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Abstract

Cavity quantum electrodynamics (cQED) is a captivating field of optical physics that explores the
interactions between light and matter and is particularly fascinating in the field of ultrastrong
coupling. First, considering the hybridization of electromagnetic cavity (EC) modes and surface
plasmon polaritons (SPPs) in a resonant cavity, we show that classical Lagrangian electrodynamics
and cQED lead to the same expressions for frequency dispersion when mode dissipation and
system-bath interactions are neglected. We then expand the photon propagator to a Dyson series
and derive a novel non-perturbative expression for the frequency dispersion of the hybrid modes,
which is equivalent to the cQED result but has a richer content. In this context, it is shown that the
SPP self-interaction generates a positive self-energy that renormalizes the hybrid SPP-EC
eigenfrequencies and is responsible for the well-known blue-shift of the hybrid modes, an aspect
that was previously hidden in the known expressions for frequency dispersion.

1. Introduction

The study of cavity quantum electrodynamics (cQED) within the second quantization formalism provides a
unique platform for exploring and understanding the interactions between light and matter [1, 2]. A
prototypical case is the interaction between a two-level atomic system and a single electromagnetic cavity
(EC) mode. It serves as a fundamental model in the field of quantum optics and is most simply represented
by the Jaynes—Cummings model [3]. It includes the rotating wave approximation, which allows all
non-resonant terms in the Hamiltonian to be neglected as they are considered minimally important [4-6].

A significant advancement is represented by the application of the Rabi quantum model [7, 8] to various
physical systems, for which it has become the cornerstone of their theoretical investigation. It describes
occurrences like the pairwise creation or annihilation of excitations in both atomic and photonic subsystems
of high interest in nanophotonics and optoelectronics [9], the interaction of a two-level atom or a quantum
dot with squeezed light [10, 11], along with interactions that involve permanent atomic electric dipole
moments [12]. The likelihood of these processes increases with the light-matter coupling constant, becoming
particularly relevant in the ultrastrong coupling (USC) regime, where the coupling constant approaches the
energy scale of the system [13-16].

Plasmonics is an emerging and highly promising sector of quantum physics that leverages the excitations
of electron density fluctuations, e.g. in semiconductor resonant cavities, excitations which are known as
plasmons. The ability of plasmons to confine light within photodetectors at sub-wavelength spatial scale [12,
17] presents substantial opportunities for advances in nanophotonics and optoelectronics, including
applications such as plasmon-enhanced photodetection [18-23], sensing technologies [24], and photovoltaic
systems [25].

A particularly versatile type of plasmons are the surface plasmon polaritons (SPPs). They are the
excitations of the oscillating local polarization density field P(r, ) of the electron plasma, which originate
from evanescent optical modes that can propagate at metallic-dielectric interfaces [26, Ch. 4], [27, 28]. In the
example represented by figure 1(a), an electromagnetic plane wave determines stationary EC modes with
angular frequency w,, described by the electric field E = Egexp[i(q - r — wt)]. They may coexist with SPP
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Figure 1. (a) Sketch of a resonant plasmonic cavity, illuminated at normal incidence by an electromagnetic field with polarization
vector along x. A lattice of metallic nanoparticles on the illuminated face excites a SPP mode [29] with electric dipole moment
along % and oscillation frequency wy,. The cavity determines an EC mode with polarization vector along X and propagation vector
along z, which oscillates with frequency we. (b) The two modes can interact to give origin to the hybrid modes fiw+, whose
separation at crossing (i.e. for w. = wy) is the Rabi energy /ifdx.

modes with angular frequency wy described by P = Py expli(p - r — wpit)]. Here, q and p are the EC and SPP
wavevectors, respectively, and the frequencies w, 1 are defined by the cavity details [29]. The two sets of
modes can interact with a coupling coefficient x o< D - P, where D is the electric displacement field

(D = €peqE, with ¢y and €4 the vacuum and the medium dielectric permittivity, respectively). In the weak
coupling regime, the nonlinear SPP-EC interaction can be described within the classical coupled mode
theory (CMT) [30-32], which leads to the two solutions

We + wp) 1 2
W4, CMT = % + 5\/(% —wpl)” +4K?2, (1)

known as lower and upper hybrid plasmon—polaritonic branches [33]. Despite its importance, the CMT is a
highly simplified representation of cavity physics, and its applicability is limited by the assumptions of weak
coupling and slowly varying envelope approximation [34].

There are several excellent papers in the literature describing similar interacting systems in the context of
the cQED (e.g. [17, 35, 36]), in which it is shown that the SPP-EC interaction generates hybrid modes with
angular frequency w., whose functional form differs in important details from w4 cymr. However, it is often
claimed in the literature, but not explicitly shown, that the same dispersion relations w obtained by a
quantum approach can also be obtained in the Lagrangian description of classical electrodynamics, provided
that mode damping due to cavity dissipation and system-bath interactions, which are typical for open
systems, are neglected [4, 37].

To show this important point, in section 2 we employ the Lagrangian of classical electrodynamics in the
Power—Zienau—Woolley (PZW) picture Lpzw [38—44] to describe the SPP-EC coupling, obtaining the
dispersion relations w from the Euler—Lagrange equations. We emphasize that an explicit derivation of w
in Lagrangian classical electrodynamics cannot be found in the literature.

Then, in section 3 we address the same problem within the cQED, showing that, by second-quantizing
the fields D and P, the diagonalization of the quantum Hamiltonian resulting from Lpzw leads to the same
functional forms for w as in the classical Lagrangian formalism. Since this paper aims to be self-contained,
we give an explicit yet brief derivation even of parts normally found in textbooks, as the quantization of the
free fields.

The main topic of the present work, not addressed in the literature in this form, concerns the blue-shift
of the hybrid modes w, which increases for both frequencies when the SPP-EC coupling strength is
increased. Although the cQED correctly attributes this shift to the self-coupling of SPPs, the blue-shift of w.
is not clearly singled-out from the simple mode splitting that follows from the SPP-EC avoided-crossing
behavior (close energy levels repel each other as a function of some parameter, e.g. in the present case, the
coupling strength).
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We address this point in section 4, where a non-perturbative description of the renormalized photon
propagator in plasmonic cavity is given. In short, the probability amplitude that the system is still in its
ground state |0), after we create a photon at y and later annihilate it at x, is described by the propagator
D, (x,y) = (0|TA,, (x)Al ()0), where T is the time-ordering symbol [1, 45, 46] and A,, is the zith
component of the electromagnetic vector potential operator A, expanded in normal modes. D, is expanded
in a Dyson series of the free (non-interacting) photon propagator Dy ,,,, and plasma dynamic polarizability,
thus facilitating the extension of this approach to more complex scenarios. Following this approach, a new
functional form for wy is found, which provides the same numerical results provided by the cCQED
description. However, this form explicitly identifies a blue-shift that is added to the frequency of the modes
obtained without keeping into account the SPP self-coupling. It is described as a self-energy gained by hybrid
modes propagating in a dense, self-interacting electron plasma. Finally, section 5 encapsulates the principal
findings.

Regarding the notational framework, this work defines V* = (V°,V) and V3 = (V,,—V) as
contravariant and covariant four-vectors, respectively. The Greek indices «, 8, i, ... = 0,...3 are employed to
indicate space-time coordinates under a flat metric g,,,, = diag(+1, —1,—1, —1). In contrast, Latin indices
(1,7,k, ... =1,2,3) refer to the spatial components of vectors and tensors, while the not-italicized “i” is the
imaginary unit. The Einstein convention to sum over repeated indices is applied. The notation 0/9x" = 0,
represents the partial derivative, with its components expressed as (1/c9;, ) = (1/c9;, V), while
d/0x,, = 0" = (1/cd;,—V) and V* = 9,,0".

2. Light-matter coupling: classical Lagrangian formalism

The focus of this section is the formulation of the PZW Lagrangian functional, which necessitates significant
effort. Nonetheless, this step is essential for advancing towards a description of the plasmonic cavity within
the cQED framework, as the latter requires the quantization of the classical Hamiltonian, which is derived
from the corresponding classical Lagrangian [1, 2, 47].

2.1. The Lagrangian of nonrelativistic electrodynamics
The evolution of any physical system described by a field ¢ occurs as it moves from one configuration at time
t1 to another at time f,, tracing a 'path' in the configuration space for which the action S,

[5)
S:/ dtL(p,0up,1), (2)
I3

1

attains an extremum, most commonly a minimum: this is the principle of least action. The Lagrangian of the
system L(¢,0,,,t) defines a Lagrangian density

L= / ErL (0, 0p.t), 3)
14

that satisfies the Euler—Lagrange equations

oL oL
O (W) “ap v @)

They are the equations of motion for ¢, and their solutions are stationary points of the action functional.

Starting from the electric and magnetic fields of the EC modes E=—-V¢ —0,Aand B=V x A,
respectively, written in terms of the electric scalar potential ¢ and vector potential A [48, ch 15], it can be
shown that the classical electromagnetic Lagrangian density, in presence of an electron plasma with charge
density p, can be written in the Lorenz gauge as (see A and [49, section 12.7])

_ & 2 2\ _ .
Lem=3 (|8tA| 62\82A|) pb+-A (5)

where J is the current density that fulfills the continuity equation 9;p = —V -J. Since itis p = —V - P (see [2,
section IV.C.1, equation (C.5)] for a derivation), it follows J] = 9;P and

J-A=0,P-A. (6)

We can rescale P to P = P / (Qple(l)/ 2), where €, is the angular plasma frequency. Then, by including the
electron plasma kinetic energy density 7 = |0,P|*/2 and writing its potential energy density p¢ as o.2§1|P|2 /2

3
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(see details in B), the total Lagrangian density £ = Ly, + T follows as

% (oAl - ctoar) < L (105
=5 (\8,A| E10.A )+2 < a,p

2 =2 2o
—wpl‘P‘ + Q0P A 7)

2.2. The PZW picture

Equation (7) contains a term proportional to A, which is not an observable, contrarily to its derivatives
which are related to E and B. This is a very important issue, which in the literature has been addressed and
solved in the dipole approximation of the multipolar gauge [50], building the PZW picture. In short, a new
Lagrangian is considered, defined as £ + F(t), where

F(t):—d—t(f)-A). (8)

[t is easy to see that the resulting action S’ = fr? dt[L£ + F(t)] is equivalent to S = ff dt L in the sense that it
leads to the same equations of motion, since any variation of generalized coordinates and velocities vanish at
the extremal time instants. Therefore, since 9;P - A + F(t) = —P - 0;A, we end with the Lagrangian density

) 2 2\ 1 =
Loow =5 (|8,A\ &|0.A| )+2 ( o,p

2 S =] 12w
~ i [B]) - e/ 2P0, 9)

which contains only observable terms. Importantly, it has been shown that the PZW picture is gauge
independent and leads to a quantum Hamiltonian that is fully equivalent to the more familiar Hamiltonian
of the minimal-coupling picture, thus avoiding the problem of the |A|? term that typically arises in
minimal-coupling scenarios [35, 42, 44, 51].

2.3. Modes hybridization: dispersion relations
By plugging Lpzw in the Euler—Lagrange equations, we obtain the equations of motion for A and P, which

can be written as
€0 (w? — w?) —iQPle(l)/zw A
. 1/2 2 2 5= Oa (10)
iQp€e) " w wey — W P

having supposed harmonic solutions for the fields. The secular equation leads to the biquadratic equation

(w2 —w?) (wél - wz) — 2,w? = 0 whose solutions are the eigenvalues of the hybrid modes

2
~ 2 __ 72 2,42
5 wcz + wél \/(wc wpl) +4 Qple
wi = + P , (11)

having defined

Wpl = ,/w§l+Q§,l. (12)

It must be emphasized that this functional form differs significantly from the CMT description
represented by equation (1) as it contains the squared frequencies. However, before commenting on the
frequency dispersion w4 according to the classical Lagrangian formalism and represented by equation (11),
we prefer to go further and obtain the corresponding quantum formulation according to cQED.

3. Light-matter coupling: cQED formalism

The canonical quantization of a certain theory involving different fields and their possible interactions (in
the present context, A and ﬁ) is a well-established method. It starts with a classical Lagrangian, which is a
functional of the fields involved, playing the role of generalized coordinates. The conjugate momenta are
then determined, leading to the formulation of the associated Hamiltonian, where fields and momenta are
expressed as Fourier series. They are then elevated to the role of operators and canonical commutation
relations are imposed between them. This process culminates in the formulation of the associated
Hamiltonian in terms of creation and annihilation operators, which completes the quantization procedure.
The PZW Hamiltonian density is obtained from Lpzw by means of the Legendre transformation

Hpzw = 14 OA +115 0P — Lozw, (13)

4
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where 11 and Il are the momenta canonically conjugate to A and P, respectively,

O0Lpzw 5
=25 oA - 0B = D 1)
_ O0Lpzw

= 0,P, (15)

I~

P —
o(op)
where for brevity we omitted their spatial and temporal dependence. Equation (14) indicates that the field
velocity 0,A can be expressed as

P-D
atA: 5 (16)
€0

and the Hamiltonian density follows as

1 /D |BJ? 1 oy ~|?
e =1 (2L BEY L (laaf sz
PZW 2( o + o T5 | |OF] T@n
9) 0% 2
——?D-P—&—%‘P‘ . (17)
vV €0

By exploiting equations (14) and (15), since it is [B|? = 9;A*9 Ay, the Hamiltonian density assumes the most
appropriate form to be quantized:

1 (TIy 1, | OA A 1 ~t
HPZW_< e k)+2(H§'H§+w§1’P‘>

2 €0 Lo
= Q2
+ 22 -P+—m‘P : (18)
€o
The canonical quantization procedure leads to (see details in C)
Topw = h itag+ ~ ) +h By + -
szw = Zq: wc,q aqaq + E + wpl)q qY%q + E
H. Hy
— iy (g = a3) (bq + By ) +16 (b +B]) (b-q+ 1) |, (19)
I:Iim‘l I:Iint,z

where &Z (4q) are photon creation (annihilation) operators (and Z;:g (l;q) are similar operators for plasmons),
and w, q and wp q are photon and plasmon frequencies, respectively, with wavevector q. The energy fy plays
the role of a SPP-EC coupling energy, since it couples the EC term (aq — d(Tl) and the SPP term (Z;_q +bt Q-
Also h is an energy, and it represents a SPP self-coupling term. The functional expressions of v and § are

Q w, Q
y=—H jea s (20)
2 Wpl.q 2Wplq
3.1. Diagonalizing the Hamiltonian

The total Hamiltonian Hpyy is similar to the one proposed by Hopfield [52, 53] and can be diagonalized by a

standard procedure.
Let us consider a EC mode w, q and a SPP mode wy, q for given wavevector q, which can be safely

omitted, for brevity. By defining a vector v = (ﬁl;(ﬁ BT) , Hpzw can be written as Hpzw = 77 M#, where

We iy 0 iy
mon| T (8 o (21)
0 —1y We —1y

—iy ) iy (wp+9)

5
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Figure 2. The eigenvalues w+ (in eV) according to the classical Lagrangian formalism and cQED, compared to the simpler CMT
approach, as function of the SPP energy, for wq = 0.8 eV (which corresponds to A = 1.55 um). We set (a) €1 = 0.2w, (b)
Q1 = we, (€) Qp) = 2w, while for CMT we set & = €21 /2. (d) The polaritonic branches eigenfrequencies at crossing, according
to the three descriptions.

can be read from H. The secular equation
det (JM — hwl) = 0, (22)

where J = diag(1,1,—1,—1) and I is the identity matrix, can be solved for w, yielding the eigenvalues

2
R, J (w2-2) + a2
E4 .

3 (23)

Wi =

Equation (23) aligns with what we found within the classical Lagrangian framework (see equation (11)),
therefore demonstrating that quantum and classical descriptions lead to the same results, in absence of
damping and for closed systems. Figures 2(a)—(c) compares the results obtained according to the CMT, to the
classical Lagrangian formalisms, and within the cQED description. The latter two approaches are represented
by equation (23) or (11), which coincide, and all the three formalisms describe the well-known
avoided-crossing behavior, typical of interacting oscillators. We notice that the CMT result progressively
deviates when € is increased. Moreover, figure 2(d) shows that the separation of the two hybrid modes at
crossing, (i.e. when w, = wy)) increases quasi-linearly with €2 according to the CMT, while this is not true in
the Lagrangian and cQED descriptions, because of a frequency blue-shift. Section 4 will clarify this point.
Some other considerations are in order:
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e classical Lagrangian and cQED formulations, equations (11) and (23), respectively, contain and return the
squares of the frequencies, unlike the description according to the CMT, equation (1);

e in the classical Lagrangian and cQED descriptions, an additional term Qz blue-shifts the squared plasmonic
resonance wgl to w2
section 4;

e the mode separation |w; — w_| reaches the minimum value for wy = w, in all the approaches. Assuming
natural units (i = 1, therefore w is an energy, expressed in eV in all the figures) and indicating this value
with OF, in the CMT it is 6 E = 2k, while it is 0E = (2, in the classical Lagrangian and cQED approaches.

»1» the meaning of which will be better clarified in the context of the propagator formalism,

Very importantly, it is possible to rewrite equation (23) as

2
~ 2052 a2 2
243 \/(wc +wpl) 4w W
=+

Wi = 2

(24)

which is exactly the [36, equation (S8)] obtained by employing the full Hopfield-type Hamiltonian [53],
retaining both the counter-rotating terms (&Eﬁ;&, dqdp, ﬁ:rll;;r,, and ﬁqI; ) and the photon self-interaction term
proportional to [A|? o (a4 Al + d_q)?%, which is typically present in the minimal-coupling approach, but absent
in the PZW representation.

Some other considerations are in order. When we neglect the SPP self-coupling term Hiy , by setting
0 =0 1in equation (19), the eigenvalues become

2 2
we +wy 1
=S ) et 2

which can be obtained from the Dicke model [52], an approximation of the Hopfield Hamiltonian that
retains the counter-rotating terms, but neglects |A|? (see also [36, equation (S9)]). Equation (25) does not
feature any frequency blue-shift, which therefore can be ascribed to the SPP self-interactions.

Furthermore, by neglectlng both the Hmt » term and the counter-rotating terms in our Hamiltonian, i.e.
bqaq, aqbq, b q0q and aqbq, the matrix M decouples and the eigenvalues take the same form as in the simple
CMT (where the frequencies are not squared)-

wetwy 1 2
we = =% o) (we —wp) 497 (26)

In few words, it is noticeable the ability of the cQED approach to provide a clear meaning also for the
approximated results coming from the CMT.

As a final note, it seems that there is no immediate benefit coming from the cQED approach, since it
leads to the same result obtained in classical Lagrangian electrodynamics. The correct answer can be given by
examining in what cases the classical approach fails. In general, the cQED is unavoidable whenever a given
process generates or absorbs new frequencies of radiation, as for the spontaneous emission and in
open-systems. In the other cases, the classical formalism is seemingly sufficient. However, this is not the
whole story.

4. The propagator formalism for the SPP-EC interaction

A crucial unresolved question is the origin of the blue-shift visible in figure 2(d). Although the cCQED
Hamiltonian includes SPP self-interaction, its eigenvalues at the crossing (equation (23) with w, = wy) are
not expressed as the free photon energy w,, shifted by the SPP-EC coupling frequency £+, plus a blue-shift 3
(a correction) due to the SPP self-interaction: wy = w, £y 4+ 3. Equation (23) has a very different form, and
the correction ¥ is somehow embedded in the description but not singled out and summed to the other
terms.

The propagator theory is a powerful way to address this issue and allows to develop a non-perturbative
theory that accounts for light-matter strong-coupling. If we were in vacuum, the retarded Green’s function
(propagator) of the photon would be

AF (x—y) = (0|TA,, (x) AT (7)]0). (27)
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It describes a free, non-interacting photon created in y and destroyed at a later time in x. Here, A, (x) is the
vector potential operator

3
Ay =3>"¢ h (ake*ik" + al{ei"X) (28)
k A=1

2€0Wik

expanded in normal modes, where fﬁ is the polarization three-vector. Following [1, ch. 9], A; (X —y) can
be written in the Feynman’s gauge and in the momentum space as

(w,k) =i (29)

A+
wi —w?+in’

0,uv

where the positively definite infinitesimal 7 provides the correct causality prescription.

Concerning the case under study, we are considering a different scenario: an optical cavity filled with
uniform, nonmagnetic electron plasma with refractive index n = ,/e4. To find an explicit form for the photon
propagator, we consider time harmonic classical fields with e ~* dependence. From the Maxwell-Faraday
equation V X E = iwB and the Ampeére-Maxwell equation V x B = p (J — iwepegE), and recalling that J and
P are related by (see section 2.1) J = 0;,P = —iwP, in natural units (light velocity c = 1) we have

V x V x E = w? 1P + n*W’E, (30)

which can be written as
(—Vz—nzwz)E:wzyoP. (31)
The Green’s function Dy ; associated to the differential operator in the LHS of equation (31) is the solution of
(=V? = n’w?) Dy jj (w,r—1') = n*w?S (r— ') 0y, (32)

where 0 is the Kronecker-0. Now we express Dy ji(w,r —r’) and the Dirac-0 as Fourier transforms,

&I’k ,

Dy i (w,r—1") :/ oy e () Dy i (w, k) (33)
&I’k )

d(r—r') :/ 2 el (rr ), (34)

which, when plugged in equation (32) keeping into account that in natural units it is [k|* = n’w{, they lead
to

wZ

D071']‘ (w,k) = (Sljr (35)
k

w?’

(We omitted the infinitesimal i), which is unnecessary for the description which follows).

In the language typical of the physics of condensed matter [54], 'bare' particles are effectively 'dressed'
with virtual particles because of the interactions that transform them into physical particles, the only ones
that can be observed. In a plasmonic cavity, the properties of the free, 'bare' photon propagator Dy ; are not
observable, since the cavity photons are not 'bare'. The photon propagator corresponding to the observable
field excitations is called 'dressed'. We can call it D;; and imagine that it describes a bare photon that decays
into a bubble of plasma dipole excitations (plasmons) 7;; during propagation, which immediately transforms
back into a bare photon. Considering a Dyson series of these possibilities, we can write Dj; as

Djj = Dy jj + Do ik D ji + Do ix™ Do jmm™™" Do ju + ... = Do jj -+ Do js 7" Djs. (36)

Dy jj is a tensorial quantity, but when in the cavity there is a dominant EC mode with frequency wy = w,
definite transverse polarization and propagation vector along a given direction, Dy ; can be written more
simply in the frequency domain as the scalar quantity

Dy (w) = : (37)
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Figure 3. (a) Graphical representation of the Dyson’s equation for the cavity photon dressed propagator D. (b) The polaritonic
branches eigenfrequencies at crossing, according to w+ = we £y and tow+ = we. £ v+ X.

With this simplification, also the plasma dipole excitation 7;; becomes a scalar quantity, the electric
susceptibility , and the Dyson series becomes

D:D0+DOXDO +DOXA0XDO+:DO +DOXD (38)
from which it follows
D
D=—"7—, (39)
1 —D()X

graphically illustrated in figure 3(a).

The electric susceptibility relates the local polarization density P to the local electric field distribution E
according to P = ¢y x E. It must be kept in mind that the electric susceptibility is a macroscopic quantity
connected to the microscopic dynamic polarizability of the plasma « via the local electron density
according to y = nga. A widely adopted expression for  is the Lorentz model

(40)

It describes the excitation of an elementary oscillator with natural frequency wy) and, in this form, without
damping. By plugging the expressions for Dy and  in the equation (39), we obtain

w? (wél - w2>
D =

. (41)
(w2 —w?) (‘*’;2)1 — wz) — oﬂﬂél
The eigenfrequencies of the response function coincide with the position of the poles of D, which are
given by
2 2) 2,2
2 w? + apl (wc B wpl) + 4ﬂplwc
wh = + . (42)

2

This form aligns with the equation (23), which was derived in the second quantization formalism. However,
the concept of self-energy, which is explicitly defined in the Dyson series, leads to separate a shift £+, which
describes the anti-crossing behavior between the SPP and EC modes, from an additional shift 33, which
results from the SPP self-interaction and represents a positive self-energy which blue-shifts both
eigenfrequencies,
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Im(w)
(W +I) —w w.—y+I+in w.+y+I+in
(4
* *
\‘;‘ Ul Sk Re(w)
* * ()/ '2) + =
e
—(we+y+Z+in) —(w.—y+Z+in) ¢

Figure 4. Poles structure of the propagator D(w) in the frequency complex plane.

To retrieve these contributions, we first recognize that the denominator of D is a quartic polynomial
characterized by two positive roots, denoted as w, and two negative roots, —w. Consequently, we can write
it as

(wf —w?) (wgl —w’) - wZQIZ,l =w—-—wy)(w—w_) (wtwy)(wtw-). (44)

Then, we equate the coefficients of the two polynomials in the last equation, expressing w. according to
equation (43). At the crossing (i.e. for wp = w,) we find the expressions for the separation between the
polaritonic branches 2-y and the self-energy X as

Q1

7= (45)

2
2:%( t2+4—1>, (46)

having defined ¢ = €2, /w.. It is important to note that 3 is a positive correction to the eigenvalues w. £,
therefore it plays the role of a self-energy.

In figure 3(b) we show the photon eigenfrequencies in the cavity, represented by (bare solutions)
w4 = w. =y and (dressed solutions) wy = w, = v + X. The results derived from the latter expression are
totally equivalent to those depicted in figure 2(d).

The propagator D can be expressed more effectively by separating the contributions coming from the
four poles, now including again the positive infinitesimal 7. As shown in figure 4, two poles represent the
positive solutions w and lie in the frequency upper complex plane. The other two poles correspond to the
negative solutions —wy and lie in the lower complex plane,

1 1
— +A — +
w—(wety+3+in) | Cw—(we—7y+S+in)

D(w) =4, [neg. sol.], (47)

In this formulation, the role of the self-energy ¥ is better evident as a blue-shift, a renormalization of the
propagator poles, and it is an effect whose origin lies in the interaction of EC and SPP oscillators, and operate
even in a classical context.

where A} = 0.5(w} — wgl)/(uur —w_)and A, = O.S(W;1 —w?)/(wy —wo).

4.1. Processes in the USC regime

The validation of equation (23) using numerical simulations or experimental data, if available, would
represent an important point. In some recent works [29, 55], the cQED description was applied to a realistic
plasmonic cavity, specifically a photodetector operating in the mid-infrared band, A € [3,5] um. Its
electro-optical response was investigated by numerical simulations using the finite differences time domain
(FDTD) method, in which the electronic transport and Maxwell equations were solved after the detector was
discretized on a three-dimensional grid. The cited references show that the FDTD numerical simulations
reproduce the SPP-EC anti-crossing behavior described in the present work. In spite of this, the two
polaritonic branches are symmetrical, so no blue-shift is detected.

The full Hamiltonian Hpyyy is nonlinear, and the Dyson’s expansion of the photon propagator yields a
self-energy that describes the nonlinear interactions between the photon and the plasma. As a result,
numerical FDTD simulations (which include linear interactions only) cannot predict any blue-shift.
Specifically, they are expected to confirm the overall scenario only within the regime described by
equation (26), which is obtained by neglecting both the I:Iim,Z term and the counter-rotating terms in the
Hamiltonian. The same result is equivalently provided by equation (43) after setting > = 0, which, however,
has little meaning. In fact, the cited [29, 55] show 7 and w, to have a comparable order of magnitude, which
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drives the physical system under consideration into the regime of so-called USC. Therefore, a description
neglecting the photon self-energy (as in standard electro-optical FDTD simulations) is only a rough
approximation, and the experimental wavelength of the polaritonic branches could deviate because of the
blue-shift due to the contribution of ¥. Moreover, it must be pointed out that in the USC regime higher
order transitions and multi-photon processes become relevant. A good theoretical and experimental
description can be found in [56], and the blue-shift is well visible in experimental works [16, 57, 58].

The USC regime is particularly interesting for two-levels or multi-level systems [14, 35, 59-62],
nanoparticle crystals [16, 36] or spin-boson systems [63] coupled to a plasmonic cavity. Good reviews and
contributions on these topics can be found e.g. in [15, 17, 23, 58], where the USC regime, its relation to the
weak coupling regime and other regimes that compare - with the plasmon lifetime determined by the losses,
are described in detail.

The interaction representation of the Hamiltonian, which provides the Dyson equation for D, also leads
to a description of multiphoton and other higher order processes. For example, in the USC regime an array
of nanoparticles may exhibits two-photon absorption associated with Kerr nonlinearity [64, 65], saturation
and reverse saturation of scattering [66], plasmon-exciton interactions [67]. Furthermore, the formation and
dynamics of spin-glass [68] can be described at a level between statistical physics and quantum field theory
by the application of the nonequilibrium Dyson equations in the USC regime. Specifically, a quantum
effective action for the system can be expressed as a function of its two-point correlation functions, leading to
a description of the dynamics of the system, by means of some controlled non-perturbative approximations
[69, 70].

5. Conclusions and future work

In this contribution we describe the interactions between cavity electromagnetic modes and SPPs. To this
end, we present the explicit derivation of the frequency dispersion relations in the classical Lagrangian
electrodynamics and by following the second quantization formalism, demonstrating the equivalency of
quantum and classic approaches, in case the modes damping due to cavity dissipation and system-bath
interactions typical of open-systems can be neglected. This conclusion is expected and claimed in the
literature, but not explicitly given, at the best of author’s knowledge.

By employing a Dyson series expansion of the photon propagator within a resonant plasmonic cavity, we
derive an alternative yet equivalent formulation for frequency dispersion. In this framework, the
self-interaction of plasmons is demonstrated to establish a positive self-energy, resulting in a blue-shift of the
eigenfrequencies associated with the hybrid photon—plasmon modes. This phenomenon was previously
obscured in the original expressions for frequency dispersion.

The inclusion of cavity dissipation and system-bath interactions within the SPP-EC interactions treated
by the propagator formalism is ongoing and will be the object of a separate contribution.

Data availability statement
All data that support the findings of this study are included within the article (and any supplementary files).
Appendix A. Classical electromagnetic Lagrangian

Let us start from the Maxwell equations in presence of charges and currents and consider a non-magnetic
material,

v.E=" (A.1)
€o
V-B=0 (A.2)
VxE=-0B (A.3)
1
V X B=puo] + C—Z&E. (A.4)

Here J is the electrical current, p is the free charge density, and p is the vacuum magnetic permeability (the
magnetic permeability of the dielectric is = 1, since the material is considered non-magnetic).
The electric and magnetic fields E and B can be expressed in terms of the electromagnetic four-potential

AF = <¢,A> (A.5)

c
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as [48, Chapter 15]

E=—V¢—0A
B=V xA, (A.6)

where ¢ is the electric scalar potential and A is the vector potential. With reference to the geometry described
in figure 1, A is parallel to E = (E,0,0), and it is B = (0, B,0).

We can define a four-current j* = (cp, J), write the continuity equation as d,,j* = 0, and build the
second-rank antisymmetric electromagnetic tensor F,, as F,,,, = 0,A, — 0,A,,. To simplify the equations
which follow without loosing generality, it is customary to exploit the gauge freedom, imposing the Lorenz
gauge [48, chapter 15] J,A* = 0.

The equation 0, F*" = p,j” provides the Maxwell equations equation (A.1) and equation (A.4) for v =0
and v = k, respectively. In the Lorenz gauge, this equation simplifies to

0,0 A = pof” (A7)

that is the equation of motion for the field A”. Importantly, the latter can be obtained from the Euler—
Lagrange equations, equation (4), starting from the electromagnetic Lagrangian density

1
Lem = ——F, F* —j, A", (A.8)
4 " Ju

where j, A" = p¢ —J - Ais the source term. Therefore it is
Lon =2 (10A] = 10.AP) = p6 +T- A, (A.9)
Appendix B. Plasmons classical Lagrangian

The free electrons in the cavity can oscillate with frequency wp) around their equilibrium position,
e.g. following the surface electromagnetic wave that, if excited [29], can propagate along the dielectric/metal
interface of the cavity. The displacement q, (¢) of the kth free electron can be replaced in the continuum limit
by d’rny q(r,t), where q(r,t) is a continuous function, the infinitesimal volume d*r contains nyd’r electrons,
np being the average electron number density in the dielectric. Differentiating, we obtain the electrons
velocity as q,(t) — d*rn q(r, t) and its square as |q, (1)|* — d’rng |q(x, 1) %

In this way, we can write the distribution of the electric dipole moment in the dielectric as eq(r, t), where
e is the electron charge, and the distribution of the electric dipole moment density as P(r, ) = ngeq(r, ).
When differentiated and squared, it yields

AP (r,1) |

[N

2

q(r,0)|" = , (B.1)

from which the total kinetic energy T of the plasma follows as

T() =55 > la ()
k

oy e

t [0 (1) B.2
T /Vdr|6t (x,0) (B2)

and its density 7 (r,t) as

1
T(I‘, t) = m |atP (I‘, t)|2a (B-3)
p

where m. is the effective electron mass and Q) = \/e?ny/(me€) is the plasma frequency.
The kth electron, when it moves away from its equilibrium position, gains a potential energy

1
U = Emewﬁlx la (O, (B.4)
k
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which can be written in the continuous limit as

P(r,t
Ul(t) —%wél/d%no (r,
2 v eny
w2
S /dSrPrtZ (B.5)
e [ e 0
and defines the potential energy density as
T I (B6)
r,t) = r,t)|" . .6
2609}2)1

The Lagrangian density of the SPP plasmonic mode follows as

Lot =T (x,t) —U(x,1)

1
et (102 (e, 0 =y [P (x,)")
pl
1 . 2 2
= ( ap(r, t)‘ —u? ’P(r, t)’ ) (B.7)
having rescaled P to
~ P
Qpiey

Appendix C. Canonical quantization of fields and Hamiltonian

The canonical quantization procedure includes the expansion of the fields into Fourier series. Then, by
elevating the latters to the role of operators, their quantization, obtained by imposing canonical
commutation relations between fields and momenta, leads to the definition of creation and annihilation
operators, through which photons and plasmons appear as excitations of the involved fields.

C.1. Fields expansion
The first step is the expansion of the fields A, P, 114 and Il which appear in the PZW Hamiltonian,
equation (18), into Fourier series,

B(r, 0 —\}Vzﬁ (0
Il (x.1) =¢}ZH 0
Alr.1) =¢1V;ei“Aq ®
T (1, 1 =¢1V§qjei“mq (0, (1)

which leads to the Hamiltonian density

ip+a)r | T, II -DALA ~ ~
e
Hpzw = Z Ah P 115 15+ wpl,pwpl,gPpPq

p:q 2V c Ho
He Hpl
200, ~ ~ ~
+ BT, P+ Q3P - P, | . (C.2)
\/5 A, Ep leP q
int,2
Hint,l

‘H. and H,,; are the free photons and plasmons Hamiltonian densities, while H;y,,; is the plasmon—photon
(SPP-EC) coupling term, it is responsible for the avoided-crossing behavior and represents the SPP-EC
interacting energy density. The term iy is a plasmon self-coupling term, and it represents the plasmons
self-coupling energy density.
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C.2. Quantizing the fields
Now, by elevating fields and momenta to the role of operators that act on a Hilbert space, we impose the
equal-time commutation relations

AG). T ()| =ih6 (x—)

[P (). 105 (y)] =ih® (x ). (C3)

while all the other commutators are zero. Then, by introducing appropriate creation (annihilation) operators

ab, bl (aq,by) as

A I
_ 5+t
4= ZGOCUC,p ( d +aq)
iy, =~ iy 7 (3, )

~ . hw 17 ~ A~
Iy, = — iy =22 (b, ~ 8}, (C.4)

[ﬁqv‘ip] = [‘ﬁ;"i;] =0

(b, | = |55, 55] =0

[&q’&;] =0q.p

[b0,55] =4 (C.5)

By plugging equation (C.4) into equation (C.2), exploiting the commutation relations in equation (C.5) and
integrating on V, we obtain the total Hamiltonian in the Second Quantization formalism as

R . 1 apa 1
Hpzw = Z hwc,q (a(-;aq + 2) +;—lwp1,q <b2;bq + 2)

q
A, Hy
— ity (g = a}) (boq + b1 ) +16 (b +B]) (b-q+1,) | (C.6)
where
2
S I . (C.7)
2 wpl7q7 2wpl,q
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