ≈ 50 Tbin = 5 ms) is shown in
Figure 11.10.
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Figure 11.10  Variation of the combined maximum delay and movement error with
ripple frequency computed according to the ‘low-frequency’ formula (11.10)

Combining the ‘high’ and ‘low’ frequency formulæ (11.9) and (11.10) gives
an accurate picture of the variation of the combined maximum delay and movement
error with the ripple frequency.  This is shown on a log scale in the Figure 11.11.
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Figure 11.11  The combined maximum delay and movement errors versus ripple frequency

Now that the maximum error functions have been established for the ‘clock’
and the combined delay and movement errors, tolerances can be determined for the
permissible ripple over the full frequency range by solving (11.8), (11.9) and (11.10),
taking care to apply the low-frequency and high-frequency formulæ.  This result is
shown in Figure 11.12.

The maximum permissible ripple modulation depends strongly on the spot
size.  The requirements on the medical machine are to change spot size continuously
between 4 and 10 mm (FWHH).  Figure 11.12 shows that the maximum permissible
modulation in the spill diminishes as the spot size is reduced.  For the minimum spot
size of 4 mm the equations do not have reasonable solutions, which means that for the
conditions chosen the dose precision of ± 2% cannot be reached for the 4 mm spot.
This is caused in particular by the measurement error that is greater than 4% at all
frequencies.  In other words, the dwell time at one mini-step position is too short in
comparison with sampling time.  The possible solutions are to:

Expression
(11 10)

Expression (11.9)
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• Decrease particle flux (to increase the irradiation time)

• Shorten the sampling time (to reduce the ‘clock’ error)

• Reduce the number of mini-steps (to increase the dwell time).
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Figure 11.12  Maximum permissible ripple amplitude with ripple frequency to obtain ±2%
dose uniformity

[Conditions: Sinusoidal fluctuation in the spill of the form φ(t) = φ0(1+Arcos(ωt)), nominal
particle flux φ0 = 2 × 108 particle/s, sampling time Tbin =  100 µs, electronic and power supply

delay τ =  100 µs, maximum scanning velocity vmax = 10 m/s and number of steps n =  10]

In all cases, the aim is to increase the ratio of the dwell time to the sampling time to
reach a total measurement error of less than 4%.

The plot in Figure 11.12 can be conveniently divided into three regions in the
frequency domain:

• 1 to 10 Hz where the maximum permissible ripple amplitude depends mainly on the
‘clock’ error and is relatively high.

• 10 to 1000 Hz where the maximum permissible ripple amplitude declines to a minimum
because of the growing importance of the delay and movement errors.

• 1 to 10 KHz where the maximum permissible amplitude tends to 100% as all errors,
except the ‘clock’ error, tend to zero.

11.2 RASTER SCANNING
In true raster scanning, the beam is moved continuously with a scanning

velocity that is controlled by a feed-forward loop using the measured intensity of the
incoming particle beam.  For higher intensities than nominal, the scanning velocity is
increased and, for lower intensities, it is decreased to obtain the desired dose.  Three
levels of approximation will be considered in the theory present in this section.

Acceptable ripple

Unacceptable ripple
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11.2.1 Instantaneous measurement and velocity changes (1st approximation)
If a ‘point’ beam is moving continuously along a line, then the line density of

the particles, λ(s), deposited by the beam will be,
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where N is the number of particles, δt and δs correspond to small steps in time and
distance, φ(t) is the particle flux and vscan(t) is the speed of the moving beam spot.
This is illustrated in Figure 11.13.

Figure 11.13  Particle distribution by a ‘point’ source

Under ideal conditions these parameters would have exactly their nominal time
independent values and the desired dose would be achieved by adjusting only the
scanning velocity by a dose factor ℜ,
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Under practical conditions, the particle flux φ varies with the time, but for sufficiently
slow variations, a reasonable result should be obtained by adjusting the scan speed
according to the particle flux at some slightly earlier time (t-τ),
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where τ is the lag before the velocity correction (assumed in this model as being
instantaneous) is made and includes the delays needed for the electronics, the
computation and the power supplies.  Thus each measurement bin is compared to the
reference flux level φ0.  This is the simplest way of correcting the spill fluctuations.
The substitution of (11.13) into (11.11) gives the actual line density deposited and if
this is divided by (11.12), the relative error is obtained,
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vscan  = ds/dt

Particle flux,
dN/dt

Line density, λ(s)
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In principle, the shorter the delay between measurement and correction and the more
frequently the measurements are made, the better the compensation of irregularities in
the spill intensity φ(t) becomes.  This type of correction is known as a simple
compensation and is limited to frequencies much lower than 1/τ.

11.2.2 Instantaneous response but finite measuring times (2nd approximation)
In this model, the quantisation and finite length of the measurement time is

taken into account.  This filters out the frequencies above the sampling frequency.  
The flux will be measured in bins Tbin, so equations (11.13) and (11.14) should

be more accurately written as,
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This situation is illustrated in Figure 11.14, where at time t the velocity is set
according to the flux measured at a time τ earlier using (11.15) and at time t+Tbin the
velocity is set according to flux at a time τ-Tbin earlier.  The error at the time t can be
calculated from (11.16).  The time lag includes the time to measure one bin, to read
and treat the data and to change the power converters.
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Figure 11.14  Measurement of particle flux

According to equation (11.15), the velocity follows the particle flux with time
lag τ and then the error oscillates according to (11.16).  This is illustrated in the Figure
11.15.

Fractional error
with zero spot

Time
Time lag, τ

Measurement bin, Tbin

Continuous movement

Time, t
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Figure 11.15  (a) Dependence of the normalised particle flux and normalised scanning

velocity on the time,  (b) Dependence of the relative error of the dose on the time

Equations (11.12) to (11.16) all describe a scanning system that has zero spot
size.  The inclusion of a finite spot size helps to smooth the fluctuations, providing
that the time needed to traverse one spot width is larger than the delay, τ, and larger
than the ripple period.  The scanning velocity remains unchanged, but the error
equation is modified slightly.  Consider a point on the track of the spot.  This point
will ‘see’ the beam for the time that the spot takes to traverse its own width, see
Figure 11.16.

Figure 11.16  Schematic view of the spot smoothing

If the spot width is W, then,
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In order to simplify (11.17), the lower limit of the time span for the integration
has been set to W/v0.  Providing vscan does not vary widely this should be a reasonable
approximation.  Consider a sinusoidal ripple fluctuation in the spill of the form
φ(t) = φ0(1+Ar cos (ωt)), then the expression for the scan velocity according to (11.15)
is
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Particle flux
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and the fractional error with zero spot size according (11.16)
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and fractional error with a finite spot size W according to (11.17) is written below
with the use of (11.19).
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An analytic solution to (11.20) can be obtained with a symbolic algebra program, but
the result is too complicated to be useful.  The analytic solution depends on the
parameters of the system (sampling time Tbin, delay τ and nominal velocity v0), chosen
parameters (time t0 and spot size W) and ripple parameters (modulation Ar, frequency f
and ω = 2πf) as expected.

As for the mini-voxel scanning system, the ripple frequency and the chosen
spot size determine the error of the dose.  The dependence of this error on the
frequency and spot size for modulation Ar = 0.2, sampling time Tbin = 100 µs, delay
τ = 100 µs, nominal velocity v0 = 2 m/s and starting time t0 = 0 is shown in the Figure
11.17.

The error is maximum for the smallest spot size and for the frequency between
1 and 3 kHz.  The exact value of the frequency for which the error is maximum varies
with the starting time t0 and level of ripple modulation.  For the low frequencies up to
100 Hz the compensation by controlling the velocity is effective.  At frequencies
above 100 Hz, the system becomes too slow to follow fast changes in the spill.  For
frequencies above 1 kHz, the spot size starts to smooth ripple and this becomes
effective above 4 kHz ripple.  The spot size smoothing plays a significant role in the
raster scanning process.  The critical frequencies are between 1 and 3 kHz, where the
compensation is too slow and the number of oscillations in the spot is too small to
compensate fluctuations by the spot-size smoothing.
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Figure 11.17  Dependence of the fractional error on the spot size and frequency

The errors in Figure 11.18 for a given t0, but different spot sizes, have similar
variations with frequency.  The system over-doses in the low to medium frequency
range up to 5.8 kHz, under-doses for higher frequencies up to 8 kHz and finally for
still higher frequencies the error tends to zero.  The phenomenon of the overdosing
and under-dosing is caused by the velocity compensation.  The major difference
between the curve for a 4 mm spot and a 10 mm spot is the amplitude of the residual
error oscillations that is naturally smaller in the case of 10 mm spot because of the
better spot smoothing.
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Figure 11.18  Dependence of the fractional error on ripple frequency

11.2.3 Ripple specification for raster scanning (2nd approximation)
The first stage is to determine the maximum error at each frequency and then

to convert this to a specification for the maximum permissible ripple over the
frequency range.  The maximum error for a given frequency depends on the starting
time t0, which defines the phase advance (the dependence of the error on the t0 is

Grey line:- W = 4 mm

Black line- W = 10 mm
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periodic).  The situation for modulation Ar = 0.5, the sampling time Tbin = 100 µs, the
delay τ = 100 µs, the nominal velocity v0 = 2 m/s, the frequency 150 Hz and the spot
size W = 10 mm is illustrated in Figure 11.19.
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Figure 11.19  Dependence of the fractional error on the starting time t0

The error curve is slightly off-set above zero because the frequency of 150 Hz
is located in the over-dosed region.  The maximum fractional error also depend on the
ripple amplitude (see Figure 11.20) which means that for each frequency and each
ripple amplitude the maximum error has to be found.
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Figure 11.20  Dependence of the fractional error on the starting time t0 for different
amplitude modulations

The maximum permissible ripple amplitude is given by solving inequalities
that follow from (11.20).

02.0
maxDesired

≤





λ

λ
   and   02.0

minDesired

≤





λ

λ
(11.21)

Numeric solution of the inequalities (11.21) for the conditions of sinusoidal
fluctuations in the spill, the sampling time Tbin =  100 µs, the electronic and power
supply delay τ =  100 µs, the maximum scanning velocity vmax = 2 m/s and spot sizes
of 4 to 10 mm is shown in Figure 11.21 and the detailed zoom in Figure 11.22.
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Figure 11.21  Dependence of the maximum permissible ripple amplitude against frequency
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Figure 11.22  Dependence of the maximum permissible ripple amplitude against frequency in
the range1to1000 Hz.

Figures 11.21 and 11.22 show that for low frequencies between 1 and 10 Hz
the velocity compensation is very effective over the full range of spot sizes and
modulation between 90 and 100% is permissible.  With increasing frequency, the
permissible modulation drops because of declining efficiency of the velocity
compensation.  At low ripple frequencies the spot smoothing is negligible.

The curve for the 10 mm spot has minima at odd multiples of 100 Hz and
maxima at even multiples 100 Hz, whereas the curve for the 4 mm spot that has
minima and maxima shifted by 50 Hz.  The maxima correspond to the situation where
the spot size contains an integral number of ripple periods (minimum error) assuming
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Acceptable ripple
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the average scanning velocity equals 2 m/s.  The number of wavelengths integrated by
the spot increases and the difference between maxima and minima decreases.

For the practical interpretation of the results, the bottom envelope of each
curve has to be taken.  Figures 11.21 and 11.22 show that the frequency interval for
which the ripple amplitude is small (between 10 and 20%) is very wide (0.12 to
4.75 kHz for the 4 mm spot and 1.1 to 4.5 kHz for the 10 mm spot).  Both curves
permit 100% ripple modulation at 5.8 kHz, 8 kHz and 10 kHz where the system
passes from the over-dosing to under-dosing and vice versa.

11.2.4 Finite times for response and measurement (3rd approximation)
The final level of approximation simulates the real system in which the system

gives the measured flux every Tbin and the scanning velocity is changed in steps
corresponding to Tbin.  Once the velocity is set, the value is kept constant over the next
measurement bin, when a new value of the velocity can be computed.  A schematic
model of the relation between the flux measurement and the velocity control is shown
in Figure 11.23.  The only disharmony between the model and the real world is the
instantaneous change of velocity from one value to the next.
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Figure 11.23  Measurement of particle flux and control of the velocity

The expression for the scanning velocity (11.15) has then to be adjusted by
unit step function Θ to the form
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Using expression (11.22) in equation (11.16) for fractional error with zero spot size of
previous model one obtains
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and for the fractional error with finite spot size W
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. (11.24)

The scanning velocity changing in steps controlled by particle flux according
to (11.22) and the fractional error for zero spot size computed according to (11.23) are
shown on Figure 11.24.
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Figure 11.24  (a) Dependence of the normalised particle flux and normalised scanning

velocity on the time,  (b) Dependence of the relative error of the dose on the time

The Figure 11.24 shows that the improved model has caused a deterioration in
the efficiency of the system.  For example, at the frequency of 200 Hz, only 6% of
ripple is acceptable compared to 10% in the previous model shown in Figure 11.14.
Furthermore, the ability of the system to correct fluctuations in the spill drops with the
increasing frequency of the ripple.  For high frequencies, the maximum error with a
zero spot size can be even higher than the ripple modulation.  In practice, this
situation will not occur because the finite spot size will smooth out this effect.

The behaviour of a raster scanning system with a simple velocity
compensation can be summed up as:

• At low ripple frequencies, the velocity compensation is effective for smoothing.

• At high frequencies, the finite spot size is effective for smoothing,

• But, at high frequencies, the velocity compensation becomes counter-productive and
deteriorates the otherwise near-perfect smoothing from the finite spot size.

This is the reason in Figures 11.21 and 11.25 for the second dip after 5 kHz.  The
overall performance of the raster scanning system with simple velocity compensation
is shown in Figures 11.25 and 11.26.  The dependence of the maximum allowable
ripple amplitude is similar to that obtained with the previous model (see Figures 11.21
and 11.22), except that the general performance is less good.  The differences are due
to the velocity control regime.

Scanning velocity

Particle flux
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11.3 SUMMARY
Two dynamic active scanning methods have been investigated for comparison

with the static voxel scanning method.  The initial conditions and requirements used
were those of the PIMMS machine.  To simplify the problem only sinusoidal ripple
was assumed and only single frequencies were assumed to be active in the spill at any
one time.  This approach should be sufficient for comparing the methods, but the
specification of the a practical system will need to be tightened to account for the
mixing of several ripple frequencies.
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Figure 11.25  Dependence of the maximum allowable ripple amplitude with ripple frequency
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The same equipment (power supplies, detectors, extraction lines, magnets) can
be used for all three methods.  The only differences reside in the on-line flux
measurement system and the control system (software) that has to work according to a
different philosophy for each method.

Both dynamic methods pose similar demands on the spill quality for the
largest spot size of 10 mm.  The compensation of spill fluctuations is very good for
the low frequencies between 1 and 10 Hz (using simple velocity compensation) and
for frequencies higher than 8 kHz (using the automatic smoothing from the finite spot
size).  For the intermediate frequencies the maximum allowable ripple modulation
drops and, in the case of mini voxel scanning, it stays on the level 20% in the region
100 to 1000 Hz.  In the case of raster scanning, the critical frequencies are between 1
and 3 kHz where the level of acceptable modulation drops to 15%.

The smaller the spot size, the more marked the differences between mini-voxel
and raster scanning.  Up to 10 Hz the raster scanning can accept all spot sizes with
almost equal and high efficiency, whereas mini-voxel scanning has problems so
severe that 4 mm spots cannot be accepted for the test parameters.  Between 100 and
3000 Hz, the difference among spot sizes becomes more noticeable in the case of
raster scan but the maximum allowable modulation is never lower than 8%.

The efficiency of both methods can be enhanced by decreasing the particle
flux, which for mini-voxel scanning increases the dwell time and for raster scanning
slows the scanning velocity.  This would attenuate the ‘clock’ error that plays the
major role in the mini-voxel and voxel methods.  However, this means an increased
time for treatment.

Another way of tolerating larger ripple amplitudes is to increase the sampling
frequency and hence to reduce the ‘clock’ error.  This approach would be more
beneficial for mini-voxel scanning than raster scanning where the delay and
movement errors play a more important role.  Decreasing the delay and movement
errors is a technological problem that depends on the internal switching frequency of
the power converter.  The raster scanning method stands to gain most from advances
in this domain.

The raster scanning could be improved, if the simple velocity compensation
could be ‘filtered’ so as to act on low frequencies only.  This would remove the
negative impact of this technique at high frequencies where it introduces more error
than it corrects and reduces the efficiency of the spot smoothing.  It is also possible
that the useful frequency range of the velocity compensation technique could be
extended by powerful, on-line, real-time computing to frequency analyse the signal
and to predict the underlying wave form.  Some simple algorithms were tried, but no
spectacular gains were achieved.  However, it would seem possible that an
improvement could be made in this way.
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APPENDIX IA

POISSON STATISTICS

Basic problem
Consider N boxes, in which M balls have been randomly hidden.  Make M<N,

so that some boxes must be empty and make the boxes so small that they can contain
only a single ball.  The probability that a box contains a ball will be,

N

M
q = (A-1)

and the probability that it is empty will be,

qp −= 1 . (A-2)

If n boxes are randomly selected, the probability of finding some specified sequence
of m balls and (n-m) empty boxes is

( )mnm pq − . (A-3)

There will be several ways of specifying the sequence of balls and empty boxes and
the overall probability of finding m balls, independent of the sequence, will be,

( ) ( ) mmn qp
m

n
mw −







=n . (A-4)

Of course, the sum of all the probabilities of finding no balls, one ball, two balls, three
balls etc. up to n balls will be unity,

( ) 1
nm

0m
n =∑

=

=
mw . (A-5)

Consider now the identity

( ) ( ) mn ymwqyp ∑=+
=

=

nm

0m
n , (A-6)

where y is a variable and differentiate with respect to y,

( ) ( ) 1
nm

0m
n

1 −=

=

− ∑=+ mn ymmwqqypn .

If y = 1, then
nqm = . (A-7)

where m  is the average number of balls that one would expect to find in n boxes and
this equals the probability of finding a ball, times the number of boxes that are
searched.
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Now differentiate (A-6) a second time with respect to y,

( )( ) ( ) ( ) 2
nm

0m
n

22 11 −=

=

− ∑ −=+− mn ymwmmqqypnn .

If y is again made equal to unity, then

( ) ( ) ( )




 ∑ −=−

=

=

nm

0m

221 mmwmwmqnn nn

( ) mmqnn −=− 221

From (A-7), ( ) ( )nqnqmm −=− 12 , which when added to the previous result gives,

( ) ( ) ( )222 11 mmmmnqnqqnn −+−=−+−

( ) ( )221 mmnqnq −=−

( ) npqmm =−=σ 222 . (A-8)

Statistics of the ‘waiting beam’
The above model corresponds to the beam ‘waiting’ for extraction.  The

particles within this beam will be randomly distributed by rf noise between two
limiting frequencies (momenta).  The boxes correspond to the infinitesimally small
phase-space volume needed to contain a particle.  Thus N>>M  and p ≈ 1 and q will be
very small, so that equation (A-8) becomes,

nqm =σ= 2 . (A-9)

If now the beam is moved slowly into the resonance and n ‘boxes’ are sampled at
regular time intervals, then the mean number of particles in each time bin and the
variance of these samples will be given by equation (A-9).

This is known as Poisson statistics.  There are two features in the above which
characterise this type of statistics.  Firstly, there can only be no more than one ball in a
box.  This means that it is not possible to force a second particle into exactly the same
phase space as another particle.  Secondly, the very large number of boxes ensures that
p ≈ 1 and q is small.  This reflects the very small ‘granular size’ of a beam, which is
indeed mostly space.

Example calculation
The overall beam gives the probability of finding, or not finding, a particle at

given moment (i.e. in a ‘box’.  Let there be 108 particles in the beam and let N be the
number of ‘boxes’, which is very large, but need not be specified.  The probability of
finding a particle is then q = 108/N and of not finding a particle, p = (1-q).  Now,
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sample the spill from the beam in time bins of n = 10-5N boxes.  Suppose that the
whole spill last 1 s (N boxes) and a bin last 10 µs (n boxes).  From (A-9),

38552 10101010 ====σ= −−

N

M
Nnqm

Thus it is expected that the spill will have on average 103 particle every 10 µs
and the distribution in the time bins will have a standard deviation of σ ≈ 30.

( )σ±±= 301000m

*  *  *
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