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Ensemble averages of random field theories have recently become promising candidates of the
holographic dual of classical gravity. Since quantum theories are discrete, we initiate the study of consistent
averages over theories with discrete random variables—which admit a mathematically rigorous description
as Poisson processes—and get results that mirror Liouville gravity. We show that this is equivalent to
averaging over an ensemble of states in a single microscopic theory, which is an early top-down example
trying to answer the crucial question of whether the gravitational path integral computes an ensemble
average over true randomness or over pseudorandomness coming from a large number of microstates.
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I. INTRODUCTION

Recent studies have uncovered an increasing amount of
evidence suggesting that the holographic dual of classical
gravity might be an ensemble average of field theories
[1-21]. Quantizing an ensemble average of field theories is
subtle, even at the conceptual level. In light of this, a
general belief about the nature of the ensemble average is
that, instead of averaging over true randomness, it is more
likely averaged over some microscopic quantum degrees of
freedom that display pseudorandomness in appropriate
limits. Because the Hilbert spaces of microscopic quantum
theories are discrete, the pseudorandomness resulting from
those should also take discrete values. Therefore, although
by far, the ensemble averages discussed are mostly over
Gaussian-type continuous random variables, averaging
over discrete random variables could have clearer con-
nections to the microscopic origin. In fact, explicit com-
putations of the gravitational path integral in some simple
toy models have demonstrated that their boundary dual
descriptions are averages of theories according to discrete
probability distributions [22]; see also Refs. [23,24] for
related discussions. Given their possible connections to the
microscopic discreteness of quantum theories, averages
measured by discrete distributions are clearly interesting
and worth in-depth studies in their own right.
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In this paper, we study properties of an average of field
theories with random variables drawn from the Poisson
distribution. We demonstrate the importance of choosing an
appropriate measure for the discrete average to get a well-
behaved effective theory, which in our case is shown to be a
Liouville theory. We provide a mathematically more accurate
description of such averages in terms of Poisson processes. In
this language, the average to get the effective action is
nothing but the Laplace functional of the Poisson process.

Moreover, it is interesting to deepen our understanding
of the nature of averaging over random theories [6,8,17,
25-29]—namely, if the average is genuinely among differ-
ent theories, or if it is simply a useful trick for certain
computations, or if it is originated from averaging among
an ensemble of states in a “parent” theory. We study this
question quantitatively in our model and show that aver-
ages over theories with Poisson randomness are equivalent
to a trace over a part of the microscopic degrees of freedom
in a single (suitably double-scaled) microscopic model.
Such an explicit connection has not been directly man-
ifested in the previous literature; it gives a concrete
realization that sets up an equivalence between the average
over an ensemble of theories and the average over an
ensemble of states in one single theory.

II. AVERAGED POISSON RANDOM MODELS

We consider a real scalar field with a chemical potential
J(x) in d-dimensional Euclidean spacetime:

L(¢) = 0, (x)0"¢(x) — T (x)p(x).
J(x) = Jo(x) + J1(x). (1)

Published by the American Physical Society


https://orcid.org/0000-0002-0384-1679
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.L061901&domain=pdf&date_stamp=2021-03-22
https://doi.org/10.1103/PhysRevD.103.L061901
https://doi.org/10.1103/PhysRevD.103.L061901
https://doi.org/10.1103/PhysRevD.103.L061901
https://doi.org/10.1103/PhysRevD.103.L061901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CHENG PENG

PHYS. REV. D 103, L061901 (2021)

The Jo(x) component is a conventional source. The J;(x)
component is a random source that we would like to
average over. This leads to an effective action, S,
schematically via

oSt — /DJI (x)P(J, (x))e—fdv(x)ﬁ(aﬁ)’ (2)

where dV(x) is a volume element around position x. The
crucial question is how to pick the correct measure,
DJ(x)P(J,(x)). In the following, we give an example
of finding such a sensible measure in two different ways,
and we will show that they lead to the same results.

A. A physical point of view

To make the average process well defined, it turns out
that we should treat the combination J;(x)dV(x) as the
random variable that satisfies

P(J(x),A(x)) = [ [Pois(J1 (x,)dV (x,), A(x,)dV (x,)),

VdV(x,), (3)

where Pois(m, k) = £ ¢=* is the Poisson distribution of the
discrete variable m with Poisson parameter k. We choose
the set dV(x,) to be a discretization of the spacetime
> . dV(x,) = V(M). The sources J;(x) at different posi-
tions are mutually independent, so that we can write the
probability as a product [Eq. (3)] for any discretization. An
example of the configurations to be averaged over is
illustrated in Fig. 1.

A straightforward averaging with this probability mea-
sure leads to the effective potential

FIG. 1.
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_ oJ Vi) (4)

where the “path integral” DJ, (x) contains both a sum over
all the sources at different spacetime points x and a sum
over all possible values of J;(x)dV(x). Putting back the
kinetic terms, we get the following effective action:

St = / 4V (x)(8,0 )~ Jo(x)p—2x) (e = 1)).  (5)

This is a generalized Liouville theory with an effective
background curvature J,(x) and a “cosmological constant”
term A(x); when A(x) takes a homogeneous value A(x) = 4,
the action reduces to exactly a Liouville action. We will
provide a detailed interpretation of this position-dependent
expression and its relation to 2D gravity in Sec. I'V.

However, the sign in front of the Liouville potential is
“wrong”; the probability interpretation assumes A(x) > 0,
and the minus sign makes the potential unstable in
Euclidean signature. To cure this problem, we choose a
slightly different measure with an insertion of the (—1)”
“operator’:
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An illustration of the random configurations discussed around Eq. (3). Different colors on the right figure represent different

values of the fluxes J; (x)dV(x); the color changes from blue to red representing the fluxes changing from 0 to oo. (a) An example of
discretizations of the spacetime. (b) An illustration of the quantized “fluxes” on discretization of the spacetime.
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(=1)F = (_l)fll(x)dV(x)eZIdV(x)ﬂ(x)7 (7)

and the J; independent factor is introduced so that the
average is correctly normalized:

/ DI ()P, (x). A)) (=1)F
_ / DI (P (), dV(x) = 1. (8)

Since there is no randomness in the other terms, with this
twist operator inserted we obtain the following effective
action:

S = / AV(x) (0,0~ To(x)p+ Ax) (49— 1)) (9)

In summary, requiring the resulting theory to be well
defined, we found a proper measure for the average of the
set of theories [Eq. (1)] that necessarily includes a “twist”
factor [Eq. (7)]. As in many other recent discussions of
ensemble averages of theories [10,11], at the current stage
we do not have a general criterion to determine what family
of theories should be averaged over, and with what
measure. Our discussion provides an early nontrivial
example that answers these questions.

In fact, this twist factor resembles the (—1) factor of the
Witten index [30] in supersymmetric theories. The presence
of this factor gives a clear indication, together with the fact
that our probability distribution is discrete, that there should
be a microscopic origin of this random averaged model;
and in addition, there must be fermionic degrees of freedom
in the microscopic model so that an invariant counting of
the states, which requires the (—1)7 insertion, leads to the
macroscopic averaging. This is confirmed in Sec. III.

B. A Poisson process point of view

The computation in the above section admits a math-
ematically more rigorous, yet still intuitive, formulation.
The crucial observation is that we can interpret the source
J1(x) as a Poisson process on the carrier space X = R?.

A Poisson process IT describes a random set of points
on a given carrier space whose probability of [the points in
the set] appearing obeys a Poisson distribution [31].
Concretely, let B be a Borel measurable subset of the
carrier space X. Let the number of the points of I appearing
in this region B be N(B)=#(I1n B). Then N(B) on
disjoint open subsets By, ..., B, is mutually independent
and satisfies the Poisson distribution

P(N(B)=n) = eMB) (10)

where the Poisson parameter A(B) is also the mean value
E[N(B)] = A(B) and is determined by a given integrable

function A(x)—i.e., the intensity, via A(B) = [, A(x)dV (x).
For infinitesimal B, the integral is well approximated by

A(dx) = A(x)dV (x). (11)

The A(x) or A(x) functions describe the “shape” of the
Poisson distributions on the carrier space. A numerical
simulation of a Poisson process is shown in Fig. 2.

In our setting, the Poisson random variable is

A dV(x)J,(x) ~ N(B). (12)

For any open set, whose scale is small enough compared

with the scale at which the field ¢ varies, we can safely

approximate
N(dx) ~ J{(x)dV(x) :== T (dx) € Zs. (13)

Averaging over these random sources is, in this language,
nothing but the Laplace functional:

Efe) V0100 _ Elef T@00) — [ M=),
(14)

This resulting Liouville potential is again unbounded
from below. To cure this, we can similarly insert a “twist”

FIG. 2. A numerical simulation of a Poisson process. The blue
dots represent the Poisson process on a two-dimensional carrier
space (the light-blue background). The background is the same
random discretization of the carrier space as shown in Fig. 1, and
each element of the Borel subset can be chosen as a union of cells
in this discretization. In this example, the intensity measure is a
constant, A(x) =1, which represents a homogeneous Poisson
process. The intersection number N(B) on each cell can be
identified with the quantized fluxes in each cell shown in
Fig. 1(b).

L061901-3



CHENG PENG

PHYS. REV. D 103, L061901 (2021)

factor (—l)f Jd) i computing the expectation value.
Alternatively, an equivalent effect can be achieved by
considering a slightly modified point process with an
“alternating” Poisson distribution

P(N(B) = n) = 200 oA®), (15)

Although the extra sign could make the classical proba-
bility interpretation of the P function obscure, it is perfectly
compatible with the definition of the point process, in
particular, it is compatible with the requirement of inde-
pendence among different spatial regions. So we can
simply consider it as a different measure defining a new
point process, with which the Laplace functional that
computes the effective potential becomes

Ele) “xh@o)] _ glof T@ew) _ o= [ M0t
(16)

Adding back the kinetic term, we again arrive at the same
effective action in Eq. (9), now from the viewpoint of
Poisson processes.

II1. POISSON RANDOM AVERAGE FROM
TRACING OVER MICROSTATES

Conventional quantization is done for a given theory
with a fixed action, which could be an obstruction to further
understanding ensemble averaged theories, and in particu-
lar their quantum counterparts. A way out is to consider the
ensemble averaged theory as an effective description of
the low-energy limit of (a subsystem of) a microscopic
theory. In this section, we materialize this idea into an
explicit connection that reformulates the above average
over the Poisson random potentials into a trace over a large
number of microscopic degrees of freedom in a single
refined model.

A. The microscopic setting

We consider a model defined on a (microscopic) spatial
lattice, labeled by a “position” vector x, on each site of
which resides a d-level system with a Hilbert space H,
spanned by state vectors |i),, i = 1,...,d(H,) = d,. One
simple example is a theory of N pairs of free complex
fermions y', W', i =1,...,N on each site, so that the
dimension of the Hilbert space is d, = 2. We can choose
the ground state |0) to be annihilated by ' so that the states
in the Hilbert space are spanned by w''...'|0). The
simplest example is N = 1, with states |0), and |1),. We
further introduce a free boson ¢, at each lattice site. The
system is described by the Hamiltonian

H=Y Hg+H,..
m
Hx,() = 7[)2( + E‘p% + ;txyqﬁxd’y + JO(X)¢X7

fol =myy, - lpx‘/’x¢m (17)

where 7z, is the conjugate momentum of ¢,. We prepare
the system to be in a mixed state whose density matrix
factorizes

P =Py @ Py M:@%
pr = (1= p))[0), (0] + p(x)[1), (1] (18)

We would like to trace over the fermionic components, and
run into low energy to get an effective dynamics for the
bosons.

B. Tracing over fermionic states

We trace over the fermions to get an effective
Hamiltonian H; according to

P = Try (1) peM) = Try, (pePio)
= STry, (pe ). (19)

This choice is invariant under a change of basis of the
fermionic degrees of freedom. Alternatively, this choice
effectively turns on an imaginary chemical potential of
the fermion number operator, or equivalently imposes a
Ramond boundary condition for the fermions.

We consider the simplest case on an infinite square lattice
with lattice parameter . We consider a “continuum limit”
parametrized by a = %with m — oo. Itis clear that these grid
points are bijective to the grid of rational points. Itis also clear
that any open set on the background M = R? contains an
infinite number of grid points with a density n = m? in the
above m — oo limit, which is the familiar fact that in any
open set of R there are countably infinite rational points. This
fact remains true even if the volume of the open set is
infinitesimal, such as the volume element dV (x).

We assume that p(x) in Eq. (18) is smooth enough so
that in any small region dV (x) it is approximately constant.
The probability to have n, = k fermionic excitations in this
volume is

P(n, = k) = (”’)mx)k(l —p(y, (20)

where n’ = ndV(x) is the total number of grid points in the
volume element and 7, is the total number of sites that are
in the |1) states in dV(x). A continuum limit can be
appropriately defined if the number density of microscopic
excitations in the fermion systems is finite:
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A numerical illustration of the limit [Eq. (21)]. The red dots are positions on the lattice where the state is in the |1) state. From
left to right, we have n’ = 2.5 x 103, 10%, 2.25 x 10%, respectively, while A(x) is fixed to 1 [with dV(x) =

10 to make the figures easier

to read]. It is clear that as n’ — oo, the expected number of excited states is approximately fixed.

lim 7'p(x) = Agy(x) =

n'—oo0

A(x)dV(x),  Ax)~

o), (21)

as illustrated in Fig. 3.
In this limit, the probability of having n, = k excited |1)
states in the volume dV(x) becomes

4

n'! -
P =8 = it g PV (=
A k
:%e—/\m(ﬂ:POiS(k,Adx(x))’ (22)

which means in the limit (21), the distribution of excitations
obey the Poisson distribution on any open set dV(x). We
further consider a semiclassical limit where ¢, varies
slowly on the microscopic scale so that in each dV(x) it
can be regarded as a constant. Then the H ; contribution to
the trace [Eq. (19)] becomes

e PHer — Ty ~PH-+ixF )

H, (pe
= Ter< Q pxe_ﬁZdV()c)<erdV(x)(H" /de*>)>
dv(x

=11 <ZPOIS A gy (x), k) e Pkm== )))

avix)

_ P [ttt (23)
Therefore, we get an effective Hamiltonian
H(x) = Ax) o-Blm=y) @
p
p p
A
= 2mp(x)e*hPx + Mx) (24)

2b

where

A

—pm _ e—2bm
4nb ’

p A
=— 25
H= 5 (25)
and it is similar with the (generalized) Liouville potential in
Egs. (4) and (16). Putting back the pure bosonic contri-
bution H, that is independent of the trace, we get

H(x) =3+ ¢x + Zn@qﬁxqﬁv +Jo(x)¢(x)

Ax)

P 2bgp, '
+ 2mu(x)e*?x + b

(26)

To summarize, in the special scaling limit (21), the
effective interaction Hamiltonian (23) is proportional to n,,
which is mutually independent in each subset dV (x) due to
the absence of fermionic hopping terms. The probability
of n, in the limit (21) satisfies a Poisson distribution
[Eq. (20)]. These together mean that the limit can be
described by a Poisson process with n, analogous to the
random variable [Eq. (10)] and n’p(x), np(x) analogous to
the mean measure and the intensity. Therefore, as discussed
in Sec. II B, Eq. (23) can be considered as an analogue of an
ensemble of theories with a source N, that is related to a
discrete Poisson distribution that is of the same type of the
theory defined by Eq. (1). This demonstrates explicitly that
an ensemble average of theories could actually be equiv-
alently an average of an ensemble of states in a single
theory.

C. The low-energy limit

Next, we focus on the low-energy modes which are
expected to have a canonical kinetic term in continuous
spacetime and are exactly described by a Liouville theory.
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This amounts to going to the frequency space and
extracting the effective action near zero momentum.

For simplicity, we consider the simplest (1 + 1)-dimension
case. We further simplify the computation by considering a
homogeneous chain with the nearest-neighbor hopping,
namely [x —y| =1

1
Iyy = lyy = §t5(|x _y| - 1) (27)

We can now take the familiar route of Fourier-transforming to
frequency space and reading out the effective Hamiltonian for
the low-energy modes,

H=Y" (;:5 5000 + mig ()2 ~ o2

IV. DISCUSSION

A. Relation to Gaussian randomness

This work highlights discrete distributions. It is clear that
a further limit of the Poisson distribution approaches a
Gaussian distribution, which is guaranteed by the central
limit theorem. Therefore, we can also regard the discussion
in this paper as a first attempt towards refining the results in
previous Gaussian random (holographic) discussions.

B. The dual channel

We can also integrate out the ¢, field in Eq. (17) to geta
0 + 1D quantum mechanical model of the fermions. It is
easier to work in the Lagrangian formalism, where the
coupled theory is defined as

A
+ 2p(x) 290 4 é—?) (28) L.y my '
— ;2 ¢ 42 x—1lx x,x+1
L _Z<§¢x +7¢x+ D) ¢x—1¢x+ 2 ¢x¢x+1
where *
2 + JO ('x>¢.x + ill_/ lj/ +ml/_/xl//x - lZ’xqusx) * (30)
m:2m§)—|—2t, t:?a‘2 >0, my.a,ceR. (29)
The result in Eq. (28) is again a generalized Liouville theory. =~ We can integrate out the ¢, to get
|
o [ _ / D e Ja o Hlog(M)+ il dt(izxwx+mzxum/x+%Z<r,)_wxwrfywy<M*'>xy)’ (31)

w9

where “~” means up to irrelevant constants, and the matrix
M is defined to be

Mxy = —335@ =+ m¢5x,y + tx—l,xéy,x—l + tx,x+15y,x+l . (32)

So the dual quantum mechanical model is described by a
“nearest neighbor” charge-charge coupling.

In addition, the coupling constant M~! has a singularity
if the ¢ field is gapless in the infrared, namely my = 0 in
Eq. (29); this is consistent with our expectation of integrat-
ing out a massless mode.

C. Interpretation as emergent gravity?

Recall that Liouville gravity, which can be obtained from
the response of the matter field to a Weyl transformation of
the metric £, — e? h,, it couples to, has the action

Iin/dzx |h|(Q‘I)(X)Rh(x)+(Vq))2+4ﬂ'uezhd>(x))7
(33)

where u is the cosmological constant and Q is a back-
ground charge related to the property, such as the central
charge, of the matter fields [32].

f

Comparing with our results, we find the probabilistic
measure A(x) actually resembles the density \/|_h—| in gravity.
In fact, we can directly show the equivalence of the actions
by identifying the dilaton ®(x) in Eq. (33) and the scalar
¢(x) in Eq. (9) together with the following matching:

OVIHIRY(0) = —Jo(x). /AT =2u(x) =) g,

VIR ,,=640,0,. (34)

In order to make the comparison transparent, we fix a gauge
in the Liouville gravity h,, = e/’<x)6,w; then the correspon-
dence reduces to

—08%0,0,p(x) = —Jo(x),

MX) b

w ¢

50,0, = 80,0,. (35)

drpe’™) = 2mu(x) =

The third equality trivializes, while the first two identify
Mx) = 8auber™¥) 2 and further imply a condition
between Jy(x) and A(x):
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Jo(x) A(x)e=2mb

8zub

= 00,0, log< > = 00,0, log (A(x)).

(36)

This is a very interesting relation that furnishes a necessary
condition for the random or microscopic theory to have a
gravity description. In particular, it states that J,,, which is
initially introduced as the source of the ¢(x) field, is also the
source of log(A(x)) if we regard the latter as a free classical
field. On the other hand, the limit (21) and the condition (36)
cannot isolate any single state in the microscopic theory; a
large number of states are not distinguishable in the above
semiclassical limit where a gravity interpretation applies.
It is likely that these different states that are compatible with
Eq. (21) carry information about quantum corrections to the
classical gravity, similar to the recent discussion in terms of
the JT/random matrix model example [35].

Further notice that Eq. (36) only fixes the shape
dependence; the size of the Jy(x) field can, however, vary,

and it is proportional to Q. In the gravity interpretation,
QO roughly counts the number of degrees of freedom of the
matter fields, and hence indicates the strength of their
coupling to gravity. Therefore, the scale of Jy(x) in our
microscopic model could be understood as the strength
of the coupling of ¢(x) to some other matter fields as
expected.
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