
Small x Parton Distributions and Initial Conditions for 
Ultrarelativistic Nuclear Collisions 

At Brookhaven's Relativistic Heavy Ion Collider (RHIC) and at CERN's Large Hadron 
Collider (LHC) nuclei will be smashed together at energies of 100 GeV and 2.7 TeV per 
nucleon, respectively, with the expectation of creating an exotic, short-lived state of matter 
called the quark-gluon plasma. The initial conditions which determine the dynamical evo­
lution of this plasma depend crucially on the small x, or longitudinal momentum, compo­
nent of the nuclear wavefunction before the collision. I discuss recent work which argues 
that, for large nuclei, weak coupling techniques in QCD can be used to calculate the distri­
bution of these small x, wee partons. The ramifications of this approach for the dynamics 
of heavy ion collisions and for the various signatures of quark-gluon plasma are discussed. 

Key Words: high parton density in QCD, screening, non-Abelian Weizsdcker-Williams 
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1. INTRODUCTION 

What does a nucleus look like when it is boosted to relativistic energies? 
The special theory of relativity tells us that the nucleus must contract a 
distance R/'y in the direction of its motion, where R is its radius and y » 1 
is the Lorentz factor. If we increase"{ indefinitely, do we expect the lon­
gitudinal size of the nucleus to shrink to zero? Would this be consistent 
with the uncertainty principle of quantum mechanics? What would it 
mean in terms of the underlying parton degrees of freedom? What hap­
pens to its transverse size--does it approach a constant at asymptotic 
energies or does it keep growing?1 
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With the advent of the Relativistic Heavy Ion Collider (RHIC) at 
Brookhaven National Laboratory in 1999 and the Large Hadron Collider 
(LHC) at CERN about five years later, the above questions are not 
merely academic but are extremely relevant for understanding these col­
lisions. The primary objective of heavy ion collision experiments at 
these energies is to investigate the dynamics of quarks and gluons at high 
energy density, often called the quark-gluon plasma, and a transition to 
more familiar hadronic matter. 2 The formation of the plasma will depend 
sensitively on the answers to these questions. 

In this Comment I will discuss recent work3
-

10
•
28 which seeks to 

answer the above questions quantitatively by addressing the problem of 
initial conditions for nuclear collisions within the the framework of 
Quantum Chromodynamics (QCD). The center of mass energies of the 
colliding nuclei at RHIC and LHC are 100 GeV and 2.7 TeV per 
nucleon, respectively. Since these energies are far greater than the mass 
of a proton or neutron, the appropriate degrees of freedom must be 
quarks and gluons, whose interactions are described by QCD. 

The properties of quarks and gluons in the nuclear wave function at 
very small values of x"" kif ..JS turn out to be very relevant for the descrip­
tion of ultrarelativistic nuclear collisions in the center of the momentum 
frame. (The standard notation is that x is the light cone fraction of the 
nuclear momentum carried by the quark or gluon, k, is its transverse 
momentum, and ..JS is the center of mass energy). Recently there has been 
renewed interest in QCD at small x because of the results of the deeply 
inelastic electron-proton scattering experiments for Q2 » A6co at the 
HERA machine at DESY in Hamburg and the nuclear shadowing exper­
iments at Fermilab and CERN. (For an excellent introduction to the field, 
see Ref. 11.) The results of the HERA experiments show a very rapid rise 
in parton density for x « 1. This has been explained by the conventional, 
leading twist, double leading log approximation in the operator product 
expansion known as the DGLAP equation12

•
13

•
15 and by the less conven­

tional BFKL equation 1M 3 (both acronyms are named after the initials of 
their respective authors). However, in the asymptotic limit x ~ 0, neither 
of these approximations can be correct because they would both violate 
the unitarity bound on the growth of cross section at high energies. 14 

At very small x, parton densities become very large and many-body 
effects become important. Consequences of parton overcrowding are 
that two soft partons may re..::ombine to form a harder parton or a parton 
may be screened by a cloud of surrounding wee partons. 17•18 These 
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processes inhibit the growth of parton distributions which saturate at 
some critical x. Indeed, these processes become important in nuclei at 
larger values of x than in nucleons. This may explain the strong A­
dependent shadowing seen in the deep inelastic scattering (DIS) of lep­
tons off nuclei at Fermilab and CERN. 19 

Gluon distributions extracted from the nuclear structure function F~ at 
small x can be used to determine the dynamics after a nuclear collision.20 

Using the QCD factorization theorem, products of the probabilities of 
finding a parton in the nucleus may then be convoluted with the elemen­
tary parton-parton cross sections to determine parton scattering rates. 
However, factorization breaks down at small x, when coherence effects 
become important. Partons from one nucleus, which have the typical trans­
verse momenta relevant for mini-jet processes, of 1-5 Ge V, cannot resolve 
individual partons from the other nucleus. As is usual in the quantum the­
ory of scattering, one needs to take the overlap of the wavefunctions for 
these quanta or, more specifically, the small x Fock component of the 
nuclear wavefunction to determine the subsequent time evolution. 

This question about the nuclear wavefunction is best formulated on 
the light cone using the method of light cone quantization.21 The light 
cone QCD Hamiltonian is separable into a kinetic term and a potential 
term. Alfred Mueller has shown that for heavy quarkonia, where the 
scale of the coupling constant is set by the mass of the onium, light cone 
perturbation theory can be used to construct multiparton eigenstates at 
small x.23 Unfortunately, despite many attempts which all go under the 
label of Light Front QCD, only limited success in the nonperturbative 
sector has been achieved.25 

One can argue that when the density of partons is extremely large, at 
very low x in a nucleon or in extremely large nuclei, the density of partons 
sets the scale for the running of the coupling constant. In other words, if 

P 
= _l_dNparl >> A2 

nR2 dy QCD, 
(1) 

then a,(p) « 1. Here I will discuss specifically the application of weak 
coupling techniques in large nuclei A » 1 at small values of x « A-113 • 

An intrinsic scale in the problem is set by the quantity µ2 
- A 113 fm-2, 

which is the valence quark color charge squared per unit area. Since it is 
the only scale in the problem, the coupling constant will run as a function 
of this scale.3 
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First I will motivate a partition function for the parton distributions at 
small x in the presence of the valence quarks which play the role of exter­
nal sources. The background field for this theory is the non-Abelian ana­
logue of the well-known Weizsacker-Williams field in quantum 
electrodynamics. 26 The parton distribution functions are formally 
expressed as correlation functions of a two-dimensional Euclidean field 
theory with the effective dimensionful coupling a,,µ. The correlation 
functions are expanded order by order in as but involve an infinite 
resummation to all orders in asµ. 4 

Lattice results27 show that this classical theory does not generate a 
screening mass of order a,,µ as anticipated, but is instead infrared diver­
gent. In a recent preprint, J. Jalilian-Marian et al.28 argue that the theory in 
Ref. 4 is ill-defined in the infrared because the authors did not properly 
regulate a singular term in the classical equations of motion. When prop­
erly regulated, the classical equations can be solved analytically. The the­
ory does not generate a screening mass, but the dependence of distribution 
functions on an infrared scale is only logarithmic. Rather remarkably, the 
solution of the classical problem by J. Jalilian-Marian et al. lerlds itself to 
a renormalization group picture of the quantum corrections at small x. 

Nuclear collisions are addressed next. Within the above picture, nuclear 
collisions can be understood as the collision of two Weizsacker-Williams 
fields. Since the fields are non-Abelian, the classical gluon field generated 
after the collision is obtained by solving the nonlinear Yang-Mills equa­
tions with boundary conditions specified by the Weizsacker-Williams 
field of each nucleus.9•

10 In the central region of the collision one sees the 
highly non-perturbative (in asµ) evolution of the Weizsacker-Williams 
glue and sea quarks. The time scale for the dissipation of these nonlineari­
ties is - 1/ asµ. For times much larger than this the evolution of these fields 
can be described by the hydrodynamic equations proposed by Bjorken.35 

The quantum picture of nuclear collisions is also discussed briefly in the 
context of the onium picture of Mueller. 

Finally I will briefly discuss points of commonality as well as differ­
ence between the W eizsacker-Williams model and other models of 
nuclear collisions, both in their conceptual foundations and in their pre­
dictions for the experiments which will be performed at RHIC and LHC. 
These include the parton cascade model of Geiger and Miiller29•

30 and 
the HIJING cascade of Wang and Gyulassy,41 the various string frag­
mentation models,31 and the color capacitor models32 which are the QCD 
analog of the Schwinger mechanism in quantum electrodynamics. 
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2. COMPUTING PARTON DISTRIBUTIONS FOR 
A LARGE NUCLEUS 

In this section the problem of calculating parton distributions in the 
nuclear wavefunction is formulated as a many-body problem in the infi­
nite momentum frame using the technique of light cone quantization. For 
an excellent discussion of the advantages of light cone quantization we 
refer the reader to Ref. 21. In light cone quantization and light cone 
gauge, the electromagnetic form factor of the hadron F2 measured in 
deep inelastic scattering experiments is simply related to parton distrib­
utions by the formula22 

Here we use natural light cone coordinates: p+ is the momentum of the 
nucleus, k+ and k1 are the parton longitudinal and transverse momenta, 
respectively, xis the light cone momentum fraction, Q2 is the momentum 
transfer squared from the projectile, and at a is the number density of 
partons in momentum space. One only need integrate the distributions up 
to the scale Q2 to make comparison with experiment. 

2.1. A Partition Function for Wee Partons in a Large Nucleus 

In QED the infinite momentum frame wavefunction of a system in an 
external source is a coherent state. 3 Failing to do the same in QCD we 
compute ground state expectation values instead. The partition function 
for the ground state of the low x partons in the presence of the valence 
quarks, treated as an external source, is 

(3) 

Here p- (the generator of translations in light cone time x+ = (t + x)/-,/2) 
is the light cone QCD Hamiltonian. It can be split separately into kinetic 
and potential pieces. The sum above implicitly includes a sum over the 
color labels of the sources of color charge (denoted Q) generated by the 
valence quarks. 

Valence quarks are predominantly found at large values of x. It is 
therefore reasonable to assume that they constitute the sources of the 
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external charge seen by the wee partons. The current due to the valence 
quarks is taken to be 

(4) 

In the gauge A+= 0, the static component 1+ is the only large component 
of the valence quark current. The transverse and minus components are 
proportional to 1/P+ (P+ is the light cone momentum of the nucleus) and 
are therefore small. The current seen by the wee partons is proportional 
to O(X-) if the valence quarks are Lorentz contracted to a size which is 
much smaller than a co-moving wee parton's wavelength. This is satis­
fied if x « 1/Rm - K 113 , where R is the nuclear radius. 

Evaluating the trace in the partition function for quantized sources of 
color charge is difficult. Resolving the transverse space into a grid of 
boxes of size d2x1 » lip (or parton transverse momenta q; « p) which 
contain a large number of color charges, the sum over color configura­
tions above can be performed classically.3 We average over the color 
charges by introducing in the path integral representation of the partition 
function the Gaussian weight 

(5) 

where p is the color charge density (per unit area) and the parameter µ2 

is the average color charge density squared (per unit area) in units of the 
coupling constant g. It can be written as 

µ 2 = p (Q2) = 3A ~g2 -11Ali3 fm-2 
var - nR2 3 · , (6) 

where Q2 = 4g2/3 is the average color charge squared of a quark. 
We can now write the partition function Zin the light cone gauge 

A+= 0 as 

Z = f[dA, dA+)[dlfltdlfl](dp) 

x exp(is + igf d 4 xA+(x)O(X-)p(x) - 2~2 J d 2 x,p 2 (0,x,)). (7) 

The result of our manipulations is to introduce a dimensionful parameter 
µ2

"' 1.1 Al/3 fm-2 in the theory. For an alternative justification of our 
Gaussian averaging procedure and the A dependence of µ2

, see Ref. 45. 
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2.2. The Classical Background Field of a Nucleus 

The procedure followed in Ref. 4 to compute classical gluon distribu­
tions from the above partition function was to find the classical back­
ground field in the presence of external sources, compute correlation 
functions in this background field, and then integrate over the Gaussian 
random sources. 

The solution of the classical Yang-Mills equations in the presence of 
the external current of Eq. (4) is given by the background field: A±= 0, 
A;(x) = 0(x-) a;(x,) . The two-dimensional gauge field a satisfies the 
physical gauge condili n • a = gp (,r,), where p ( ,) is the color charge 
density f U1e valence quark .. A ls , bccau:e th i.: Ii Id 1rengU1 F 12 = 0, a, 
is a pure gauge: i- • a1 = -( l lif?) U'V;Ut where U is an SU(Nc) 'Omp:~c l 
gauge field. Combining the tw equati ns results in U1c highly non-lin­
ear stochastic differential equation for the V's: 

(8) 

To compute the correlation functions (aj(x1)aj(y1)) associated with 
our classical solutions, we must solve the above equation and integrate 
the rho-dependent gauge fields with the Gaussian weight in Eq. (5) over 
all color orientations of the external sheet of color charge. It was argued 
in Ref. 4, on dimensional grounds, that the gluon distribution function 
has the functional form 

_1 _ __!!!!____ = (N~ -1) 1 J_H(k 2 / 2 2) 
7r R2 dxd2k ;r2 xa ' a , µ ' , s 

(9) 

where H(k7ta;µ2
) is a non-trivial function of the effective coupling 

k,la,µ. In the weak coupling limit k, » g2µ, H(y) ~ lly and one obtains 
the Weizsacker-Williams result, 

dN a,µ2 (N~ -1) 1 
7r R 2 dxd2q

1 
= 7r2 xqf' (10) 

scaled by µ2
. In the strong coupling region k, « g2µ, where the classical 

correlation functions have to be solved for numerically, it was conjectured 
that H(k7ta;µ2

) oc a;µ2/(k7 + M;). Here M, - a,µ is a screening mass 
which regulates the divergence of the distribution function at small k,. If 
such a screening mass did exist, it would provide a simple understanding 
of saturation already at the classical level. 
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Unfortunately, this turns out not to be the case. R. Gavai and I have 
computed the classical correlation functions numerically. This required 
solving stochastic difference equations on a two-dimensional lattice using 
the conjugate gradient method.27 Our results suggest the following. Weak 
coupling on the lattice holds when 0.2g2µL « 1, where L is the lattice 
size, and strong coupling holds when 0.2g2µL » 1. In the weak coupling 
limit, our results indicaLe a di ·crct transverse momentum dependence 
which is of the llk7 Weizsucker-Williams form. As one increases g2µL-
5, the lattice results still agree reasonably well with the analytical lattice 
expression, albeit one notices an increasing trend of fewer solutions to the 
lattice equations at the a4 level (a is the lattice spacing). For larger values 
of g2µL > 10, no solutions exist at the a4 level. This result shows that the 
classical theory in Ref. 4 is ill-defined in the infrared. 

J. Jalilian-Marian et al.28 have pointed out that the classical theory in Ref. 
4 is flawed because the authors failed to properly solve the Yang-Mills 
equations for the transverse components A; of the classical field. The prob­
lem originates with the delta function singularity (in the longitudinal light 
cone coordinate x-) assumed for the valence quark current in Eq. ( 4). If one 
regulates the source such that instead of a 8-function in x-, the color charge 
density p depends on the spacetime rapidity y = -log (x-), the equation for 
the transverse fields A; can be re-written as 

dA' 
D; dy = gp(y,x1 ), (11) 

where D; is the covariant derivative. The Gaussian weight in Eq. (5) is 
simultaneously modified to 

(12) 

where X = f; µ2(y, Q2
) is the charge squared per unit area at rapidities 

greater than y and transverse momenta of the order Q2 at which we mea­
sure the distribution function. 

With these modified source distributions, Jalilian-Marian et al. find that 
the classical equations can now be solved and an analytic solution found 
for the classical correlation functions. 28 They find that the classical gluon 
distribution function at large momentum retains the Weizsacker-Williams 
form, while at small momenta, dN/dkf- log(ktfX(y,kt)). At low momenta 
the distribution is constant up to logarithmic corrections-the dependence 
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on the strong interaction scale AQco is weak. As we shall see in the next 
section, this solution of the classical problem naturally lends itself to a 
renormalization group picture of the quantum corrections at small x. Note 
that a similar approach to that of Ref. 28 is advocated in interesting recent 
work by Balitskii. 34 

2.3. Quantum Corrections to Background Field 

Quantum corrections to the classical distributions can be computed sys­
tematically using the Dyson-Schwinger expansion.36 In Ref. 6, the small 
fluctuations propagator for the non-Abelian Weizsacker-Williams fields 
was computed in light cone gauge. This expression was then used in Ref. 
7 to compute the one loop corrections to the background field and the 
gluon distribution function. 

One finds that the modifications to the background field introduced 
by quantum fluctuations do not induce extra terms in the expression for 
the distribution function. 7 This is consistent with the theorem of 
Dokshitzer, Diakonov and Troyan.39 The effect of quantum corrections 
to the background field can be included entirely by replacing the cou­
pling constant g by the renormalized coupling constant gR which runs as 
a function of µ2• The structure of the background field at one loop 
remains unchanged. 

The perturbative expression for the gluon distribution function to sec­
ond order in a .. is 7 

_l __ . dN = a,µ
2
(N,

2 
-1) I {i + 2a.,Nc ln(~) tn(l)}· (l 3) 

nR2 dxd 2k, n 2 xk,2 n a,,µ x 

The above equation contains both ln(l/x) and ln(k,) corrections to the 
ll(xk~) distribution and they represent the leading first order contribu­
tions to the perturbative expansion for the distribution function. These 
terms are large in the kinematic range of validity. This signals that in 
order to properly account for the perturbative corrections one has to 
devise a mechanism to isolate and sum up these leading corrections. 

In the original version of our model (discussed in Refs. 7 and 8), the 
only sources of color charge were the valence quarks localized in x- on 
the light cone. The derivation of the effective action in Eq. (7) for the 
wee partons followed simply from this ansatz. However, this distinction 
is questionable since one may expect that hard gluons at rapidities larger 
than a particular rapidity value will act as sources of color charge to glu-
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ans at that rapidity. Furthermore, since gluons at this rapidity will act as 
sources to soft gluons at lower rapidities, the "back-reaction" of these 
soft fields must also be accounted for. 

In their recent work, Jalilian-Marian et al. have shown that both these 
effects can be included in a Wilson renormalization group approach.28 

The approach is as follows. One defines the spacetime rapidity y = Ypioj + 
ln(X-/x0) where Yproj is the rapidity of the valence quarks and x0 = R/y, where 
y is the Lorentz factor (we expect that Yspacetime ""y1110111). Divide the parton 
rapidities between Yproj and minus infinity into rapidity slices and consider 
the wee partons in a particular rapidity slice, say between YN and YN+i· 
Assume as in our previous ansatz that partons at all rapidities above YN act 
as classical sources and the classical background field at YN is as described 
in the previous section. The partons in the rapidity slice are also coupled to 
the soft fields at rapidities less than YN+I · One then obtains the effective 
action for the partons at the rapidity YN+l by integrating over the small fluc­
tuations in the rapidity interval YN+l < y < YN (or Pt+1 < p+ <Pt). 

Since the longitudinal momenta in the slice Pt+i < p+ <Pt are not arbi­
trarily small, a,, ln(l/xN) « 1. Therefore the quantum fluctuations inte­
grated over are not large. The new effective action for the N +1th rapidity 
slice has exactly the same structure as the original effective action, and 
one can show that the charge squared per unit area x = J; µ2(y, Q2) obeys 
the evolution equation 

where (a(y, Q2
)) is the classical background field. When the above equa­

tion is integrated over y, one obtains a DGLAP-like equation; when inte­
grated over Q2

, one obtains a BFKL-like equation. Within this unified 
approach it is now possible to systematically incorporate the non-linear­
ities which eventually lead to the saturation of parton distributions. 
Much work remains to be done in this direction. 

3. NUCLEAR COLLISIONS OF WEIZSACKER-WILLIAMS FIELDS 

In the previous section, we discussed the properties of the Weizsacker­
Williams field of a single nucleus. Recently, A. Kovner, L. McLerran and 
H. Weigert9

•
10 have made significant progress in solving the classical 

problem of the evolution of these fields after the nuclear collision. 
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Before the two nuclei collide (t < 0) the Yang-Mills equations for the 
background field of two nuclei on the light cone are A±= 0 and 

The two-dimensional vector potentials are pure gauges, as in the single 
nucleus problem, and fort< 0 solve V • a 1,2 = gp1,2(XJ_). The interesting 
aspect of this solution is that the classical field configuration does not 
evolve in time fort< O! This is a consequence of the highly coherent 
character of the wee parton clouds in the nuclei. 

The above solution fort< 0 is a fairly straightforward deduction from the 
single nucleus case. The above-mentioned authors find a non-trivial solu­
tion to the field equations after the nuclear collision (t > 0). It is given by 

(16) 

where r = ~ = .J2x+ X-. The relation between A± follows from the 
gauge condition x+ A- + x- A+= 0. This solution only depends on longitu­
dinal boost invariant variable 't and has no dependence on the spacetime 
rapidity variable y = (112) 1n(x+1x-). Therefore the parton distributions will 
be boost invariant for all later times. This result supports Bjorken's 
ansatz35 for the subsequent hydrodynamic evolution of the system. 

The above ansatz for the background field can be substituted in the 
Yang-Mills equations to obtain highly non-linear equations for a(r, Xj_) 
and ai. ( r, Xj_). The detailed expressions are given in Ref. 10. The initial 
conditions for the evolution of these equations will depend on the single 
nucleus solutions. 

The Yang-Mills equations with the Weizsacker-Williams boundary 
conditions are solved in Ref. 10 perturbatively by expanding the fields in 
powers of the valence quark charge density p. Since one now has the 
complete classical solution for a single nucleus, it is likely that a com­
plete solution to all orders can be obtained for the field of two nuclei. 

For asymptotically large r, Kovner et al. find that a gauge transform 
bf the fields a and ai. (denoted here by E and Ei., respectively) have the 
form 

a ( ) _ f d 2 
kj_ 1 { a (k ) 1 ik.LX.L -iCM } 

E r, xj_ - (ln) 2 ,/2W a 1 J_ r 312 e + c.c. , 

· f d 2 
k J_ · 1 { I k . } E"·'(rx )= --1\1

-- a"(k )-e'.LX.L-•wr+cc 
' J_ (ln)2 ,/2W 2 J_ r112 •• , (17) 
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where a 1 and a2 can be expressed in terms of the p fields. In this equa­
tion, the frequency is m = I kl. I and the vector 1'; = Eu ki Im. 

With the above form for the fields, the expressions for the parton num­
ber densities is straightforward. For late times, near z = 0, one obtains42 

d ~k =(21)3L,lai(k.L)l2. 
Y .L n '·" 

( 18) 

Averaging over the p fields with the Gaussian weight in Eq. (5), one 
obtains the following result for the gluon distribution at late times after 
the nuclear collision: 

As suggested by the logarithm, the transverse momentum integrals are 
infrared divergent. They are cut off by a mass scale a_,.µ. However, as 
discussed earlier, the theory does not contain such a mass scale in the 
infrared, and a weak logarithmic dependence on the QCD scale will per­
sist. How this may be regulated is an interesting question which should 
be addressed in future works. 

Thus far we have only discussed the dynamical evolution of the clas­
sical fields . What about quantum effects? One way to include these is to 
do what we did for a single nucleus: look at small fluctuations around the 
background field of two nuclei.38 The background field in this case is 
much more complicated than in the single nucleus case and the quantum 
problem is significantly more difficult. Another approach is to consider 
what quantum effects do to the coherence of the initial wavepacket. 

In this regard, A. H. Mueller's23 formulation of the low x problem is 
relevant. For an onium (heavy quark-anti-quark) state, the coupling is 
weak, and it is shown that the then-gluon component of the onium wave­
function obeys an integral equation whose kernel in the leading logarith­
mic and large Ne limit is precisely the BFKL kernel. 16 The derivation 
relies on a picture in which the onium state produces a cascade of soft 
gluons strongly ordered in their longitudinal momentum; the ith emitted 
gluon has a longitudinal momentum much smaller than the i - l th. 

In the large Ne limit the n gluons can be represented as a collection of 
n dipoles. Hence, in high energy onium-onium scattering, the cross sec­
tion is proportional to the product of the number of dipoles in each 
onium state times the dipole-dipole scattering cross section.24 This cross 
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section is given by two gluon exchange, the pomeron. More complicated 
exchanges involving multi-pomerons have been studied recently by 
Salam.37 However, despite the mathematical elegance and simple inter­
pretation of the onium approach, it is unclear whether it can be extended 
to nuclei. 

4. PARTON CASCADES AND COLOR CAPACITORS 

In this section we will discuss the relation of the present model to some 
other approaches to model the initial conditions for ultrarelativistic 
heavy ion collisions. They may be broadly, and somewhat imprecisely, 
classified as follows: (a) perturbative QCD based models which assume 
the factorization theorem and incoherent multiple scattering to construct 
a spacetime picture of the nuclear collision, and (b) non-perturbative 
models where particle production is based on string fragmentation or 
pair creation in strong color fields. 

Among perturbative QCD based models, the parton cascade model of 
Geiger and Milller29

·
30 has been applied extensively to study various fea­

tures of heavy ion collisions. The evolution of classical phase space dis­
tributions of the partons is specified by a transport equation of the form 

[~-v ·fr] F0 (p,r,t) == C0 (p,r,t), (20) 

where F0 are the classical phase space distributions for particle type a 
and C0 is the corresponding collision integral. The matrix elements in the 
collision integral are computed from the relevant tree level diagrams in 
perturbative QCD. 

The initial conditions in the pruton cascade model are specified at some 
initial time t == t0 by the distribution F0 (p, r, t == t0) == P0 (p, P) R0 (r,R). The 
momentum distribution P0 (p, P) == J;,(x, Q'fi)g(p,) is decomposed into an 
uncorrelated product of longitudinal and transverse momentum distribu­
tions, respectively, where!,, (x, Q'fi) is the nuclear parton distribution which 
is taken from deep inelastic scattering experiments on nuclei at the rele­
vant Q6 and g(p,) is parametrized by a Gaussian fit to proton-proton scat­
tering data. The spatial distribution of the partons is described by a 
convolution of a Woods-Saxon distribution of nucleons in the nucleus and 
an exponential distribution of individual partons within each nucleon. 
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Another model which takes as input the perturbative QCD cross sec­
tions is the HIJING model40

•
41 which describes nuclear scattering in an 

eikonal formalism which convolves binary nucleon collisions. In both 
models, detailed predictions have been made for various observables at 
RHIC, particularly for mini-jet production. 

Where these approaches differ significantly from the Weizsacker­
Williams approach is in the factorization assumption, namely, that partons 
from one nucleus resolve individual partons of the other in each hard scat­
tering. We have argued that the small x partons which dominate the physics 
of the central region instead have highly coherent wave-like interactions. 
This results in a very different spacetime picture for the nuclear collision­
at least for the primordial stage of the nuclear collision. For instance, 
because of the intrinsic Pt - µ carried by the Weizsacker-Williams (or 
equivalent) gluons, gluon production is enhanced by a factor as relative to 
the lowest order gg ~ gg mini-jet process in a cascade. A simple explana­
tion for this enhancement is that because the valence quarks absorb the 
recoil, two off-shell equivalent gluons can combine to produce an on-shell 
gluon. This will impact significantly the many signatures to be studied at 
RHIC and LHC, such as jet, dilepton and photon production. Further, the 
intrinsic Pt of the gluons ensures that intrinsic charm and strangeness pro­
duction is significantly greater in the Weizsacker-Williams model.5 

The non-perturbative stringy models31 primarily attempt to describe the 
soft physics in ultrarelativistic nuclear collisions and so it is not clear that 
there is much overlap with the Weizsacker-Williams model. However, the 
latter does provide some insight into one of these approaches, which we 
shall dub the color capacitor approach. Here it is assumed that the nuclei 
generate a homogeneous chromo-electric field which produces particles 
non-perturbatively by a mechanism analogous to the Schwinger mecha­
nism for strong electromagnetic fields. The evolution of these fields, 
including back-reaction, is determined by a Boltzmann-like equation 
where the source term now is given by the pair production rate. 32

•
33 

An important assumption in these color capacitor models is that of 
homogeneity of the initial field configurations. However, the results dis­
cussed in the previous section suggest that the Yang-Mills fields are 
highly non-linear and inhomogeneous. The time scale for the dissipation 
of the non-linearities in the fields is r » Ila,µ. It would be interesting 
to see how the solutions to the transport equations are modified for ini­
tial conditions given by the inhomogeneous Weizsacker-Williams field 
configurations. 
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5. CONCLUSIONS 

I have outlined in this Comment a QCD based approach to describe the 
initial conditions for ultrarelativistic nuclear collisions. The central 
region of these collisions is dominated by wee partons which carry only 
a small fraction of the nuclear momentum. We have argued that for very 
large nuclei these partons are only weakly coupled to each other. 
However, due to their large density, many-body effects are important. 
The classical behavior of these quanta, which is the QCD analogue of the 
Weizsiicker-Williams equivalent photons, can be described by an effec­
tive two-dimensional field theory. Quantum effects are treated by con­
structing the small fluctuations propagator in the background field of 
these quanta and by applying a Wilson renormalization group approach 
to compute the effective charge which is the source for these quanta. 

An important objective of this approach is to understand if there is a 
Lipatov region in nuclei where the parton densities grow rapidly and if the 
shadowing of parton distributions in nuclei can be understood to result from 
the precocious onset of parton screening. It is probable that deep inelastic 
scattering experiments off large nuclei will be performed at HERA in the 
near future. 44 If so, one may expect unprecedented high parton densities and 
interesting and perhaps unexpected phenomena in these experiments. 

These experiments at HERA would nicely complement the heavy ion 
program at RHIC and especially LHC since they probe the same range of 
Bjorken x. The results of these experiments would therefore place strong 
bounds on mini-jet multiplicities and other signatures of nuclear colli­
sions. Note that these observables are extremely sensitive to the initial 
parton distributions (for a discussion, see Ref. 20). However, to fully 
understand the dynamics of nuclear collisions at central rapidities, we 
have to understand the initial conditions ab initio-preferably in a QCD 
based approach like the one discussed in this paper. 

At the moment there are still many open questions which remain unre­
solved. An empirical question regards the applicability of weak coupling 
methods to large nuclei. Obviously the bare parameter µ2 

- A 113 fm-2 is 
not large enough for realistic nuclei. However, we have argued on the 
basis of the renormali~ation group approach that this parameter should 
effectively be larger and should grow with the increasing parton density 
at small x. These arguments must be made more quantitative. We would 
also like to understand better how non-linear effects may be computed 
self-consistently in this approach. 
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Despite the many technical problems that remain, there is much cause 
for optimism since it appears now that the problem of initial conditions 
in ultrarelativistic nuclear collisions can be treated systematically in a 
QCD based approach. Because the various empirical signatures depend 
sensitively on the initial conditions, one may hope to identify and inter­
pret the elusive quark-gluon plasma in ultrarelativistic nuclear collisions 
at RHIC and LHC early in the next millenium. 
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