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Abstract This paper is devoted to investigate the implica-
tions of Einstein-Aether and modified Hořava–Lifshitz theo-
ries of gravity to the formation of light elements in the early
universe named as big bang nucleosynthesis. We choose dif-
ferent models from these theories for a detailed investigation
of big bang nucleosynthesis epoch and compare it with the
observational bounds. That is, we compare the deviation of
freeze-out temperature Tf with the �CDM paradigm and

use observational bounds on

∣
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�T f
T f

∣
∣
∣
∣

to inspect constraints on

the involved free parameters of these models. We apply Chi-
square test on the Hubble parameter H in each model to ana-
lyze the compatibility of model parameters with the obser-
vations and find consistent results. We find that chosen mod-
els of Einstein-Aether gravity and modified Hořava–Lifshitz
gravity can satisfy big bang nucleosynthesis constraints and
thus constitute a viable cosmology since they can be source
for dark energy sector and late-time accelerated expansion.

1 Introduction

The �CDM cosmological model also known as standard
cosmological model has been successfully explained the
dynamic and evolution of the universe from its beginning
(big bang) to the present accelerated phase assuming that Ein-
stein’s general relativity (GR) defines gravity. But standard
cosmological model has no proofs about dark energy (DE)
and dark matter (DM). It is also unable to explain matter-
antimatter asymmetry [1]. Researchers are of the opinion on
the basis of observational data coming from Supernova Ia
[2,3], cosmic microwave background [4,5] and large scale
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structure formation [6–8] that presented accelerated expan-
sion of the universe is due the presence of DE. The DE sector
commands over the cold dark matter and navigate the uni-
verse towards accelerated expansion due to its enough nega-
tive pressure [2,9,10].

The evolution of the universe starting with big bang
expanded rapidly from its initial singularity and its density
exceeded from critical density in t < 10−43 seconds (s)
called Planck epoch. After that separation between funda-
mental forces such as gravitational and electro-nuclear forces
took place in t < 10−36 s followed by a very rapid expan-
sion called inflationary phase completed in t < 10−32 s.
Hereafter the electroweak force decomposed into the weak
nuclear and electromagnetic forces when t = 10−12 s and at
the same time there was a decrease in the energy density of
the universe such that matter can exist in the form of quarks
[11].

For physicists, there are many puzzles related to the early
universe among which one is the formation of light elements
after the explosion. Bethe in 1939 first time presented the idea
of big bang nucleosynthesis (BBN) which is also known as
primordial nucleosynthesis [12]. It is a prime prediction of
big bang cosmology which took place after baryogenesis.
Most cosmologists believe that it took place about 10–20 s
after the big bang and concluded in just 20 min approximately
[13]. It was time when formation of stable neutrons and pro-
tons came into exist as universe became cool enough. This
cooling allowed protons and neutrons to fuse to become iso-
topes of Hydrogen 1H and Helium 4He. This phenomenon
elaborates the relative abundance of Helium in the universe.

The primordial 4He came into exist when temperature of
the cosmos was T ∼ 100 MeV, while energy and number
density were under the effects of relativistic leptons (elec-
trons, protons, neutrinos) and light emitting particles pho-
tons (where protons and neutron do not contribute in the
total energy density) [14]. These particles remain in thermal
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equilibrium retaining their collisions, while the following
relationships to protons and neutrons with lepton
νe + n ↔ p + e−, (1)

e+ + n ↔ p + ν̄e, (2)

n ↔ p + e− + ν̄e, (3)

hold the particles in thermal equilibrium (where e represents
number of electrons, p describes number of protons, n is
number of neutrons and νe gives number of neutrinos in the
system). Moreover, in accelerated universe, the conversion
rate of protons into neutrons is used to estimate the neutron
abundance.

Moreover, there are some other evolutionary era of the uni-
verse which are of much importance such as radiation dom-
inated era, matter dominated era and the formation of large
scalae structures. In the beginning, after big bang explosion
the universe was so hot that energy density of electromag-
netic radiation was greater than the density of matter and
was driving the expansion called radiation dominated era. It
take 47,000 years when energy density of matter overtaken
the density of radiation and hence matter became driver of
universe’s evolution called matter dominated era. Further-
more, the source for the formation of larger structure was
smaller structure which come into exist first and built up
into the larger structure. Scientists are of the opinion that at
t = 700 Myr stars (population III stars) come into exist and
then dwarf galaxies and quasars yet to be detected observa-
tionally [11].

To analyze the historical background and recent picture of
universe, the modified theories of gravity have much promi-
nent role as compared to Einstein’s GR. The above moti-
vation can be fulfilled by numerous gravitational modifica-
tions. Cosmological models which deal with higher-order
corrections to the Einstein–Hilbert Lagrangian have addi-
tional motivation of improving the renormalizability of GR
[15,16]. These higher-order cosmological models come into
exist when an additional term in Einstein–Hilbert action is
added such as f (R) gravity [17] with R as Ricci curvature,
Weyl gravity [18,19], Lovelock cosmology [20], Galileon
theory of gravity [21,22], Einstein cubic gravity [23,24] etc.
For current analysis on DE issue including modified theo-
ries of gravity, a lot of work have been done in the literature
[25–53].

Many physicists worked on constraining BBN under the
realm of various cosmological models to analyze the forma-
tion of light in early universe. Capozziello et al. [13] used
BBN observational bounds on the primordial abundance of
photons to constrain f (T ) cosmology (where T is torsion
scalar) and studied three different models in order to examine
BBN constraints on their free parameters. Barrow et al. [54]
used BBN observational data to impose the BBN constrains
on the exponent � of Barrow entropy. Bhattacharjee [55]
constrained model f (Q, T ) = Qn+1 + mT under f (Q, T )

gravity (where Q is non-metricity) to investigate the viabil-
ity in cosmology and found that this cosmological model
can explain the observed abundances of Helium and Deu-
terium while Lithium problem persists. Ghoshal and Lam-
biase [14] used Tsallis cosmology to examine the bound on
Tsallis parameter to be β < 2 by using the constraints coming
from the formation of light element from the BBN observa-
tional data which permit a very small deviation from GR.
Asimakis et al. [56] used BBN data to impose observational
constraints on higher-order modified theories of gravity par-
ticularly Gauss–Bonnet f (G) gravity, f (P) cubic gravity
and running vacuum gravity. They have given a detailed
discussion of BBN epoch and investigated the deviation of
freeze-out time with a comparison to �CDM regime. They
found BBN constraints by using the observational data on
involved free parameters of various models.

The aim and motivation of this work is to address the impli-
cations of Einstein-Aether and modified Hořava–Lifshitz
theories of gravity on BBN which is a source to form the
light element in the early universe as the cosmological mod-
els are assumed viable if and only if they satisfy some suitable
conditions imposed by BBN. Since BBN occurred in first 10–
20 s after big bang and completed in approximately twenty
minutes when the universe was hot and dense (indeed BBN,
together with cosmic microwave background radiation, pro-
vides the strong evidence about the high temperatures char-
acterizing the primordial universe). It reports that nuclear
reactions happened in a sequence that yield the synthesis
of photons [57–59] and therefore drive the observed uni-
verse. Thus from BBN physics, one can deduce stringent con-
straints on a given theory of gravity related models. Hence,
in this paper, we shall confront Einstein-Aether and modi-
fied Hořava–Lifshitz theories of gravity models with BBN
depending upon recent observational data. We shall consider
different models related to Einstein-Aether gravity and mod-
ified Hořava–Lifshitz theories of gravity that mimic �CDM
model.

The arrangement of this paper is as follows: In upcom-
ing section, we review the Einstein-Aether and modified
Hořava–Lifshitz theories of gravity. In Sect. 3, we calculate
the BBN constraints. In Sect. 4, we review the chi-square test
and discussed observational values of the Hubble parameter
H . In Sect. 5, we analyze BBN in Einstein-Aether gravity.
In Sect. 6, we analyze BBN constraints in modified Hořava–
Lifshitz gravity. In the last section, we conclude our findings.

2 Modified theories of gravity

In this section, we present two different theories of gravity.
The first one is Einstein-Aether gravity in which Lorentz
invariance is breakup by unit time like vector field (Aether)
[60]. The other one is modified Hořava–Lifshitz gravity also
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known as f (R̃) gravity. We consider homogeneous, flat and
isotropic FRW universe for which line element is

ds2 = −N 2dt2 + a2
(

dr2 + r2(dθ2 + sin2 θdφ2)

)

, (4)

where N is lapse variable depends on time t (for Einstein-
Aether gravity N = 1) and a = a(t) is scale factor of the uni-
verse [61,62]. The energy momentum tensor for this model
is

Tm
ab = ρUaUb + p(gab +UaUb), (5)

where Ua is the four velocity, ρ is the energy density and
p describes pressure of the universe respectively. For both
theories, continuity equation is given by ρ̇+3H(p+ρ) = 0,
where H is the Hubble parameter. In upcoming subsections,
we analyze both theories of gravity separately.

2.1 Einstein-Aether gravity

As it is believed by the physicists that Aether is a physi-
cal medium that exists everywhere in this universe homoge-
neously. It is the medium which is reason to travel the light
from one place to the other even in vacuum. Physicists are
of the opinion that Aether provides a specific static frame of
reference in which every traveling object has absolute rela-
tive velocity and is well suitable for Newtonian dynamics.
But Einstein in his theory of relativity rejected it by per-
forming various experiments on optics. When the concept of
cosmic microwave background come into exists, many sci-
entists considered it as modern form of Aether. Gasperini
[63] boosted up the Einstein-Aether theory which is said to
be covariant moderation of general relativity [60]. The action
of Einstein-Aether theory is given as [64,65]

S =
∫ √−g

(
R

4πG
+ LE A + Lm

)

d4x, (6)

where g represents the determinant of metric tensor gμν

and G is the gravitational constant. Moreover, Lm is the
Lagrangian density of matter while LE A is the Lagrangian
density for the vector field which can be given by

LE A = 1

16πG

(

M2F(K ) + λ(Aa Aa + 1)

)

, (7)

where M is a coupling constant, λ referred as Lagrangian
multiplier and Aa is a vector (tensor of rank one) to have
time-like direction which satisfies the relation Aa Aa = −1.
Furthermore, F(K ) is an arbitrary function involved due to
theory with argument K which is given by

K = Kab
cd ∇a Ac∇b AdC

M2 , (8)

Kab
cd = c1g

abgcd + c2g
a
c g

b
d + c3g

a
d g

b
c , a, b = 0, 1, 2, 3,

(9)

where c1, c2, c3 are constants without dimensions. Einstein
field equations for this theory can be obtained from Eq. (6)
as

Gab = T EA
ab + 8πGTm

ab, (10)

∇a

(

F ′ Jab
)

= 2λAb, (11)

where prime denotes the derivative w.r.t the argument K , Tm
ab

is the energy momentum tensor for matter field and is given
in Eq. (5), Jab = −2Kad

bc ∇d Ac and T EA
ab represents energy

momentum-tensor for vector field which is given by

T EA
ab = λAa Ab + gabM2F

2
− Y(a b)F

′

+1

2
∇d

[(

J (a
d Ab) − Jd(a Ab) − J(ab)A

d
)

F ′
]

,

(12)

where indices (ab) represents symmetry, Aa is time-like uni-
tary vector and is defined as Aa = (1, 0, 0, 0) and Y(ab) is
given as

Y(ab) = −c1[(∇d Aa)(∇d Ab) − (∇a Ad)(∇b Ad)]. (13)

The Friedmann equations for Einstein-Aether theory of grav-
ity become

γ

(
1

2
FK−1 − F ′

)

H2 +
(
K

a2 + H2
)

= 8πG

3
ρ, (14)

γ

(

Ḣ F ′ + H
dF ′

dt

)

+
(

2K

a2 − 2Ḣ

)

= 8πG(ρ + p), (15)

where overhead dot means derivative w.r.t cosmic time ‘t’,
the constant parameter γ = c1 + 3c2 + c3 and the argu-

ment K = 3γ H2

M2 . If ρE A is the effective energy density and
pE A is the effective pressure in Einstein-Aether gravity then
Eqs. (14) and (15) becomes as
(
K

a2 + H2
)

= 8πG

3
ρ + 1

3
ρE A, (16)

(
2K

a2 − 2Ḣ

)

= 8πG(ρ + p) + (ρE A + pE A), (17)

where

ρE A = 3γ H2
(

F ′ − 1

2
FK−1

)

, (18)

pE A = −γ

(

Ḣ F ′ + H
dF ′

dt

)

− 3γ H2
(

F ′ − F

2K

)

. (19)

2.2 Modified Hořava–Lifshitz gravity

In this subsection, we will discuss the modified Hořava–
Lifshitz gravity. The generalized action term for this gravity
is [61,66]
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SF(R̃)
=

∫

d4x
√−gF(R̃) + Sm, (20)

where
√−g = √

g(3)N and Sm is the matter part of action.
Also,

R̃ = KabK
ab − λK 2 + 2μ∇σ (nσ ∇νn

ν − nν∇νn
σ )

−L(3)
R (g(3)

ab ), (21)

where μ, λ are real numbers, L(3)
R is a function depending on

three dimensional metric g(3)
ab and the covariant derivatives

∇(3)
a are defined by the metric given in Eq. (4). In this scenario

the argument R̃ takes the form

R̃ = (3 − 9λ)H2

N 2 + 6μ

a3N

d

dt

(
Ha3

N

)

. (22)

The argument R̃ reduces to R and hence usual f (R)-gravity
is obtained if we choose parameters λ = μ = 1 with flat
FRW metric. If we select μ = 0, R̃ reduces to RHL (Ricci
scalar for Hořava–Lifshitz gravity) [66] and thus action (20)
becomes similar to the action term of Hořava–Lifshitz-like
f (R)-gravity [67]. Hence, this assumption (μ = 0) corre-
sponds to some degenerate limit of general f (R) Hořava–
Lifshitz gravity. We call this limit degenerate as it is very
difficult to obtain (might be impossible).

Considering FRW cosmology for action (20) for which the
spatial curvature R(3)

ab = R(3) vanishes and thus, L(3)
R does

not contribute any thing (same FRW cosmology obtained for
any choice of L(3)

R ). It is obvious that this situation varies
when black hole or solutions with non-trivial dependence
are considered. Suppose that universe is composed with per-
fect fluid, by varying (20) w.r.t g(3)

ab and setting N = 1, the
Friedmann equations for modified Hořava–Lifshitz gravity
are given by

ρ = F(R̃) − 6

[

(1 − 3λ + 3μ)H2 + μḢ

]

F ′(R̃)

+ 6μH
dF ′(R̃)

dt
− ca−3, (23)

p = −F(R̃) + 2

[

(1 − 3λ + 3μ)(Ḣ + 3H2)

]

F ′(R̃)

+2(1 − 3λ)H
dF ′(R̃)

dt
− 2μ

d2F ′(R̃)

dt2 , (24)

where prime denotes the derivative of respective function
with respect to argument. Here c is the constant of integration
and the term ca−3 represents the dark matter part when c > 0
[68]. As during BBN, dark matter part vanishes (i.e. c = 0)
[66], therefor Friedmann equations (23) and (24) become

ρDE = F(R̃) − 6

[

(1 − 3λ + 3μ)H2 + μḢ

]

F ′(R̃)

+6μH
dF ′(R̃)

dt
, (25)

pDE = p. (26)

The value of argument R̃ from Eq. (22) reduces to

R̃ = 3(1 − 3λ + 6μ)H2 + 6μḢ . (27)

3 BBN constraints: basic scenario

In this section, we will develop the relation for deviation of
freeze-out time T f and BBN constraints. Since BBN noticed
in radiation era [58,69,70], thus during BBN for standard
model radiation in context of GR, the first Friedmann equa-
tion can be approximated as

H2 ≈ ρr

3M2
p

= H2
GR, (28)

where Mp = 1√
8πG

is reduced Planck mass, ρr is energy
density of a relativistic particles filling the universe and is
given as

ρr = π2g∗T 4

30
. (29)

Here T represents the temperature and g∗ = g(T ) is the
effective number of the degree of freedom usually approxi-
mated as g∗ ∼ 10. Substituting the values of ρr and Mp in
Eq. (28), we get

H(T ) =
(

4π3g∗
45

) 1
2 T 2

Mp�
, (30)

where Mp� = √
8πMP is referred to as Plank mass. Due to

radiation conservation, the scale factor of universe evolves as
a(t) ∼ √

t , where t is the cosmic time. The Hubble parameter
H in terms of cosmic time t becomes as H = 1

2t which
leads to relation between temperature T and cosmic time t

as 1
t =

(

16π3g∗
45

) 1
2

T 2

Mp�
(or T (t) 	 (t/s)−1/2 MeV). Since

number of neutron arises during BBN due to conversion of
some protons-neutron rate [70,71] which is given as

�pn(T ) = �(n+νe→p+e−) + �(n+e+→p+ν̄e)

+�(n→p+e−+ν̄e), (31)

and its inverse �np(T ). Thus the total rate can be given as
�tot (T ) = �pn(T ) + �np(T ). Considering all these par-
ticles at same temperature which is low enough causes to
use Boltzmann distribution instead of the Fermi-Dirac dis-
tribution. Assuming electron mass negligible as compared
to electron and neutrino energies, some simple mathematics
can be used to calculate neutron abundance via conversion
rate of proton into neutron which gives the relation for total
rate as [13,54,72,73]

�tot (T ) = 8(12T 2 + 6QT + Q2)AT 3, (32)
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where Q is the mass difference between neutron and pro-
ton given as Q = mn − mp = 1.29 × 10−3 GeV and

A = 1.02 × 10−11 GeV−4. The relation Yp = λ
2x(T f )

1+x(T f )
,

where λ = e(T f −Tn)/τ with T f means freeze-out of weak
interaction while Tn represents the farsee-out of nucleosyn-

thesis, x(T f ) = e
− Q

τ (T f ) gives the neutron to proton equi-
librium ratio and τ = 8803 ± 1.1 s is the neutron aver-
age life time [74]. Moreover, the function λ(T f ) represents
the portion of neutrons that decay into proton in the inter-
val [T f , Tn]. Now we compare the universe expansion rate
H−1 and the function �tot (T ) given in (32) to calculate the
freeze-out time T f . We can consider system in thermal equi-
librium if interaction time is much larger then expansion time
(i.e. H−1 � �tot (T )) [57,69]. On the other hand, the par-
ticles decouple if expansion time is much larger then inter-
action time (i.e. H−1 � �tot (T )). The temperature dur-
ing which decoupling takes place is freeze-out temperature
T f that corresponds to H(T f ) = �(T f ) 	 cqT 5

f , where

cq ≡ 96A 	 9.8 × 10−10 GeV−4 [13,54,72,73]. Using
Eqs. (30) and (32), above requirement leads to the relation

T f =
(

4π3g∗
45c2

qM
2
p�

)1/6

. (33)

The Hubble parameter H will deviate from HGR in context
of modified cosmology, due to which freeze-out time also
presents a deviation �T f from (28). Due to this deviation in
fractional mass, Yp is given as

�Yp = Yp

[(

1 − Yp

2λ

)

ln

(
2λ

Yp
− 1

)

− 2T f

τ

]
�T f

T f
, (34)

where we take �T (Tn) = 0 as Tn is fixed by deuterium bind-
ing energy [72,73,75]. During BBN era, the observational
estimation of mass fraction is [76–81]

Yp = 0.2476, |�Yp| < 10−4. (35)

One can obtain an extra term in Friedmann equations by
using any modified theories of gravity which needs to be
small compared to the radiation sector of standard cosmol-
ogy during BBN era so that observational facts may not be
spoiled. Thus, from the general modified Friedmann equa-
tion, 3M2

pH
2 = ρm + ρr + ρDE , we can obtain

H = HGR

(

1 + ρDE

ρr

)1/2

= �H + HGR, (36)

where HGR = Mp

√
ρr
2 is the rate at which universe expands

in standard cosmology. Thus, we obtain

�H = HGR

(√

1 + ρDE

ρr
− 1

)

. (37)

This deviation from standard cosmology will lead to a devi-
ation in the freeze-out temperature �T f . Since HGR =
�tot ≈ cqT 5

f . This relation along with (33) leads to the rela-
tion

HGR

(√

1 + ρDE

ρr
− 1

)

= 5cqT
4
f �T f . (38)

In the regime ρDE � ρr , one can find finally

�T f

T f
	 ρDE

ρr

HGR

10cqT 5
f

. (39)

The above theoretically evaluated relation should be com-
pared with the following observational bound
∣
∣
∣
∣

�T f

T f

∣
∣
∣
∣
< 4.7 × 10−4, (40)

which is found by using observation estimation of the baryon
mass fraction converted into 4He [76–81] which is given in
Eq. (35).

4 Chi-square test

A statistical test Chi-square developed by Pearson in 1900
[82] is used for a comparison between the observed values
and expected values. Pearson also applied it to test the good-
ness of fit for frequency curves. This test exhibits, whether
the difference between two data sets is due to chance or due to
relationship of variables under consideration. The condition
to perform Chi-square test is that data set must have points
more than five. The outcome of Chi-square test is a single
number which analyze the difference between the observed
values and expected values of the data sets. There is no dif-
ference between two data sets (data sets are identical) if the
value of Chi-square is zero. A larger value of χ2 exhibits
bigger difference between the two data sets as compared to
a smaller value of χ2. To evaluate the limit and best fitting
values for different models, we use the χ2 static as

χ2(p) =
∑

(
Oi − Ei

σi

)2

, (41)

where i counts the data points, Oi represents the observed
value, Ei is the corresponding expected value, σi is the error
associated with i th observed value in the data and p denotes
the set of model parameters. To observe the compatibility of
models with the recent observational data, we will calculate
the Hubble parameter H for each model in upcoming sections
and compare the corresponding values of H with recent data.
Bhardwaj et al. [83] presented the observed values of H for 46
different points against redshift parameter z along with their
observational error evaluated by using various age approach
by different cosmologists presented in the Table 1 as
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Table 1 The behavior of Hubble parameter H against redshift parameter z [83]

S.No z H(Obs) σi References S.No z H(Obs) σi References

1 0 67.77 1.30 [84] 2 0.07 69 19.6 [85]

3 0.09 69 12 [86] 4 0.1 69 12 [87]

5 0.12 68.6 26.2 [85] 6 0.17 83 8 [87]

7 0.179 75 4 [88] 8 0.1993 75 5 [88]

9 0.2 72.9 29.6 [85] 10 0.24 79.7 2.7 [89]

11 0.27 77 14 [87] 12 0.28 88.8 36.6 [85]

13 0.35 82.7 8.4 [90] 14 0.352 83 14 [88]

15 0.38 81.5 1.9 [91] 16 0.3802 83 13.5 [90]

17 0.4 95 17 [86] 18 0.4004 77 10.2 [92]

19 0.4247 87.1 11.2 [92] 20 0.43 86.5 3.7 [89]

21 0.44 82.6 7.8 [93] 22 0.44497 92.8 12.9 [92]

23 0.47 89 49.6 [94] 24 0.4783 80.9 9 [92]

25 0.48 97 60 [87] 26 0.51 90.4 1.9 [91]

27 0.57 96.8 3.4 [95] 28 0.593 104 13 [88]

29 0.60 87.9 6.1 [93] 30 0.61 97.3 2.1 [91]

31 0.68 92 8 [88] 32 0.73 97.3 7 [93]

33 0.781 105 12 [88] 34 0.875 125 17 [88]

35 0.88 90 40 [87] 36 0.9 117 23 [87]

37 1.037 154 20 [89] 38 1.3 168 17 [87]

39 1.363 160 33.6 [96] 40 1.43 177 18 [87]

41 1.53 140 14 [87] 42 1.75 202 40 [96]

43 1.965 186.5 50.4 [89] 44 2.3 224 8 [97]

45 2.34 222 7 [98] 46 2.36 226 8 [99]

5 BBN of various models in Einstein-Aether gravity

In this section, we apply the formalism obtained in the Sect. 3
to find the BBN constraints under the realm of Einstein-
Aether gravity. We use DE relation (18) which holds in the
contexts of Einstein-Aether gravity to find the BBN con-
straints as well as the Hubble parameter H . We will focus on
three different models to examine the BBN constraints and
Hubble parameter.

5.1 Model 1

The first model which we use to inspect BBN constraints in
context of Einstein-Aether gravity is

F(K ) = f0K
n, K > 0, (42)

where f0 is a positive constant as cosmic acceleration is
observed only for f0 > 0 [100] and n is the only free parame-
ter. Moreover, f0 can be expressed in terms of H0 (i.e. present
value of Hubble parameter) as n �= 1. The present value of
DE density can be given as

�DE0 = ρDE0

3M2
pH

2
0

, (43)

where �DE0 is the current matter density parameter and is
approximately equivalent to 0.7 while

H0 = 73.02 ± 1.79 km/(sMpc),

∼ 2.1 × 10−42 GeV.

is the Hubble parameter at present [13]. The best fit
on other free parameters can be obtained by taking the
CC + H0 + SNeIa + BAO observational data [101]. Dur-
ing BBN era, assuming ρDE = ρDE0 and inserting its value
along with F(K ) in Eq. (18), we get

f0 =
2M2

p�DE0

(

γ H2
0

M2

)1−n

3n−1(2n − 1)γ
. (44)

Inserting Eq. (42) along with (44) into (18) and then simpli-
fying (39), we have

�T f

T f
= �DE0H

2−2n
0 ξ2n−1T 4n−7

f

10cq
, (45)

where T f is given in (33) and

ξ = 1

Mp�

(
4π3g∗

45

) 1
2

. (46)
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Fig. 1 Variation of
∣
∣
∣
�T f
T f

∣
∣
∣ given

in Eq. (45) against free
parameter n

We depict
∣
∣
∣
�T f
T f

∣
∣
∣ in Fig. 1 against the free parameter n

appearing in (45) with an upper bound coming in (40). It
can be observed from the figure that the mathematical rela-
tion (45) satisfies the bound (40) for n ≤ 0.8247. The fixed
parameters to plot (45) are chosen as H0 = 0.69, γ = 1,
�DE0 = 0.7 and M = 5. It is of great interest that under
the requirement, Einstein-Aether gravity describes DE at late
universe, conditions (44) must be satisfied. If n is restricted
near zero then constraint given in Eq. (39) becomes con-
stant which describes �CDM regime. To observe the com-
patibility of model with observations, we insert the value of
ρ = ρ0a−3(1+ω) where ρ0 = 3M2

pH
2
0 �DE0 from continuity

equation and ρE A from Eq. (18) in Eq. (16), we have

2H2 + (γ FK−1 − 2γ F ′)H2 = 16πG

3
ρ0a

−3(1+ω) − 2K

a2 ,

(47)

where 8πG = 1. Substituting the values of F, F ′, K in the
above equation and using the transformation from cosmic
time t to the redshift parameter z given as dH

dt = −(1 +
z)H dH

dz , simplification leads to the relation

H ′(z) = 3H2
0 �DE0(ω + 1)(z + 1)3ω+2M2 − 6γ (z + 1)H2

f03n−1n(1 − 2n)γ nM4−2nH(z)2n−1 + 6γ (z + 1)2H(z) + 2H(z)M2 . (48)

The above equation is a complicated first order ordinary dif-
ferential equation from which it is difficult to obtain the exact
solution. To overcome this complexity, we solve the above
equation numerically by using the software mathematica and
extract the 43 different values of H against z given in serial
number 1 to 43 in Table 1 and plots are in Fig. 2. The error
bars representing observations given in [83] are also added
to the figure for comparison. Our estimated values for vari-
ous cosmological parameters for minimum χ2 are computed
H0 = 0.69, M = 5, γ = 1, ω = −1/3, �DE0 = 0.7
which are identical to the values used to plot Fig. 1 with five

different values of n mentioned in the panel of Fig. 2. The
values of χ2 obtained for different values of n are as follows

χ2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

224.9193 for n = 1.080,

152.3425 for n = 1.085,

176.7795 for n = 1.090,

224.0224 for n = 1.095,

271.6758 for n = 1.100.

The Chi-square analysis (to test the goodness of fit for the
curves) depicts that the obtained results are closed to the
observations when n = 1.085 and differ utmost from the
observational data when n = 1.1. Moreover, the values of
model parameters which are estimated to analyze the BBN
compatibility are best fit according to χ2 test.

5.2 Model 2

The second model which we inspect for BBN constraints
under the realm of Einstein-Aether gravity is given as

F(K ) = αKn + β, (49)

where α and β �= 0 are real constants. This model is more
generalized as the model given in (42) and reduces to the
model (42) if we choose β = 0. We can find mathematical
relation for the constant α for BBN era as

α =
M2(n−1)

[

βM2 + 6H2
0 M

2
p�DE0

]

M2(2n − 1)
. (50)
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Fig. 2 The evolution of the
Hubble parameter H against
redshift z for different values of
n = 1.08 (purple), 1.085
(magenta), 1.09 (green), 1.095
(orange), 1.1 (black). The
dashed red line relates to the
�CDM model. The error bars
represent the observational
values. We consider that
H0 = 0.69, M = 5, γ =
1, ω = −1/3, �DE0 = 0.7 and
f0 is given in Eq. (44)

Substituting Eq. (49) along with (50) into (18) and then
simplifying for the constraints given in (39), we have
∣
∣
∣
∣

�T f

T f

∣
∣
∣
∣
= ξ2nT 4n

f (βM2 + 6H2
0 M

2
p�DE0) − βM2H2n

0

60cqM2
pH

2n
0 ξT 7

f

.

(51)

We plot
∣
∣
∣
�T f
T f

∣
∣
∣ versus n in Fig. 3 appearing in Eq. (51)

with an upper bound coming in (40). We have chosen the
fixed constants as H0 = 0.69, β = 0.6 and M = 5. It can
be observed from the figure that the mathematical relation
(51) satisfies the bound (40) for n ≤ 0.7498. Moreover, if
we restrict the free parameter n near zero, then the bound
coming in (39) becomes constant which justify the �CDM
regime. For comparison with recent observational data, we
substitute ρ with from continuity equation and ρE A from
Eq. (18) in Eq. (16), we have

2H2 + βγ K−1H2 + αγ Kn−1(1 − 2n)H2

= 2

3
ρ0a

−3(1+ω) − 2K

a2 . (52)

Substituting the corresponding values in the above equation
and using the transformation from t to z, simplification leads
to the equation

H ′(z) = 3H2
0 �DE0(ω + 1)(z + 1)3ω+2M2 − 6γ (z + 1)H2

3n−1nα(1 − 2n)γ nM4−2nH(z)2n−1 + 6γ (z + 1)2H(z) + 2H(z)M2 . (53)

We solved the above equation numerically using the software
mathematica due to its complexity and extracted 43 different
values of Hubble parameter H for various values of z given
in serial number 1 to 43 in Table 1 and plotted in Fig. 4. The
error bars added to the figure for comparison representing
observations given in [83]. The estimated values for differ-
ent parameters for minimum χ2 have been computed as n =
1.096, M = 5, β = 0.6, γ = 1, ω = −1/3, �DE0 = 0.7
and α is given in Eq. (50) which are similar to the values

chosen to plot Fig. 3. The values of χ2 obtained for different
values of H0 are as follow

χ2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

473.4646 for H0 = 64,

277.9502 for H0 = 68,

157.3789 for H0 = 72,

110.8029 for H0 = 76,

139.4633 for H0 = 80.

With five different values of H0 mentioned in the panel, the
goodness of fit (χ2) for the curves shows that it is least for
the curve having H0 = 76 which is closest value to observa-
tions and most difference occur with the observations when
H0 = 64. The χ2 test exhibits that model parameters esti-
mated to analyze BBN consistency are best fit compared to
the observational data and the �CDM regime.

5.3 Model 3

The third model which we assume to investigate BBN con-
straints under the realm of Einstein-Aether gravity is much
more generalized as compared to both of the previous models
and is given as

F(K ) = K + αK 2 + βKn, K > 0, (54)

where α and β are real constants. As in BBN era, DM does
not exist. Thus the mathematical relation for constant β in
BBN era can be obtained as

β = −
M2n

(

9αγ 2H2
0 + M2(γ − 2M2

p�DE0)
)

(2n − 1)3n−1H2(n−1)
0 γ nM4

. (55)
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Fig. 3 Variation of
∣
∣
∣
�T f
T f

∣
∣
∣ given

in Eq. (51) against free
parameter n

Fig. 4 Hubble parameter
versus redshift error bar plot
comparing with �CDM

Inserting Eqs. (54) and (55) into (18), the simplification
of Eq. (39) yields

�T f

T f
= γ H2(n−1)

0 (M2 + 9αξ2T 4
f γ ) − ξ2n−1T 4n−4

f (9αH2
0 γ 2 + M2(γ − 2M2

p�DE0))

20M2cqM2
pT

3
f H

2(n−1)
0

. (56)

Figure 5 describes the graph of above equation against
the free parameter n having an upper bound 4.7 × 10−4. It
is easy to observe from the Fig. 5 that the absolute value
of above mathematical relation remains less than the upper
bound (4.7×10−4) when n ≤ 0.8071. The other fixed param-
eters are chosen as H0 = 0.69, γ = 0.002, α = 10−9

and M = 5. Moreover, the bound existing in Eq. (39)
becomes constant if we restrict the free parameter n near

zero which favors the �CDM regime. For comparison with
recent observational data, we substituteρ = ρ0a−3(1+ω) with

ρ0 = 3M2
pH

2
0 �DE0 from continuity equation and ρE A from

Eq. (18) in (16), we have

2H2 + 3αγ 2H4

M2 − γ H2 − 6αγ 2H4

M2 + 3n−1βγ n H2n(1 − 2n)

M2n−2

= 2

3
ρ0a

−3(1+ω) − 6γ H2

M2a2 . (57)

Using the transformation from t to z and differentiating w.r.t.
redshift z, simplification leads to the relation

H ′(z) = 3H2
0 M

2(ω + 1)�DE0(z + 1)3ω+2 − 6γ (z + 1)H2

6γ (z + 1)2H − 6αγ 2H3 + (2 − γ )HM2 + β3n−1n(1 − 2n)γ nH2n−1M4−2n . (58)
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Fig. 5 Variation of
∣
∣
∣
�T f
T f

∣
∣
∣ given

in (56) against free parameter n
for the model
F(K ) = K + αK 2 + βKn in
Einstein-Aether cosmology

We proceed the above equation numerically by using
mathematica software as it is a complex first order differ-
ential equation and extracted 43 different values of Hubble
parameter H for various values of z given in serial num-
ber 1 to 43 in Table 1 and plot is in Fig. 6. The error bars
representing the recent observational data given in [83] are
also added to the figure for comparison. The estimated val-
ues for different parameters for minimum χ2 are computed
as H0 = 0.69, α = 10−9, M = 1.2, γ = 0.002, ω =
−1/3, �DE0 = 0.7 with five different values of n = 1.0358
(purple), 1.0362 (magenta), 1.0366 (green), 1.037 (orange),
1.0374 (black). The values of χ2 obtained for different values
of n are as follows

χ2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

48.9366 for n = 1.0358,

122.6629 for n = 1.0362,

147.6971 for n = 1.0366,

207.2323 for n = 1.0370,

260.3635 for n = 1.0374.

The Chi-square analysis depicts that the values of Hubble
parameter are closed to the observations when n = 1.0358
and differ utmost from the observational data when n =
1.0374. It can be seen from the χ2 analysis that the model
parameters estimate best to analyze BBN compatibility with
the observational data and the �CDM regime.

6 BBN in modified Hořava–Lifshitz gravity

In this section, we use the formalism to impose the BBN
constraints obtained in Sect. 3 under the realm of modi-
fied Hořava–Lifshitz gravity. We use DE relation (25) which
holds in context of modified Hořava–Lifshitz gravity. We
will concentrate on distinct models to examine the BBN con-
straints.

6.1 Model 1

The first model with which we inspect BBN constraints in
context of modified Hořava–Lifshitz gravity is given as

F(R̃) = α R̃n, (59)

where α is a real constant and R̃ is given in (27). Since DM
does not exist during BBN era, we can get expression for the
constant α as

α = − H2
0 M

2
p�DE0(3λ − 2μ − 1)

(

H2
0 (−3λ + 2μ + 1)

)−n

3n−1[1 − 3λ + 2μ + 2n(3λ + μ − 2μn − 1)] . (60)

Inserting Eqs. (59) and (60) into (25), the simplification of
Eq. (39) yields

�T f

T f
= �DE0T

4n−7
f ξ2n−1

10cq H
2n−2
0

. (61)

Figure 7 describes the graph of
∣
∣
∣
�T f
T f

∣
∣
∣ against the free

parameter n having an upper bound 4.7 × 10−4. It is easy
to observe from the figure that the mathematical relation
(61) satisfies the bound (40) for n ≤ 0.8246. The other
fixed parameters are chosen as H0 = 69, H ′(0) = 1, λ =
0.31, ω = −1/3, �DE0 = 0.7 and μ = 0.009. Moreover,
the bound existing in Eq. (39) becomes constant if we restrict
the free parameter n near zero which favors the �CDM
regime. For comparison with recent observational data, we
substitute ρ = ρ0a−3(1+ω) with ρ0 = 3M2

pH
2
0 �DE0 from

continuity equation and R̃ from Eq. (27) in Eq. (25), we have

2H2 + 3αγ 2H4

M2 − γ H2 − 6αγ 2H4

M2

+3n−1βγ nH2n(1 − 2n)

M2n−2

= 2

3
ρ0a

−3(1+ω) − 6γ H2

M2a2 . (62)
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Fig. 6 The evolution of the
Hubble parameter H against
redshift z for different values of
n along with the �CDM model
and the error bars representing
the observational values

Fig. 7 Variation of
∣
∣
∣
�T f
T f

∣
∣
∣ given

in Eq. (61) against free
parameter n

Substituting the transformation from t to z and differentiating
w.r.t. redshift z, simplification leads to the relation

α(1 − 6n)[3H2(−3λ + 6μ + 1) − 6μ(z + 1)H(z)H ′]
−3H2

0 �(z + 1)3(ω+1) + 6αμ(n − 1)nH(−3(z + 1)H2

×(−3λ + 6μ + 1)H ′)
(

6μ(z + 1)3HH ′′ − 6(z + 1)H2

×(−3λ + 6μ + 1)H ′ + 12μ(z + 1)2HH ′

−6μ(z + 1)H2H ′ + (z + 1)2HH ′2
)

= 0. (63)

The above equation is a complicated second order differential
equation from which it is difficult to obtain the exact solution.
To overcome this complexity, we solve this equation numer-
ically by using the software mathematica and extracted 43
different values of H against z given in serial number 1 to
43 in Table 1 and plot them in Fig. 8 for different choices
of the parameter μ. The error bars representing observations
given in [83] are also added to the figure for comparison.
The estimated values for different parameters for minimum
χ2 are computed as H0 = 69, H ′(0) = 1, λ = 0.31, ω =

−1/3, �DE0 = 0.7 which are same as the values chosen to
plot Fig. 7 with five different values of μ mentioned in the
panel. The values of χ2 obtained for different values of μ are

χ2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

80.0307 for μ = 0.003,

41.7924 for μ = 0.006,

59.4275 for μ = 0.009,

141.9066 for μ = 0.012,

295.6098 for μ = 0.015.

To test the goodness of fit for the curves (the Chi-square test),
we find that the value of Hubble parameter are closed to the
observations [83] when μ = 0.006 and 0.009 while differ
utmost from the observations when μ = 0.015. It can be
seen from the χ2 analysis that the values of model parameters
(H0 = 69, H ′(0) = 1, λ = 0.31, ω = −1/3, �DE0 =
0.7) estimate best to analyze BBN compatibility with the
observational data and the �CDM regime.
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Fig. 8 Graph Hubble
parameter H against redshift z
for different values of
μ = 0.003 (purple), 0.006
(magenta), 0.009 (green), 0.012
(orange), 0.015 (black). The
dashed red line relates to the
�CDM regime. The error bars
represent the observational
values. In plotting the figures,
we have chosen
H0 = 69, H ′(0) = 1, λ =
0.31, ω = −1/3, �DE0 = 0.7
and α is given in Eq. (60)

6.2 Model 2

The second model which we use to investigate BBN con-
straints under the realm of modified Hořava–Lifshitz gravity
is

F(R̃) = α R̃ + β R̃n, (64)

where α and β are real constants. During BBN era when DM
does not exist, the value of constant β can be obtained as

β = −
(3λ − 2μ − 1) (2μ − 3λ + 1)−n

(

α(3λ − 1) − M2
p�DE0

)

3n−1[1 − 3λ + 2μ + 2n(3λ + μ(3 − 4n) − 1)]H2(n−1)
0

.

(65)

Inserting Eqs. (64) and (65) into (25), the simplification of
Eq. (39) yields

�T f

T f
= (10cqM

2
pξT

7
f )

−1[α(3λ − 1)ξ2T 4
f

−H2
0 (H2

0 (−3λ + 2μ + 1))−n(−3αλ + α

+M2
p�DE0)(ξ

2T 4
f (−3λ + 2μ + 1))n]. (66)

In Fig. 9, we present the graph of
∣
∣
∣
�T f
T f

∣
∣
∣ versus free param-

eter n with an upper bound given in (40). It can be observed
from the figure that the mathematical relation (66) satisfies
the upper bound for n ≤ 0.824. The fixed parameters to plot
the figure are chosen as H0 = 0.69, λ = 0.334, μ = 0.0001
and α = 0.001. Moreover, the bound existing in (39) presents
�CDM regime if we restrict n near zero. For comparison
with recent observational data, we substitute ρ from conti-
nuity equation and R̃ from Eq. (27) in (25), we have

6nHμβ(n − 1)R̃n−2[6(1 − 3λ + 6μ)H Ḣ + 6μḦ ]
−6[(1 − 3λ + 3μ)H2 + μḢ ](α + nβ R̃n−1)

+α R̃ + β R̃n = ρ0a
−3(1+ω). (67)

Substituting the transformation from t to z and differentiating
w.r.t redshift z, simplification leads to the relation

6nβH(H(3λ − 3μ − 1) + μ(z + 1)H ′)

×
[

3H2(6μ − 3λ + 1) − 6μ(z + 1)HH ′]n−1 − H2
0

×3�DE0(z + 1)3(ω+1) − 6αH(H(3μ − 3λ + 1)

−μ(z + 1)H ′) + βH(3H(6μ3λ + 1)

−6μ(z + 1)H ′) + 3αH(H(−3λ + 6μ + 1)

−2μ(z + 1)H ′) + 36nβμH(n − 1)(3H2

×(−3λ + 6μ + 1) − 6μ(z + 1)HH ′)n−2

×
[

6μ(z + 1)3HH ′′ − H2(z + 1)(6μ − 3λ + 1)H ′

+(z + 1)2HH ′2 + 2(z + 1)2HH ′ − (z + 1)H2H ′
]

= 0.

(68)

We solved the above equation numerically using the software
mathematica due to its complexity and calculated first 43 val-
ues of H against z listed in serial number 1 to 43 in Table 1 and
plotted in Fig. 10. The error bars representing observations
given in [83] are also added to the figure for comparison. The
estimated values for different parameters for minimum χ2

have been computed as H ′(0) = 1, λ = 0.334, μ = 0.0001
and α = 0.001, ω = −1/3, �DE0 = 0.7 and β is given
in Eq. (65) for five different values of H0 = 60 (purple), 63
(magenta), 66 (green), 69 (orange), 72 (black). The values of
χ2 obtained for different values of H0 as follows

χ2 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

65.1115 for H0 = 60,

38.7577 for H0 = 63,

105.4443 for H0 = 66,

223.1631 for H0 = 69,

406.6963 for H0 = 72.
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Fig. 9 Variation of
∣
∣
∣
�T f
T f

∣
∣
∣ given

in (66) against free parameter n
for the model
F(R̃) = α R̃ + β R̃n in the
Modified Hořava–Lifshitz
cosmology

Fig. 10 Hubble parameter
versus redshift error bar plot
comparing with �CDM

The Chi-square analysis (to test the goodness of fit for the
curves) gives that the obtained results are closed to the obser-
vations [83] when H0 = 63 and differ utmost from the
observational data when H0 = 72. It is easy to deduct
from the χ2 analysis that the values of model parameters
H ′(0) = 1, λ = 0.334, μ = 0.0001 and α = 0.001, ω =
−1/3, �DE0 = 0.7 estimate best to analyze BBN compati-
bility with the observational data and the �CDM regime.

7 Concluding remarks

In this paper, BBN phenomenon has been investigated in
Einstein-Aether and modified Hořava–Lifshitz theories of
gravity in the presence of observational bounds on the
primordial abundance of 4He. These theories efficiently
describe the late time accelerated expansion of the universe
and do not spoil the behavior of early universe, particularly
BBN era. Firstly, we have investigated BBN for three differ-
ent models of Einstein-Aether gravity. We have attained the

BBN bound

∣
∣
∣
∣

�T f
T f

∣
∣
∣
∣
< 4.7 × 10−4 as per recent observations

for F(K ) = f0Kn (withn ≤ 0.824), F(K ) = αKn+β (with
n ≤ 0.752) and F(K ) = K +αK 2 +βKn (with n ≤ 0.807,
γ = 0.002 and α = 10−9) as shown in Figs. 1, 3 and 5 respec-
tively. It is of great interest that all three models described
the �CDM regime for free parameter n → 0. Moreover,
Chi-square analysis has been performed for the same three
models to estimate the values of model parameters and have
been plotted in Figs. 2, 4 and 6 along with error bars of obser-
vational data [83]. The estimated values of the parameters for
the model F(K ) = f0Kn are H0 = 0.69, M = 5, γ = 1,
for the model F(K ) = αKn+β aren = 1.096, M = 5, β =
0.6, γ = 1 and for the model F(K ) = K +αK 2 +βKn are
H0 = 0.69, α = 10−9, M = 1.2, γ = 0.002. Chi-square
test showed that obtained results of Hubble parameter H are
very near to the observational data.

Secondly, we have investigated BBN phenomenon for
two models of modified Hořava–Lifshitz gravity. We have
obtained BBN bound for both models F(R̃) = α R̃n (with
n ≤ 0.824) and F(R̃) = α R̃ + β R̃n (with n ≤ 0.824) as
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shown in Figs. 7 and 9, respectively. Moreover, both mod-
els described �CDM regime if we restrict the free parame-
ter n near zero. Additionally, Chi-square has computed for
the same two models for an estimation of parameters values
existing in the model which have been plotted in Figs. 8 and
10. The error bars of observational data are also mentioned
in these plots. The estimated values of the parameters for the
model F(R̃) = α R̃n are H0 = 69, H ′(0) = 1, λ = 0.31
and for the model F(R̃) = α R̃ + β R̃n are H ′(0) = 1,
λ = 0.334, μ = 0.0001, α = 0.001.

In Figs. 1, 3, 5, 7 and 9, it can be seen
∣
∣
∣
�T f
T f

∣
∣
∣ (presented

in blue curve) remained less than 4.7 × 10−4 (given in red
line) up to some values of free parameter n for each model
belonging to Einstein-Aether and modified Hořava–Lifshitz

theories of gravity. This
∣
∣
∣
�T f
T f

∣
∣
∣ < 4.7 × 10−4 confirms the

primordial abundance of Helium (4He) which is a confir-
mation to the idea of photon (light-element) production in
the early history of universe. In Figs. 2, 4, 6, 8 and 10, the
Chi-square test confirms the estimation of parameter val-
ues presented in the models of Einstein-Aether and modified
Hořava–Lifshitz theories. In future, we can study the effects
of Einstein-Aether and modified Hořava–Lifshitz theories of
gravity on the primordial gravitational wave backgrounds.
Since its observational evidence of number of existing polar-
izations are a successful tool for testing GR and extended
theories of gravity. We expect that our contribution will be a
source for cosmologists to explore more about BBN as it is
an interesting addition in modified theories of gravity.
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