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Abstract. Within the geometrodynamic approach to quantum cosmology, we studied the
quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected
by quantum gravity due to spacetime fluctuations and the power spectrum as well as any
probe field will experience the effective temperature, a quantum gravity effect.

1 Introduction

Recent remarkable observations have made cosmology a science of precision. The more precise and
accurate cosmological observations are, the more likely the possibility of quantum gravity effects are
to be measured. In this talk, we review a quantum gravity effect in cosmological observations. There
have been proposed different approaches to quantum gravity (for a review, see [1]). In partciular, the
geometrodynamical approach to quantum gravity and cosmology seems to be practically useful in
that the transition from quantum gravity to semiclasical gravity and then to classical gravity including
quantum corrections for the Einstein and the energy-stress tensors prescribes dynamical laws and
correlations in terms of classical cosmology variables and parameters [2].

The Wheeler-DeWitt (WDW) equation is the quantum law for the geometrodynamical approach
to quantum gravity, which becomes a relativistic wave equation in the superspace of the scale factor
a and an inflaton φ for a Friedmann-Robertson-Walker universe. The scattering formulation of the
two-component wave was advanced in Refs. [3, 4]. The Born-Oppenheimer interpretation of the
WDW equation with respect to the Planck scale for gravity part and the energy scale for the inflaton
separates the gravity part from the inflaton part and a further application of de Broglie-Bohm pilot-
wave theory results in the classical equation together with quantum corrections of gravitational and
field fluctuations [5, 6] (for references, see [2]). The quantum cosmology for an inflationary model
with inhomogeneous fluctuations predicted the power spectrum with quantum corrections, which is
suppressed at large scales and provides a weaker upper bound on the Hubble constant H than the
tensor-to-scalar ratio [7]. Other quantum gravity effects may be found in Ref. [8].

The main purpose of this proccedings’ article is to compliment the recent discovery that the quan-
tum cosmology results in an effective Gibbons-Hawking temperature due to quantum fluctuations [9].
To do this, we provide two new methods to find approximately the solution to the WDW equation for
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the FRW universe with a cosmological constant: the WKB approximation method and the Liouville-
Green function method. From the wave function we can calculate the quantum potential, which gives
rise to the quantum corrections to the semiclassical gravity. We then solve the semiclassical equation
for the Eucliean geometry to find a periodic solution, whose period is the inverse temperature for the
dS space in the sense of Ref. [10]. This approach may be an alternative to the gravitational instan-
ton method [11]. Finally, we show that a probe field experiences this periodicity, which justifies the
physical meaning of the temperature for dS space with quantum corrections.

2 de Broglie-Bohm Pilot-Wave Theory for Quantum Cosmology
The quantum cosmology based on the WDW equation leads to the semiclassical cosmology with
quantum corrections as will be shown below. The WDW equation for a spatially closed FRW universe
with a cosmological constant Λ, i.e, pure dS space, takes the form

[
−l2p
∂2

∂a2 +
1
l2p

(a2 − H2
Λa4)
]
Ψ(a) = 0, (1)

where lp =
√

4πG/2 is the Planck length. Introducing a dimensionless variable x = a/lp and a
constant H̄Λ = HΛlp, the WDW equation describes a quantum problem with the zero energy for an
inverted Mexican hat potential

[
− d2

dx2 + x2 − H̄2
Λx4
]
Ψ(x) = 0. (2)

We now apply the de Broglie-Bohm pilot theory to Eq. (2) by expressing the solution in the
oscillatory region as

Ψ(x) = F(x)eiS (x), (3)

where F = |Ψ|. Then, the real part of Eq. (2) becomes

S ′2 − F′′ + x2 − H̄2
Λx4 = 0, (4)

and so does the imaginary part

S ′′F + 2S ′F′ = 0. (5)

Substituting the solution F = 1/|S |1/2 of Eq. (5) into Eqs. (3) and (4) is equivalent to the exact
Wentzel-Kramers-Brillouin (WKB) solution or phase-integral formula. The essence of the de Broglie-
Bohm pilot theory is to solve Eqs. (4) and (5) at the same time by regarding F as a functional of
S , i.e., F(S ). In the nonoscillatory region corresponding to a Euclidean spacetime, Eqs. (3)−(5)
may be understood as an analytical continuation from the oscillatory region. In fact, introducing the
cosmological time as the directional derivative of x along the peak of the wave packet

∂

∂t
= −1

x
∂S
∂x
∂

∂x
, (6)

Eq. (4) becomes the semiclassical gravity equation [5, 6]
( ẋ

x

)2
+

1
x2 = H̄2

Λ −
1
x4 Vq(x), (7)

where a dot denotes the derivative with respect to t and Vq = −F′′/F is the quantum potential.
A passing remark is that Eq. (5) and thereby the quantum potential correspond to the flux (prob-

ability) conservation in the de Broglie-Bohm pilot theory of quantum mechanics [12]. On the other
hand, the quantum potential provides a quantum correction in quantum cosmology to the classical
gravity equation since there is no probability concept due to the single nature as a quantum system.
The quantum potential is a consequence of spherical fluctuations of the FRW geometry.
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∂
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x
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ability) conservation in the de Broglie-Bohm pilot theory of quantum mechanics [12]. On the other
hand, the quantum potential provides a quantum correction in quantum cosmology to the classical
gravity equation since there is no probability concept due to the single nature as a quantum system.
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3 Semiclassical Gravity Equation
The quantum gravity effect in a pure gravity contributes the quantum potential to the semiclassical
gravity as shown in Eq. (7). We may apply either the WKP approximation or the Liouville-Green (LG)
transformation method, to the WDW equation (1) or (2). The LG transformation method, however,
reduces to the WKB approximation in the limit of large variable while it also applies to the turning
point up to an additional constant term [3].

From now on, we shall employ the LG transformation method, which rewrites Eq. (2) in terms of
a new variable as [3]

[ ∂2

∂η2 −
(
ηm + ∆(η)

)]
Ψ̃(η) = 0, (8)

where

(∂η
∂x

)2
ηm = Vg(x), ∆(η) = −3

4

(
d2η
dx2

)2
(

dη
dx

)4 +
1
2

(
d3η
dx3

)2
(

dη
dx

)3 . (9)

and

Ψ̃ =

√
dη
dx
Ψ(x), Vg(x) = x2 − H̄2

Λx4. (10)

Note that ∆(η) is proportional to the Schwazian derivative as ∆(η) = (1/2(dη/dx)2)(S η)(x). The
degree m is chosen by the order of roots of Vg(x) = 0. The classical motion is allowed in the region
outside the simple root xH = 1/H̄Λ, so we choose m = 1.

For large x, i.e., the scale factor a bigger than the Hubble radius 1/H̄Λ in the Planckian unit,
∆(η) ≈ 1/η2. In this asymptotic region, we can neglect ∆(η) and solve Eq. (8) in terms of the Hankel
functions as

Ψexp(x) = D1
ξ1/2

V1/4
g

H(2)
1/3(ξ), Ψcon(x) = D2

ξ1/2

V1/4
g

H(1)
1/3(ξ), (11)

where D’s are integration constants and

ξ = i
∫ x √

Vg(x′)dx′. (12)

Here, Ψexp(x) corresponds to an expanding branch of the wave function while Ψcon(x) corresponds to
a contracting branch. In the limit of large x, which belongs to the WKB region,

ξ = −
∫ x √

H̄2
Λ

x′4 − x′2dx′ = −S (x), (13)

the asymptotic form of the Hankel function

H(1)
1/3(ξ) =

√
2
πξ

ei(ξ− 5π
12 ), H(2)

1/3(η) =

√
2
πξ

e−i(ξ− 5π
12 ) (14)

gives the WKB approximation, up to a constant phase,

Ψexp(x) = D1
1
|Vg|1/4

ei(S (x)− 5π
12 ), Ψcon(x) = D2

1
|Vg|1/4

e−i(S (x)− 5π
12 ). (15)

Including correction (9) at the turning point, a straightforward calculation approximately leads to the
quantum potential for large and small x as

Vq(x) = − 2
x2 (x � 1

H̄Λ
), Vq(x) = − 3

4x2 (x ≤ 1
H̄Λ

). (16)
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4 Gibbons-Hawking (GH) Temperature corrected by QC

The semiclassical gravity equation (7) now reads

( ȧ
a

)2
+

1
a2 = H2

Λ +
c(lp)4

a6 , (17)

which is Eq. (16) of Ref. [9]. Here, c = 2 for large a and c = 3/4 for small a. Note that a homogeneous
massless field in the FRW geometry contributes the same form as the spherical fluctuations of the
geometry [13]. The classical gravity has the solution a(t) = cosh(HΛt)/HΛ, which has the Euclidean
solution a(τ) = cos(HΛτ)/HΛ in the classically forbidden region. The Gibbons-Hawking temperature
is the inverse of the periodicity TGH = HΛ/(2π) as shown in Ref. [10]. A probe field in the dS space
experiences this periodicity, whose correlation function exhibits the Bose-Einstein or Fermi-Dirac
distribution with the Gibbons-Hawking temperature.

We now solve Eq. (17) in the Euclidean time τ = it in the Euclidean spacetime by the quadrature
method, which leads to the periodicity

τ = 2
∫ a+

a−

da√
1 − H2

Λ
a2 − 3(lp)4

4a4

=
2

HΛ

∫ u+

u−

√√ u
u2

H2
Λ

− u3 − 3(lp)4

4H2
Λ

du, (18)

where u = a2 and another factor of two is multiplied in the second line in order to include the motion
in the region of a ≤ 0. Equation (18) is the complete elliptic integral of third kind [14]

τ =
2

HΛ

∫ u+

u−

√
u

(u+ − u)(u − u−)(u − u0)
du, (19)

where u± are two positive roots of the cubic equation of u in Eq. (18). We may perturbatively find the
roots as

u+ =
1

H2
Λ

− 3
4
(
HΛlp

)2
, u− =

√
3

2
l2p (20)

and, by neglecting the term l4p/H
2
Λ
= (RHlp)2l2p with the Hubble radius RH = 1/HΛ, integrate approxi-

mately as

τq ≈
2

HΛ

(
arcsin(1 − 3

2
(HΛlp)4) + arcsin(1 −

√
3(HΛlp)2)

)
. (21)

Thus, the temperature from the inverse periodicity is approximately given by

Tq =
HΛ
2π

(
1 +

(12)1/4

π
HΛlp

)
(22)

and confirms the result from Ref. [9]. The quantum correction to the Gibbons-Hawking temperature
is the order of HΛlp.

5 Conclusion

In this paper, we have studied the quantum effect of spherical fluctuations of spacetime to the Gibbons-
Hawking temperature. For this purpose, we have employed the semiclassical gravity theory based on
the WDW equation and provided the semiclassical gravity for a pure gravity with the LG transforma-
tion method to calculate the quantum potential. The LG transformation method reduces to the WKB
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5 Conclusion

In this paper, we have studied the quantum effect of spherical fluctuations of spacetime to the Gibbons-
Hawking temperature. For this purpose, we have employed the semiclassical gravity theory based on
the WDW equation and provided the semiclassical gravity for a pure gravity with the LG transforma-
tion method to calculate the quantum potential. The LG transformation method reduces to the WKB

approximation in the limit of large variable. The LG transformation method approximately gives the
wave function itself in terms the Hankel functions, from which the amplitude and thereby the quantum
potential can be analytically derived. We noted that both the methods confirm the Gibbons-Hawking
temperature corrected by quantum gravity to be consistent [9].

We now provide a physical reasoning why a probe field could measure the effective Gibbons-
Hawking temperature in this paper. A homogeneous probe field φ of a light mass m does not give a
back-reaction enough to change the spacetime itself governed by the semiclassical gravity and obeys
the equation of motion in the Cauchy formulation of the first order:

d
dt

(
φ
φ̇

)
=

(
0 1
−m2 −3 ȧ

a

) (
φ
φ̇

)
. (23)

The Floquet theory guarantees the periodicity for the probe field and its correlation function due to
the periodicity of the semiclassical gravity (17) for the FRW universe. Thus, the semiclassical gravity
goes beyond the classical FRW geometry with a stationary Killing vector but preserves a similar
property. The Gibbons-Hawking temperature corrected by quantum gravity is a physical one to be
measured by the probe field [15] and seems to be universal. The power spectrum of inflation models
is similarly expected to have the quantum gravity effect due to the effective temperature.
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