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Abstract

Candelas et al.[1] made a partial classification of Calabi-Yau
manifolds in WP4. An approximate symmetry was found in the

collection of Calabi-Yau manifolds under the interchange of χ→ −χ.
The goal of this thesis is to construct Calabi-Yau manifolds in this class
and see if it is possible to extend the list made in[1]. Motivation behind
this project is a symmetry of string theory called mirror symmetry that

predicts a perfect symmetry in all Calabi-Yau manifolds when
interchanging χ→ −χ. We find a way to extend the results of[1] but

also come to the conclusion that a complete classification of orbifolds in
weighted projective space has already been made in[2],[4]. We will also

discuss these results.
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1 Introduction

String theory is one of the most promising attempts to combine the standard
model with gravity, unifying gravity with quantum mechanics, making it a the-
ory of quantum gravity. One of the earliest versions of string theory only con-
tained bosons, this theory is now called bosonic string theory. When people
started to add fermions to the theory they also discovered supersymmetry, the
resulting string theories where called supersymmetric string theories or super-
string theories. String theory is also a theory that is not yet finished, there are
a lot of different aspects of string theory that are not yet understood. One of
the problems of string theory, that showed itself long ago is that string theory
needs to have 26 dimensions (or 10 for superstrings) to be Lorentz invariant.
A way to deal with the extra dimensions is to split the theory into a 22 (or 6)
dimensional and a 4 dimensional effective theory. This proces is called compact-
ification because the extra dimensions are projected on a very small space.

If we demand that the effective theory is like the standard model than we put
restrictions on the space we use to compactify. It was shown[7] that a Calabi-
Yau manifold provides an excellent background to compactify string theory on.
A new problem immediatly shows itself because there are a lot of Calabi-Yau
manifolds. Each manifold giving different physics compared to the next and no
way of telling which is the right one.

There are some duality relations of string theory that help us a little bit
with this problem. A duality relation is a symmetry between two different the-
ories. One of those dualities is called mirror symmetry, it relates two different
superstring theories (Type IIA and Type IIB) to eachother. One of compelling
aspects of mirror symmetry is that it interchanges couplings in the two theories,
meaning that calculations that are difficult in one theory are easy in the other.
The two related theories give the same effective theory when compactified on
two different Calabi-Yau manifolds. The two manifolds are related by the in-
terchange of their two Hodge numbers h1,1 ↔ h2,1. This interchange of Hodge
numbers results in a sign change in the Euler Characteristic χ → −χ. Mirror
symmetry predicts that every Calabi-Yau manifold has a partner with opposite
Euler characteristic.

When people started making a classification of Calabi-Yau manifolds they
found this same symmetry in the Euler characteristic. One of the results is
published in [1]. The result can be seen in figure (1). A total of 2339 topo-
logically different Calabi-Yau manifolds where found in this class. They where
constructed as hypersurfaces in a weighted projective space. The symmetry
that is present in the plot is not perfect. Candelas et al. remark that they do
not consider all possible hypersurfaces, which could be a reason for an imperfect
symmetry.

The goal of this thesis is to try and extend the number of hypersurfaces
that are considered and compute their Euler characteristics. In the next section
we will introduce string theory and through the use of T-duality try to get a
better understanding of mirror symmetry. In the third section we will give a
mathematical overview of Calabi-Yau manifolds and projective spaces. We will
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Figure 1: A plot of Euler numbers against h1,1 + h2,1 as found in[1], each dot
represents a manifold

also begin to ask ourselves how to construct a Calabi-Yau manifold in a weighted
projective space. In the fourth section we will show how to extend the results
obtained by Candelas and we will also discuss the complete classification as
obtained by Kreuzer and Skarke[4]. In the last section we will discuss the results
and give some ideas on how to proceed. Finally there are three appendices which
contain results and also an example of a mathematica script that we used in
section 4.

Before we proceed first a short note on notation. We will frequently use
Pn to indicate a projective space with complex variables. WPn will be used
to indicate a (n+1)-dimensional weighted projective space, where we omit the
weights (k0, ..., kn). Furthermore we will use the Einstein summation conven-
tion, summing over repeated Greek indices.
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2 Physical preliminaries

In this section we will introduce string theory with the ultimate goal of de-
scribing mirror symmetry. Mirror symmetry is the physical motivation of this
project. So it is important to get atleast a feel for the concept. We will start
with the very basics by introducing classical bosonic string theory, then we will
discuss quantization of this theory. It turns out that this theory needs 26 di-
mensions to be Lorentz invariant. We already remarked that one of the ways
to make a theory with more then 4 dimensions realistic is to compactify the
D-4 dimensions on a space different from the 4 dimensional spacetime we live
in. We will compactify the bosonic string theory on a circle to illustrate this
concept. We will also use this compactification to introduce T-duality, which is
a symmetry of string theory. Before we can introduce mirror symmetry we will
have to talk about the type IIA and IIB superstring theories. We’ll give some
remarks about why compactification on Calabi-Yau manifolds is considered to
be a realistic way to compactify superstring theories. Finally we will introduce
mirror symmetry as a symmetry on the type IIA and IIB superstrings. This
part relies heavily on the two books by Polchinski[16], [17] and to some lesser
extend on the lectore notes by David Tong[18] and the thesis by K. Stiffler[6].

2.1 String theory

We will begin by discussing a classical string. Just like a particle sweeps out a
worldline in Minkowski space, the string sweeps out a surface, the worldsheet
(figure: 2), in spacetime. The worldsheet is parametrized by a timelike (τ)
and a spacelike (σ) coordinate. The worldsheet defines a parametrization to
Minkowski spacetime for all µ (µ= 0,..,D-1). There are two kinds of strings,
open and closed. We will focus on the closed string in this study. A closed

Figure 2: The worldsheet of a string. Time flows upward.
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string is defined by a periodicity in the σ coordinate:

Xµ(σ, τ) = Xµ(σ + 2π, τ)

We need an action that describes the movement of such a string. There are
several ways of doing this, one of the most famous is the Nambu-Goto action??:

SNG = −T
∫
d2σ

√
−det(∂X

µ

∂σα
∂Xν

∂σβ
ηµν)

Where T is a constant and α and β indicate the worldsheet coordinates. This
action is difficult to work with because of the square root. This is one of the
reasons why we will use the Polyakov action:

S = − 1

4πα′

∫
d2σ
√
−ggαβ∂αXmu∂βX

νηµν (1)

α′ is the tension of the string, gαβ is the metric on the worldsheet, g = det(−gαβ)
is a new field and α and β are indices that run over σ and τ . The equation of
motion for Xµthat is obtained from the Polyakov action is:

∂α(
√
−ggαβ∂βXµ) = 0

The Polyakov action is equivalent to the Nambu-Goto action. This can be shown
by varying gαβ and putting this into the equation of motion of Xµ. This gives
the same equation of motion as the Nambu-Goto action did. The equation
of motion of the Xµ can be put into a simpler form by setting gαβ = ηαβ .
This simplification is accomplished by playing with the parametrization of the
metric and using Weyl invariance of the Polyakov action. Weyl invariance is a
symmetry that sends Xµ → Xµ and gαβ → Ω2gαβ . A change like this on gαβ
does not change the Polyakov action because

√
−g scales as Ω2 and gαβ scales

as Ω−2. If we write down the equations of motion for Xµ of the simplified form
we get:

∂α∂
αXµ = 0 (2)

This equation is just the free wave equation. We also have an equation of motion
for gαβ and we have to make sure that these are satisfied. If we set gαβ = ηαβ
and define the stress-energy tensor to be:

Tαβ = − 2

T

1√
−g

∂S

∂gαβ

Then we find for the equation of motion for gαβ :

Tαβ = ∂αX∂βX −
1

2
ηαβη

ρσ∂ρX∂σX = 0

From this we find that X has to satisfy these two constrains for the equation of
motion of the string:

ẊX ′ = 0

Ẋ2 +X ′2 = 0

7



Where Ẋ is partial derivation with respect to τ and X ′ is partial derivation
with respect to σ. It is useful to put the equation of motion (2) in lightcone
coordinates s± = τ ± σ. It then takes the form:

∂−∂+X
µ = 0 (3)

The solution of this equation of motion can be written in a part that depends
only on σ− (left moving) and in a part that depends only on σ+ (right moving),
and by applying Fourier theory the general solution to the equation of motion
(3) is the sum of:

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n 6=0

1

n
α̃µne

−inσ+

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n 6=0

1

n
αµne

−inσ−

xµ and pµ are the position and momentum of the center of mass of the string and
α̃µn and αµn are the Fourier coefficients. Even though these equations give the
general solution to the free wave equation, we still have to impose the boundary
conditions, in lightcone coordinates they read:

(∂+X)2 = (∂−X)2 = 0

If we solve one of the boundary conditions we get:

∂+X
µ = ∂+X

µ
L

=
1

2
α′pµ +

√
α′2

∑
n 6=0

α̃µne
−inσ+

Notice that if we take the square it means that we actually sum over µ so that:

(∂+X)2 = α′
∑
n

L̃ne
−inσ+

= 0

Where we have defined:

α̃µ0 =

√
α′

2
pµ

L̃n =
1

2

∑
m

α̃n−mα̃m

Doing the same derivation for the partial derivative in the - direction and setting
the appropriate terms to zero we get the following set of constraints:

αµ0 = α̃µ0

=

√
α′

2
pµ

Ln = L̃n

= 0
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Where:

Ln =
1

2

∑
m

αn−mαm

Ln and L̃ are are the Fourier coefficients of the constraints. L0 and L̃0 give us
a relation for the mass of the excited oscillator modes. We use the mass-shell
condition:

pµp
µ +M2 = 0 (4)

If we set L0 equal to zero and use αµ0 =
√

α′

2 p
µ we find the following relation

between the oscillators and the momenta:∑
m>0

α−mαm = −α
4
pµp

µ

Doing the same for L̃0 using the mass-shell condition (4) we get the following
relation between the oscillators and the mass:

M2 =
4

α′

∑
m>0

αmα−m =
4

α′

∑
m>0

α̃mα̃−m (5)

The fact that L0 and L̃0 give the same mass is called level matching. We will
now make the step from the classical string theory to the quantum string theory.

2.1.1 Quantizing the bosonic string

The general idea behind quantization is very simple, we simply promote all
Xµ’s and their conjugate momenta Πµ = 1

2πα′ Ẋµ to operators. This leads
to commutator relations for xµ, pµ and the α’s. This will lead to a quantum
theory of the (closed) string, which is complicated enough to fill an entire book.
However, we will mostly be interested in a formula for the mass like we found for
the classical string (5). The operators for Xµ and Πµ translate to commutation
relations between xµ, pµ.

[xµ, pµ] = iδµν

And similarly for αµn and α̃µn.

[αµm, α
ν
n] = [α̃µm, α̃

ν
n]

= mηµνδn,−m

These are the commutation relations for creation and annilation operators. α
(and α̃) can be seen as a creation operator for n < 0 and as a annihilation
operator for n > 0. We want all the oscillators to be normal ordered, this
means creation operators to the left of annihilation operators in products. The
commutation relations between α and α̃ give us some problems when we put the
operators in L0 and L̃0 in normal order. The reordering of the α’s in combination
with the commutator relations gives rise to a normal ordering constant: a.
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The constraint on the equation of motion for Xµ in the classical theory gave
L0 = L̃0 = 0, since L0 is now an operator we get the following constraint:

(L0 − a)|φ >= 0

We can still compute the formula for the mass of the bosonic string as in the
previous section. Taking into account the normal ordering constant a, we find
the modified mass formula:

M2 =
4

α′
(
∑
m>0

α−mαm − a)

=
4

α′
(
∑
m>0

α̃−mα̃m − a)

We can make this equation look more friendly by defining:

N =
∑
m>0

α−mαm

Ñ =
∑
m>0

α̃−mα̃m

and setting a = 1 we find the final result of this section:

M2 =
4

α′
(N − 1) =

4

α′
(Ñ − 1) (6)

If we start making a spectrum for this theory then we find that the lowest
possible mass is (no oscillators excited):

M2 = − 4

α′

This is a negative mass squared, so one of the first consequences of the mass
formula is the existence of the tachyon, a particle with negative mass squared.
Such a particle is normally associated with an unstable ground state. It is
possible that the tachyon has some physical interpretation as is discussed in [18]
but this is not fully understood. The tachyon disappears in superstring theories,
that is theories with fermions.

The Fourier coefficients Lm and L̃m generate the algebra that is associated
with states of the theory, it is called the Virasoro algebra. The generators of
the Virasoro algebra have their own commutator relations:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n

Where c is the central charge. For L̃m a similar result holds for central charge c̃.
String theory has ghosts, that is particles that are unphysical, that contribute
−26 to the central charge of the theory. However, if c = 0 then we preserve
Lorentz invariance. The way to compensate for the ghosts is to introduce the
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right number of degrees of freedom, that is require the theory to be 26 dimen-
sional. This also results in the normal ordering constant a = 1.

We used L0 to get the mass-shell condition:

0 =
α′

4
(pµp

µ +m2)

This is the Klein-Gordon equation. The same result holds for L̃0 and, even
though we didn’t show it, something similar holds for the open string in this
theory. The factor 1

4 is not present for the open string. The Klein-Gordon
equation is used in relativistic quantum mechanics to describe bosons. This
seems to suggest that we will only find bosons in our theory. The first thing
that we will consider when we introduce superstring theory is an extension of
the constraint algebra with generators that correspond to the Dirac equation.
Before we move towards superstring theories we will first illustrate the concept
of compactification by compactifying the bosonic theory on a circle.

2.2 Compactification

The idea of compactification is as old as general relativity. The idea by Kaluza
and Klein was to include a 5th dimension in Einstein’s field equations which
would also describe Maxwell’s equations. The 5th dimension was compactified
on a circle using the periodicity condition:

x4 ∼= x4 + 2πR

the xµ(µ =0,..,3) are all noncompact and R is the radius of the compactifi-
cation circle. The 5-dimensional metric of the theory then seperates into a
4-dimensional metric, a vector and a scalar on the 4-dimensional spacetime.
How does this idea apply to the string theory case?

Suppose we have a field theory like string theory with D dimensions (D¿4).
The fields of this theory will then be free to move about in these D dimensions.
However, spacetime, as we see it, is 4 dimensional. What do we do with all
of the D-4 dimensions that we do not see? A solution to this problem is so
called compactification of the theory. We project the theory on a 4 dimensional
spacetime and a D-4 dimensional internal space. Observers in the 4 dimensional
space can not see the internal space because it is to small to see. The fields of
the theory are split between the internal space and the 4-dimensional spacetime.
The way in which this happens has a direct effect on the physics in the 4
dimensional spacetime, resulting in an effective 4 dimensional theory depending
on the type of compactification. Lets see what happens when we compactify
our bosonic string theory on a circle.

2.2.1 Compactification of the bosonic string

We consider a closed bosonic string compactified on a circle: R1,24 × S1. In the
direction of the circle we have the following periodicity requirement:

X25 ∼= X25 + 2πR
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This immediatly implies that the momentum in the compactified direction is
quantized [18]:

p25 =
n

R

This is due to the fact that the string wavefunction includes a factor eipX . An-
other effect of compactifying a string on a circle is that we no longer need to
require that the string has periodic boundary conditions. Closed strings can
wind around the compact dimension, relaxing the boundary condition some-
what. This gives the following boundary condition:

X25(σ + 2π) = X25(σ) + 2πmR

The number m is called the winding number and tells you many times the string
winds around the compact dimension. The winding number is not constant
because it can change during string interactions (this is the only time we’ll
mention string interactions). We can view X25 as having a right and a left
moving part. We need to introduce a right and a left moving momentum before
we can write the general solution for X25:

pL =
n

R
+
mR

α′

pR =
n

R
− mR

α′

With the help of these momenta we can write down the left and right moving
part of X25 in lightcone coordinates:

X25
L (σ) =

1

2
x25 +

1

2
α′pLσ

+ + i

√
α′

2

∑
n 6=0

1

n
α̃25
n e
−inσ+

X25
R (σ) =

1

2
x25 +

1

2
α′pRσ

− + i

√
α′

2

∑
n 6=0

1

n
α25
n e
−inσ−

The noncompact coordinates are the same as before. The Virasoro generators
also change because of the new boundary condition, we get:

L0 =
α′pµ′p

µ′

4
+
α′p2

L

4
+

∞∑
n=1

α−nαn

L̃0 =
α′pµ′p

µ′

4
+
α′p2

R

4
+

∞∑
n=1

α̃−nα̃n

Where µ′ runs over the noncompact dimensions. We are interested in the ef-
fective theory which exists on the noncompact dimensions. The mass of the
particles is still given by the mass-shell condition:

M2 = −pµpµ

= p2
R +

4

α′
(Ñ − 1)

= p2
L +

4

α′
(N − 1)
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Figure 3: An illustration of two strings compactified on small and large circles
whose winding and momentum number have been interchanged

This is the formula that we wanted to obtain in this section. This formula is all
that we need to introduce T-duality.

2.2.2 T-duality

Adding the two equations for the mass in the previous section and dividing by
two, we get the following mass formula:

M2 =
n2

R2
+
m2R2

α′
+

2

α′
(N + Ñ − 2)

This formula tells us that a string does not only get a contribution to its mass
from its momentum but also from the number of times that it winds around the
compact dimension. If we send R → 0 then the compact momentum becomes
infinitly massive and the winding states go to a continuous spectrum. If we
send R→∞ then the winding states become infinitly massive and the compact
momentum approaches a continuum. This implies that if we change:

R→ α′

R
,n↔ m

then the theory will have the same spectrum (Figure 2.2.2). This is called T-
duality and it has been shown to be equivalent to mirror symmetry. T-duality
is like saying that the string doesn’t know the difference between a circle with
small radius and one with large radius. This equivalence still holds when we
compactify the theory in more dimensions. Another interesting consequence is
that the smallest possible scale is given by the self-dual radius R =

√
α′. We

should really consider superstring theories next, now that we have seen what
T-duality is in the bosonic theory.

2.3 Superstring theories

So far we have only considered non-supersymmetric bosonic string theory. This
theory is a nice introduction to some of the more difficult concepts in superstring
theory. We have to introduce superstring theory at some point if we want to
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talk about mirror symmetry, which is something that is not really present in
bosonic string theory. Making the theory supersymmetric means that we will
have to introduce fermions into our theory. For simplicity we will still only
consider closed strings. We used the mass-shell condition to determine the mass
of particles:

pµp
µ +M2 = 0

This came in the classical theory from the condition that L0|φ >= 0. We already
remarked that this mass-shell condition is just the Klein-Gordon equation in
momentum space, so it should be no surprise that we worked in a theory with
only boson [17]. It seems natural that if we enlarge our constraint algebra with
some generators that give the Dirac equation:

ipµγ
µ +m = 0

that we would get a theory that includes fermions. It turns out that the gamma
matrices generate the right algebra for an anticommuting worldsheet field φµ.

{γµ, γν} = 2ηµν

Note the anti-commutator relation. If we include the gamma matrices we have
expanded the constraint algebra of the theory. One of the things we find is that
this also changes the critical dimension, that is the dimension for which it is
Lorentz invariant, of the theory, The dimension goes down to D = 10. This is a
promising way to start and it is just how Polchinski[?] introduces the superstring
theories. We will take a slightly different appraoch, follow the thesis by K.
Stiffler[6] and look at the Polyakov action (1). Expanding the theory to include
fermions means that we also have to make the Polyakov action supersymmetric.
We start by introduction fermionic (anti-commuting) fields ψµ:

ψµ =

(
ψµ−
ψµ+

)
We work in the Ramond-Neveu-Schwarz (RNS) formalism adding the right
terms to the Polyakov action [6]:

S = −T
2

∫
d2z(∂αX

µ∂αXµ − 2iψ−∂+ψ− − 2iψ+∂−ψ+) (7)

Where ∂± = 1
2 (∂τ ± ∂σ. Varying the action we find the following equations for

the fields:

∂α∂
αXµ = 0

∂+ψ
µ
− = 0

∂−ψ
µ
+ = 0

Moving in a similar direction as we did for the closed bosonic string we now
impose a periodicity condition on X:

Xµ(τ, σ) = Xµ(τ, σ + 2π)

14



The solution for these fields is the again a sum of a right moving and left moving
part like in the bosonic string case. The situation is more complicated for the
fermionic fields ψµ whose boundary conditions are:

ψ+∂ψ+ − ψ−∂ψ−|2πσ=0 = 0

There are two ways to satisfy this equation for ψ [6]:

ψ±(τ, σ) = ψ±(τ, σ + π)

ψ±(τ, σ) = −ψ±(τ, σ + π)

The first boundary condition is called the Ramond (R)boundary condition and
the second boundary condition is called the Neveu-Scharwz (NS) boundary con-
dition. This means that there are also two possible solutions to the boundary
problems for ψµ. For the Ramond boundary condition we have:

ψµ−(τ, σ) =
∑
m∈Z

dµme
−2imσ−

ψµ+(τ, σ) =
∑
m∈Z

d̃µme
−2imσ+

and for the Neveu-Schwarz boundary condition:

ψµ−(τ, σ) =
∑

m∈Z+ 1
2

bµr e
−2irσ−

ψµ+(τ, σ) =
∑

m∈Z+ 1
2

b̃µr e
−2irσ+

Where dµm, d̃µm, b̃µr and bµr are the Fourier coefficients that will take the role of
creation and annihilation operators when we quantize. In order to quantize the
theory we need to impose (anti-)commutator relations. For the bosonic fields
Xµ, these are just the same as for the bosonic theory. For the new fermionic
fields we impose:

{ψµA(τ, σ), ψµB(τ, σ′)} = πηµνδABδ(σ − σ′)

where A and B are either + or -. This leads to anti-commutation relations on
the oscillators:

{bµr , bνs} = ηµνδr+s,0

{dµm, dνm} = ηµνδm+n,0

The left moving, tilded oscillators, obey the same commutation relations. These
oscillators now take the form of creation and annihilation operators on the Fock
space. The oscillators with positive m,n, r, s are annihilation operators and the
ones with negative m,n, s, r are creation operators. A ground state is given by
|p, 0 >R for the R boundary condition and by |p, 0 >NS for the NS boundary
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condition, where p is the center of mass momentum of the string. By working
on the ground state with the creation operators we get states such as |p, |m| >R
and |p, |r| >NS . Where |m| and |r| are the mass of the states. There are four
possibilities for a physical state |phys >. These are all the tensor product of
a left moving (ground state acted on by a tilded operator) and a right moving
state[6]:

|phys >=


|p, |m̃| >µR ⊗ |p, |n| >νR R-R sector
|p, |r̃| >µNS ⊗ |p, |s| >νNS NS-NS sector
|p, |r̃| >µNS ⊗ |p, |m| >νR NS-R sector
|p, |m̃| >µR ⊗ |p, |r| >νNS R-NS sector

Demanding that (L0 + L̃0)|phys >= 0 we find for the mass of the superstring[6]:

α′M2 = 2(N + Ñ + ab + ãb + af + ãf )

Where the constants ab, ãb, af , ãf are normal ordering constants. We are now
at the point where we will define the type IIA and type IIB superstring theories.
The difference lies in the ground state of the theory. Because, even though we
have four possibilities for a physical state, there are restrictions we can put on the
ground state of the theory. These restrictions give two possibilities for a physical
ground state, IIA and IIB. We can define an operator that anticommutes with
the full ψµ, we define it as[17]:

G = eiπF

Where F is either 1 or 2. This operator can work on different states of the
spectrum of the superstring. The ground state of |p, 0 >µNS is the tachyon,
an unphysical state. If we work with G on this ground state we get -1 as
eigenvalue. If we work with G on the first excited state we get +1 as eigenvalue.
Physical states of the NS sector have for G eigenvalue +1. So, even though
|p, 0 >µNS is the ground state of the Fock space, it is not the physical ground
state for the NS sector of the theory. The physical ground state is the first
excited state, bµ− 1

2

|p, o >NS . This just leaves the R sector. Here we can choose

whether we keep the states with negative or with positive parity (-1 or +1 as
eigenvalue). This gives two possibilities for the physical ground state, denoted
by: +|p, 0 >R≡ |p,+ >R and −|p, 0 >R≡ |p,− >R. So, it turns out that
we have two possible ground states for a consistent theory. The ground state
consists either of (type IIA):

|p,− >R ⊗ |p,+ >R
b̃µ− 1

2

|p, 0 >NS ⊗ bν− 1
2

|p, 0 >NS
b̃µ− 1

2

|p, 0 >NS ⊗ |p,+ >R

|p,− >R ⊗ bν− 1
2

|p, 0 >NS
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Or (type IIB):
|p,+ >R ⊗ |p,+ >R
b̃µ− 1

2

|p, 0 >NS ⊗ bν− 1
2

|p, 0 >NS
b̃µ− 1

2

|p, 0 >NS ⊗ |p,+ >R

|p,+ >R ⊗ bν− 1
2

|p, 0 >NS

For type IIA we choose the Ramond ground states to have the same chirality
and in type IIB we choose the Ramond ground states to have opposite chirality.
The story is of course far from over, we didn’t really consider the spectrum
of the theory for instance. However, we will not continue this discussion on
superstring theory. The last two subsections of this section will deal with Calabi-
Yau compactification and mirror symmetry, respectively.

2.4 Calabi-Yau compactification

So far we haven’t discussed Calabi-Yau manifolds yet. Now that we have dis-
cussed supersymmetric string theory it is time to look at the reason why people
want to compactify these on a Calabi-Yau manifold. Superstring theory requires
10-dimensions, however the world we observe is not 10-dimensional. We already
explained that compactification is a solution to this problem. There would have
to be some small internal space. Experiments have put on upper limit on the
size of the internal space at 10−18 metres (the TeV scale), meaning that the 6
dimensions, if real, must show themself only at energies higher than the TeV
scale. A way to make this a bit more mathematically precise is to say that the
spacetime manifold on which the string moves is not a ten-dimensional man-
ifold but rather looks like M4 × N6 where M4 is (presumably something like
Minkowskian) 4-dimensional spacetime and N6 is some 6-dimensional compact
manifold. The 4-dimensional spacetime manifold is obviously the one we are
free to move around in while the 6-dimensional manifold represents the com-
pact dimensions.

We have already seen that the way we compactify our theory has a direct
effect on the spectrum of the theory we compactify. This was the case for the
bosonic string on a circle with radius R. The obvious question is what can we
say about the space N6 if we demand the physics on M4 to be like the physics
we see in everyday life? The answer is that N6 has to be a Calabi-Yau manifold.
What are the assumptions we make about physics in everyday life that result in
N6 being a Calabi-Yau manifold? Candelas, Horowitz, Strominger and Witten
asked this question, they used the following assumptions[7]:

1. The manifold M4 is maximally symmetric, i.e. it is Minkowskian, de Sitter
or anti-de Sitter.

2. Supersymmetry should be unbroken in the resulting d=4 theory

3. The spectrum of gauge bosons and fermions should bear some resemblence
to what we observe in real life.
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The first assumption is somewhat like demanding that the theory looks like
general relativity in the low energy limit. The third assumption is also obvious
because it says that our theory should predict and describe the particles we
observe in our accelerators, i.e. the low energy limit of the theory should look
like the standard model. Both the first and the third assumption seem like
common sense. The second assumption does not.

In fact, there is no proof that nature is supersymmetric. The nice thing
about supersymmetry is that it helps solve some theoretical issues like the hier-
archy problem of the standard model and it gives a candidate for dark matter.
The hierarchy problem concerns quantum corrections of the Higgs mass. Super-
symmetry puts a restriction on the corrections making sure they don’t run off
to infinity. The lightest supersymmetric particle might be stable and thus can
be a candidate for dark matter as it is quite massive (more massive then any
other particle we have found).

Without going to deep into the technical aspects, we conclude that by looking
at the field content of the effective theory and using the assumptions, it can be
shown that there must be a covariantly constant spinor field on N6. This is
a strong restriction. If we look at the similar case for a sphere S2 and try to
construct a constant vector field then the hairy ball theorem says that the vector
field must vanish on at least one point of S2 and, being covariantly constant,
the vector field must vanish everywhere. Ultimatly, using holonomy theory we
find that for a covariantly constant spinor field to exist on N6, it must be a
Kähler manifold with vanishing first Chern class. We will later define this type
of manifold as a Calabi-Yau manifold.

2.5 Mirror symmetry

In this final section we will look at T-duality and mirror symmetry of the type
II string. We will discuss T-duality by once again compactifying our theory on
a circle. Even for something as simple as that, some interesting results follow.
Mirror symmetry shows itself when the supersymmetric theory is compactified
on a space that has a bit more structure. We will use the simple example of the
2-torus, but the results hold for more general compactifications on Calabi-Yau
manifolds.

2.5.1 T-duality of type II strings

Say we compactify a single coordinate X9 of the type IIA string theory on a
circle and take the R → 0 limit. This is equivalent to taking the R → ∞ limit
and taking the following reflection[17]:

X ′9R = −X9
R

Where the ′ is in the low R limit. This is the same as in the bosonic string
theory. However this time we also have to reflect:

ψ′9 = −ψ9
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due to an internal invariance of theory. However, this implies that the chirality
of the right moving R sector ground state is reversed. Meaning that because we
started in a type IIA theory, after T-duality we have a dual type IIB theory. So
using T-duality it is possible to switch between type IIA and type IIB theories.
Meaning that if we start with type IIA and take the compactification radius
small then because the chirality changes we have a theory that is equivalent
to a type IIB theory compactified on a circle with radius large. This duality
relation holds if we apply the above operations to an odd number of dimensions.
If we had done T-duality on an even number of dimensions then the we would
end up with the same type II theory [17].

2.5.2 Mirror symmetry of type II strings

We will make use of the term moduli in this section so it necessary to introduce
it now. Moduli are parameters that label the geometry of the manifold under
consideration[16].

Mirror symmetry has the convenient property that it changes a Type IIA
theory in a Type IIB theory while changing the couplings in such a way that
an interaction that is difficult to calculate in one theory becomes easy in the
other [8]. As an example of mirror symmetry consider the 2-torus defined as

T 2 = R2

Γ , where Γ is some two dimensional lattice on R2. The latice is gener-
ated by two basis vectors e1 and e2 and we define a metric Gij = ei · ej and an
antisymmetric tensor Bij = bεij . The metric has three independent real compo-
nents and the tensor has 1 independent component, giving four real moduli for
strings compactified on the 2-torus. We define the complex structure modulus
as follows:

σ =
|e1|
|e2|

eeφ

where φ is the angle between e1 and e2. And the Kähler modulus:

τ = 2(b+ i
√
det(G))

If we now consider a type IIA theory compactified in two dimensions (on a
2-torus) with compact directions x8 and x9. We act with T-duality on the 9-
direction. This flips the sign of Xµ

9 and also that of ψ9. T-duality has the effect
that the type IIA theory has turned in the type IIB theory. However, by doing
the T-duality we interchanged the Kähler modulus ρ with the complex structure
modulus τ . This can be seen by taking a look at the metric in the compact
dimensions. The metric is invariant if we interchange the Kähler modulus with
the complex structure modulus and apply T-duality. This does not change the
2-torus it only changes the values of the moduli.

This result also holds for string theories compactified on Calabi-Yau man-
ifolds. A type IIA theory compactified on a Calabi-Yau manifold is dual to a
type IIB theory compactified on another manifold. This is what is called mirror
symmetry. The explicit construction is a bit more difficult then the 2-torus ex-
ample. The difference between between the Calabi-Yau example and the 2-torus
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example is that the Calabi-Yau does change when applying mirror symmetry.
When applying mirror symmetry we have to interchange the two Hodge num-
bers h2,1, h1,1 (we will define them in the next section). Mirror symmetry states
that it is always possible to find two Calabi-Yau manifolds with opposite Hodge
numbers, these manifolds are called mirror pairs. It is because of this that we
suspect that there are manifolds missing in the classification made in[1]. We will
start the next section with a mathematical introduction to Calabi-Yau mani-
folds, Hodge numbers and some results that will help us construct Calabi-Yau
manifolds in section 4.
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3 Mathematical preliminaries

In the previous section we discussed string theory and Calabi-Yau manifolds.
In this section we will give a formal definition of a Calabi-Yau manifold. We
will treat De Rham and Dolbeault cohomology, Hodge numbers in the case of
Calabi 3-folds, projective spaces, weighted projective spaces and finally we will
give some results from the literature that will help us with the construction of
Calabi-Yau manifolds in weighted projective space.

3.1 Calabi-Yau manifolds

We will generally be interested in a 3 complex dimensional manifold because of
the number of dimensions in superstring theory. A lot of the following is more
general though. We will need to choose a definition to define the Calabi-Yau
manifolds. There are several (equivalent) definitions of a Calabi-Yau manifold,
we will use the one that is best suited for our project, since it is the one used in
most related literature. We have already hinted towards the following definition:

Definition 1. A Calabi-Yau manifold is a compact Kähler manifold with van-
ishing first Chern class.

A compact manifold M is a manifold for which every open covering consists
of a finite number of open sets. The definition of Calabi-Yau manifold is quite
general and as a result there are a lot of them. However, as we already remarked
in the introduction, we will only be interested in Calabi-Yau manifolds in WP4.
This definition implies that we will be discussing complex manifolds. A complex
manifold of dimension n is a manifold M that at each point on M is isomorphic to
a neighborhood of the origin in Cn where the patch functions are holomorphic
functions. The charts of a complex manifold Cn → M can also be viewed
as charts R2n → M . This is why sometimes we find that the dimension of
a complex manifold is half its real dimension. Some examples of a complex
manifold include Cn and the complex analog of a torus Cn/Γ, where Γ is some
lattice of Cn

3.1.1 Kähler manifolds

Kähler manifolds are special forms of Hermitian manifolds which are complex
manifolds. So, it is necessary to introduce Hermitian manifolds before Kähler
manifolds. A Hermitian manifold is the complex analog of a Riemannian man-
ifold [15].

Definition 2. A Hermitian manifold is a complex manifold equipped with a
smooth varying Hermitian inner product on each of its tangent spaces.

Just like it is possible to make any real manifold a Riemannian manifold by
equipping it with an inner product, it is also possible to make any complex
manifold a Hermitian manifold by equipping it with a Hermitian inner product.
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An inner product on the tangent space of a complex manifold is given in local
coordinates by:

ds2 =
∑
i,j

hij(z)dzi ⊗ dzj

ds2 is Hermitian if hij smooth and hij(z) = hji(z)[15]. The real part on the
Hermitian metric ds2 induces a Riemannian metric and the imaginary party of
ds2 defines a differential (1,1)-form Ω = − 1

2Im(ds2) called the associated form.
It can be shown that the associated form can be used to define the Hermitian
metric, effectivily going the other way as we just went. The associated form will
have the following form:

Ω =
i

2

∑
i,j

hij(z)dzi ∧ dzj

This can be helpful in determining whether a given manifold is Kähler or not,
since it could be easier to find the associated form than it is to find the Hermitian
metric. We now have enough information to give the definition of a Kähler
manifold[15]:

Definition 3. A complex manifold M is called a Kähler manifold if it possesses
a Kähler metric, which is a Hermitian metric ds2 such that the associated (1,1)-
form Ω is closed: dΩ = 0.

Both the complex space Cn and the quotient space Cn/Γ are examples of Kähler
manifolds. In addition any complex submanifold of a Kähler manifold is also
a Kähler manifold. Another example of a Kähler manifold is the complex pro-
jective space Pn, we will show this in some detail later. We noted that every
complex manifold can be equipped with a Hermitian metric. It is however not
true that every compact complex manifold can be equipped with a Kähler met-
ric, making Kähler manifolds a proper subset of the complex manifolds.

3.1.2 Chern classes

Now that we have taken care of half of the definition of a Calabi-Yau manifold
it is time to look at the other half, Chern classes. At the end of this section we
will give a condition for the vanishing of the first Chern class that is very easy
to use. We will try to give a short introduction to Chern classes here.

Chern classes are topological invariants that are defined over vector bundles
of a manifold. A real vector bundle V of rank k over a smooth manifold M is a
smoothly varying family of k-dimensional vector spaces. Meaning that at every
point on the manifold we have a vector space such that the vector space varies
smoothly when we walk over the manifold. This can be made a bit more formal
by giving a real vector bundle as a triple (M,V, π) where M and V are smooth
manifolds and

π : V →M
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is a smooth map. For each m ∈ M , the fiber Vm ≡ π−1(m) of V over m is a
real k-dimensional vector space. The vector space structures varies smoothly
with m. The spaces M and V are called the base and the total space of the
vector bundle (M,V, π). It is customary to call π : V →M a vector bundle and
V a vector bundle over M. For completeness we give the definition of a vector
bundle[11]:

Definition 4. A real vector bundle of rank k is a tuple (M,V, π, ·, +)

1. M and V are smooth manifolds and π : V →M is a smooth map

2. ·: R× V → V is a map such that π(c · v) = π(v) for all (c, v) ∈ R× V

3. +: V ×M V → V is a map such that π(v1 + v2) = π(v1) = π(v2) for all
(v1, v2) ∈ V ×M V

4. For every m ∈ M there exists a neighborhood U of m in M and a diffeo-
morphism h : V|U → U × Rk such that

• π1 ◦ h = π and

• the map h|vx : V − x → x × Rk is an isomorphism of vector spaces
for all x ∈ U

A complex vector bundle is defined in a similar way replacing all R with C.
Given a base manifold M, how do we know if two vector bundles V and V’
over M are isomorphic to each other? Are there any topological invariants
asociated with vector bundles that give us information about the structure of
the bundle? Chern classes provide an algebraic quantity that gives a partial
answer to the question whether two different vector bundles over the same base
are isomorphic [5]. We can have a look at the forms defined on V. On every
manifold there is a well defined curvature form that gives us just the information
we need. We give the following definition of the Chern class [13]:

Definition 5. Given a vector bundle V over a complex manifold M and a closed
curvature (1,1)-form Θ on V, we define the total Chern class:

c(Θ) ≡ det[I +
i

2π
Θ]

= I + c1(Θ) + c2(Θ) + ... (8)

ci is the ith Chern class

All ci are closed (i, i)−forms and give homology groups. Chern classes are
atleast indepedent of parametrization because the determinant is independent
under base changes. Vanishing of the first Chern class means that first form in
the expansion of equation (8) is equal to zero, c1 = 0. Calculating the Chern
class from (8) can be quite hard. At the end of this section we will give a result
that will greatly simplify the question whether or not a given hypersurface has
vanishing first Chern class. We will now turn our attention towards the Hodge
numbers and Euler characteristic.
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3.2 Cohomology

In this subsection we will introduce cohomology. This will be necessary so that
we can introduce two topological invariants in the next section, namely Hodge
numbers and the Euler characteristic. Topological invariants are a valuable tool
in the study of surfaces as they hold a lot of information about the surface. We
will first look at the De Rham cohomology because is the real analog of the
Dolbeault cohomology in which we are ultimatly more interested.

3.2.1 De Rham cohomology

Consider all r-forms on some smooth space M. An r-form ω is called closed if
dω = 0 and an r-form ω is exact if it can be written as the exterior derivative
of a (r-1)-form so that ω = dα. Note that all exact forms are closed because
d2 = 0. The De Rham cohomology groups are defined as the quotient spaces of
closed forms modulo exact forms. Elements of Hr

DR(M) are classes of r-forms
on M such that[13]:

dω = 0

ω ∼= ω′ = ω + dα

The dimension of Hr
DR is the rth Betti number. The Dolbeault cohomology we

consider will be defined in a similar way, but we have to deal with the complex
nature of the forms first.

3.2.2 Dolbeault cohomology

When we deal with complex manifolds we can split the forms on the manifold
in a complex and a real part so that we get a (p,q)-form. Where the p-form
is the real part of the form and the q-form is the imaginairy part of the form.
Similar we can split the exterior derivative d into ∂ and ∂ such that:

d = ∂ + ∂

∂ acts on the real part of the form taking a (p,q)-form to a (p+1,q)-form and ∂
acts on the imaginairy part of the form taking a (p,q)-form to a (p,q+1)-form.

Both ∂2 and ∂
2

are equal to 0. This means that we can again consider closed
and exact forms when discussing ∂ and ∂. This means that we can define two
analogs to the De Rham cohomology, one for ∂ and one for ∂. The Dolbeault
cohomology Hp,q

∂
is the quotient space of the ∂ closed (p,q)-forms modulo the

∂ exact (p,q)-forms. So, the Dolbeault cohomology is defined as:

Hp,q

∂
=
Kerp,q∂

Im∂
p,q

We said that we can also define a similar quotient space based on ∂. However,
it can be shown that this new cohomology is equivalent to the Dolbeault co-
homology when the forms are defined on a Kähler manifold, so that we would
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gain no new information. Now that we have introduced the Dolbeault coho-
mology, it is easy to introduce Hodge numbers. Hodge numbers are defined as
the dimension of the Dolbeault cohomology groups hp,q = dim(Hp,q). Just as
the Dolbeault cohomology is the complex analog of the De Rham cohomology,
the Hodge numbers are the complex analog of the Betti numbers. The Betti
number is related to the Hodge numbers as follows[13]:

br(M) =

r∑
p=0

hp,r−p(M) (9)

We will now look at the Hodge numbers in case of a 3 complex dimensional
Calabi-Yau manifold.

3.3 Hodge diamond and the Euler characteristic

The Hodge numbers are sometimes organized in a structure called the Hodge
diamond. In this section we will treat the general shape of the Hodge diamond
for Calabi-Yau 3-folds and we will introduce the Euler characterstic. The Euler
characteristic will be the only topological invariant used to analyze the Calabi-
Yau manifolds in this study.

3.3.1 Hodge diamond for Calabi-Yau 3-folds

We consider the Hodge diamond of a Calabi-Yau 3-fold. There is a lot of struc-
ture in the Hodge diamond of a Calabi-Yau 3-fold, due to its properties. Ul-
timatly this will mean that the number of independent Hodge numbers for a
Calabi-Yau 3-fold will be reduced to two[13]. We will give the necessary results
here.

We will only consider manifolds that consist of a single connected piece and
hence b3,3 = 1. In addition bp,q = 0 if p + q ≥ 7 when working on a complex
3-fold. The Hodge star (?) is an operator that sends p-forms to (n-p)-forms on
an n-dimensional differentiable manifold.

Definition 6. Let α be an r-form α = ai1,...,irdx
i1 ∧ ... ∧ dxir , then the Hodge

star is defined as:

?α = a∗j1,...,jn−r
dxj1 ∧ ... ∧ dxjn−r

a∗j1,...,jn−r
= εi1,...,irj1,...,jn−r

ai1,...,ir

The Hodge star preserves closed and exact forms, i.e. if α is closed/exact then
?α is closed/exact. The Hodge star leads to following relation on the De Rham
cohomology:

Hr
DR
∼= Hn−r

DR

When acting on a complex form, the Hodge star takes (p, q)−forms to (n−p, n−
q)−forms. Together with the previous relation this leads to Hp,q ∼= Hn−q,n−p

and thus:
hp,q = hn−p,n−q
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1
b1,0 b1,0

b1,0 b1,1 b1,0
1 b2,1 b2,1 1

b1,0 b1,1 b1,0
b1,0 b1,0

1

Table 1: The Hodge diamond reduced to three independent numbers

For a compact Kähler manifold we have the relation Hp,q(M) = Hq,p(M). Such
that complex conjugation of (p,q)-forms implies:

hp,q = hq,p

Every Calabi-Yau manifold has a unique nowhere vanishing (3,0)-form Ω (so
b3,0 = 1). It can be shown that this leads to the following relation.

hp,0 = h3−p,0

To summerize we have the following Hodge diamond (Table 1). We now need
one more result to determine b1,0. We use the following theorem from [13]:

Theorem 1. b1 = 0 on a manifold with a Ricci flat metric

A Calabi-Yau manifold has a Ricci flat metric. So in particilar for any Calabi-
Yau manifold b1 = 0. Using equation 9 we find that b1,0 = b0,1 = 0. The
Hodge diamond for a Calabi-Yau 3-fold is displayed in Table: 2. We find that
the Hodge diamond of any Calabi-Yau manifold has the same basic form. The
outer rim of Hodge numbers is completely determined: 1’s in the corners and
0’s elsewhere. The inside Hodge numbers follow the above relations, so there
also is a lot of structure there. The higher the dimension, the more free Hodge
numbers. A special case is K3, which is the only CY in 2 complex dimensions
besides the torus, it has b1,1 = 20.

3.3.2 Euler characteristic

Once we have obtained a list of Calabi-Yau manifolds the main topological
invariant that we are interested in is the Euler characteristic. This is because

1
0 0

0 b1,1 0
1 b2,1 b2,1 1

0 b1,1 0
0 0

1

Table 2: Hodge diamond of a Calabi-Yau 3-fold
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of the mirror symmetry we discussed in the previous section. Finding two
manifolds with opposite Euler characteristic does not make them mirror pairs
so we will not be able to claim to have found a mirror pair at the end of the
thesis. We will define the Euler characterstic as follows:

Definition 7. The Euler characteristic (χ) of a complex manifold M is:

χ(M) =

dim(M)∑
r=0

(−1)rbr(M)

where br is the rth betti number.

Using equation 9 and the form of the Hodge diamond for a Calabi-Yau 3-fold,
we find that for a Calabi-Yau 3-fold:

χ(M) = 2(b2,1 − b1,1)

We have a similar problem as we did in case of the Chern class, we are not going
to calculate the Hodge numbers so we can’t use the formula directly. However,
like for the Chern class, there are several results in the literature that links the
Euler characteristic directly to the space we work in. We will give these results
later in this section after we have introduced the (weighted) projective space.
First we will link the previous discussion to the discussion on mirror symmetry
from the previous section.

We are now able to make the last statement of the previous section more
precise, i.e. what we mean with a mirror pair of a Calabi-Yau manifold. The
Calabi-Yau manifolds that are mirror pairs are related through their Dolbeault
cohomology. In particular:

H2,1(W ) ∼= H1,1(M)

H1,1(W ) ∼= H2,1(M)

For a mirror pair (M,W) of Calabi-Yau 3-folds. This implies that:

χM = −χW

We will be particularly interested in any two Calabi-Yau manifolds with op-
posite Euler characterstic. We already remarked that this does not mean that
these two manifolds are a mirror pair, for that we need the Hodge numbers
of these manifolds. Even so two manifolds can only be called a mirror pair if
they are related through some symmetry (mirror symmetry) of a theory that is
compactified on them.

3.4 Projective spaces

In the next section we will introduce weighted projective spaces.Bbefore we
do that we will first have a look at ordinary projective spaces and Calabi-Yau
manifolds in them.
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Definition 8. A projective space, Pn is a space that allows, for all constants λ,
the following identification on its (complex) coordinates:

(z1, ..., zn) ∼= λ(z1, ..., zn)

We have already remarked that the projective space itself is a Kähler manifold
and it is because of this that Calabi-Yau manifolds are easily constructed in Pn.
We will show that Pn is Kähler by considering the following example which is
taken from[15]:

Example 1. Consider Pn with homogeneous coördinates (u0, ..., un). Let zj =
uj

u0
and u0 6= 0, we consider the following (1,1)-form:

Ω =
∑
r,s

ωr,sdzr ∧ dzs

ωr,s =
∂2log(1 +

∑
|zj |2)

∂zi∂zs

ωr,s is a hermitian matrix and Ω is closed. So this (1,1)-form is the associated
form to a Kähler metric on Pn, the Fubini-Study metric[15].

Furthermore, projective spaces are also compact. This implies that any an-
alytical submanifold of P is also a compact Kähler manifold. By analytical
submanifold we mean a manifold M, such that any point of M has a neighbor-
hood that is covered by a finite number of patches that are defined by analytical
functions.

3.4.1 Calabi-Yau manifolds in Pn

We will now construct a Calabi-Yau manifold in Pn. We will follow Candelas
et al.[3], this means that we consider complete intersection manifolds. That
is manifolds that are defined by N polynomials p1, ...pN that have a nowhere
vanishing N-form: Θ = dp1 ∧ ... ∧ dpN . The interesting question is if there
are submanifolds of Pn that have vanishing first Chern class. Candelas uses a
theorem that states that the first Chern class of M vanishes if and only if M
admits a globally and nowhere vanishing holomorphic three form.

Ω =
1

3!
Ωµνρdx

µ ∧ dxν ∧ dxρ

Such that the only non zero part of Ω is (the holomorphic) Ωµνρ. After an
explicit calculation, they find the condition that Ω is defined globally on M is
the same as:

N∑
i=1

deg(pi) = N + 4

which is then the condition that is used for vanishing first chern class of M. This
leads to only five Calabi-Yau manifolds for N = 1 (table: 3). When there is more
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Space Degree of p Euler characterstic
P4 5 -200
P5 3,3 -144
P5 2,4 -176
P6 2,2,3 -144
P7 2,2,2,2 -128

Table 3: Calabi-Yau manifolds in Pn

than one degree given it means that the manifold is the complete intersection
of that number of polynomials of given degree.
This result is obtained under the assumption that we only use one projective
space. If we allow for the product of projective spaces the number of Calabi-
Yau manifolds quickly grows. Candelas extends the list that is given in table
(3) to atleast a hundred topologically different Calabi-Yau manifolds. It is a
remarkeble thing that all of these manifolds have negative Euler characteristic.
This is one of the main reasons to want to look beyond this class of Calabi-
Yau manifolds. Since it will be impossible to find mirror pairs if we only have
manifolds with negative Euler characteristic.

3.5 Weighted projective spaces

It is a natural step after projective spaces to look at weighted projective spaces.
These are the spaces that we will work in. Projective spaces may be generalized
to weighted projective spaces as follows:

Definition 9. A space WPn is called a weighted projective space with global
homogeneous coordinates z0, ..., z1 if these coordinates allow the following iden-
tification:

zi ∼= λkizi

for all λ. The constants ki are called the weights of the space.

It is clear that if all the weights k1, ...kn are divisible by some integer such that
k′i = mki for all i then WPnk′ ∼= WPnk . However, there is an ever more powerful
result which is taken from [13]:

Theorem 2. let k = (k1, ..., kn) and

di = gcd(k0, ..., ki−1, ki+1, ..., kn)

mi = lcm(d0, ..., di−1, di+1, ..., dn)

then WPnk ∼= WPnk′ where k′i = ki
mi

.

In light of the theorem we give the following definition:

Definition 10. A weighted projective space is called well-formed if each n out
of n+1 weights are coprime.
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In light of this it should be clear that we only need to consider well-formed
WPn. We will look at one more aspect of WPn, before we go to the question of
how to define Calabi-Yau manifolds in WPn.

3.5.1 Singularities

Weighted projective spaces have singularities, this is an important difference
between projective spaces and weighted projective spaces. These singularities
are due to the weights of the space. To see this consider the following example:

Example 2. Consider the space WP4 with weights: (1,1,2,3) such that:

(z0, z1, z2, z3) ∼= (λz0, λz1, λ
2z2, λ

3z3)

Consider now λ = −1 in the neighborhood of (0, 0, 1, 0), this gives:

(z0, z1, 1, z3) ∼= (−z0,−z1, 1,−z3)

Such that there is a Z2 identification on the space corresponding to a cyclic
quotient singularity. Similarly, there is a singularity due to k4 = 3.

In fact, we have in general that the weighted projective space is just a quotient
of a projective space:

WPn =
Pn

Zk1 ⊗ ...⊗ Zkn
A generic surface in WPn will intersect these singularities and hence isn’t a
manifold but an orbifold. We can desingularize these orbifolds if the singularities
aren’t too bad. [13] gives the following result:

Theorem 3. The singular set of a well-formed WPn has dimension at most
n-2 and consists of cyclic quotient singularities.

This result is treated in more detail in [1] for the case n=4. We will not be
looking at the actual desingularization proces in this thesis. All results apply
to the manifolds that are obtained after proper desingularization. Furthermore,
we will frequently call the hypersurface in WPn a manifold rather then orbifold.
This should not cause confusion. The reason why we were interested in pro-
jective spaces was because they are Kähler. We have shown this by giving an
associated form on Pn. We can extend this result to weighted projective space
because any weighted projective space can be embedded in a large enough Pm,
such that any WPn is also Kähler. Implying once again that any analytical
submanifold is compact Kähler.

3.6 Calabi-Yau manifolds in WPn

We will define hypersurfaces in WPn by using transverse polynomials. We define
a transverse polynomial as follows[13]:

Definition 11. A polynomial p is transverse if ∇p = 0 only at the origin
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Furthermore we need the polynomials to be quasihomogeneous due to the nature
of the weighted projective space. A quasihomogeneous polynomial is defined as:

Definition 12. A polynomial is called quasihomogeneous of degree d if the
following relation holds:

p(λk0z0, ..., λ
knzn) = λdp(z0, ..., zn) (10)

This means that for a given set of weights not any polynomial is quasihomoge-
neous, as can be seen in the following example:

Example 3. We consider the space WP1
2,3 and the polynomial:

p = x2y + y2

= (λ2x)2(λ3y) + (λ3y)2

= λ2∗2+3∗1x2y + λ3∗2y2

6= λdp

Clearly there is no degree d to satisfy the relations and hence this polynomial is
not quasihomogeneous.

We call the set of all quasihomogeneous polynomials with respect to a set of
weights and a certain degree a configuration:

WPki [D]

A configuration is called transverse if atleast one of the polynomials in the
configuration is transverse. In the next section we will consider ways to con-
struct transverse quasihomogeneous polynomials. A necessary condition for a
configuration to have a transverse member is that the following expression is a
polynomial [2]:

P (t) =
∏
i

1− tD−ki
1− tki

(11)

This is the Poincaré polynomial. This result is used in[4] to give a classification
on configurations. We will not use it, but it should be mentioned because of this
classification. We know that any manifold in WPn is a compact Kähler manifold.
The question is how do we know whether a given manifold has vanishing first
Chern class. We already noted that we would not be calculating the first Chern
class from(8). We will use the following result that is obtained in [1] and also
in [13]:

Theorem 4. A manifold after desingularization from an orbifold in WPn has
vanishing first Chern class if

d =
∑
j

kj (12)

where d is the degree of the quasihomogeneous polynomial and kj for j = 0, .., n
are the weights of WPn.
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This result completes the relations between the degree and powers of the poly-
nomial and the weights of the space together with (10). The question is whether
there are transverse, quasihomogeneous polynomials in WPn that satisfy these
relations. We will begin the next section with a discussion of the classification of
these polynomials in WP1 and WP2 a two and three dimensional space respec-
tively. We are concerned with the Euler characteristic of hypersurfaces in WP4.
We have treated cohomology groups and Hodge numbers with the goal of ulti-
matly defining the Euler characteristic, the downside there was that we defined
the Euler characteristic using the Hodge numbers which we will not calculate.
We will use a result by Vafa who used a certain type of models compactified
on hypersurfaces to obtain a formula for the Euler characterstic [9], which is
modified for the case at hand in [4]:

χ =
1

d

d−1∑
k=0

d−1∑
l=0

∏
(l∩k)qi∈Z

qi − 1

qi
(13)

where qi = ki
d . Interestingly enough, in the paper by Candelas [1], which mo-

tivated this study, Candelas gives another formula for the Euler characteristic
giving the paper by Vafa as reference. His formula is:

χ = −1

d

d−1∑
l,r=0

∏
(l∩k)qi∈Z

d− ki
ki

+
∑

(l∩k)qi /∈Z

1

d
(14)

which just seems to be wrong. Not only does it not agree with equation (13),
it also seems to be only negative due to the fact that d ≥ ki. When calculating
Euler numbers it also appears to be unable to give an integer answer. It should
be noted that the formula was assumed to have brackets from the first sum
to the end of the formula. When we calculated several Euler characteristics
from known configurations in [1], all agreed to the given results when we used
(13). Whereas when we use (14), we find no sensibel answer. So we will use
(13) for the calculation of the Euler characteristic. We will mostly be interested
in Calabi-Yau manifolds of complex dimension 3. This means that we will be
working in WP4 because we loose one degree of freedom due to the embedding
and one degree of freedom due to the weights. It should be clear that we need
a classification of transverse polynomials in WP4. We will discuss this in the
next section.
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4 Classification and results

The goal of this study is to find all Calabi-Yau 3-folds in a weighted projective
space and see if we can find a manifold with an Euler characteristic that is not
listen in[1]. The discussion in the previous subsection concluded with the state-
ment that we need to find all transverse quasihomogeneous polynomials in such
a space. These polynomials are then used to define the Calabi-Yau manifolds
we are after. First we will look at a classification of transverse quasihomogenous
polynomials in 2 and 3 variables and we will introduce a method to find trans-
verse polynomials using endomorphisms. We will use this method to extend the
list of polynomials from [1] and show some examples of Calabi-Yau manifolds
that we constructed. The last part of this section we will be discussing the pa-
pers by Kreuzer and Skarke [4] and [2]. A complete classification off all orbifolds
in weighted projective space was constructed in these papers.

4.1 Transverse polynomials in 2 and 3 variables

This classification was done by Arnold [12] and we will give an overview of his
results here. Two variable case is very easy as can be seen in the next theorem:

Theorem 5. Any transverse quasihomogeneous function of two variables of
corank 2 contains with nonzero coefficients the following polynomials:

p1 = za1 + zb2

p2 = za1 + zb2z1

p3 = za1z2 + zb2

p4 = za1z2 + zb2z1

The second and third polynomial in this theorem are clearly just the same under
changing z1 and z2. For the proof of the theorem we invite the reader to read
chapter 13 of the book by Arnold. We have ( 10) the connection between the
weights of WPn and the degree D of the polynomial. From this we can find
conditions on the weights of the space WP1

k1,k2 . For the second polynomial in
the theorem we have for instance:

D = k0a

= k1b+ k0

From this it is clear that the weights have to satisfy the relation:

k0 =
D

a

k1 = D
a− 1

ab

Clearly, it is possible to do this for all of the polynomials above. A similar list
has been construced for the 3 variable case. It results in a list of seven sets of
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# Monomials k1, k2, k3

1 za1 , zb2, zc3
D
a , D

b , D
c

2 za1 , zb2, zc3z2
D
a , D

b , D(b−1)
bc

3 za1 , zb2z1, zc3z1
D
a , D(a−1)

ab , D(a−1)
ac

4 za1 , zb2z3, zc3z2
D
a , D(c−1)

bc−1 , D(b−1)
bc−1

5 za1 , zb2z3, zc3z1
D
a , D(ac−a+1)

abc , D(a−1)
ac

6 za1z2, zb2z1, zc3z1
D(b−1)
ab−1 , D(a−1)

ab−1 , Db(a−1)
c(ab−1)

7 za1z2, zb2z3, zc3z1
D(bc−c+1)
abc+1 , D(ac−a+1)

abc+1 , D(ab−b+1)
(abc+1)

Table 4: A list of all the seven monomials in 3 variables

monomials. This list is given in Table (4.1), the relation between the degree of
the monomial D and the weights is also given. The proof that these are indeed
all monomials that are needed to construct all transverse quasihomogeneous
polynomials eventually comes down to a classification of endomorphisms from
a set of 3 points to itself (or indeed for n variables to a classification of the
endomorphisms off n points). There are 33 = 27 endomorphisms from a set
of 3 points to itself and only 7 distinct set of monomials. This difference is
due to the fact that we only need to consider endomorphisms modulo renaming
the points. It is convenient to draw he endomorphisms schemetically using
pictures containing arrows and circles4.1. Any graphical representation of an

Figure 4: Schematic representation of endomorphisms. The circle means sending
a point to itself and an arrow means sending a point to another point

endomorphism is build from these two basic components. A circle corresponds
to a term xa and a line (from x to y) corresponds to xay. We introduce the
following nomenclature. We will call a variable x a root of a polynomial p if p
contains a term xa. A monomial xay is called a pointer and a link between two
expressions is a monomial that only depends on the variables occuring in these
expressions. A link is not necessarily a pointer, xayb. We shall call a graph of
an endomorphism without links a skeleton graph. The following two results are
going to be of great importance to us:

Theorem 6. If f(z) is a transverse polynomial for some set of variables z and
g(y) is also a transverse polynomial for a set of variables y such that z 6= y then
f(z)+g(y) is also transverse.

Theorem 7. Any transverse quasihomogenous polynomial in 3 variables con-
tains a set of monomials that correspond to an endomorphism of 3 points
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The first result is very straightforward but we will use it quite a lot in the
comming sections. The second result implies that we need to check each linear
combination of monomials for transversality and in fact if we check table (4.1)
we find that both a linear sum of monomials from class 3 and from class 6 is
not transverse. We consider the following example using a polynomial based on
class 3:

Example 4.
p = za1 + zb2z1 + zc3z1

To check whether this polynomial is transverse or not we have to take a look at
the gradient:

∇p = (aza−1
1 + zb2 + zc3, bz

b−1
2 z1, cz

c−1
3 z1)

Setting ∇p = 0 and taking z1 = 0 we find a relation between z2 and z3, this
relation defines a curve. Clearly, on this curve we have both p and ∇p equal to
zero so this polynomial is not transverse. We need to add an extra link to this
polynomial to make sure that it is transverse. In fact, adding a monomial of
this form zm2 z

n
3 does the trick. We now have the following polynomial:

p = za1 + zb2z1 + zc3z1 + zm2 z
n
3

If we look at the gradient of p now we find:

∇p = (aza−1
1 + zb2 + zc3, bz

b−1
2 z1 +mzm−1

2 zn3 , cz
c−1
3 z1 + nzp2z

n−1
3 )

This polynomial is transverse as can be seen by setting the gradient equal to zero
and working out the consequences.

In conclusion we see that a skeleton graph need not be transverse but can
be made transverse by adding extra links. The only question that remains is
whether there are numbers m and n that satisfy the relation D = mk2+nk3 such
that the polynomial is quasihomogeneous. Adding extra links makes the system
of equations that we need to solve bigger and thus adding more constraints to
it. We quote the following theorem from [12] to illustrate this:

Theorem 8. 1. A transverse quasihomogeneous polynomial of class 3 exists
if and only if the least common multiple of the numbers b and c is divisible
by a− 1.

2. A transverse quasihomogeneous polynomial of class 6 exists if and only if
(b−1)c is divisible by the product of a−1 and the greatest common diviser
of the numbers b and c.

3. Transverse quasihomogenous polynomials of the remaining five classes ex-
ist for all a,b,c that satisfy the degree relations.

The proof of this theorem is just computing the consequences of the example
above for all linear combinations of monomials from table (4.1). While this
is straightforward it can be quite difficult to see the correct solution in some
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individual cases. This will be especially true for the cases where there are 5
variables present, where we also need to add extra links. We will prefer to just
simply put the condition on the extra monomials as an extra constraint in the
computer and let it calculate the solutions for us. We add one final example to
this section, where we actually give a solution to the set of equations:

Example 5. Consider the linear combination of monomials of type 6:

p = za1z2 + zb2z3 + zc3z1

We already remarked that this polynomial is not transverse. Calculating the
gradiant we find that we need to add the following monomial: zm1 z

n
2 to make the

polynomial transverse. We find the following set of constraints:

D = ak1 + k2

= k1 + bk2

= k1 + ck3

= mk1 + nk2 (15)

A solution to this system of equations is not at all obvious, however we do find
the following solution using a computer:

D a b c m n k1 k2 k3

14 5 3 4 3 2 2 4 3

Table 5: Solution to equation (15)

Space Polynomial

WP2
2,4,3[14] z5

1z2 + z3
2z3 + z4

3z1 + z3
1z

2
2

From this example it should be clear that a solution always consists of a poly-
nomial and a corresponding weighted projective space. It is very likely that a
given polynomial is transverse in one space but not in another.

4.2 Calabi-Yau manifolds in WP4

The classification of transverse quasihomogeneous polynomials in 3 variables re-
lied on the classification of endomorphisms. The result is more general however
and holds for n variables. In the case of 5 variables we need to classify endomor-
phisms on 5 points. These endomorphisms give us a minimal set of monomials
in 5 variables that need to be present before a polynomial can be transverse.
An extension to the list of endomorphisms in 3 variables was given in [1]. The
endomorphisms that where used in [1] can be found in Appendix A. Once we
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have a transverse quasihomogeneous polynomial we still don’t know whether it
defines a Calabi-Yau manifold or not. For this it needs to satisfy:

D =
∑
i

ki

putting another constraint on the system. We consider the following examples
to illustrate the construction of a Calabi-Yau manifold in WP4.

4.2.1 Two examples

Example 6. We start by defining an endomorphism as shown in the figure,
this endomorphism corresponds to the following polynomial:

p = za1 + zb2 + zc3 + zd4 + ze5

This polynomial is clearly transverse so we don’t need to add extra monomials.
We have the following set of constraints to solve:

D = ak1

= bk2

= ck3

= dk4

= ek5

= k1 + k2 + k3 + k4 + k5

Which we solve using the mathematica script in Appendix B. We find the fol-
lowing solution as in table (6), the zero locus of this polynomial is a Calabi-Yau

Space Polynomial

WP4
42,258,903,602,1[1806] z43

1 + z7
2 + z2

3 + z3
4 + z1806

5

manifold after desingularization. The next question is, what is the Euler char-
acteristic of the configuration that we obtained? We use the formula obtained
by Vafa (13) and mathematica to find χ = 0.

This example is also treated in [1], where it is remarked that 1806 is the highest
power that was found. This raises an interesting question: Is the list we are
trying to construct finite? The answer is: yes. If one picks any endomorphism,
it can be shown that the constraints on the weights and the constraint coming
from the first Chern class limits the number of solutions. We consider again:

p = za1 + zb2 + zc3 + zd4 + ze5
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Using that D = k1a = ... and the condition for vanishing first Chern class we
find:

D = k1 + k2 + k3 + k4 + k5

=
D

a
+
D

b
+
D

c
+
D

d
+
D

e

If we set a > b > c > ... then biggest value possible for a = 2, such that:

1

2
=

1

b
+

1

c
+

1

d
+

1

e

And we find for b = 3 etc. The links that we need to add from time to time can
not increase the number of possibilities. The previous example was the easiest
polynomial possible, now we consider an example that is slightly more difficult.

Example 7. We consider the following endomorphism (Figure 5), which cor-
responds to this polynomial:

Figure 5: Endomorphism of 5 points

p = za1z2 + zb2z3 + zc3 + zd4z3 + ze5

This polynomial is not transverse. We need to add a monomial of the form zm2 z
n
4

to make it transverse. If we now put the set of constraints into mathematica we
find the solution as in the table. If we calculate the Euler characterstic associated

Space Polynomial

WP4
11,3,2,2,1[132] z11

1 z2 + z3
2z3 + z2

3 + z2
4z3 + z132

5 + z3
2z

2
4

with this configuration then we find χ = −288, a number that is on the list in [1]

4.2.2 Extending the list of polynomials

Proceding in the manner of the previous subsection Candelas et al. found 2339
topologically different Calabi-Yau manifolds. The list of endomorphisms that
where used is not complete, as can be seen in Appendix A. We have extended
the list of endomorphisms and belief to have obtained the complete list of endo-
morphisms from 5 points to 5 points. It is easy to calculate how many endomor-
phisms on 5 points there are. It is the same as asking how many ways are there
to distribute 5 balls over 5 bowls, which is equal to 55 = 3125. Actually count-
ing the total number of endomorphisms that is represented by a single graph is
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a bit more difficult. It is here that mistakes could have been made. However, it
is possible to construct a total of 47 endomorphisms from 5 points to 5 points
with the list in Appendix A, which is a confirmation of the result given in [4].
We conclude that the list in Appendix A is a complete list of endomorphisms
from 5 points to 5 points.

All of the polynomials we found are not transverse, meaning that extra
monomials have to be added to make the polynomial transverse. This is pretty
straightforward as is shown as in the second example of the previous subsection.
It can become more and more difficult to find a solution to the set of constraints.
We consider this final example to illustrate the construction of a Calabi-Yau
manifold using a new endomorphism.

Example 8. We consider the polynomial based on the following endomorphism:

p = za1 + zb2z1 + zc3z1 + zd4z1 + ze5

This polynomial is clearly not transverse. We can make the polynomial trans-
verse by adding zm3 z

n
4 , zf2 z

g
3 and zx2 z

y
4 . One can check that the resulting polyno-

mial is transverse, but it already is quite difficult. Then calculating a solution to
the equations as before we find the following solution, with corresponding Euler
characteristic χ = −132.

Space Polynomial

WP4
42,6,14,21,1[84] z2

1 + z7
2z1 + z3

3z1 + z2
4z1 + z84

5 + z3
3z

2
4 + z7

2z
2
4 + z7

2z
3
3

We needed to add more monomials to the polynomial in the previous example
then we had to do for the earlier examples. This is in general true, the poly-
nomials corresponding to the endomorphisms that we found are not only not
transverse, most of them are not transverse in a not so nice way. Meaning that
we need to add several monomials to the polynomial to make the polynomial
transverse. The reason is the number of pointers that point to a single point.
If there are two pointers pointing at a single variable then we also need a link
to compensate. We can see that the new endomorphisms have a lot of pointers
pointing at the same point in appendix A. We could in principle continue finding
more and more solutions for more and more different polynomials. We will not
do this, instead we will look at the classification made by Kreuzer and Skarke
and discuss their results.

4.3 Classification by Kreuzer and Skarke

We have shown how to construct a Calabi-Yau manifold in a weighted projective
space and how to construct its Euler characteristic. A complete classification
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off the kind we considered has already been made. It is a classification of all
orbifolds constructed in a weighted projective space. We will now discuss this
classification by Kreuzer and Skarke [2], [4]. So far we have been constructing
transverse polynomials in 5 variables. Then we solved the constraints due to
the quasihomogeneouity and the vanishing first Chern class conditions to find
possible solutions to D, a, b, c, d, e, ki. We will introduce a new constraint on
the weights of the space we consider. In return for this extra constraint we
no longer fix the number of variables we consider to 5. The constraint on the
weights of a configuration is due to the Virasoro subalgebra of the theory we
want to compactify. We start by defining the singularity index of a configuration
as:

ĉ =
∑
i

1− 2qi

Where qi = ki/D. The theory Kreuzer and Skarke consider is a supersymmetric
conformal field theory (SCFT). The central charge c of the Virasoro subalgebra
of an SCFT is related to the singularity index of the configuration via c = 3ĉ [10].
The number of weights and hence the number of variables is now limited by the
central charge of the Virasoro algebra. Kreuzer and Skarke assume c = 9 in
their papers. It can be shown that the number of configurations for a given
singularity index is finite, meaning that the list we try to construct in this way
is finite. The first result of [2] is a theorem that tells us whether a polynomial
is transverse or not. We have already seen that the endomorphisms gave us a
minimal set of monomials that needed to be present in any polynomial. It had
to be checked by hand whether the extra terms that we added really made the
polynomial transverse. The next theorem makes that unnecessary. A necesarry
and sufficient condition for transversality is given by the following theorem:

Theorem 9. For a polynomial a necessary and sufficient condition to be trans-
verse is:

1. Each variable either points to itself or another variable.

2. For any pair of variables and/or links pointing at the same variable z there
is a link joining the two pointers and not pointing at z or any of the targets
of the sublinks which are joined.

The proof of this theorem is quite long and can be found in [2]. We remarked
earlier that a necessary condition for a configuration to be transverse was that
(11) is a polynomial. We shall call configurations for which (11) is a polynomial
almost transverse. It is a remarkeble result that the formula for the Euler
characteristic generates a sensible answer for this class[4]. A configuration is
called invertible if it contains a polynomial which does not require any links
to be transverse. The results from the previous subsection made it possible to
calculate Calabi-Yau manifolds in weighted projective spaces. In this section we
added the extra requirement that ĉ = 3. The following result is necessary to be
able to calculate all transverse configurations with ĉ = 3:
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# Variables 4 5 6 7 8 9 Total
Transverse 2390 5165 2567 669 47 1 10839
Invervible 2069 4191 2239 568 40 1 9108
Not invertible 321 974 328 101 7 0 1731
Almost transverse 2404 5583 2570 686 47 1 11291

Table 6: Results from [4]

Theorem 10. For a transverse quasihomogeneous polynomial with ĉ = 3 the
number of exponents αi > 18 is smaller then 3 and the number of exponents
αi > 84 is smaller then 2.

All but one of the exponents in a skeleton graph have to be smaller then 85.
This result makes it possible to compute all possible configurations. Kreuzer
and Skarke proceded as follows: start by computing all endomorphisms (they
did this for 4 to 9 variables). The next step is to start calculating all inequiva-
lent solutions with exponents smaller then 85, leaving only one free exponent.
The free exponent can be calculated by using the singularity index. The second
step is to calculate all corresponding configurations. In the third step we check
whether the Poincaré polynomial is a polynomial. This seperates the quasi-
homogeneous polynomials into a non transverse set and an almost transverse
set. The almost transverse set also contains the transverse polynomials. The
last step is checking which of the almost transverse polynomials can be made
transverse by adding appropriate links. The results that were obtained in [4]
are listen in table (4.3).

The most remarkable result in the paper is that there is no mirror symmetry
present in these models. For all invertible models 92% of the models have
mirrors and 69% of all the non invertible models have mirrors. If we combine the
invertible and non invertible models to look at all the transverse models, we find
that only 77% have mirrors. Also including the Euler characteristic associated
with the almost transverse models is not going to improve the symmetry, rather
it will give new singles. So there is no mirror symmetry present in this class.
There is known way to construct a mirror model given an invertible model by
Berglund and Hubsch[4]. The question where to look for the mirror partners of
the non invertible models is an open one.
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5 Discussion

We have discussed string theory and superstring theory in section 1. We came
to the conclusion that every Calabi-Yau manifold has to have a mirror due to
mirror symmetry. Another result from the literature seemed to support this.
Because a large class of Calabi-Yau manifolds where computed and an approx-
imate symmetry was found in their Euler characteristic. We started section 2
with a short discussion on Calabi-Yau manifolds. We defined projective spaces
and weighted projective spaces in order to be able to reproduce the construction
of Calabi-Yau manifolds. In section 4 we started the construction of the Calabi-
Yau manifolds. We found a way to increase the number of Calabi-Yau manifolds
that where constructed. We did not construct all possible manifolds, rather we
discussed the results by Kreuzer and Skarke who have found no improvement
in the symmetry of the Euler characteristic in the models under consideration
even though they did calculate all possible models.

So, the goal of this thesis was to extend the list of transverse polynomials
used by Candelas et al. and try to find a Calabi-Yau manifold with Euler char-
acteristic that was missing in the paper by Candelas et al. We have constructed
a complete list of endomorphisms from 5 points to 5 points and used that to con-
struct all polynomial types that have the potential to be transverse. Additional
links have to be added to make some of them transverse. Theorem 9 is very
helpful here. Using these polynomials it is in principle possible to calculate a list
of all solutions as discussed in the previous section using the singularity index.
We where unable to do this at present. The main restriction we encountered was
the Mathematica script that we used. The script, while being able to compute
a solution to a given polynomial, is not useful for construction a large numbers
of solutions. We recently came acros a software package for C called PALP that
has the functionality needed to analyze the models[19]. PALP incorperates the
code that Kreuzer and Skarke used in their analysis. It would be interesting to
try out this software package on the polynomials that we obtained.

The final conclusion of the previous section was that there is no mirror
symmetry present in the interesting models that can be constructed in weighted
projective space. This is quite unexpected. This result seems to point to an
even larger class of manifolds that need to be considered. We briefly discussed
Calabi-Yau manifolds in projective space. We concluded that when looking at
only 1 space the total number of Calabi-Yau was 5. Taking the step to complete
intersection Calabi-Yau manifolds, that is manifolds defined as an intersection in
multiple projective spaces, the total number of manifolds was extended into the
hundreds. Another generalization from the projective space was the weighted
projective space. This also increased the total number of Calabi-Yau manifolds
dramatically. However as we concluded there is no perfect mirror symmetry
in this class. It could be interesting to extend the Calabi-Yau manifolds in
weighted projective space to Calabi-Yau manifolds in a complete intersection
of weighted projective spaces. A first step in this direction is taken in [13]. It
could be interesting to see what the effect is on the number of manifolds that
are found and also on their Euler characteristics.
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One of the strongest constraints on the possible solutions are the extra links
that need to be added to make a polynomial transverse. It could be interesting
to look what happens if we loosen this restriction a bit. The links have no direct
influence on the Euler characteristic but they do limit the number of solutions, it
is possible that they are to strict in some cases. The reason weighted projective
space is interesting is because it is a Kähler manifold. It is unknown if there
are other similar spaces that we did not consider. If there are such spaces then
it could be interesting to look at manifolds in those spaces aswell.

Finally we would like to draw attention to the site by Kreuzer and Skarke[19].
All known configurations are on this site for manifolds in weighted projective
spaces. Aswell as links to related articles and the software package PALP.
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A A list of endomorphisms and polynomials

All endomorphisms and corresponding polynomials are listed in this appendix.
A star means that it is not in the list given in [1]

Endomorphism Polynomial New

za1

za1z2 + zb2

za1z2 + zb2z1

za1z2 + zb2z3 + zc3

za1z2 + zb2 + zc3z2

za1z2 + zb2z3 + zc3z2

za1z+z
b
2z3 + zc3z1

za1z
2 + zb2z3 + zc3z4 + zd4

za1z
2 + zb2z3 + zc3 + zd4z3

za1z2 + zb2z3 + zc3z4 + zd4z3

za1z2 + zb2z3 + zc3z4 + zd4z2

za1z2 + zb2z3 + zc3z4 + zd4z1

za1 + zb2z1 + zc3z1 + zd4z1 ?

za1 + zb2z1 + zc3z2 + zd4z2 ?

za1z2 + zb2z3 + zc3z2 + zd4z3 ?

za1z2 + zb2z1 + zc3z2 + zd4z2 ?
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Continuation from the previous page.

Endomorphism Polynomial New

za1z2 + zb2z3 + zc3z4 + zd4z5 + ze5

za1z2 + zb2z3 + zc3z4 + zd4 + ze5z4

za1z2 + zb2z3 + zc3 + zd4z3 + ze5z4

za1z2 + zb2z3 + zc3z4 + zd4z5 + ze5z4

za1z2 + zb2z3 + zc3z4 + zd4z5 + ze5z3

za1z2 + zb2z3 + zc3z4 + zd4z5 + ze5z2

za1z2 + zb2z3 + zc3z4 + zd4z5 + ze5z1

za1 + zb2z1 + zc3z1 + zd4z1 + ze5z1 ?

za1 + zb2z1 + zc3z2 + zd4z1 + ze5z1 ?

za1 + zb2z1 + zc3z2 + zd4z2 + ze5z2 ?

za1 + zb2z1 + zc3z2 + zd4z3 + ze5z2 ?

za1 + zb2z1 + zc3z2 + zd4z3 + ze5z3 ?

za1z2 + zb2 + zc3z2 + zd4z3 + ze5z2 ?

za1z2 + zb2 + zc3z2 + zd4z3 + ze5z3 ?

za1z2 + zb2z3 + zc3z2 + zd4z3 + ze5z4 ?

za1z2 + zb2z3 + zc3z2 + zd4z3 + ze5z3 ?

za1z2 + zb2z3 + zc3z2 + zd4z2 + ze5z2 ?

za1z2 + zb2z3 + zc3z4 + zd4z2 + ze5z4 ?

za1z2 + zb2z3 + zc3z4 + zd4z2 + ze5z2 ?

za1z2 + zb2z1 + zc3z2 + zd4z3 + z2
5z2 ?

za1z2 + zb2z1 + zc3z2 + zd4z3 + z2
5z3 ?
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B Mathematica script

Here is an example mathematica script (p = za1 + zb2 + zc3 + zd4 + ze5)

sol = FindInstance[1 == 1/a+ 1/b+ 1/c+ 1/d+ 1/e&&a > 0&&b > 0&&c > 0&&d > 0&&e > 0,sol = FindInstance[1 == 1/a+ 1/b+ 1/c+ 1/d+ 1/e&&a > 0&&b > 0&&c > 0&&d > 0&&e > 0,sol = FindInstance[1 == 1/a+ 1/b+ 1/c+ 1/d+ 1/e&&a > 0&&b > 0&&c > 0&&d > 0&&e > 0,

{a, b, d, c, d, e}, Integers]{a, b, d, c, d, e}, Integers]{a, b, d, c, d, e}, Integers]

{{a→ 43, b→ 7, d→ 3, c→ 2, e→ 1806}}

sl = Solve[D == 43 ∗ k&&D == 7 ∗ l&&D == 2 ∗m&&D == 3 ∗ n&&D == 1806 ∗ o&&sl = Solve[D == 43 ∗ k&&D == 7 ∗ l&&D == 2 ∗m&&D == 3 ∗ n&&D == 1806 ∗ o&&sl = Solve[D == 43 ∗ k&&D == 7 ∗ l&&D == 2 ∗m&&D == 3 ∗ n&&D == 1806 ∗ o&&

D == k + l +m+ n+ o&&D > 0&&k > 0&&m > 0&&n > 0&&l > 0&&o > 0, {D, k, l,m, n, o},D == k + l +m+ n+ o&&D > 0&&k > 0&&m > 0&&n > 0&&l > 0&&o > 0, {D, k, l,m, n, o},D == k + l +m+ n+ o&&D > 0&&k > 0&&m > 0&&n > 0&&l > 0&&o > 0, {D, k, l,m, n, o},

Integers]Integers]Integers]

{{D → ConditionalExpression[1806C[1], C[1] ∈ Integers&&C[1] ≥ 1], k →

ConditionalExpression[42C[1], C[1] ∈ Integers&&C[1] ≥ 1], l→ ConditionalExpression[258C[1], C[1] ∈

Integers&&C[1] ≥ 1],m→ ConditionalExpression[903C[1], C[1] ∈ Integers&&C[1] ≥

1], n→ ConditionalExpression[602C[1], C[1] ∈ Integers&&C[1] ≥ 1], o→ ConditionalExpression[C[1], C[1] ∈

Integers&&C[1] ≥ 1]}}

{D, k, l,m, n, o}/.First[sl]/.Table[{C[1]→ i}, {i, 1}]//Simplify{D, k, l,m, n, o}/.First[sl]/.Table[{C[1]→ i}, {i, 1}]//Simplify{D, k, l,m, n, o}/.First[sl]/.Table[{C[1]→ i}, {i, 1}]//Simplify

{{1806, 42, 258, 903, 602, 1}}

q = 1/1806 ∗ {42, 258, 903, 602, 1};q = 1/1806 ∗ {42, 258, 903, 602, 1};q = 1/1806 ∗ {42, 258, 903, 602, 1};

chi = 1/1806∗chi = 1/1806∗chi = 1/1806∗

Sum[Product[Sum[Product[Sum[Product[

If[If[If[

Element[Element[Element[

{l ∗ q[[i]], r ∗ q[[i]]}, Integers], (q[[i]]− 1)/q[[i]], 1], {i, 5}],{l ∗ q[[i]], r ∗ q[[i]]}, Integers], (q[[i]]− 1)/q[[i]], 1], {i, 5}],{l ∗ q[[i]], r ∗ q[[i]]}, Integers], (q[[i]]− 1)/q[[i]], 1], {i, 5}],

{l, 0, 1805}, {r, 0, 1805}]{l, 0, 1805}, {r, 0, 1805}]{l, 0, 1805}, {r, 0, 1805}]

0
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C A list of known configurations

Here is a list of all configurations that where calculated. The number in brackets
is the degree of the polynomial. A star means that the number is missing in [1],
a diamond is a polynomial not in [1] and a wedge is a confirmed result from [1]

# Space Polynomial χ New
1 WP42,258,903,602,1 [1806] z43

1 + z7
2 + z2

3 + z3
4 + z1806

5 0
2 WP36,222,777,518,1[1554] z37

1 z2 + z7
2 + z2

3 + z3
4 + z1554

5 -60
3 WP16,68,85,170,1[340] z17

1 z2 + z5
2 + z2

3z4 + z2
4 + z340

5 -36
4 WP19,81,61,162,1[324] z17

1 z5 + z2
2z4 + z5

3z1 + z2
4 + z324

5 36
5 WP10,12,13,15,25[75] z5

1z5 + z5
2z4 + z5

3z1 + z5
4 + z3

5 6 ∧
6 WP4,7,9,10,15[45] z9

1z3 + z5
3 + z5

2z4 + z3
4z5 + z3

5 -6 ∧
7 WP5,8,12,15,35[75] z15

1 + z5
2z5 + z5

3z4 + z5
4 + z2

5z1 6 ∧
8 WP4,8,2,1,1[16] z2

1z2 + z2
2 + z4

3z2 + z16
4 + z16

5 + z8
3 -288

9 WP42,6,14,21,1[84] z2
1 + z7

2z1 + z3
3z1 + z2

4z1 + z84
5 + z3

3z
2
4 + z7

2z
2
4 + z7

2z
3
3 -132 �

10 WP10,22,66,33,1[132] z11
1 z2 + z3

2z3 + z2
3 + z2

4z3 + z132
5 -84
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