Small x Parton Distributions and Initial Conditions for
Ultrarelativistic Nuclear Collisions

At Brookhaven’s Relativistic Heavy Ion Collider (RHIC) and at CERN’s Large Hadron
Collider (LHC) nuclei will be smashed together at energies of 100 GeV and 2.7 TeV per
nucleon, respectively, with the expectation of creating an exotic, short-lived state of matter
called the quark-gluon plasma. The initial conditions which determine the dynamical evo-
lution of this plasma depend crucially on the small x, or longitudinal momentum, compo-
nent of the nuclear wavefunction before the collision. I discuss recent work which argues
that, for large nuclei, weak coupling techniques in QCD can be used to calculate the distri-
bution of these small x, wee partons. The ramifications of this approach for the dynamics
of heavy ion collisions and for the various signatures of quark-gluon plasma are discussed.
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1. INTRODUCTION

What does a nucleus look like when it is boosted to relativistic energies?
The special theory of relativity tells us that the nucleus must contract a
distance R/y in the direction of its motion, where R is its radius and y > 1
is the Lorentz factor. If we increase 7y indefinitely, do we expect the lon-
gitudinal size of the nucleus to shrink to zero? Would this be consistent
with the uncertainty principle of quantum mechanics? What would it
mean in terms of the underlying parton degrees of freedom? What hap-
pens to its transverse size—does it approach a constant at asymptotic
energies or does it keep growing?'
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With the advent of the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory in 1999 and the Large Hadron Collider
(LHC) at CERN about five years later, the above questions are not
merely academic but are extremely relevant for understanding these col-
lisions. The primary objective of heavy ion collision experiments at
these energies is to investigate the dynamics of quarks and gluons at high
energy density, often called the quark-gluon plasma, and a transition to
more familiar hadronic matter.” The formation of the plasma will depend
sensitively on the answers to these questions.

In this Comment I will discuss recent work®'®?® which seeks to
answer the above questions quantitatively by addressing the problem of
initial conditions for nuclear collisions within the the framework of
Quantum Chromodynamics (QCD). The center of mass energies of the
colliding nuclei at RHIC and LHC are 100 GeV and 2.7 TeV per
nucleon, respectively. Since these energies are far greater than the mass
of a proton or neutron, the appropriate degrees of freedom must be
quarks and gluons, whose interactions are described by QCD.

The properties of quarks and gluons in the nuclear wave function at
very small values of x = k,/+/s turn out to be very relevant for the descrip-
tion of ultrarelativistic nuclear collisions in the center of the momentum
frame. (The standard notation is that x is the light cone fraction of the
nuclear momentum carried by the quark or gluon, £, is its transverse
momentum, and /s is the center of mass energy). Recently there has been
renewed interest in QCD at small x because of the results of the deeply
inelastic electron-proton scattering experiments for Q% > Adcp at the
HERA machine at DESY in Hamburg and the nuclear shadowing exper-
iments at Fermilab and CERN. (For an excellent introduction to the field,
see Ref. 11.) The results of the HERA experiments show a very rapid rise
in parton density for x << 1. This has been explained by the conventional,
leading twist, double leading log approximation in the operator product
expansion known as the DGLAP equation'>'*!> and by the less conven-
tional BFKL equation'54? (both acronyms are named after the initials of
their respective authors). However, in the asymptotic limit x — 0, neither
of these approximations can be correct because they would both violate
the unitarity bound on the growth of cross section at high energies.'*

At very small x, parton densities become very large and many-body
effects become important. Consequences of parton overcrowding are
that two soft partons may recombine to form a harder parton or a parton
may be screened by a cloud of surrounding wee partons.'”!® These
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processes inhibit the growth of parton distributions which saturate at
some critical x. Indeed, these processes become important in nuclei at
larger values of x than in nucleons. This may explain the strong A-
dependent shadowing seen in the deep inelastic scattering (DIS) of lep-
tons off nuclei at Fermilab and CERN. !

Gluon distributions extracted from the nuclear structure function /% at
small x can be used to determine the dynamics after a nuclear collision,?°
Using the QCD factorization theorem, products of the probabilities of
finding a parton in the nucleus may then be convoluted with the elemen-
tary parton-parton cross sections to determine parton scattering rates.
However, factorization breaks down at small x, when coherence effects
become important. Partons from one nucleus, which have the typical trans-
verse momenta relevant for mini-jet processes, of 1-5 GeV, cannot resolve
individual partons from the other nucleus. As is usual in the quantum the-
ory of scattering, one needs to take the overlap of the wavefunctions for
these quanta or, more specifically, the small x Fock component of the
nuclear wavefunction to determine the subsequent time evolution.

This question about the nuclear wavefunction is best formulated on
the light cone using the method of light cone quantization.?' The light
cone QCD Hamiltonian is separable into a kinetic term and a potential
term. Alfred Mueller has shown that for heavy quarkonia, where the
scale of the coupling constant is set by the mass of the onium, light cone
perturbation theory can be used to construct multiparton eigenstates at
small x.22 Unfortunately, despite many attempts which all go under the
label of Light Front QCD, only limited success in the nonperturbative
sector has been achieved.?

One can argue that when the density of partons is extremely large, at
very low x in a nucleon or in extremely large nuclei, the density of partons
sets the scale for the running of the coupling constant. In other words, if

= = 3 Adep, (1)

then o, (p) < 1. Here I will discuss specifically the application of weak
coupling techniques in large nuclei A >> 1 at small values of x < A™'3,
An intrinsic scale in the problem is set by the quantity g? ~ A" fm2,
which is the valence quark color charge squared per unit area. Since it is
the only scale in the problem, the coupling constant will run as a function
of this scale.’
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First I will motivate a partition function for the parton distributions at
small x in the presence of the valence quarks which play the role of exter-
nal sources. The background field for this theory is the non-Abelian ana-
logue of the well-known Weizsicker—Williams field in quantum
electrodynamics.?® The parton distribution functions are formally
expressed as correlation functions of a two-dimensional Euclidean field
theory with the effective dimensionful coupling ¢ t. The correlation
functions are expanded order by order in ¢ but involve an infinite
resummation to all orders in ogue.*

Lattice results?’ show that this classical theory does not generate a
screening mass of order oyu as anticipated, but is instead infrared diver-
gent. In a recent preprint, J. Jalilian-Marian et al.?® argue that the theory in
Ref. 4 is ill-defined in the infrared because the authors did not properly
regulate a singular term in the classical equations of motion. When prop-
erly regulated, the classical equations can be solved analytically. The the-
ory does not generate a screening mass, but the dependence of distribution
functions on an infrared scale is only logarithmic. Rather remarkably, the
solution of the classical problem by J. Jalilian-Marian et al. lerids itself to
a renormalization group picture of the quantum corrections at small x.

Nuclear collisions are addressed next. Within the above picture, nuclear
collisions can be understood as the collision of two Weizsidcker—Williams
fields. Since the fields are non-Abelian, the classical gluon field generated
after the collision is obtained by solving the nonlinear Yang—Mills equa-
tions with boundary conditions specified by the Weizsicker—Williams
field of each nucleus.”!° In the central region of the collision one sees the
highly non-perturbative (in ¢ut) evolution of the Weizsicker—Williams
glue and sea quarks. The time scale for the dissipation of these nonlineari-
ties is ~ 1/oyu. For times much larger than this the evolution of these fields
can be described by the hydrodynamic equations proposed by Bjorken.>
The quantum picture of nuclear collisions is also discussed briefly in the
context of the onium picture of Mueller.

Finally I will briefly discuss points of commonality as well as differ-
ence between the Weizsicker—Williams model and other models of
nuclear collisions, both in their conceptual foundations and in their pre-
dictions for the experiments which will be performed at RHIC and LHC.
These include the parton cascade model of Geiger and Miiller®* and
the HIJING cascade of Wang and Gyulassy,*' the various string frag-
mentation models,®! and the color capacitor models®? which are the QCD
analog of the Schwinger mechanism in quantum electrodynamics.
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2. COMPUTING PARTON DISTRIBUTIONS FOR
A LARGE NUCLEUS

In this section the problem of calculating parton distributions in the
nuclear wavefunction is formulated as a many-body problem in the infi-
nite momentum frame using the technique of light cone quantization. For
an excellent discussion of the advantages of light cone quantization we
refer the reader to Ref. 21. In light cone quantization and light cone
gauge, the electromagnetic form factor of the hadron F, measured in
deep inelastic scattering experiments is simply related to parton distrib-
utions by the formula??

F(x,0%) = J'Q2 d2k,dk+x6(x - Ili—i) 2((1{%). 2)

A=%l

Here we use natural light cone coordinates: P* is the momentum of the
nucleus, k* and k, are the parton longitudinal and transverse momenta,
respectively, x is the light cone momentum fraction, Q? is the momentum
transfer squared from the projectile, and a'a is the number density of
partons in momentum space. One only need integrate the distributions up
to the scale Q* to make comparison with experiment.

2.1. A Partition Function for Wee Partons in a Large Nucleus

In QED the infinite momentum frame wavefunction of a system in an
external source is a coherent state.? Failing to do the same in QCD we
compute ground state expectation values instead. The partition function
for the ground state of the low x partons in the presence of the valence
quarks, treated as an external source, is

2= (0ler10) = i S (vl ) ®
N

o
Here P~ (the generator of translations in light cone time x™ = (¢ + x)/+/2)
is the light cone QCD Hamiltonian. It can be split separately into kinetic
and potential pieces. The sum above implicitly includes a sum over the
color labels of the sources of color charge (denoted Q) generated by the
valence quarks.

Valence quarks are predominantly found at large values of x. It is
therefore reasonable to assume that they constitute the sources of the
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external charge seen by the wee partons. The current due to the valence
quarks is taken to be

Ji = 6% p,(xt %, )8 (x). @

In the gauge A* = 0, the static component J* is the only large component
of the valence quark current. The transverse and minus components are
proportional to 1/P* (P* is the light cone momentum of the nucleus) and
are therefore small. The current seen by the wee partons is proportional
to 6(x") if the valence quarks are Lorentz contracted to a size which is
much smaller than a co-moving wee parton’s wavelength. This is satis-
fied if x << 1/Rm ~ A~'", where R is the nuclear radius.

Evaluating the trace in the partition function for quantized sources of
color charge is difficult. Resolving the transverse space into a grid of
boxes of size d’x, > 1/p (or parton transverse momenta g2 << p) which
contain a large number of color charges, the sum over color configura-
tions above can be performed classically.> We average over the color
charges by introducing in the path integral representation of the partition
function the Gaussian weight

exp {—#J.dzx,pz (x)}, %)

where p is the color charge density (per unit area) and the parameter y?
is the average color charge density squared (per unit area) in units of the
coupling constant g. It can be written as

ﬂz = pval<Q2> = 322;1 2 ~11AY3 fm2, (6)

where Q% = 4g%3 is the average color charge squared of a quark.
We can now write the partition function Z in the light cone gauge
=0 as
z = [[dA, dA,)[dy"dy][dp]
X exp (iS +ig[d*xA,(x)8 (x)p(x) — 5 j dx,p*(0, x, )) ©)
The result of our manipulations is to introduce a dimensionful parameter

12 = 1.1 A" fm™ in the theory. For an alternative justification of our
Gaussian averaging procedure and the A dependence of 12, see Ref. 45.
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2.2. The Classical Background Field of a Nucleus

The procedure followed in Ref. 4 to compute classical gluon distribu-
tions from the above partition function was to find the classical back-
ground field in the presence of external sources, compute correlation
functions in this background field, and then integrate over the Gaussian
random sources.

The solution of the classical Yang—Mills equations in the presence of
the external current of Eq. (4) is given by the background field: A* =0,
Ai(x) = 8(x) ax,). The two-dimensional gauge field o satisfies the
physical gauge condition V - &= gp(x,), where p(x,) is the color charge
density of the valence quarks. Also, because the field strength 7, =0, &,
is a pure gauge: 7+ a; = —(1/ig)UV,U", where U is an SU(N,.) compact
gauge field. Combining the two equations results in the highly non-lin-
ear stochastic differential equation for the U’s:

V.UVU' =-ig’p(x,). (8)

To compute the correlation functions (& {(x,)a’(y,)) associated with
our classical solutions, we must solve the above equation and integrate
the rho-dependent gauge fields with the Gaussian weight in Eq. (5) over
all color orientations of the external sheet of color charge. It was argued
in Ref. 4, on dimensional grounds, that the gluon distribution function
has the functional form

1 dN NZ-1)1 1
7rR2dxd2k,=( e )}(ZH(]"Z/“?”Z)’ ®)

where H(ki/a;u%) is a non-trivial function of the effective coupling
k, /ot In the weak coupling limit k, > g*u, H(y) — 1/y and one obtains
the Weizsicker—Williams result,

I _dv_ _op*(NZ2-1) 1

TR dxd’q, m? xq?’ (10)

scaled by p% In the strong coupling region k, << g4, where the classical
correlation functions have to be solved for numerically, it was conjectured
that H(k*/ 02u?) o= o p®/(k? + M?). Here M, ~ ol is a screening mass
which regulates the divergence of the distribution function at small k,. If
such a screening mass did exist, it would provide a simple understanding
of saturation already at the classical level.
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Unfortunately, this turns out not to be the case. R. Gavai and 1 have
computed the classical correlation functions numerically. This required
solving stochastic difference equations on a two-dimensional lattice using
the conjugate gradient method.?” Our results suggest the following. Weak
coupling on the lattice holds when 0.2g°uL << 1, where L is the lattice
size, and strong coupling holds when 0.2g%uL > 1. In the weak coupling
limit, our results indicate a discrete transverse momentum dependence
which is of the 1/k? Weizsiicker—Williams form. As one increases g?ul ~
5, the lattice results still agree reasonably well with the analytical lattice
expression, albeit one notices an increasing trend of fewer solutions to the
lattice equations at the a* level (a is the lattice spacing). For larger values
of g2uL > 10, no solutions exist at the a* level. This result shows that the
classical theory in Ref. 4 is ill-defined in the infrared.

J. Jalilian-Marian et al.? have pointed out that the classical theory in Ref.
4 is flawed because the authors failed to properly solve the Yang—Mills
equations for the transverse components A’ of the classical field. The prob-
lem originates with the delta function singularity (in the longitudinal light
cone coordinate x”) assumed for the valence quark current in Eq. (4). If one
regulates the source such that instead of a -function in x7, the color charge
density p depends on the spacetime rapidity y =—log (x7), the equation for
the transverse fields A’ can be re-written as

dA'
Di—(g:gp()"x:), (11
where D, is the covariant derivative. The Gaussian weight in Eq. (5) is
simultaneously modified to

exp{—ij.de,Trpz(y,x,)}, (12)

where y = | ; 13y, Q°) is the charge squared per unit area at rapidities
greater than y and transverse momenta of the order Q* at which we mea-
sure the distribution function.

With these modified source distributions, Jalilian-Marian et al. find that
the classical equations can now be solved and an analytic solution found
for the classical correlation functions.?® They find that the classical gluon
distribution function at large momentum retains the Weizsidcker—Williams
form, while at small momenta, dN/dk?~ log(k?/x(y,k?)). At low momenta
the distribution is constant up to logarithmic corrections—the dependence
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on the strong interaction scale Aqcp is weak. As we shall see in the next
section, this solution of the classical problem naturally lends itself to a
renormalization group picture of the quantum corrections at small x. Note
that a similar approach to that of Ref. 28 is advocated in interesting recent
work by Balitskii.**

2.3. Quantum Corrections to Background Field

Quantum corrections to the classical distributions can be computed sys-
tematically using the Dyson—Schwinger expansion.*® In Ref. 6, the small
fluctuations propagator for the non-Abelian Weizsicker—Williams fields
was computed in light cone gauge. This expression was then used in Ref.
7 to compute the one loop corrections to the background field and the
gluon distribution function.

One finds that the modifications to the background field introduced
by quantum fluctuations do not induce extra terms in the expression for
the distribution function.” This is consistent with the theorem of
Dokshitzer, Diakonov and Troyan.* The effect of quantum corrections
to the background field can be included entirely by replacing the cou-
pling constant g by the renormalized coupling constant gz which runs as
a function of g% The structure of the background field at one loop
remains unchanged.

The perturbative expression for the gluon distribution function to sec-
ond order in o, is’

1 aNn _our(N2-1) 1 20 NC 1
= Ly 1( r”) m(x) .13

7 R? dx d*k, i xk;

The above equation contains both In(1/x) and In(k,) corrections to the
1/(xk?) distribution and they represent the leading first order contribu-
tions to the perturbative expansion for the distribution function. These
terms are large in the kinematic range of validity. This signals that in
order to properly account for the perturbative corrections one has to
devise a mechanism to isolate and sum up these leading corrections.

In the original version of our model (discussed in Refs. 7 and 8), the
only sources of color charge were the valence quarks localized in x~ on
the light cone. The derivation of the effective action in Eq. (7) for the
wee partons followed simply from this ansatz. However, this distinction
is questionable since one may expect that hard gluons at rapidities larger
than a particular rapidity value will act as sources of color charge to glu-
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ons at that rapidity. Furthermore, since gluons at this rapidity will act as
sources to soft gluons at lower rapidities, the “back-reaction” of these
soft fields must also be accounted for.

In their recent work, Jalilian-Marian ef al. have shown that both these
effects can be included in a Wilson renormalization group approach.?®
The approach is as follows. One defines the spacetime rapidity y = y,,; +
In(x7/x) where y,,.; is the rapidity of the valence quarks and x, = R/y, where
y is the Lorentz factor (we expect that yyyceime = Ymom). Divide the parton
rapidities between y,,; and minus infinity into rapidity slices and consider
the wee partons in a particular rapidity slice, say between yy and yy,,.
Assume as in our previous ansafz that partons at all rapidities above y,, act
as classical sources and the classical background field at yy, is as described
in the previous section. The partons in the rapidity slice are also coupled to
the soft fields at rapidities less than yy, ;. One then obtains the effective
action for the partons at the rapidity yy, by integrating over the small fluc-
tuations in the rapidity interval yy,; <y <yy (or Py, < P* < P}).

Since the longitudinal momenta in the slice P}, < P* < P}, are not arbi-
trarily small, ¢ In(1/xy) << 1. Therefore the quantum fluctuations inte-
grated over are not large. The new effective action for the N + 1th rapidity
slice has exactly the same structure as the original effective action, and
one can show that the charge squared per unit area y = j Uy, 0% obeys
the evolution equation

(0 0y d0* = gr (@t (h ). (4
where (o(y, Q%)) is the classical background field. When the above equa-
tion is integrated over y, one obtains a DGLAP-like equation; when inte-
grated over Q% one obtains a BFKL-like equation. Within this unified
approach it is now possible to systematically incorporate the non-linear-
ities which eventually lead to the saturation of parton distributions.
Much work remains to be done in this direction.

3. NUCLEAR COLLISIONS OF WEIZSACKER-WILLIAMS FIELDS

In the previous section, we discussed the properties of the Weizsicker—
Williams field of a single nucleus. Recently, A. Kovner, L. McLerran and
H. Weigert>'° have made significant progress in solving the classical
problem of the evolution of these fields after the nuclear collision.
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Before the two nuclei collide (z < 0) the Yang—Mills equations for the
background field of two nuclei on the light cone are A* =0 and

AT =0(x7)0(—x")ai(x ) +0(x*)0(—x)ab(x,). (15)

The two-dimensional vector potentials are pure gauges, as in the single
nucleus problem, and for t < 0 solve V - o , = gp, 2(x1). The interesting
aspect of this solution is that the classical field configuration does not
evolve in time for z < Q! This is a consequence of the highly coherent
character of the wee parton clouds in the nuclei.

The above solution for t < 0 is a fairly straightforward deduction from the
single nucleus case. The above-mentioned authors find a non-trivial solu-
tion to the field equations after the nuclear collision (¢ > 0). It is given by

At =dxtalra); A =ai(t.x) (16)

where T = \/?2 — 7% = +[2x*x . The relation between A* follows from the
gauge condition x* A~ +x~ A* = 0. This solution only depends on longitu-
dinal boost invariant variable T and has no dependence on the spacetime
rapidity variable y = (1/2) In(x*/x"). Therefore the parton distributions will
be boost invariant for all later times. This result supports Bjorken’s
ansatz® for the subsequent hydrodynamic evolution of the system.

The above ansatz for the background field can be substituted in the
Yang-Mills equations to obtain highly non-linear equations for a(z, x,)
and o} (7, x,). The detailed expressions are given in Ref. 10. The initial
conditions for the evolution of these equations will depend on the single
nucleus solutions.

The Yang-Mills equations with the Weizsidcker—Williams boundary
conditions are solved in Ref. 10 perturbatively by expanding the fields in
powers of the valence quark charge density p. Since one now has the
complete classical solution for a single nucleus, it is likely that a com-
plete solution to all orders can be obtained for the field of two nuclei.

For asymptotically large 7, Kovner et al. find that a gauge transform
of the fields « and o] (denoted here by € and €], respectively) have the
form

d*k, 1 . |
e“(r,xl)=J.(2n_)l2\/——{a,(kl)me‘“l “”+c.c.},
d? kl 1

e(mx) = I(Zn) 20

{ag(k L) e + c.c.}, (17)
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where «| and a, can be expressed in terms of the p fields. In this equa-
tion, the frequency is @ = | k, | and the vector k' = /k// w.

With the above form for the fields, the expressions for the parton num-
ber densities is straightforward. For late times, near z = 0, one obtains*?

dydzk (2 ¥ ZI kP, (18)
Averaging over the p fields with the Gaussian weight in Eq. (5), one
obtains the following result for the gluon distribution at late times after
the nuclear collision:

I dN 160} jrn oM
— = N -1 |
nR> dyd’k,  n° A = )k4 n( ‘,u) (19

As suggested by the logarithm, the transverse momentum integrals are
infrared divergent. They are cut off by a mass scale o. However, as
discussed earlier, the theory does not contain such a mass scale in the
infrared, and a weak logarithmic dependence on the QCD scale will per-
sist. How this may be regulated is an interesting question which should
be addressed in future works.

Thus far we have only discussed the dynamical evolution of the clas-
sical fields. What about quantum effects? One way to include these is to
do what we did for a single nucleus: look at small fluctuations around the
background field of two nuclei.*® The background field in this case is
much more complicated than in the single nucleus case and the quantum
problem is significantly more difficult. Another approach is to consider
what quantum effects do to the coherence of the initial wavepacket.

In this regard, A. H. Mueller’s* formulation of the low x problem is
relevant. For an onium (heavy quark—anti-quark) state, the coupling is
weak, and it is shown that the the n-gluon component of the onium wave-
function obeys an integral equation whose kernel in the leading logarith-
mic and large N, limit is precisely the BFKL kernel.!® The derivation
relies on a picture in which the onium state produces a cascade of soft
gluons strongly ordered in their longitudinal momentum; the ith emitted
gluon has a longitudinal momentum much smaller than the i — Ith.

In the large N, limit the n gluons can be represented as a collection of
n dipoles. Hence, in high energy onium-onium scattering, the cross sec-
tion is proportional to the product of the number of dipoles in each
onium state times the dipole-dipole scattering cross section.?* This cross
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section is given by two gluon exchange, the pomeron. More complicated
exchanges involving multi-pomerons have been studied recently by
Salam.*” However, despite the mathematical elegance and simple inter-
pretation of the onium approach, it is unclear whether it can be extended
to nuclei.

4. PARTON CASCADES AND COLOR CAPACITORS

In this section we will discuss the relation of the present model to some
other approaches to model the initial conditions for ultrarelativistic
heavy ion collisions. They may be broadly, and somewhat imprecisely,
classified as follows: (a) perturbative QCD based models which assume
the factorization theorem and incoherent multiple scattering to construct
a spacetime picture of the nuclear collision, and (b) non-perturbative
models where particle production is based on string fragmentation or
pair creation in strong color fields.

Among perturbative QCD based models, the parton cascade model of
Geiger and Miiller®*° has been applied extensively to study various fea-
tures of heavy ion collisions. The evolution of classical phase space dis-
tributions of the partons is specified by a transport equation of the form

[a% =% ai] F(pa5s1) = Co(p5s1). (20)

where F, are the classical phase space distributions for particle type a
and C,, is the corresponding collision integral. The matrix elements in the
collision integral are computed from the relevant tree level diagrams in
perturbative QCD.

The initial conditions in the parton cascade model are specified at some
initial time ¢ = 1, by the distribution F,(p, r, t =) = P,(p, P) R, (r,R). The
momentum distribution P,(p, P) = f,(x, Q3)g(p,) is decomposed into an
uncorrelated product of longitudinal and transverse momentum distribu-
tions, respectively, where f, (x, Q%) is the nuclear parton distribution which
is taken from deep inelastic scattering experiments on nuclei at the rele-
vant Q% and g(p,) is parametrized by a Gaussian fit to proton-proton scat-
tering data. The spatial distribution of the partons is described by a
convolution of a Woods—Saxon distribution of nucleons in the nucleus and
an exponential distribution of individual partons within each nucleon.

125



Another model which takes as input the perturbative QCD cross sec-
tions is the HIJING model*®*! which describes nuclear scattering in an
eikonal formalism which convolves binary nucleon collisions. In both
models, detailed predictions have been made for various observables at
RHIC, particularly for mini-jet production.

Where these approaches differ significantly from the Weizsicker—
Williams approach is in the factorization assuraption, namely, that partons
from one nucleus resolve individual partons of the other in each hard scat-
tering. We have argued that the small x partons which dominate the physics
of the central region instead have highly coherent wave-like interactions.
This results in a very different spacetime picture for the nuclear collision—
at least for the primordial stage of the nuclear collision. For instance,
because of the intrinsic p, ~ i carried by the Weizsicker-Williams (or
equivalent) gluons, gluon production is enhanced by a factor ¢ relative to
the lowest order gg — gg mini-jet process in a cascade. A simple explana-
tion for this enhancement is that because the valence quarks absorb the
recoil, two off-shell equivalent gluons can combine to produce an on-shell
gluon. This will impact significantly the many signatures to be studied at
RHIC and LHC, such as jet, dilepton and photon production. Further, the
intrinsic p, of the gluons ensures that intrinsic charm and strangeness pro-
duction is significantly greater in the Weizsicker—Williams model.’

The non-perturbative stringy models®' primarily attempt to describe the
soft physics in ultrarelativistic nuclear collisions and so it is not clear that
there is much overlap with the Weizsidcker—Williams model. However, the
latter does provide some insight into one of these approaches, which we
shall dub the color capacitor approach. Here it is assumed that the nuclei
generate a homogeneous chromo-electric field which produces particles
non-perturbatively by a mechanism analogous to the Schwinger mecha-
nism for strong electromagnetic fields. The evolution of these fields,
including back-reaction, is determined by a Boltzmann-like equation
where the source term now is given by the pair production rate. 3233

An important assumption in these color capacitor models is that of
homogeneity of the initial field configurations. However, the results dis-
cussed in the previous section suggest that the Yang—Mills fields are
highly non-linear and inhomogeneous. The time scale for the dissipation
of the non-linearities in the fields is 7> 1/o (. It would be interesting
to see how the solutions to the transport equations are modified for ini-
tial conditions given by the inhomogeneous Weizsédcker—Williams field
configurations.
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5. CONCLUSIONS

I have outlined in this Comment a QCD based approach to describe the
initial conditions for ultrarelativistic nuclear collisions. The central
region of these collisions is dominated by wee partons which carry only
a small fraction of the nuclear momentum. We have argued that for very
large nuclei these partons are only weakly coupled to each other.
However, due to their large density, many-body effects are important.
The classical behavior of these quanta, which is the QCD analogue of the
Weizsicker—Williams equivalent photons, can be described by an effec-
tive two-dimensional field theory. Quantum effects are treated by con-
structing the small fluctuations propagator in the background field of
these quanta and by applying a Wilson renormalization group approach
to compute the effective charge which is the source for these quanta.

An important objective of this approach is to understand if there is a
Lipatov region in nuclei where the parton densities grow rapidly and if the
shadowing of parton distributions in nuclei can be understood to result from
the precocious onset of parton screening. It is probable that deep inelastic
scattering experiments off large nuclei will be performed at HERA in the
near future.* If so, one may expect unprecedented high parton densities and
interesting and perhaps unexpected phenomena in these experiments.

These experiments at HERA would nicely complement the heavy ion
program at RHIC and especially LHC since they probe the same range of
Bjorken x. The results of these experiments would therefore place strong
bounds on mini-jet multiplicities and other signatures of nuclear colli-
sions. Note that these observables are extremely sensitive to the initial
parton distributions (for a discussion, see Ref. 20). However, to fully
understand the dynamics of nuclear collisions at central rapidities, we
have to understand the initial conditions ab initio—preferably in a QCD
based approach like the one discussed in this paper.

At the moment there are still many open questions which remain unre-
solved. An empirical question regards the applicability of weak coupling
methods to large nuclei. Obviously the bare parameter y? ~ A" fm=2 is
not large enough for realistic nuclei. However, we have argued on the
basis of the renormalization group approach that this parameter should
effectively be larger and should grow with the increasing parton density
at small x. These arguments must be made more quantitative. We would
also like to understand better how non-linear effects may be computed
self-consistently in this approach.
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Despite the many technical problems that remain, there is much cause
for optimism since it appears now that the problem of initial conditions
in ultrarelativistic nuclear collisions can be treated systematically in a
QCD based approach. Because the various empirical signatures depend
sensitively on the initial conditions, one may hope to identify and inter-
pret the elusive quark-gluon plasma in ultrarelativistic nuclear collisions
at RHIC and LHC early in the next millenium.
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