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Abstract. We comment the controversy that followed the article of Chiao & Speliotopoulos [1]
about the sensitivity of an atom interferometer to a gravitational wave. Then we report our
results [2] on the sensitivity of a Ramsey-Bordé interferometer to a gravitational wave, and we
compare it to the one of light wave interferometers. We find that atom interferometers could
compete with space based light wave interferometers.

1. Introduction

The wave behavior of a massive particle, as predicted by De Broglie [3], was first shown by a
diffraction experiment of electrons [4]. Thirty-five years later the first neutron interferometer
was built by Maier-Leibnitz & Springer [5]. In 1991, the first signals of four atom interferometers
(hereafter called Matter Waves Interferometers MWIs) were detected [6, 7, 8, 9]. Since then,
MWTIs have been used for a large variety of studies [10] thanks to the improvements of sensitivity,
stability and compactness.

The possibility to detect Gravitational Waves (GWs) with matter wave interferometry has first
been explored by Linet & Tourrenc [11]. Their calculation is based on a generalisation of the
eikonal equation of geometric optics to matter waves. Some years later Stodolsky [12] explored
this question with an equivalent approach. Other approaches were considered, based on a
generalisation of the Klein-Gordon equation [13], on the Dirac equation on curved spacetime
[14, 15, 16] and on the ABCD matrices [17, 18, 19]. These works aimed to describe in a general
framework the inertial, quantum and gravitational effects on the MWIs.

Recently a controversy about the sensitivity of MWIs to GWs followed the article of Chiao &
Speliotopoulos [1]. Their results were discussed by Foffa et al. [20] and Roura et al. [21]. They
all found different results because they studied different physical experiments. It was not clear
that the experiments were different because they used various interpretations of the coordinates
systems and of the boundary conditions. In a special case, Roura et al. [21] demonstrated
explicitly the equivalence of two different descriptions of the same experiment, which is a basic
principle of general relativity. In 2006, we discussed two different experiments [2], where fixed and
free interferometers were considered in comoving coordinates, and calculated the corresponding
sensitivities to GWs.

In this article we find the sensitivity of a fixed interferometer in a Ramsey-Bordé configuration.
First we introduce the comoving coordinates of such an experiment : the Fermi Coordinates
(FC). Then we explain why we think Foffa et al. [20] are wrong when they claim that the device
sensitivity is proportional to the GW frequency. In the third part we describe our method to
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calculate the MWI phase difference. Finally, we present our results of the device sensitivity and
we compare the MWIs to the light wave interferometers.

2. The Fermi frame

A rigid detector [2] can be studied in a Fermi frame [22, 23, 24]. The spatial origin of the frame
is taken at the center of mass of the detector. We will assume here that the wordline of the
center of mass is a geodesic, ie. the apparatus suffers no acceleration nor rotation. Its dimension
L must be very inferior to the GW wavelentgh A (L < A). Fortini & Gualdi [25] calculated
the GW metric in the Fermi coordinates (FC) {X“} up to any order £ ~ L/A. Up to the first
order, the metric reads

1. 1 2.
ds®* = 7, dXHdXY + 5 s X7 X (dT2 + gc122) = he X" X°dTAZ
1. 1
+3hrsZdXT <2XSdT — X*dZ + 5ZdXS) +O(€3,h?) (1)

where 7,5 = 1,2 and the GW goes along X3 = Z. Interferometric detectors are usually studied
in the Einstein coordinates (T'T gauge), which are well suited to the GWs. hy, is the metric
perturbation in the Einstein coordinates : g;‘fVT = Ny + hy where h,, < 1 and 7, is the
Minkowskian metric. The coordinates transformation from the Einstein coordinates {z®} to the
FC {X“} is [2]

o = X" — LhiXxe — LR XeZ2 + O(€4, h?)

2

2% = X — L, XTX5 — Lh XTX5Z 4+ O(E4, h?) @
where ¢ = 0,3. In a Fermi frame, most of the physical laws remain the Special Relativistic
ones. For a non relativistic particle, the equation of motion has the standard Newtonian form,
plus a driving force due to the GW [26]. The equations of elasticity are the Newtonian ones,
with a volume force due to the GW [27]. The Fermi frame is well suited to the lab experiment
as it allows a quasi newtonian interpretation of the phenomenons. Three gyroscopes and an
accelerometer at the spatial origin allow to control the apparatus trajectory and to deduce the
relativistic corrections to the newtonian equations [28]. A MWI with a “butterfly” geometry
[29] consists itself in such an inertial basis.

3. A criticism of the “rigid” coordinates
Ashby & Dreitlein [30] introduced new coordinates {2’“} by the means of the coordinate
transformation

(3)
where {x®} are the Einstein coordinates. Therefore, with hl, = h% (t — z), the metric reads

ds? = 1apda’®da’® + hgamda'® (dt' — d2') (4)

where hrs = aggs.

These coordinates are called “rigid” by Foffa et al. [20] and Roura et al. [21] because the
“physical” distance between two world lines with constant spatial coordinates ' in the plane
2’ = 0 remains constant. Such coordinates can be considered as comoving coordinates with fixed
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devices on an optical bench. This is at least what appears from the article by Foffa et al. [20]
for a low @@ material (i.e. with a high internal damping of elastic waves).

The point is that the “rigid” coordinates system is not the only one that displays such a property.
The same property remains true in Fermi coordinates too. Therefore the question has to be
discussed in more details.

Let us consider a fundamental element ds? = gagdxo‘dxﬁ . Two neighboring world lines, A and
B, have spatial coordinates z* and z* + da*. The coordinate time necessary for a light signal
to fly from A to B and return from B to A is dt. The corresponding proper time measured at
point A4 is dT = /goodt = 2 [(g0igo; /900 — 9i;) da’da? ]1/ 2. The “physical” distance is d¢ = dr
(remember that, here, we use units with ¢ = 1).

Now with gog = 7ag + kap Where |ky5| < 1, one obtains

1 o
de = dt, <1 - ikiﬂwﬂ) +0 (k?) (5)

where O(k?) is a second order term relatively to |kag|, dly = v/dz? + dy? + dz2 and +* = (ciiie(lj'
Now if we consider points A and B, fixed relatively to the rigid coordinates one gets

de = de, (1 + hmm”’ysfyg> (6)

For two points A and B in the plane z = 0, one finds v3 = 0 and therefore d¢ = d{y = cte. But
the general situation (i.e. ¥3 # 0) results in

STPTA [1 +0 (h%ﬂ (7)

where h is the order of magnitude of h,s and A is the order of magnitude of the gravitational
wavelengths. The size of the experimental setup is L. It is assumed to be much smaller than A.
A similar calculation for the Fermi coordinates gives

110 <h <%>2>] (8)

Now, comparing the behaviors of the two materials comoving with either the “rigid” or the Fermi
system, it is clear that the second one is the most rigid material. Actually, the Fermi coordinates
are the “best” ones that can be found to describe classical, rigid, comoving materials.

When the GW frequency f is of the order of a mechanical resonance frequency of the bench,
and if the mechanical quality factor is high enough, one has to take into account the motion
of the mirrors (or gratings). However, we do not consider such a case where the matter waves
would be a displacement sensor for a mechanical detector at high frequency (around 10° Hz).
On the contrary we will see that it is rather at low frequency (1073 Hz) that matter waves are
most interesting.

dl¢ = d¢y

4. The phase difference

We calculate the phase difference between two events with the method described by Linet &
Tourrenc [11]. The quantum phase is developed up to the first order relatively to h : ¢ = ¢, + I
where ¢, is the unperturbed quantum phase while d¢ is the perturbation of order h. k, = 0,¢,
is the unperturbed wave vector of the particle considered. It can be a photon or a massive
particle.

The worldlines of the mirrors or the beam splitters A and B are perturbed by the GW. Let us
call 2*y = 2/} (t) and 2y = 2/5(t) their trajectories. Knowing k* and tp (the arrival time of the
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Figure 1. The matter wave propagates
between the two optical elements A and B
(dashed line). The unperturbed trajectory is
the straight line.

atom), we can deduce t4 (its departure time) : 3 — 2y = ak¥, where « is a constant. This is

illustrated on Fig. 1. We define [¢]5 = ¢ [¢/5 (t5)] — ¢ [2"% (£4)]. The solution reads :

(615 = [0 + 0015 (9)
where
(604 = k'l — kuaty | (10)
he? [ts dt
[66)5 = %/M Pk = (11)

Usually atoms in matter-wave interferometry are manipulated with lasers. When interacting
with atoms, the lasers “imprint” their phase on them. The perturbation of a GW on the
propagation of lasers will thus result on a perturbation of the atom phase difference in the
interferometer. It is easy to show from (11) that this contribution is negligible. Indeed the
phase perturbation is of order hL/\, where h ~ |h,s| and X is the wavelength of the particle
considered (the De Broglie wavelength for a massive particle). In a MWI, L is of the same order
for the laser and for the atoms, but the laser wavelength(~ pm) is much higher than the atom
wavelength (~ pm for thermal atoms).

5. The Ramsey-Bordé interferometer

We study now a MWI with a Ramsey-Bordé configuration represented on Fig. 2. We define
X = X! and Y = X2. Atoms move along the X axis and we assume that their initial velocity
vo < c. At the output of the interferometer, we calculate from (1) and (9) the phase difference
between the two atom beams

Ab = Agy + Aoy (12)
with :
Apy = —47Th+§ sin 1) tan? 6 [cos (Qt+ ) + si2nw cos (Qt)} (13)
L . sin v
A¢py = —4mhy 5 cos ) tan 0 |:SII1 QU+ ox — ) — ” tan 1 cos (Ut + @X)} (14)
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where 0 is the separation angle, 1 = gTLo and Q is the GW pulsation (we considered a periodic
GW).
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§ ? ; Figure 2. Ramsey-Bordé interferometer in

lasers the X-Y plane.

We assume now that 6 ~ 7/4 so that tanf ~ 1. As for the Michelson configuration [21, 2], two
regimes can be considered. If L < 2 - A the phase difference reads

L
A¢p ~ —4nhy - " sin (Qt + @) (15)

This expression results in the same amplitude than the free Michelson configuration [2], with
hy — hy. From formula (15), one can compare the sensitivities of matter wave and light wave
interferometers when they are limited by the shot noise. On Fig. 3 and 4 are represented the
required characteristics’ of a MWI necessary to reach the sensitivity of Virgo (Fig. 3) and that
of LISA (Fig. 4). The cross on each figure corresponds to the MWI described by Gustavson et

al. [31].
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Figure 3. Required characteristics of a MWI Figure 4. Required characteristics of a MWI
necessary to reach the sensitivity of Virgo. necessary to reach the sensitivity of LISA.

1 The curves are drawn for the caesium mass. vo, Lmw and Nimw are respectively the initial atom wave group
velocity, the MWI arm length and the atom flux.
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To reach the sensitivity of Virgo with the actual atomic fluxes, the atoms need to be relativistic
as shown on Fig.3. It would be a real challenge to keep the coherence of the atoms at such a
speed. The situation is better for low frequency GWs. Indeed, the photon flux in LISA will be
very low compared to the atom flux in the Gustavson et al.’s MWI. On Fig. 4 one can see that a
kilometric MWI can reach the sensitivity of LISA at a thermal velocity. This can be compared
to the five billions kilometers arms of LISA. The kilometric MWI could even be reduced to a
one meter MWI with a matter wave cavity, similar to the Fabry-Perot cavity in Virgo. Cavities
where atoms are trapped between two mirrors have been described theoretically by Balykin &
Letokhov [32]; but atomic Fabry-Perot cavities coupled to a MWI have never been built (for
different views on matter wave cavities see [33, 34, 35]).

The main interest of a compact MWTI is that it can be cooled to very low temperatures to reduce
the thermal noise.

6. Conclusion

We showed in this proceeding that a correct description of a MWTI is easier in the Fermi frame.
Indeed, the Fermi coordinates system allows a quasi newtonian description of the apparatus.
When describing an experiment in the “rigid” coordinates, one has to be very careful: the spatial
description of the device is the same but one has to take into account the time distortion.
Finally we reported the main result of our paper [2]: the sensitivity of a MWI with a Ramsey-
Bordé configuration, compared with the sensitivity of Virgo and LIGO. We found that MWIs
would not compete with earth based interferometers in the future because of the very low
atomic flux compared to the laser one. On the opposite, they could compete with space based
interferometers, as they permit to reach comparable sensitivities in a much more compact way.
Of course, major improvements and a serious noise study still remain necessary.
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