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ABSTRACT

The Standard Model is regarded as one of the most successful scientific theories,
but there is compelling evidence that it is an incomplete theory of particle
physics. There is currently no understanding of the observed baryon asymmetry,
the nature of dark matter, and dark energy. Field theoretic considerations
indicate parameters in the Standard Model are extremely fine-tuned. This
suggests the existence of new physics, accessible at higher energies, to explain
these seemingly unnatural tunings. To solve these puzzles, and others not
addressed by the Standard Model, many extensions of the Standard Model have
been proposed. It is of great importance that we fully understand the e↵ects
these models have on Standard Model physics and how these theories can be
tested. In this dissertation we explore the phenomenology associated with
beyond the Standard Model physics, specifically focusing on models with
extended Higgs sectors. In chapter 2, we study two classes of lepton flavor
violating two Higgs doublet models. Chapter 3 explores a model where the
Higgs is a pseudo-Goldstone boson of a non-abelian orbifold projection and all
other low energy states carry no Standard Model charges. Chapters 4 and 5
study Higgs phenomenology in the context of a warped five dimensional
space-time. The former analyzes the e↵ects of Higgs-radion mixing in two Higgs
doublet models. The latter reviews a previous proposal where the Higgs doublet
takes the role of a bulk stabilizer. The result is a model containing a single
Higgs-radion state. In the final chapter, we present a higher derivative extension
of the type-I and II two Higgs doublet models. The resulting theory gives rise to
unusual partner states containing negative kinetic energy terms.
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Chapter 1

Introduction

The Standard Model (SM) encapsulates our current understanding of particle physics

and its predictions have been tested to remarkable precision. It amounts to an e↵ective

theory containing all of the known elementary particles and three of the four known

forces governing their interactions. In spite of the success of the SM it is not believed

to be a complete description of particle physics. Alone, the SM does not explain:

• the observed baryon asymmetry in the universe

• massive neutrinos

• dark matter

• dark energy

• the strong CP problem of quantum chromodynamics

• the large hierarchy between the electroweak (EW) and Planck scales.

These problems have generated interest among physicists and have motivated many

of the recent developments in particle phenomenology research. The last bullet point

will be of particular interest in this dissertation. The puzzle as to why the EW scale is

so far separated from the Planck scale is often referred to as the hierarchy problem.

Many of the chapters in this dissertation study the phenomenology of theories that
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address the hierarchy problem, so in what follows we will review the Higgs sector of

the SM and explain the hierarchy problem in greater detail.

1.1 The Standard Model Higgs

Let us begin with a complex scalar doublet, H, called the Higgs doublet which

transforms as {2, 1/2} under the gauge group SU(2)L ⇥ U(1)Y . Temporarily setting

aside gauge and Yukawa interactions, the Higgs potential is given by

VH = �µ2
|H|

2 + � |H|
4 . (1.1)

For µ2 > 0, H acquires a non-zero vacuum expectation value (vev), v =
q

µ2

� ⇡

246 GeV. Without loss of generality we may suppose the vev is aligned with the lower

real component of the Higgs doublet,

H =
1

p
2

0

B@
�1 + i�2

(v + h) + i�4

1

CA . (1.2)

We will identify the real degree of freedom, h, with the SM Higgs boson. The

three remaining degrees of freedom are Goldstone bosons resulting from spontaneous

symmetry breaking.

Let us now consider the Higgs Lagrangian including gauge interactions

LH = �
1

4
W a

µ⌫W
aµ⌫

�
1

4
Bµ⌫B

µ⌫ + (DµH)†(DµH) � VH , (1.3)

where Bµ denotes the U(1)Y hypercharge gauge boson, W a
µ denote the SU(2)L gauge

bosons and Bµ⌫ and W a
µ⌫ are their respective field strengths. The covariant derivative

is given by

Dµ = @µ � igW a
µ⌧

a
�

1

2
ig0Bµ, (1.4)

where g is the SU(2)L coupling, g0 is the U(1)Y coupling, and ⌧a are the canonically



3

normalized generators for SU(2) in the fundamental representation.

By applying a gauge transformation to Eq. 1.2 we may work in the unitary gauge

where the Goldstone bosons left behind from the spontaneous symmetry breaking

vanish,

H =
1

p
2

0

B@
0

(v + h)

1

CA . (1.5)

Due to the gauge boson-Higgs doublet interactions coming from the covariant derivative

in the Lagrangian, three of the four gauge bosons from SU(2)L ⇥ U(1)Y eat the

Goldstone bosons and acquire a mass proportional to the Higgs vev. Explicitly, we find

|DµH|
2 = M2

WW+

µ W�µ +
1

2
M2

ZZµZµ + . . . (1.6)

where,

W± = W 1⌥iW 2
p
2

⌧± = ⌧1±i⌧2p
2

, (1.7)

Zµ =
�g0Bµ + gW 3µ

p
g2 + g02

(1.8)

and

M2

W = g2v2

4
⇡ 80 GeV , M2

Z = v2 g
2
+g02

4
⇡ 90 GeV. (1.9)

Finally there is one surviving massless gauge boson, the photon,

Aµ = cos ✓WBµ + sin ✓WW 3µ (1.10)

which accounts for all four gauge bosons we started o↵ with initially.

The quarks and charged leptons also acquire their masses though the Yukawa

interactions with the Higgs,

LY = Q̄LHdR + Q̄Li�2H⇤uR + L̄LHeR (1.11)

where QL and LL are the left handed quark and lepton doublets and uR, dR, and eR are
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the right handed up-type quarks, down-type quarks, and charged leptons respectively.

1.2 The Hierarchy Problem

With an understanding of how the weak gauge bosons acquire their masses through

their interactions with the Higgs, we can see how the electroweak scale is determined

by the magnitude of the Higgs vev. To see this let us examine the Feynman diagram

contributing to the weak decay of the muon given in Figure 1.1a.

W�

µ

⌫

e

⌫

(a) Feynman diagram for the weak de-
cay of the muon in the full electroweak
theory

µ

⌫

e

⌫

(b) Feynman diagram for the weak
decay of the muon in the e↵ective four
Fermi theory

Figure 1.1: Feynman diagrams representing weak decays of the muon.

The propagator of the W� boson, D(W�) ⇠
i

p2�m2
W

+i✏
is dominated by the mass

term, therefore we can work in the low energy e↵ective theory by integrating out the W

gauge boson. This reduces the theory to a four-Fermi theory. The Feynman diagram

describing the weak decay of the muon in the four-Fermi theory is given by Figure

1.1b and corresponds to the following interaction term in the e↵ective Lagrangian,

L4F =
GF
p

2
 ̄µ�

µPL ⌫µ ̄e�
µPL ⌫e (1.12)

where the Fermi constant, GF =
p
2g2

8m2
W

/ v�2. This shows that the strength of the weak

interaction is proportional to the squared inverse of the Higgs vev. If, for instance, v

were to be on the order of the Planck scale we would expect that the strength of the

weak interaction to be suppressed to that of gravity.

Up to this point, there does not seem to be any inherent problem with having a weak
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t

t

W a
µ h

Figure 1.2: Feynman diagrams contributing to quadratic divergences of the Higgs mass
parameter.

scale vev. However, when considering quantum corrections to the mass term of the

Higgs potential, these corrections would apparently destabilize the weak scale without

fine-tuning the fundamental parameters of the theory. The dominant corrections to

the Higgs mass parameter come from the top quark, weak gauge-bosons, and Higgs

self interactions given in Figure 1.2.

Regularizing the ultra-violet (UV) divergences with a hard cuto↵, ⇤, that we use as

a stand in for the scale at which new physics appears, we find these one loop diagram

contribute the following corrections to the Higgs mass term,

�m2 =
⇤2

16⇡2

✓
�6y2 +

9

4
g2 + 3�

◆
+ O(log⇤). (1.13)

Taking the cuto↵ to be on the order of the Planck scale, where quantum gravity

becomes important, the magnitude of the quantum corrections becomes much larger

than the pole mass of the Higgs. Then the bare mass of the Higgs, m =
p

2�v, which

appears in the fundamental theory is

m2
⇡ O(⇤2

P lanck) + m2

h (1.14)

where mh ⇡ 125 GeV is the pole mass of the Higgs. Thus the squared bare mass of

the Higgs boson would need to be tuned to one part in 1034 to get the right pole mass

of the Higgs boson. Such a tuning is referred to as a fine-tuning and is at odds with t́

Hooft’s definition of naturalness[1] which dictates that parameters of the theory should

be of order one, unless a symmetry emerges in the limit the parameter is set to zero.

There is no symmetry that emerges as m ! 0, so naive expectations coming from
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theory would suggest that mh ⇠ v ⇠ O(⇤P lanck).

There are many theories which address the hierarchy problem by incorporating

extra symmetries that act non-trivially on the Higgs to protect the Higgs mass. Popular

symmetry based approaches include supersymmetry[2], Little Higgs[3, 4], Twin Higgs[5],

and orbifold Higgs[6, 7] thories. To illustrate a symmetry based solution to the hierarchy

problem let us consider supersymmetry (SUSY). SUSY adds an additional symmetry

to the SM fields where all bosons of the SM have a fermion partner and visa versa.

Take for instance the top quark of the standard model which contributes the most

severe quadratic divergences to the Higgs mass. The SUSY partners to the top quark,

or stops, are two color triplet complex scalars, t̃i, i = 1, 2. The stops also couple to

the Higgs boson

t

t

t̃i

Figure 1.3: Top quark and top squark contributions to the Higgs mass.

As it happens, the symmetries of SUSY enforce the couplings to match in way

that sum of the diagrams in Fig. 1.3 are identically zero, thus removing the quadratic

sensitivity of the Higgs mass to contributions from the top quark. Following this

prescription, supersymmetric partners can be added to rest of the SM fields and a

natural value for the Higgs mass can be obtained. Since we do not see supersymmetric

partners of the SM states with degenerate masses, SUSY must be broken. In order

to not introduce any more fine-tunings, the lightest supersymmetric partner states

should have masses on the order of 1 TeV. Collider results are beginning to rule out the

natural parameter space of supersymmetric extensions of the SM[8]. The fine-tuning

necessary to explain the null search results of partner states that are required for

natural EW symmetry breaking has been referred to as the little hierarchy problem.

Other solutions have included theories of warped extra dimensions which remove
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sensitivity of the Higgs mass to the cuto↵ of the theory. The Randall-Sundrum model[9]

is a 5D theory of space time where the extra spatial dimension is compact with a

warped geometry. Gravity propagates in the 5D bulk of the theory where the geometry

is anti-deSitter (AdS). AdS space is a space with negative constant curvature. The 5D

metric for this theory in the bulk is given by

ds2 = e�2A⌘µ⌫dxµdx⌫ � dy2 (1.15)

where the metric field, A = k|y|, comes from solving the Einstein equations and k is

the AdS curvature scale. At y = 0, yc there are 3-Branes which define the boundaries

of the extra dimension. In a simple version of the model the SM fields are taken to be

localized on the brane located at y = yc, often referred to as the IR or TeV brane. See

Fig. 1.4 for a depiction of the model.

UV Brane IR Brane (has SM)

warp factor

graviton

z=R z=R’

Figure 1.4: A cartoon depiction of the Randall-Sundrum model barowed from Ref. [10]

As a consequence of this setup the Higgs vev in the 5D theory gets exponentially

suppressed by the warp factor. To see this, consider the 5D action of the Higgs,

SH =

Z
dyd4x

p
g
h
gab@aH@bH � �

�
|H|

2
� v2

�2i
�(y � yc) (1.16)

=

Z
d4x

p
gind

h
gµ⌫ind@µH@⌫H � �

�
|H|

2
� v2

�2i
(1.17)
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where gind is the induced metric on the IR brane. Using the expression for the metric

the action becomes

SH =

Z
d4xe�4kyc

h
e2kyc⌘µ⌫@µH@⌫H � �

�
|H|

2
� v2

�2i
(1.18)

which leaves us with Higgs kinetic terms that are not canonically normalized. Rescaling

the field to achieve canonically normalized kinetic terms gives

SH =

Z
d4x


⌘µ⌫@µH@⌫H � �

⇣
|H|

2
� e�2kycv2

⌘
2
�

. (1.19)

Thus the Higgs vev of the 5D theory is exponentially suppressed and the e↵ective vev,

v2eff = v2e�2kyc , (1.20)

may naturally assume a value around the weak scale given adequate separation between

the two 3-branes, which requires kyc ⇡ 35.

With many solutions to the hierarchy problem additional Higgs multiplets are

introduced to the theory, or at the very least additional scalars become mixed with the

Higgs state leading to altered couplings and phenomenology. In the case of SUSY the

Higgs sector is extended by an additional doublet which is necessary to give masses to

both up and down type quarks. In Randall-Sundrum models there is an additional

scalar degree of freedom corresponding to radial excitations of of the extra dimension

that become mixed with the Higgs. To assist current experimental searches for BSM

physics, it is imperative that we understand the phenomenological signatures of these

models.

1.3 Thesis Contents

In what follows we explore the phenomenology of BSM theories with augmented

Higgs sectors. Chapter 2 explores lepton flavor violating decays of two classes of
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two-Higgs doublet models (2HDMs), namely the type-III [11] models and Branco-

Grimus-Lavourna (BGL)[12] models. The work presented was motivated by a non-zero

signal in the h ! µ⌧ decay channel by both CMS[13] and ATLAS[14]. We demonstrate

the ability of 2HDMs to describe the anomalous signal and suggest strategies to discover

the additional scalars of the theory.

In Chapter 3 an orbifold Higgs model emerges from the orbifold projection by

the simplest non-abelian symmetry, S3. The resulting model produces two additional

sectors uncharged under the SM. With a modest amount of tree level tuning to the

theory, a phenomenologically viable SM-like Higgs was obtained. Like the Twin Higgs,

this model leads to suppression in the production cross-sections and branching fractions

of the 125 GeV Higgs.

Chapters 4 and 5 explore the phenomenology of models with warped extra-

dimensions. The former studies the e↵ects of Higgs-radion mixing on collider phe-

nomenology in two classes of brane localized 2HDMs. Using bounds from the Large

Hadron Collider (LHC) we study the e↵ects of Higgs-radion mixing on the usual four

dimensional 2HDM parameter space and place bounds on the Higgs-radion mixing

parameters. The latter reviews previous work by Geller et. al. [15] which proposed an

alternative approach to Goldberger-Wise mechanism[16] where the extra dimension

is stabilized via the SU(2) Higgs doublet. We find that this model is now at odds

with current LHC data but discuss the possibility of improving the model by placing a

2HDM in the bulk of the 5D model.

Chapter 6 studies a Lee-Wick extension of the type-I and type-II 2HDMs. Lee-Wick

theories introduce higher-derivative operators which may be rewritten as an additional

scalar degree of freedom by use of an auxiliary field. The additional scalar degree of

freedom however is unusual in the fact that it carries a negative kinetic energy term.

We found that direct detection of the Lee-Wick partner states may be di�cult in the

near term future of the LHC and the best near term hope to probe the model may

be achieve through discovery of the standard 2HDM scalar states and studying their

decays.
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Chapter 2

Lepton Flavor Violating Higgs

Decays

2.1 Introduction

Recently, CMS reported[13] a slight excess in the Higgs decay h(125) ! µ⌧ at a

2.4� level, with a branching ratio of 0.84 ± 0.38 percent. Subsequently, ATLAS [14]

reported a signal with a similar central value but larger errors, with a branching ratio

of 0.77 ± 0.62 percent. Though the excess has since disappeared from data, the models

presented here are still consistent with LHC data[17]. Such a signal, if confirmed in

Run 2, would clearly indicate physics beyond the Standard Model (BSM).

Naturally, this has led to a large number of papers explaining the signal in various

BSM scenarios. Some of these include leptoquarks[18, 19], the 331 model[20], a

leptonic dark matter model[21], an axion model[22], flavor symmetry models[23, 24]

and supersymmetric models[25–28]. Some leave the mechanism arbitrary, but explore

other ramifications, such as a possible t̄tH excess[29] or an anomaly in b ! sµ+µ�[30].

The simplest explanation for a flavor-changing Higgs decay is the general Two Higgs

Doublet Model (2HDM) (see Ref. [31] for an extensive review and list of references).

Several authors have compared, in the context of this model, the expected values for

⌧ ! µ�, (g � 2)µ and other lepton number violating processes[29, 32–40]. A general
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2HDM has been proposed[41] as an explanation for both h ! µ⌧ and the recent

diphoton excess[42], although this model does have additional fields.

The general 2HDM consists of two SU(2)L doublets with eight scalar degrees of

freedom. After electroweak symmetry breaking, three of these will be eaten by the

W± and Z leaving behind five degrees of freedom. Each doublet carries a non-zero

vev such that

h�1i =

0

B@
0

v1/
p

2

1

CA h�2i =

0

B@
0

v2/
p

2

1

CA , (2.1)

with v2
1

+ v2
2

= v where, v is the SM Higgs vev. Performing a rotation of the doublets

by � ⌘ arctan(v2/v1) aligns the vev in a single doublet and diagonalizes the mass

matrices of the charged Higgs, H±, and pseudo-scalar Higgs, A. In this rotated basis,

after gauging away the Goldstone boson, the doublets are given by

H1 =

0

B@
0

1p
2
(v + ⇢1 cos� + ⇢2 sin�)

1

CA (2.2)

H2 =

0

B@
H+

1p
2
(�⇢1 sin� + ⇢2 cos� + iA)

1

CA , (2.3)

where ⇢i are the neutral scalar components of the Higgs doublets. The physical CP

even scalars are obtained by an additional rotation

0

B@
⇢1

⇢2

1

CA =

0

B@
cos↵ � sin↵

sin↵ cos↵

1

CA

0

B@
H

h

1

CA , (2.4)

where h is the lighter of the two scalars and usually associated with the SM-like Higgs.

In variations of the 2HDM di↵erent choices for the couplings of the doublets to the

right handed fermions are made. In the type-I model it is only the �2 doublet that

couples to the right handed fermions while in the type-II 2HDM �2 couples to uR and

�1 couples to dR and eR. Having only one doublet couple to each of the right handed
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fermions prevents generation tree level FCNCs in the Higgs sector.

The general 2HDM does have a large number of parameters, and it would be useful

to study flavor-changing processes in a more specific context. In a version of the general

2HDM called Model III, a ansatz motivated by the desire to avoid fine-tuning[11] gives

flavor-changing couplings in terms of parameters expected to be O(1). In an even more

specific model, by Branco, Grimus and Lavoura (BGL) [12], symmetries are used to

directly relate the flavor-changing couplings to either the CKM or PMNS matrices,

which are measured. The h(125) ! µ⌧ process was studied in Model III in Ref. [38],

where it was shown that the ansatz does give the correct order of magnitude for the

decay. The process, along with many other flavor-changing processes, in the BGL

model was studied in Ref. [43].

2HDMs have two heavy neutral scalars, H and A. If CP is conserved, the H is

a scalar and the A is a pseduoscalar. If the h ! µ⌧ signal is confirmed, then one

would expect H and A to also decay into µ⌧ . There are two reasons to expect that

the branching ratio of the heavy neutral scalars could be unexpectedly large. In the

alignment (or decoupling) limit of 2HDMs, the gauge boson and fermion couplings of

the light Higgs are the same as their SM values. Thus the mixing parameter cos(↵��)

must be small, and yet flavor-changing couplings of the light Higgs will most naturally

be proportional to this parameter. Conversely, flavor-changing couplings of the heavy

scalars will be proportional to sin(↵��) and this will not be suppressed. This fact was

pointed out by Altunkaynak, et al.[44] in a very detailed analysis of flavor-changing

heavy Higgs decays in the hadronic sector. They briefly mention that H/A ! µ⌧ would

be interesting to study since it is unsuppressed by the cos(↵� �) factor. The second

reason to expect that the branching ratio might be large is that the flavor-changing

interactions in the BGL model will be proportional to the PMNS matrix elements.

Large neutrino oscillations show that 2-3 mixing is maximal, so the 2-3 element of the

PMNS matrix is large. Thus, in the BGL model in particular, one might expect very

large rates for H/A ! µ⌧ .

Until very recently, there were no published bounds on H/A ! µ⌧ . A paper by
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Buschmann, Kopp, Liu and Wang [45] appeared in which LHC bounds on H ! µ⌧

from Run 1 are calculated based on the original CMS h ! µ⌧ analysis. They give

results in terms of a generic flavor-changing coupling ⌘µ⌧ , but don’t look at any specific

models. Their work is complementary to ours. We have not looked at experimental

details, but instead will focus on specific models, whereas they do a detailed analysis

of the experimental situation.

Shortly after the discovery of the Higgs, Harnik, Kopp and Zupan[46] showed that

one could extract a bound on h(125) ! µ⌧ from existing bounds on h(125) ! ⌧⌧ . The

bound was O(10)%, but that still gave a better bound on an hµ⌧ vertex at the time

than rare ⌧ decays. A similar bound could be derived from H/A ! ⌧⌧ searches. While

such searches have been carried out, they have all been in the context of a specific

supersymmetric model. In order to have any hope of seeing a signal, it was necessary

to enhance the ⌧ Yukawa coupling with a large tan�. The bounds from CMS[47] and

ATLAS[48] typically give an upper bound on tan� of 10 � 20 over the mass range for

H or A from 150 GeV to 400 GeV. Extraction of a bound for H/A ! µ⌧ would thus

be very weak. This will improve with Run 2 data, but a direct search for H/A ! µ⌧

would be simpler and more reliable.

In the next section, we look at H/A ! µ⌧ in the Type III model, and in the

following section study the BGL model. As noted above, the rate in the latter model

can be expected to be large, and we find that to be the case. The last section contains

our conclusion.

2.2 The Type III model

The requirement that there be no tree-level flavor-changing neutral currents, the

Paschos-Glashow-Weinberg theorem[49, 50], is that all fermions of a given charge must

couple to a single Higgs multiplet. This is generally implemented in a 2HDM by use of

a Z2 symmetry. Without such a symmetry, the Yukawa Lagrangian (involving leptons
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only) is

LY = �⌘1L̄LLR�1 � ⌘2L̄LLR�2 (2.5)

where the ⌘i are real 3 ⇥ 3 matrices. �i is given a vacuum expectation value (vev) of
⇣

0

vi

⌘
/
p

2, and tan� is defined as v2/v1. An alternative basis, rotated by an angle �,

has one Higgs, H1 getting a vev and the other H2 not. In such a basis, tan� doesn’t

have the usual meaning. Finally, the third basis is the physical, or mass, basis, in

which the scalar mass matrices are diagonalized; this basis is rotated by the angle ↵

relative to the above. A very detailed description of the various bases was discussed

by Davidson and Haber[51].

A nice description of the Yukawa couplings in the type III model was provided by

Mahmoudi and Stal[52]. They noted that the above Yukawa Lagrangian gives a mass

matrix of

M =
v

p
2
(⌘1 cos� + ⌘2 sin�) (2.6)

and then define

 ⌘ ⌘1 cos� + ⌘2 sin� (2.7)

and

⇢ ⌘ �⌘1 sin� + ⌘2 cos�. (2.8)

Thus, ⇢ does not participate in generating mass for the fermions. In the Higgs basis,

in which only one field gets a nonzero vev, the Lagrangian is

LY = �L̄LLRH1 � ⇢L̄LLRH2 (2.9)

By construction,  is flavor-diagonal, but the ⇢ matrix is arbitrary.

Moving to the mass eigenstate basis, they show that the Lagrangian, expanded in

terms of neutral fields, becomes

� LY =
1

p
2
L̄ [ s�↵ + ⇢ c�↵] Lh +

1
p

2
L̄ [ c�↵ � ⇢ s�↵] LH +

i
p

2
L̄�5⇢LA (2.10)
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where s�↵ = sin(� � ↵), c�↵ = cos(� � ↵), h is the 125 GeV Higgs, and H and A are

the heavy neutral Higgs. If the couplings of the h are SM-like, then c�↵ must be small.

This Lagrangian shows that the FCNC couplings of the h will be thus suppressed by

c�↵, whereas those of the heavy scalars will not be.

The flavor-changing couplings are in the ⇢ matrix, which, since they have nothing

to do with the fermion masses, are arbitrary. Cheng and Sher[11] argued that the

most conspicuous feature of the fermion mass matrix is the hierarchical structure, and

showed that fine tuning in the Yukawa matrices could be avoided with an ansatz that

has become known as the Cheng-Sher ansatz

⇢ij = �ij

p
mimj

v
(2.11)

where the �ij are O(1). In other words, the flavor-changing couplings are of the order of

the geometric mean of the individual Yukawa couplings. This ansatz has been studied

extensively in recent years, and several of the bounds on the �ij are now somewhat

less than one. However, some have argued that the relevant vev is the smaller of the

two, leading to a factor of tan� in the e↵ective value of the �ij . Others include an

extra factor of
p

2. In any event, the type III model is generally defined by use of

the ansatz, with the �ij of O(1), with the understanding that this is just an order of

magnitude estimate.

One can now look at decays of the light Higgs. The width of the decay into µ̄⌧ + ⌧̄µ

is given by

�(h ! µ⌧) = �2µ⌧ c
2

�↵
mµm⌧mh

4⇡v2
. (2.12)

Plugging in the numerical values and dividing by the width of the light Higgs yields

B(h ! µ⌧) = 0.0076�2µ⌧ c
2

�↵ (2.13)

which is consistent with the CMS central value of 0.0084 ± 0.0038 if the product of �µ⌧

and c�↵ is not too di↵erent from 1. Note that studies of the type I model, for example,
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allow c�↵ to be as large as 0.4, so this is not unreasonable. This is also consistent with

current reports from CMS[17] which measures the h ! µ⌧ branching fraction to be

0.0025 ± 0.0025. This is consistent with the alignment limit of the 2HDM.

For the light Higgs decay into ⌧⌧ , one finds

B(h ! ⌧⌧) = 0.0633(s�↵ + �⌧⌧ c�↵)2 (2.14)

In the alignment limit of c�↵ = 0, this reduces to the Standard Model result. Note

that there are currently large uncertainties in the h ! ⌧⌧ experimentally measured

branching ratios, and a 20 � 30% deviation could easily be accommodated as long as

�⌧⌧ is not too large. Thus, keeping in mind that the �ij are order of magnitude, one

sees that this model can account for the observed results in light Higgs decays.

But we are interested in heavy Higgs decays, and ratios of branching ratios can be

calculated. For the moment, consider the alignment limit (the results will then apply

to the pseudoscalar as well). In this case, one finds

B(H ! µ⌧)

B(H ! ⌧⌧)
=

mµ

m⌧

�2µ⌧
�2⌧⌧

. (2.15)

Since the ratio of �µ⌧ to �⌧⌧ must be somewhat larger than one, this is at least 6% and

could be substantially higher. In the alignment limit, there is no coupling to vector

bosons, thus the only other substantial decay is H ! b̄b, and

B(H ! ⌧⌧)

B(H ! b̄b)
=

m⌧

3mb

�2⌧⌧
�2bb

. (2.16)

If the �’s are equal, this will be the same as the ratio of branching ratios for the light

Higgs, or approximately 11%, although this number will have large uncertainties. This

will not be qualitatively changed by moving away from the alignment limit. For the

heavy Higgs in the model, we thus see that it is unlikely that the µ⌧ decay mode will

dominate, However, it will likely be substantially higher than the branching ratio for

the light Higgs.
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It was noted earlier that very recent results from Buschmann, Kopp, Liu and Wang

[45] are complementary to ours in that they look at experimental bounds. They give

bounds from the 8 TeV LHC run on a possible flavor-changing coupling. and consider

both LHC constraints from H/A decays as well as constraints from ⌧ ! µ�. In our

notation, they show that the preferred values of ⇢µ⌧ are between 0.004 and 0.02. From

Equation 7, this gives a value of � between 2 and 12. However, their technique will be

very valuable in LHC Run 2, where much tighter bounds can be obtained.

The BGL model is a very di↵erent model with much less uncertainty in the results,

since the mixing is directly related to the PMNS matrix. We now turn to that model.

2.3 The BGL Model

In a general 2HDM the Yukawa Lagrangian involving only quark fields takes the form

LY = �Q0

L

⇥
�1�1 + �2�2

⇤
d0R � Q0

L

⇥
�1 �̃1 +�2 �̃2

⇤
u0

R + H.c., (2.17)

where �i and �i are the Yukawa coupling of the quarks. BGL showed[12] by imposing

a discrete symmetry on the fields,

Q0

Lk 7! exp (i⌧) Q0

Lk , u0

Rk 7! exp (i2⌧) u0

Rk , �2 7! exp (i⌧)�2 , (2.18)

where ⌧ 6= 0,⇡, with all other quark fields transforming trivially under the symmetry,

one could have the Yukawa interactions completely determined by the CKM matrix V.

The index j can be fixed as either 1,2 or 3. An alternative symmetry can be chosen

where the fields transform as

Q0

Lk 7! exp (i⌧) Q0

Lk , d0Rk 7! exp (i2⌧) d0Rk , �2 7! exp (�i⌧)�2 . (2.19)

The set of symmetry transformations given in Eq. (2.18) leads to FCNC contained only

in the down sector, while the transformation in Eq.(2.19) gives rise to FCNC in the up
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sector. This leads, depending on the value of k, to six possible models. Similarly, one

can have the same possibilities applied in the lepton sector, leading to FCNC in the

charged lepton sector. These models are referred to as ⌫j models.

The Yukawa couplings of the light Higgs can be derived following Refs. [12] and

[43]. Their result for the Yukawa coupling to µ⌧ is

Yµ⌧ = �U⇤
µjU⌧j

M⌧

v
c�↵(t� + t�1

� ) (2.20)

where there is no sum on j and the values of j = 1, 2, 3 correspond to three possible

models. Here we see the attractive feature of BGL models. The flavor-changing

couplings are given by the elements of the PMNS matrix, and thus are determined

only by the usual mixing angles in 2HDMs.

The decay width of h ! µ̄⌧ + ⌧̄µ in the ⌫j type model is then,

�(h ! µ⌧) = �sm (h ! ⌧̄ ⌧) c2�↵

⇣
t� + t�1

�

⌘
2

|U⌧jUµj |
2 (2.21)

where �sm (h ! ⌧̄ ⌧) = m2
⌧mh

8⇡v2 .

From the measured decay width (using CMS results) one can now plot the allowed

region in the t� � c�↵ plane. This is done in the left figure of Figure 2.1 using limits

from run one data, with one and two standard deviation bands plotted. Note that the

alignment limit of c�↵ = 0 is excluded since the CMS branching ratio is more than 2�

away from zero. Considering the most recent data this is no longer the case.

Of course, the LHC data from Run 1 does not allow the properties of the Standard

Model Higgs to deviate too much from the alignment limit. There have been many

studies of the allowed range in 2HDM models (see Ref. [53] for an extensive list of

references). Since the quark and gauge boson sectors of this model are very similar

to the Type I 2HDM, the parameter-space can be restricted by this data. In right

plot of Figure 2.1, we have shown the region allowed by the LHC Run1 data in the

Type 1 model. This will be slightly modified in the BGL model. The couplings of the

vector bosons in the Type 1 and BGL models are the same. The coupling to quarks
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in the BGL model is the same as in the Type 1 model times sin2 � + sin� cos2 �. For

tan� > 2, this gives a discrepancy of a few percent, which is negligible. As a result,

the full analysis in the BGL model will be virtually indistinguishable from the bounds

on the right side of Figure 2.1. To a good approximation, for most values of tan�, one

requires (at 2�) only that | cos�↵ | < 0.4 and we will thus restrict our discussion to

those values.

Figure 2.1: (Left) Plot of allowed region for tan� as a function of cos(� � ↵) for
h ! µ⌧ in the (⌫3, t)-type BGL model using 1� and 2� confidence intervals. (Right)
Bounds placed on tan� and cos(� � ↵) for the Type-I 2HDM using data from LHC
Run1.

We now turn to the couplings of the heavy Higgs. It is straightforward to calculate

the width of the heavy Higgs bosons in the model. We are choosing a value for the

heavy Higgs mass of 350 GeV. If it is heavier, the decay into top quark pairs will

dominate the decays, leading to very small branching ratios. Below 350 GeV, the

masses cancel in branching ratios, except for phase space in decays to pairs of gauge

bosons. However, these decays are suppressed by c2�↵ for H and vanish for A, and thus

the results are not very sensitive to the mass chosen. The results are in Table 2.1 and

Table 2.2.

Not surprisingly, the flavor-changing decays are proportional to the leptonic mixing

angles and s2�↵, which are not small. From these widths, one can calculate the branching

ratio of H/A ! µ⌧ . Note that the branching ratio of the A is independent of c�↵. The

results in Tables 2.1 and 2.2 depend on the model chosen - one can set j = 1, 2, 3 and
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k = 1, 2, 3 independently. Note that for k = 1, 2, the b-quark coupling scales as tan�

(instead of 1/ tan� for k = 3). Thus, the b-quark coupling will not be suppressed, and

the branching ratio to µ⌧ for either H or A will be very similar to that of Model III in

the last section. It will never be particularly large. We will thus focus on the k = 3

models.

The most interesting cases are when j = 2, 3. For j = 1, the PMNS mixing angles

are smaller. The value of |U⌧j | and |Uµj | are between 0.45 and 0.77 for j = 2, 3. Since

Vtb is very close to one, the b-quark coupling is very small for large tan�. Thus, for

example, the width for A ! b̄b becomes small for large tan� (in the k = 3 model),

leading to very large branching ratios for A ! µ⌧ . We are not including a possible

decay of the H into two Higgs bosons since it depends on unknown scalar self-couplings

(there is no such coupling for the A).

In the left side of Figure 2.2, we plot the branching ratio for H ! µ⌧ and A ! µ⌧

in the j = k = 3 model. The solid (dashed) lines correspond to H (A) decays. One can

see that huge branching ratios for H ! µ⌧ will occur for a large part of the allowed

parameter-space, and for virtually all of the parameter-space, the branching ratio

for A ! µ⌧ will be very large. In the right side of Figure 2.2, we plot the same for

j = 2, k = 3. Here the branching ratios are a little smaller because the (3, 2) element

of the PMNS matrix is smaller than the (3, 3) element.

Thus, in one version of the BGL model, the branching ratios to µ⌧ in the allowed

parameter space can be quite large, over 60%. This will certainly have a substantial

impact on the experimental searches for these states.

2.4 Results

Should the CMS indications for a nonzero branching ratio for h ! µ⌧ be confirmed in

Run 2, the most likely culprit will be a Two-Higgs Doublet Model. This would imply a

nonzero branching ratio for the heavy neutral scalars in the model. The recent analysis

of Buschmann, et al. [45] shows that one can extract some bounds on H ! µ⌧ from
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�(H ! X)

µ⌧ m2
⌧mH

8⇡v2 s2�↵

⇣
t� + t�1

�

⌘
2

|U⌧jUµj |
2

⌧̄ ⌧ m2
⌧mH

8⇡v2

⇣
c�↵ � s�↵

⇣
t� �

⇣
t� + t�1

�

⌘
|U⌧j |

2

⌘⌘
2

b̄b
3m2

b
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8⇡v2

h
c�↵ � s�↵

⇣
t� �

⇣
t� + t�1

�

⌘
|Vkb|

2

⌘i
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16⇡v2
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⇣
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⌘
4
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2
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m3
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�↵
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⌘
2
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⇣

mZ
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⌘
4
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⌘
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Table 2.1: Decay widths of for the heavy scalar Higgs , H in the (⌫j , uk)-type BGL
models.

X �(A ! X)

µ⌧ m2
⌧mA

8⇡v2

⇣
t� + t�1

�

⌘
2

|U⌧jUµj |
2

⌧̄ ⌧ m2
⌧mA

8⇡v2

⇣
t� �

⇣
t� + t�1

�

⌘
|U⌧j |

2

⌘
2

b̄b
3m2

b
mA

8⇡v2

h
t� �

⇣
t� + t�1

�

⌘
|Vkb|

2

i
2

W±W⌥ 0
ZZ 0

Table 2.2: Decay widths of for the pseudoscalar Higgs A in the (⌫j , uk)-type BGL
models.

the CMS search, but a dedicated search for the decay mode in Run 2 could be quite

valuable. In general, the flavor-changing neutral couplings can be arbitrary, but can be

tightly constrained in particular models, although one would expect the suppression

by c�↵ in h decay to be absent in H and A decays.

We have examined two such models, Model III and the BGL model. Are there

any other models that might have a large rate? In the conventional 2HDMs, there are

no tree level FCNC and thus flavor-changing decays can only occur through a loop.

This will cause a substantial suppression in the branching ratios. It has been noted

that supersymmetric models with large smuon-stau mixing can at large tan� yield a

relatively large rate for [54] ⌧ ! 3µ and for [55] ⌧ ! ⌘µ, due to a tan6 � dependence

but the rates are still quite small and also go through a loop. We know of no other

models which are predictive and can yield a large branching fraction for H/A ! µ⌧ .
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Figure 2.2: Composite of plots of the bounds for h/H/A ! µ⌧ . The left plot shows
bounds on tan� and cos(� � ↵) in the (⌫3, t)-type BGL model. The right plot show
bounds in the (⌫2, t)-type BGL model. Green and yellow bands are bounds at 1� and
2� level from h ! µ⌧ using CMS data. Solid (Dashed) lines are contours for H ! µ⌧
(A ! µ⌧) at the various branching fractions labeled in the plots. In each case the
Higgs masses mA and mH were chosen to be 350 GeV.

In Model III, the ratio of H ! µ⌧ to H ! ⌧⌧ will be at least 6% and could be

much higher, and the latter will have a branching ratio of roughly 10%. In the BGL

model, there is an additional enhancement since the flavor-changing couplings are

proportional to the PMNS matrix, which has very large mixing in the 2-3 sector. We

have seen that branching ratios for H ! µ⌧ and A ! µ⌧ can be as large as 60%.



23

Chapter 3

S3 Orbifold Higgs

3.1 Introduction

The discovery of the Higgs boson[56, 57] has provided us with the last piece needed

to complete the Standard Model (SM). Due to radiative corrections to the Higgs

mass term, the SM requires an extreme fine tuning in order to keep the weak scale

much smaller than the Planck scale. With the belief that such a tuning in nature

is unnatural, many solutions have been proposed to eliminate the large quadratic

corrections to the Higgs mass, thus eliminating the hierarchy problem. Supersymmetry

and compositeness are prime examples of such theories, but current null search results

for SM partners are now forcing many of these models into finely tuned territory [8].

The fine tuning that is necessary to create a hierarchy between the weak scale and the

scale which new physics appears is called the little-hierarchy problem[58].

The Twin Higgs[5, 59] is a solution to the little-hierarchy problem where the SM

Higgs is played by the role of a pseudo-Goldstone boson. The SM fields are joined

by a set of partners called “twin” states. These SM partners di↵er in comparison to

those in supersymmetry in that they carry no SM charge. This would make current

searches for partner states to the SM especially challenging and may explain current

null search results at the LHC. A discrete Z2 symmetry that interchanges the SM fields

with the twin states then ensures gauge, Yukawa, and scalar self interactions must



24

be equivalent in the SM and twin sectors. This protects the pseudo-Goldstone Higgs

against the quadratic corrections the Higgs mass term receives in the SM. Typically

for cuto↵ scales ⇤ ⇠ 5 � 10 TeV these models do not su↵er from any major fine tuning.

At higher scales a stronger mechanism such as compositeness or SUSY may keep the

weak scale natural to the Planck scale as demonstrated in UV completions of the Twin

Higgs[60–68].

Other theories of neutral naturalness have since been introduced[69–73], including

recent work which has demonstrated that the Twin Higgs is only the simplest example

in a large class of orbifold Higgs models[6, 7]. In orbifold Higgs models, the Higgs is

protected by an accidental symmetry resulting from an orbifold reduction of a larger

symmetry via some discrete group. These models also generically give rise to states

that are uncharged under the SM. The orbifold interpretation also lends itself nicely in

creating UV complete models as geometric orbifolds of some higher dimensional space.

In this chapter we explore one of these orbifold Higgs models arising from a non-

abelian orbifold pattern, namely S3. Like the Twin Higgs this produces hidden sectors,

one SM-like in structure and another exotic sector with an SU(6) color group, SU(4)

weak isospin group, and an SU(2) flavor symmetry among the Higgs and top partners.

Though the model has been specified in the original orbifold Higgs papers, the details

of the experimental signatures have yet to be carried out. In this chapter we explore

the phenomenology of the 125 GeV SM-like Higgs generated by the model and compare

results to the signatures predicted in the Twin Higgs.

In the next section we will review the features of the Twin Higgs. Following this the

formalism behind field theory orbifolds will be given as a necessity to understand how

orbifold Higgs models are constructed. The S3-orbifold Higgs will then be presented

and we will demonstrate how a natural SM-like Higgs emerges from the model. Section

3.5 will analyze some of the phenomenology and compare the results to the Twin Higgs

and section 3.6 will contain our conclusions.
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3.2 Twin Higgs Review

We will now take a moment to review the Mirror Twin Higgs[5]. We begin with a

complex scalar, H, which transforms as a fundamental of a global SU(4) symmetry.

The scalar potential is given by,

V = �m2
|H|

2 + �|H|
4 (3.1)

where m2 > 0. H picks up a vacuum expectation value (vev), |hHi| ⌘
fp
2
, and the

global symmetry is broken to SU(4) ! SU(3) yielding 7 massless Goldstone bosons.

We now explicitly break the global SU(4) by gauging the subgroup SU(2)A ⇥

SU(2)B ⇢ SU(4) such that H transforms as HT = (HA HB). After gauging this

symmetry the global SU(4) symmetry is still an accidental symmetry of the tree level

potential. In general, radiative corrections to the potential will not be invariant under

the accidental SU(4). For instance the Higgs gauge interactions generate terms such

as

�V ⇠
9⇤2

16⇡2
�
g2A|HA|

2 + g2B|HB|
2
�
, (3.2)

where we have used a uniform hard cuto↵ to regulate the integrals. This introduces

mass terms for the Goldstones that are quadratically sensitive to the cuto↵. We

can eliminate this by introducing a discrete Z2 symmetry, dubbed twin-parity. This

symmetry exchanges the gauge fields and HA $ HB which enforces that the gauge

couplings are equal, g ⌘ gA = gB. Now,

�V ⇠
9g2⇤2

16⇡2
�
|HA|

2 + |HB|
2
�

=
9g2⇤2

16⇡2
�
|H|

2
�

(3.3)

which is an SU(4) invariant. Thus the quadratic divergences do not contribute to the

masses of the Goldstone bosons. From here we can create twin copies of the fermions

and gluons and extend twin parity to the twin gluons and fermions. This will eliminate

the quadratic divergences due to the Yukawa interactions. The Higgs mass term and

quartic interactions arise from SU(4) breaking terms stemming from the one-loop
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e↵ective potential.

Without additional soft terms added to the potential neither sector is suited to be

identified with the SM sector as the Higgs would be equally aligned with both A and

B sectors. This would lead to a 1/
p

2 suppression in the couplings of the Higgs to the

SM which is not consistent with experiment. To identify the A-sector with the SM

we can add Vsoft = µ|HA|
2 to the potential which softly break twin parity. Tuning

the soft term, ⇢, against the SU(4) breaking order parameter, f , will suppress the

A-sector Higgs couplings to B-sector states by sin(v/f) where v is the vev of the SM

Higgs. For v ⌧ f this provides a phenomenologically viable scenario where the SM

is associated with the A-sector. We will see in the following sections how the Twin

Higgs paradigm can be generalized by way of the orbifold Higgs and how the quadratic

divergences are eliminated (or at least suppressed) in general orbifold Higgs theories.

3.3 Building an Orbifold Higgs Model

In this section we will briefly review field theory orbifolds which will be vital to

understanding orbifold Higgs models. For a more detailed approach of what follows

we refer the reader to ref. [6, 74].

3.3.1 Field Theory Orbifolds

Let us begin with some initial field theory, called the parent theory, which has some

global or gauge symmetry, G. To orbifold the parent symmetry by some discrete group,

G, we must study the action of G on G. This requires that we first embed G into the

parent theory which we will do through the regular representation embedding. The

fields in the parent theory that are left invariant under the action under G will be

those that comprise the daughter theory and all other states are projected out.

As an example, consider a parent theory consisting of a scalar, H , which transforms

as a bifundamental of a gauged SU(�N) and global SU(�F ), where F, N 2 N, as

shown in Figure 3.1 . We will then take our discrete group, G, to be of order, |G| = �.
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We now need to determine the orbifold of the parent theory by G. First, we express G

SU(�N) SU(�F )
H ⇤ ⇤

Figure 3.1: Transformation properties of the scalar field H in the parent theory.

in the regular representation which has the following well known decomposition,

�sR =
nGL
↵=1

1d↵ ⌦ rs↵ s 2 1...�. (3.4)

Here, s labels the elements of the group, r↵ denotes the irreducible representations of

G with relative dimension d↵, and ↵ sums over the nG irreducible representations. To

embed G into SU(N�) we take the direct product of the N-dimensional identity and

regular representation yielding,

�sN ⌘ 1N ⌦ �sR =
M

↵

1Nd↵ ⌦ rs↵. (3.5)

We can now study the transformation properties of the fields in the parent theory

under action of �N and project out all fields not invariant under the action. For fields

transforming in the adjoint representation, the invariant states are those satisfying,

A = �sN A (�sN )† (3.6)

for all s 2 {1...�}.The orbifold of SU(�N) by G reduces the symmetry to a direct

product of smaller symmetry groups in the daughter theory, namely

SU(�N) �!

 nGY

↵=1

SU(d↵N)

!
⌦ (U(1))nG�1 . (3.7)

To find the invariant components of fields transforming in the fundamental represen-

tation it is convenient to construct projection operators. For the field H transforming
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as a bifundamental of SU(�N) ⇥ SU(�F ) the projection operator takes the form,

PR =
1

�

�X

s=1

�sN ⌦ (�sF )⇤, (3.8)

where PR acts on the left of H . This procedure will in general leave us with a daughter

theory with non-canonically normalized kinetic terms with rescaling related to the

dimension of the representation, d↵. Requiring normalized kinetic terms in the orbifold

daughter theory induces a rescaling of the interactions of the daughter theory. Scalar

masses, m, and double-trace quartic interactions � in the parent theory do not get

rescaled in the daughter, gauge couplings, g, and yukawas, y, of the parent get rescaled

by 1/
p

d↵, and single trace quartics get rescaled by 1/d↵.

3.3.2 Orbifold Higgs

We can now construct orbifold Higgs models. We begin with a parent theory consisting

of a complex scalar, H and fermions, Q and U which transform as bifundamentals of

a gauged SU(2�) ⇥ SU(3�) and global SU(�) flavor symmetry. As before, � will be

taken to be the order of the discrete group, G, used to construct the daughter theory.

The matter content is shown in Table 3.1 and a quiver diagram in Figure 3.2 .

SU(2�)

SU(�)

SU(3�)

Q

H

U

Figure 3.2: Quiver diagram of the parent
theory. Circular nodes are identified with
gauge symmetries and square nodes with
flavor symmetries.

SU(3�) SU(2�) SU(�)
H 1 ⇤ ⇤
Q ⇤ ⇤ 1
U ⇤ 1 ⇤

Table 3.1: Matter fields in the par-
ent theory.

The scalar potential of the parent theory including the Yukawa interactions is given

by

VP � �m2
|H|

2 + �
�
|H|

2
�2

+ yQHU. (3.9)
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SU(2d1)

SU(d1)

SU(3d1)

q(1)

h(1)

u(1)

. . .

SU(2dnG )

SU(dnG )

SU(3dnG )

q(nG)

h(nG)

u(nG)

Figure 3.3: Quiver diagram of the daughter theory resulting from the orbifold
reduction of the parent theory.

From here we follow the orbifold procedure sketched out above to project out the

invariant states of the parent theory. The parent theory will descend to a daughter

theory which can be described by a quiver diagram with nG sets of disconnected nodes,

each of which resemble the original structure of parent theory as seen in Figure 3.3.

Each disconnected diagram corresponds to a distinct sector charged only under the

gauge fields in its own sector 1.

The potential of the daughter theory takes the form,

Vd � �m2

nGX

↵=1

|h↵|
2 + �

 nGX

↵=1

|h↵|
2

!2

+

nGX

↵=1

y
p

d↵
q↵h↵u↵. (3.10)

The scalar quartic interactions in the daughter theory allows interactions between

fields in each sector, not unlike in the Twin Higgs. Note the tree level scalar potential

inherits an accidental SU(2�) symmetry. There is also a residual discrete symmetry in

the scalar sector equivalent to the symmetry group leaving the tuple {d1, d2, ..., dnG}

invariant. These accidental symmetries may however be broken by radiative corrections

due the gauge and Yukawa interactions.

1
This true up to U(1)s in the daughter theory which will in general charge multiple sectors. We

will address consequences of the residual U(1) factors in section 4.
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Solving for the leading order radiative corrections to the scalar potential we find,

V (1)
�

⇤2

16⇡2
�
�6y2 + 3g22 + (4�+ 2)�

�
 nGX

↵=1

|h(↵)
|
2

!
(3.11)

�
3g2

2

64⇡2

 nGX

↵=1

1

d2↵
|h(↵)

|
2

!
⇤2. (3.12)

The hard cuto↵, ⇤, should be thought of as the scale at which the heavier UV states in

the theory appear in a viable UV completion of the daughter theory. If the orbifold is

realized geometrically, this scale is proportional to the inverse of the compactification

length of the extra dimension. Note the corrections in the first line share the accidental

SU(2�) symmetry of the tree level potential. One may have naively expected the

quark yukawas to spoil this accidental symmetry but there is a fortunate cancelation

of the rescaled couplings with the extra color factors. It is only the gauge interactions

at leading order which spoil the accidental SU(2�) symmetry and can contribute to

the masses of the would be Goldstones.

The most simple example of an orbifold Higgs is to take the discrete group G = Z2.

We would then begin with a parent theory with fields transforming under SU(6)⇥SU(4)

gauge groups and a SU(2) global symmetry. Upon orbifolding this theory by Z2 the

parent theory would descend to a daughter theory with two sectors, each charged

under a copy of SU(3) ⇥ SU(2) . This is nothing more but the Twin Higgs! The

tree level potential of the daughter theory has the desired accidental SU(4) global

symmetry and a discrete symmetry of Z2 which arises as a consequence of the orbifold

reduction of the parent theory whereas in the Twin Higgs it was posited as a means to

eliminate quadratic divergences.
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3.4 S3-Orbifold Higgs

With the formalism developed we are now equipped to build up the S3 orbifold Higgs

model. We begin with the potential of the parent theory

VP = �m2
|H|

2 + �
�
|H|

2
�2

+ yQHU (3.13)

where the fields transform as bifundamentals under a SU(18)⌦SU(12) gauge symmetry

and a global SU(6) flavor symmetry.

We will now construct the daughter theory using G = S3 which has 3 irreducible

representations: one dimensional trivial and sign representations, and a single two

dimensional representation. It follows that we expect three di↵erent sectors each

charged under its own gauge groups, two of which will look standard model like in

structure, and a third exotic sector with larger gauge groups and a residual flavor

symmetry. The quivers of the parent and daughter theories are given in Figure 3.4.

The invariant combinations of the parent fields that survive the orbifold projection

and comprise the daughter theory of the S3-orbifold Higgs model were worked out and

are given in ref. [6].

SU(12)

SU(6)

SU(18)

Q

H

U

�!

SU(2)

SU(1)

SU(3)

qA

hA

uA

SU(2)

SU(1)

SU(3)

qB

hB

uB

SU(4)

SU(2)

SU(6)

qC

hC

uC

Figure 3.4: Quiver diagram of the parent and daughter theory resulting
from the S3-orbifold reduction. The trivial SU(1) nodes are drawn only to
demonstrate the connection to the parent theory.
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The tree level Higgs potential of the daughter theory is then

V (0)

d = �m2
�
|hA|

2 + |hB|
2 + |hC1 |

2 + |hC2 |
2
�

(3.14)

+ �
�
|hA|

2 + |hA|
2 + |hC1 |

2 + |hC2 |
2
�2

(3.15)

+ yq̄AhAuA + yq̄BhBuB +
y

p
2
q̄ChC1uC1 +

y
p

2
q̄ChC2uC2 . (3.16)

We use the subscripts C1 and C2 to distinguish the residual SU(2) flavor symmetry.

Note the factors of 1/
p

2 in the c-sector Yukawa interactions. This comes from the

rescaling of terms related to the relative dimension of the irreducible representation.

We now need to include the radiative corrections which will allow us to study the

vacuum alignment. The dominant contribution to the one-loop e↵ective potential

comes from the top loops,

V (1)

d �
3y4

16⇡2


|hA|

4 log

✓
⇤2

y2|hA|2

◆
+ |hB|

4 log

✓
⇤2

y2|hB|2

◆
(3.17)

+
1

2
|hC1 |

4 log

 
⇤2

y2

2
|hC1 |

2

!
+

1

2
|hC2 |

4 log

 
⇤2

y2

2
|hC2 |

2

!#
. (3.18)

Adding this contribution to the tree level scalar potential we find that |hhAi|
2 =

|hhBi|
2 = 1

2
|hhC1i|

2 = 1

2
|hhC2i|

2 = 1

2

m2

6�+� ⌘
1

12
f2. At this point none of sectors can

be identified with the SM-like sector due to the fact that the weak scales are not

adequately separated causing this Higgs to be not well aligned with the SM sector.

To remedy this we add a soft term of the form,

Vsoft = ⇢2
✓

|hA|
2
�

1

5
|hB|

2
�

1

5
|hC1 |

2
�

1

5
|hC2 |

2

◆
(3.19)

+ �2 (hC1 � hC2)
† (hC1 � hC2) (3.20)

which will allow us to identify the A-sector with the SM-like sector. The first piece is

used to break the residual S2 symmetry of the daughter theory. The specific form is

chosen only to simplify future expressions for the vevs and masses. A more general

expression would alter the alignment between the B and C-sectors, but this plays a
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modest role in determining the phenomenology of the SM-like Higgs. The second term

is added to allow the would be Goldstones in the C-sector to acquire mass.

The addition of a soft term makes it di�cult to gain analytic expressions for these

quantities so we introduce the following approximation. We approximate

3y4

16⇡2
log

 
⇤2

y2

d↵
|h↵|2

!
⇡

3y4

16⇡2
log

✓
⇤2

y2|hhAi|2

◆
⌘ �, for ↵ = A, B, C1, C2. (3.21)

This does remove the dynamics of the fields within the logarithm but those have a

much smaller e↵ect compared to the dynamics in the multiplicative factor of |h↵|
4

in determining the vacuum alignment. The approximation is reasonable for f .

few ⇥ |hhAi|.

Working from the approximate potential of the daughter theory,

Vd � �m2(|hA|
2 + |hB|

2 + |hC1 |
2 + |hC2 |

2) (3.22)

+ �
�
|hA|

2 + |hB|
2 + |hC1 |

2 + |hC2 |
2
�2

(3.23)

+ ⇢2
✓

|hA|
2
�

1

5
|hB|

2
�

1

5
|hC1 |

2
�

1

5
|hC2 |

2

◆
(3.24)

+ �2 (hC1 � hC2)
† (hC1 � hC2) (3.25)

+ �

✓
|hA|

4 + |hB|
4 +

1

2
|hC1 |

4 +
1

2
|hC2 |

4

◆
(3.26)

we find the following expressions for the vevs,

v2 ⌘ 2|hhAi|
2 = m2

6�+� �
⇢2

� , v2B = m2

6�+� + ⇢2

5� , v2C1
= v2C2

= 2m2

6�+� + 2⇢2

5� .

(3.27)

Tuning ⇢2

� against m2

6�+� allows us to achieve a vacuum alignment that is consistent with

the A�sector being associated with the SM like sector in the theory. This corresponds

to a tree-level tuning on the order of 6v2/f2.

Upon diagonalization of the mass matrix we find the SM-like Higgs, h ⇡ cos(v/f)�3A�

1p
5
sin(v/f)

�
�3B +

p
2�7C1

+
p

2�7C2

�
where the �i↵ fields are the components h↵ in the

hermitian basis given in Eq. (A.1) of the Appendix. The corresponding mass of h is
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found to be m2

h ⇡
12

5
�f2 sin2

⇣
v
f

⌘
. The remaining mass eigenstates are listed in the

Appendix.

3.4.1 U(1) Daughter Gauge Fields

Up to now we have set aside the residual U(1) factors of the daughter theory as

they play little importance in the determining the vacuum alignment. We willl

now take a moment to discuss some possibilities for handling these extra fields. A

simple option would be to set them aside or lift the U(1) fields via the Stueckelberg

mechanism[75, 76], leaving behind no massless gauge fields that interact with multiple

sectors. Hypercharge assignments, at least the SM sector, can then be added in that

would break the orbifold correspondence to the mother theory and will contribute

additional radiative corrections to the Higgs e↵ective potential. This will be the path

we take in analyzing the collider signatures of the model in section 3.5.

Another interesting possibility is to take a linear combination of the U(1)s and

identify it with the hypercharge generator and lifting the remaining U(1)s through the

Stueckelberg mechanism. In this case the hypercharge generator will charge the SM and

C-sector which places additional constraints from precision electroweak measurements

and charged dark matter searches on this scenario.

3.5 Phenomenology

In this section we apply a similar analysis to[77], whereby we calculate the modifications

to Higgs production cross sections and branching fractions. We will then compare our

results with those predicted by the Mirror Twin Higgs model. Lastly, we will discuss

the tuning and naturalness of the model.

We expect the production cross sections and decay widths to SM particles of the
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125 GeV Higgs, h, to be suppressed by a multiplicative factor of cos2(v/f) giving us,

�(pp ! h) = cos2 (v/f)�(pp ! hSM ) (3.28)

�(h ! SMi) = cos2 (v/f)�(hSM ! SMi) (3.29)

where the subscript, i, denotes some particular final state. For f = few ⇥ v, this is

consistent with the SM prediction.

The decay widths of h to the hidden sector states should be suppressed by a factor

of sin2(v/f) from the Higgs alignment but should also be accompanied by another

multiplicative factor stemming from kinematical e↵ects. It is convenient to define the

dimensionless quantities,

rB ⌘
�(h ! B-sector)

�(hSM )1
5
sin2 (v/f)

and rC ⌘
�(h ! C-sector)

�(hSM )2
5
sin2 (v/f)

(3.30)

which will allow us to simply cast the total width of the Higgs as,

�(h) = �(hSM )


cos2 (v/f) +

1

5
sin2(v/f) (rB + 2rC)

�
. (3.31)

Using the above relations we can write signal strength for Higgs decays into SM

particles as

�(pp ! h)BR(h ! SMi)

�(pp ! hSM )BR(hSM ! SMi)
=

cos2 (v/f)

1 + 1

5
(rB + 2rC) tan2 (v/f)

, (3.32)

where rB/C now need to be determined.

Before proceeding directly to the calculation it is worth recalling the leading order

partial widths for SM Higgs to fermions, vector bosons, gluons, and photons which are

summarized in Table 3.2. The expression for rB follows directly from[77] and is given
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Standard Model Higgs Decays

�(h ! ff) = Nc

16⇡mh�2f
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Table 3.2: A summary of common SM Higgs boson decays[78] that we will
consider in our analysis of the SM-like Higgs decays into b and c-sector states.
The �V , RT , and AX functions are defined in the Appendix.
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. (3.34)

The Weinberg angle is set to zero since we have excluded the hypercharge in the hidden

sectors.

The expression for rC is slightly complicated by the scaled couplings, and larger

color factors. The massive gauge bosons kinematically forbid decays of h ! V ⇤
c Vc for

the ranges of the order breaking parameter f we consider here. However, loop level

decays to the 8 massless gauge bosons now contribute to the width 2. We can modify

2
Depending on sign of the beta function for the SU(6) color group this sector may confine and

Higgs the remaining SU(3) subgroup. We will proceed assuming gauge bosons of the SU(3) subgroup

remain massless thus placing more conservative bounds on the model.
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the SM Higgs decay width to two photons to express the decay width to massless

gauge bosons and express rC as,

rC =2

0

BBBB@

X

j

BR(h ! fjf j)
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We are now left to calculate rB/C to attain the signal strength of the Higgs into

SM particles and the branching ratio of Higgs to hidden sector states. We will assume

a 3 generation model of quarks and leptons. This assumption is problematic when

considering the thermal history of the universe where copies of light generations could

alter Neff . However adding in the down type quarks and extra generations predicts a

larger branching fraction of Higgs to hidden states, thus providing more conservative

estimates for the decay rates to hidden sector states.

In Fig. 3.5 we present plots for the signal strength of the SM-like Higgs and its

branching fraction to hidden states. We also plot our results against results to those

given in ref. [77] for the Twin Higgs in Fig. 3.6. Though the behavior is very similar

we note that the S3-orbifold Higgs model approaches the SM result faster as a function

of top partner mass. This stems from the fact that vev is now shared across three

sectors allowing for lighter partner states for a given SU(6) breaking order parameter,

f , as compared to the Twin Higgs partner states.

Let us now consider the level of tuning occurring in model. In Eq. 3.9 we found

the leading order radiative corrections of the scalar potential that break the accidental
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SU(2�) symmetry of the tree level potential in a general orbifold Higgs model. In the

case of the S3-orbifold theory at hand this corresponds to

�m2
⇡

3g2
2

64⇡2
⇤2

✓
1 �

1

22

◆
. (3.37)

Using

�m =

����
2�m2

m2

h

����
�1

(3.38)

as an estimate of our tuning, corresponds to a 50%, 25%, and 10% level tuning at

cuto↵ scales of 3.3 TeV, 4.7 TeV , and 7.5 TeV respectively.

50% 25% 10%

[σ×BR]S3/SM

BR(h →Hidden)S3

1 2 3
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Figure 3.5: Plot of the signal strength of producing h and it directly decaying to SM
particles and the branching ratio for decays h decays to A and B sector particles as
a function of both the order breaking parameter f and the ratio of the top partner
masses divided by the SM top mass.

As mentioned in Section 3.4 in order to associate the A-sector with the SM-like

sector we needed to tune ⇢2

� against m2

6�+� which resulted in a modest tuning of order

6v2/f2. This is an improvement on the tree level tuning seen in the Twin Higgs model

where the tuning to required to achieve v ⌧ f is of the order 2v2/f2. A tree level

tuning of 50%, 25%, and 10% corresponds to an SU(12) breaking order parameter of

f ⇡ 0.85 TeV, 1.2 TeV, and 1.9 TeV respectively, or equivalently in terms of the top
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Figure 3.6: Comparison plot of the signal strength and branching fraction of hidden
sector h decays plotted as a function of the top partner mass ratios.

partner mass of mT ⇡ 1.48mt, 2.14mt, and 3.43 mt. We overlay the plot in Figure 3.6

with lines indicating these tree level tunings.

In a non-linear realization of an orbifold Higgs model, the UV cuto↵ is bounded by,

⇤ < 4⇡f . For a ZN -orbifold Higgs model there is an SN symmetry that interchanges

the fields in each sector. Consequently, the order breaking parameter is shared equally

amongst each sector, v = f/
p

N leading to a cuto↵ of ⇤ < 4⇡
p

Nv. Setting v = vSM

may force the cuto↵ below the electroweak scale of 5 TeV. This may be fixed by adding

a term to the potential that softly breaks the SN symmetry.

The amount of tuning necessary to separate the weak scale from the order breaking

parameter of the parent theory is of order N(v/f)2. For ⇤ < 4⇡f = 5 TeV, this

leads to a minimal tuning of ⇠
2

5
N . Similarly, for the S3-orbifold model we find the

minimal tuning required push the cuto↵ above the electroweak precision scale is ⇠
2

5
· 6.

Comparing to the Twin Higgs, we find the tree level tuning is improved by a factor

of N/2 in the ZN -orbifold Higgs models and by a factor of 3 in the S3-orbifold Higgs

model. These results agree with previous work which demonstrated that for N SM

like sectors, akin to a ZN -orbifold Higgs model, the need for fine tuning is alleviated

for large N [79].
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3.6 Results and Future Prospects

The S3-orbifold Higgs can easily accommodate the SM without facing any major tuning

for cuto↵ scales approaching 8 TeV. A 10% tree level tuning is su�cient to give the

signal strength the SM Higgs within a couple percent. Though the nature of the model

may seem complicated with three sectors which can only communicate through the

Higgs portal, the Higgs phenomenology is only dependent on two additional parameter

to the SM, the SU(12) breaking order parameter f and the soft term ⇢. This makes

the testability of model in principle no more complicated than Twin Higgs.

The LHC has greater sensitivity in measuring signals from SM decays of the Higgs

compared to invisible decays. This makes searching for deviations in SM Higgs decay

channels favorable for testing the model. At an integrated luminosity of 3000 fb�1 the

LHC will be able to probe Higgs signal strengths in the WW , ZZ, and �� channels

down to the 5% level[80]. If a suppression in the signal strengths of more than 5% is

measured, the model will be pushed into the region of parameter space where with top

partner masses mT . 2mt. This makes it di�cult for the LHC to strongly disfavor the

S3-orbifold Higgs as a natural model. The increased Higgs production of a 100 TeV

collider however may provide a way of testing the naturalness of the model.

There is also the possibility for more exotic collider signatures in the form of Higgs

decays with displaced vertices. It is possible for the SM-like Higgs to decay into B

and C-sector states which may decay back into SM states giving rise to so-called

“hidden valley” signatures[81–83]. These signatures were studied in the context of the

Fraternal Twin Higgs[84]. The phenomenology in the S3-orbifold Higgs model should

be qualitatively similar. A thorough comparison would require a more detailed study of

the hidden sectors and mass scales of the glueballs produced in each sector, including

those that may be produced by the unbroken SU(3) subgroup of the broken SU(4)

weak gauge group in the C-sector.

An interesting feature of the model is that for relatively light top partners, in

comparison to those in the Twin Higgs, there is still a large suppression of Higgs decays
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to hidden sector states. This is a general feature of orbifold Higgs models where the

orbifold projection produces three or more sectors. With such a modest di↵erence in

the masses of fermion partners it may be interesting to study if any of the matter

in the hidden sectors could serve as a stable dark matter candidate. The possibility

of C�sector having multiple confining gauge groups in the theory may also provide

additional stability against the states decaying into SM states. There have already

been a number of dark matter and cosmology studies involving the Twin Higgs[85–94]

which may serve as an avenue for future work involving the S3-orbifold Higgs model.
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Chapter 4

Radion-Higgs Mixing in 2HDMs

4.1 Introduction

The electroweak scale set by the vacuum expectation value (vev) v ⇡ 246 GeV of the

Higgs field is very sensitive to physics at high scales. This sensitivity appears in loop

corrections to the Higgs mass and is known as the hierarchy problem. Randall and

Sundrum [9] proposed a solution to this puzzle by considering an extra dimensional

model with the extra dimension being spatial in nature and compactified into a S1/Z2

orbifold. In this model there are two 4D manifolds, called “3-branes”, separated by a

distance yc = ⇡rc in the extra dimension where rc is the ”radius of compactification”.

The brane at y = yc is called the TeV-brane or IR-brane and the brane at y = 0 is

usually called the UV- or Planck brane. A fine tuning is required between the 5D

cosmological constant and the brane tensions in order to achieve a static flat solution

which corresponds to a vanishing e↵ective 4D cosmological constant. The solution to

Einstein equations gives the 5D metric

ds2 = e�2A⌘µ⌫dxµdx⌫ � dy2, (4.1)

where A = k|y| is the warp factor and k is the AdS curvature scale. This solution

corresponds to a slice of AdS5 space between the two branes. The result of their
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seminal work can explain the hierarchy of scales by warping down the Planck scale 1

to the TeV scale, i.e. MTeV = MP le�kyc , therefore requiring that kyc ⇡ 37.

In the original Randall and Sundrum (RS) model, it was assumed that the SM

fields live in the visible brane, and only gravity propagates in the bulk of the extra

dimension. In Ref. [95] the phenomenology of the KK gravitons was studied. Shortly

after the RS model appeared, several extensions with SM fields propagating in the bulk

were found. Bulk gauge bosons were first considered in [96, 97] where the Kaluza-Klein

(KK) mass spectrum as well as their localization were derived. In [98] a complete

analysis of the Higgs mechanism for bulk gauge bosons was done for both a bulk and

a brane Higgs boson. Fermions in the bulk were introduced in [99]. The whole SM

was placed in the bulk in [100]. In [101] bulk fields and supersymmetry were studied.

Perhaps the most attractive reason to consider placing fermions in the bulk is that

one can explain the mass hierarchy and flavor mixing with parameters of O(1) [98,

101]. Several works with bulk fermions have appeared [102–109].

One inconvenience in RS models with gauge and matter fields propagating in

the bulk are large contributions to electroweak precision observables (EWPO) [110]

that push the KK scale far beyond the reach of accelerators. A possible cure can

be implemented by imposing a gauge SU(2)L ⇥ SU(2)R ⇥ U(1)X symmetry in the

bulk that is spontaneously broken to provide custodial protection [111] for the S and

T parameters and this reduces the bound on the KK scale to mKK & 3 TeV. This

custodial protection also protects the Zbb̄ vertex from large corrections [112].

Scalar fluctuations in the RS metric give rise to a massless scalar field called the

radion and in order to fix the size of the extra dimension, the radion needs to have a

mass. Goldberger and Wise [16] were the first to consider a model with a scalar field

propagating in the bulk of AdS5 and solved for its profile functions and KK masses.

Later they showed in [113] that by choosing appropriate bulk and boundary potentials

for the scalar one can generate an e↵ective 4D potential for the radion and therefore

were able to stabilize it without requiring fine tuning of the parameters. This became

1
We use the value Mpl = 10

19
GeV
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known as the Goldberger Wise (GW) mechanism. However in the GW mechanism

they used an ansatz for the metric perturbations that do not satisfy Einstein equations

and did not include the radion wavefunction and the backreaction of the metric due to

the stabilizing field. In the paper of Csaki et al [114] these e↵ects were included by

using the most general ansatz [115] and the superpotential method [116] to solve for

the backreaction. Then they considered the small backreaction approximation to solve

for the coupled scalar-metric perturbation system and found the radion mass to be

mr ⇠ l TeV where l parametrizes the backreaction and its value is model dependent

on the specifics of the scalar VEV profile. Therefore the radion could have a mass of

few hundred of GeV and is the lightest particle in the RS model.

Since the radion field emerges as the lightest new state the possibility of being

experimentally accessible and its e↵ects on physical phenomena must be investigated.

In general, when a scalar is propagating on the brane one can include, by arguments

of general covariance, in the four dimensional e↵ective action terms involving the

Ricci scalar L ◆ MR(g)�� ⇠R(g)�2. In this way a scalar can couple non-minimally

to gravity. If the brane scalar is a Higgs boson, gauge invariance implies M = 0

and from dimensional analysis one expects ⇠ to be an O(1) number with unknown

sign. Particular attention has been placed on the curvature-Higgs term R �†� since

after expanding out the radion field around its VEV this term induces kinetic mixing

between the radion field and the Higgs, therefore requiring a non-unitary transformation

to obtain the canonically normalized degrees of freedom. After diagonalization the

physical fields become mixtures of the original non-mixed radion and Higgs boson.

The phenomenological consequences of a non-zero mixing ⇠ 6= 0 have been studied

extensively in the literature [114, 117–128]

The radion interacts with matter via the trace of the energy-momentum tensor

and the form of these interactions is very similar to those of the SM Higgs boson but

are multiplied by v/⇤ where ⇤ ⇠ O(TeV) is a normalization factor. In the case ⇠ = 0,

there is no Higgs-radion mixing and the branching ratios of the radion become very

similar to those of the SM in the heavy mass region, being dominated by vector bosons
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while for the low mass region the gg mode is dominant. Due to its large, anomaly

induced, coupling to two gluons a radion can be produced through gluon fusion.

The parameter space coming from the curvature-Higgs mixing scenario consists of

four parameters, viz., the bare mass terms mh and mr, the mixing parameter ⇠ and

the normalization scale ⇤. However in some of the above references, the Higgs boson

had been discovered [56, 57] and their parameter space is reduced to (mr, ⇠,⇤). The

⇠ � mr parameter space is very constrained by direct searches for additional scalars at

the LHC [128] leaving only small experimentally and theoretically allowed windows

for ⇤ = 3 TeV and these windows open up as one increases ⇤. The bounds on the

parameter ⇤ are dependent the mass the first KK excitation mKK and the curvature

scale k as was shown in [129].

Despite the model di↵erences in the analyses that have appeared on Higgs-radion

mixing, the overall conclusion is that there is possibility that the measured Higgs boson

could be in fact a mixture of the radion with the Higgs doublet that is consistent with

experimental data. However the constraints mentioned in the previous paragraph will

be pushed further if a radion signal is not seen in the coming future and it would be

interesting to look at possible ways to relax these constraints.

In addition to the RS model, several Beyond the Standard Model (BSM) scenarios

have appeared in the last several decades as promising candidates for new physics.

One of the most studied and simplest extensions is the Two-Higgs-Doublet Model

(2HDM) where a second Higgs doublet is added to the electroweak sector. The 2HDM

was primarily motivated by minimal supersymmetry [2] and it has also been studied

in the context of axion models [130], the baryon asymmetry of the universe [31, 131],

the muon g � 2 anomaly [132] and dark matter [133].

In this chapter we will study how some of the constraints on the minimal Higgs-

radion mixing may be relaxed or modified by having curvature scalar couplings of the

form L ◆ ⇠abR(gind) �
†
a�b where a, b = 1, 2 and a 2HDM is located on the TeV brane.

The SM gauge bosons and fermions correspond to the zero modes of 5D bulk fields. In

section 4.2 we introduce some notation and we briefly describe the custodial RS model
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in section 4.2.1. A review of the radion field emergence in the RS model together with

its interactions with SM particles is done in section 4.2.3. The 2HDM is presented

in subsection 4.2.2. The two-Higgs-radion mixing Lagrangian is discussed in section

4.3. In section 4.4 the predictions of the model are presented including constraints

from LHC data, collider signals and constraints and expectations from heavy Higgs

searches. A summary of the interactions of the Higgs eigenstates and the radion with

SM particles before mixing is given in appendix B.1.

4.2 Model Description

4.2.1 The Custodial RS Model

We first review the RS model with a custodial [111] gauge symmetry SU(2)L⇥SU(2)R⇥

U(1)X ⇥ PLR in the bulk where PLR is a parity symmetry that makes left and right

gauge groups equal to each other. In our notation Latin letters denote 5D indices

M = (µ, 5) and Greek letters denote 4D indices µ = 0, 1, 2, 3. The background metric

is that of equation (4.1) and we use the convention for the flat space Minkowski tensor

⌘µ⌫ = diag(+1, �1, �1, �1). We will introduce fluctuations around the background

later. The 5D action of the model is given by

S =

Z
d5x

p
g
⇥
�2M3

R(g) + L� + Lgauge + Lfermion

⇤

+

Z
d4x
p

gind(y = yc) [LH + LY � VIR(�)] �

Z
d4x
p

gind(y = 0)VUV (�) (4.2)

where the first term corresponds to the Einstein-Hilbert action where M is the 5D

Planck scale and R the Ricci scalar and LY and LH are the SM Yukawa and Higgs

Lagrangians respectively. The stabilization mechanism is contained in L� together

with its brane potentials VIR and VUV . We do not discuss this sector and simply

assume that stabilization is performed as in [114]. The gauge sector is given by

Lgauge = �gMOgNP


1

2
Tr{LMNLOP } +

1

2
Tr{RMNROP } +

1

4
XMNXOP

�
(4.3)
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where LMN , RMN and XMN are the gauge bosons associated with SU(2)L, SU(2)R and

U(1)X respectively. In the Planck-brane the symmetry is broken SU(2)R ⇥ U(1)X !

U(1)Y by appropriate BC’s of the gauge fields to generate the SM gauge group. This

BC’s are given by [134]

@5L
a
µ(x, 0) =0, a = 1, 2, 3,

Ri
µ(x, 0) = 0 i = 1, 2

gX@5R
3

µ(x, 0) + gR@5Xµ(x, 0) = 0

�gRR3

µ(x, 0) + gXXµ(x, 0) = 0 (4.4)

where gL, gR and gX are the 5D gauge couplings associated with the gauge fields La
µ,

Ra
µ and Xµ respectively. The SM gauge bosons W±, Z and the photon are embedded

into the 5D gauge bosons. Calculation of the spectrum and profiles was performed in

Ref. [134, 135] with di↵erent KK basis.

Boundary mass terms are generated by the Higgs VEV’s

Lmass =
v2
1

+ v2
2

8
(gLLa

µ � gRRa
µ)2�(y � yc), (4.5)

where v1 and v2 are the vevs of the Higgs doublets. Therefore in the TeV brane the gauge

symmetry is spontaneously broken down by the Higgs VEV’s to the diagonal group,

i.e. SU(2)L ⇥ SU(2)R ! SU(2)V so that SU(2)V generates custodial protection for

the T parameter. The extra parity symmetryPLR : SU(2)L $ SU(2)R was introduced

to protect the ZbLb̄L vertex from non universal corrections [112].

In the fermion sector all three generations are embedded in the same representation

of the gauge group with the following transformation properties [135, 136]

QL ⇠ (2,2)2/3, (4.6)

uR ⇠ (1,1)2/3, (4.7)
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dR ⇠ (1,3)2/3 � (3,1)2/3, (4.8)

and this choice guarantees custodial protection for the Zbb coupling and for flavor

violating couplings ZdiLdjL as well. Using appropriate BC one can ensure that only the

SM quarks appear in the low energy theory.

The motivation for the custodial symmetry came from requiring corrections to

EWPO, parametrized by the Peskin-Takeuchi parameters S and T , be su�ciently

small. The corrections have contributions from the KK excitations of the fermions

and gauge bosons, from the 2HDM sector and from the radion. As discussed in the

introduction, an extended gauge custodial symmetry in the bulk keeps the corrections

from the KK excitations under control [111]. In the absence of mixing, a custodially

symmetric 2HDM potential has vanishing contributions to the T parameter [137] and

the contributions of the radion are also small (see Csaki et al. [114]).

However when one includes mixing, the radion and Higgs scalar couplings are

modified and could result in large corrections depending on the values of the mixing

parameters and masses. As shown in [114] there are three types of contributions to

the S and T parameters: (1) with each scalar eigenstate going through the loop of the

vacuum polarization graph of the vector bosons, (2) anomalous terms coming from

the conformal couplings of the radion when the theory is regulated and (3) higher

dimensional operators which arise after integrating out the heavy degrees of freedom,

e.g. spin-2 graviton states.

In the case of a single Higgs doublet mixing with the radion, the di↵erent contribu-

tions can be made to destructively interfere, so that S and T are within experimental

bounds. The detailed expressions for S and T can be found in Ref. [138]. They show

that, for a preferred range of parameters, the allowed region in the radion mass - ⇠

plane is narrowed slightly, although with some cancellations in other parameters this

can be avoided. In our model the same can be accomplished. There will be a range

of parameters in which EWPO exceed experimental bounds, but due to the larger

number of parameters and the fact that contributions have opposite signs, it would



49

not be valuable to calculate these bounds here.

4.2.2 The Two-Higgs Doublet Model

We consider two Higgs doublets living in the visible brane. The most general

parametrization for the scalar potential [31, 139] is given by

V (�1,�2) =m̄2

11�
†
1
�1 + m̄2

22�
†
2
�2 �

⇣
m̄2

12�
†
1
�2 + H.c.

⌘

+
�1
2

(�†
1
�1)

2 +
�2
2

(�†
2
�2)

2 + �3(�
†
1
�1)(�

†
2
�2) + �4(�

†
1
�2)(�

†
2
�1)

+


�5
2

(�†
1
�2)

2 + �6(�
†
1
�1)(�

†
1
�2) + �7(�

†
2
�2)(�

†
1
�2) + H.c.

�
, (4.9)

where m2

11
, m2

22
, and �1,2,3,4 are real by hermiticity and m2

12
and �5,6,7 are in general

complex. In this expression there are fourteen parameters, however the freedom in the

choice of basis can be used to reduce this number down to eleven degrees of freedom

that are physical.

To provide custodial protection for the T parameter we promote the Higgs fields

to bi-doublets Mi = (�̃i,�i) (with �̃i = i�2�⇤
i ) of the gauge group SU(2)L ⇥ SU(2)R

that transform in the representation (2, 2̄)0 [140]

Mi ! ULMiU
†
R, i = 1, 2. (4.10)

where

UL 2 SU(2)L, UR 2 SU(2)R. (4.11)

Using the three independent invariant quadratic forms Tr[M †
1
M1], Tr[M †

2
M2] and

Tr[M †
1
M2]2 the most general expression that has all possible combinations of traces

2
For a basis independent treatment see Ref. [137]
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invariants is given by

V (M1M2) =
m̄2

11

2
Tr[M †

1
M1] +

m̄2

22

2
Tr[M †

2
M2] � m̄2

12Tr[M †
1
M2] +

�1
8

Tr[M †
1
M1]

2

+
�2
8

Tr[M †
2
M2]

2 +
�3
4

Tr[M †
1
M1]Tr[M †

2
M2] +

�0
4

2
Tr[M †

1
M2]

2

+
�0
5

2
Tr[M †

1
M1]Tr[M †

1
M2] +

�0
6

2
Tr[M †

2
M2]Tr[M †

1
M2] (4.12)

where all the parameters are real and the correspondence with the potential of equation

(4.9) is

�04 ⌘ �4 = �5, �05 ⌘ �6, �06 ⌘ �7. (4.13)

Thus by imposing the gauge SU(2)L ⇥ SU(2)R symmetry one immediately reduces

the number of free parameters in the scalar potential down to nine. Also a custodially

protected 2HDM potential is automatically CP conserving.

The kinetic terms for the Higgs bi-doublets are given by

LH ◆

X

i=1,2

gµ⌫ind
1

2
Tr[(DµMi)

†D⌫Mi] (4.14)

where gµ⌫ind is the induced metric on the TeV brane and the covariant derivative is

DµMi = @µMi � igLLµMi + igRMiRµ (4.15)

and Lµ = La
µ⌧

a
L is the gauge boson associated with SU(2)L. Therefore under the

custodial gauge symmetry the gauge bosons transform as

Lµ ! ULLµU †
L �

i

gL
@µULU †

L, (4.16)

Rµ ! URRµU †
R +

i

gR
UR@µU †

R. (4.17)

Of course one needs to also include the term corresponding to the gauge group U(1)X

which violates the custodial symmetry.

In conventional 2HDM’s one can avoid the presence of potentially dangerous
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flavor changing neutral currents (FCNC) by imposing a discrete Z2 symmetry �1 !

�1, �2 ! ��2, on the Higgs doublets. The fermion mass in (4.52) is generated either

by �1 or �2 since the discrete Z2 symmetry is extended to the fermion sector. This

results in four di↵erent types of Yukawa interactions [141]. In the type-I model all

fermions couple to a single Higgs doublet, usually chosen to be �2. In the type-II

model up-type quarks couple to �2 and d-type quarks and leptons couple to �1. In the

lepton-specific model all leptons couple to �1 and all quarks couple to �2. Finally in

the flipped model up-type quarks and leptons couple to �2 and d-type quarks couple

to �1. In general, radion mediated FCNC can be present and this was analyzed in

[142]. For simplicity we don’t consider flavor mixing in the bulk mass parameters,

i.e., ci,jL,R = ci,iL,R since we want to achieve minimal flavor violation [50] in the Yukawa

sector.

In terms of bi-doublets this symmetry reads

M1 ! M1, M2 ! �M2, (4.18)

and implies �0
5

= �0
6

= 0 with m̄2

12
6= 0 remaining as a soft-violating term. The Higgs

doublets can be expressed as

�a =

0

B@
�+a

v̄a+⇢a+i⌘ap
2

1

CA , a = 1, 2 (4.19)

where v̄a are the VEV of the scalars. The VEV’s satisfy the relation v̄2 = v̄2
1

+ v̄2
2

with v̄ the localized Higgs VEV and should not be confused with the SM value

v = v̄e�kyc = 246 GeV since we still need to canonically normalize the Higgs doublets3.

The fields appearing in the expression of the Higgs doublets (4.19) are not the

physical scalars. To obtain the physical eigenstates one has to diagonalize the mass

matrices that are constructed using equation (4.12) with the appropriate imposed

symmetries. For a custodial and Z2 symmetric scalar potential the mass matrix for

3
We put a bar on mass parameters that are not yet redshifted down to the EW scale.
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the CP-odd state and for the charged Higgs fields are equal

0

B@
m̄2

11
+

v̄21�1+v̄22�3
2

�m̄2

12
+ v̄1v̄2�04

�m̄2

12
+ v̄1v̄2�04 m̄2

22
+

v̄22�2+v̄21�3
2

1

CA =

0

B@
m̄2

12

v̄2
v̄1

� �0
4
v̄2
2

�m̄2

12
+ v̄1v̄2�04

�m̄2

12
+ v̄1v̄2�04 m̄2

12

v̄1
v̄2

� �0
4
v̄2
1

1

CA

(4.20)

where in the last equality m̄2

11
and m̄2

22
were eliminated using the minimization

conditions of the potential. The matrix above has a zero eigenvalue corresponding to

the Goldstone bosons G0 and G± and the nonzero mass eigenvalue is given by

m̄2

A = m̄2

H± = m̄2

12

v̄2

v̄1v̄2
� �04v̄

2. (4.21)

The fact that the CP-odd field mass is degenerate with the charged Higgs bosons is a

direct consequence of imposing a custodial symmetry in the scalar potential however

this symmetry is not respected by the hypercharge gauge and Yukawa interactions, so

we can only expect the masses to be approximately degenerate. The diagonalization

of the CP odd fields (as well as the charged scalars) is carried out by the orthogonal

transformation 0

B@
⌘1

⌘2

1

CA =

0

B@
c� �s�

s� c�

1

CA

0

B@
G0

A

1

CA (4.22)

where c� = cos�, s� = sin� and tan� = v2/v1. G0 is the neutral Goldstone boson

and A is the physical pseudoscalar.

The physical CP even scalars are obtained by the rotation

0

B@
⇢1

⇢2

1

CA =

0

B@
c↵ �s↵

s↵ c↵

1

CA

0

B@
H

h

1

CA (4.23)

where h(H) corresponds to the lighter (heavier) scalar.

Notice that there were 7 real parameters in the Higgs potential to start with,

namely {m̄2

11
, m̄2

22
, m̄2

12
,�0

1
,�0

2
,�0

3
,�0

4
}. Using the two minimization conditions we

can trade m̄2

11
and m̄2

22
for v1 and v2 and then use the relations v2 = v2

1
+ v2

2
and
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tan� = v2/v1 to trade v1 and v2 for v and �. Finally we can trade the soft breaking

parameter and three lambdas for the three scalar masses and ↵ ending up with the set

{�,↵, mh, mH , mA,�4} (notice that �4 = �0
4
) where we fixed v = 246 GeV therefore

we only have to specify 6 parameters.

⇠uh ⇠dh ⇠lh ⇠uH ⇠dH ⇠lH ⇠uA ⇠dA ⇠lA
Type-I c↵/s� c↵/s� c↵/s� s↵/s� s↵/s� s↵/s� cot� � cot� -cot�
Type-II c↵/s� �s↵/c� �s↵/c� s↵/s� c↵/c� c↵/c� cot� tan� tan�

Table 4.1: Scalar couplings to pairs of fermions.

The couplings of the scalars with the fermion fields can be written as [141]

L
ff
� =

X

f=u,d,l

mf

v

⇣
⇠fh f̄fh + ⇠fH f̄fH � i⇠fAf̄�5fA

⌘
,

�

(p
2Vud

v
ū(mu⇠

u
APL + md⇠

d
APR)dH+ +

p
2ml⇠lA

v
⌫̄LlRH+ + h.c.

)
, (4.24)

where the mixing factors are summarized in Table 4.1. Here the gauge bosons and

fermions are the zero modes of the 5D bulk fields. Non-zero KK modes are presumed

to be su�ciently heavy that they will not have a phenomenological impact.

The couplings of the scalars to a pair of gauge bosons are given by

L
WW,ZZ
� = (h sin (� � ↵) + H cos (� � ↵))

✓
2m2

W

v
W+

µ Wµ� +
m2

Z

v
ZµZµ

◆
, (4.25)

L
gg,��
� =

X

�=h,H,A

�
�

4v

n↵s

2⇡
b�QCDGa

µ⌫G
aµ⌫ +

↵EM

2⇡
b�EMFµ⌫F

µ⌫
o

, (4.26)

where

b�QCD = ⇠t� ⇥

8
>><

>>:

Ff , � = h, H,

f(⌧t)⌧t, � = A,

(4.27)

bhEM =

✓
8

3
⇠thFf � sin(� � ↵)FW + ghFH

◆
, (4.28)

bHEM =

✓
8

3
⇠tHFf � cos(� � ↵)FW + gHFH

◆
, (4.29)
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bAEM =
8

3
⇠tAf(⌧t)⌧t. (4.30)

The form factor for the charged Higgs in the loop is [143, 144] FH = �⌧H (1 � ⌧Hf(⌧H))

and has limiting behaviors FH ! 1/3 for ⌧ > 1 and FH ! 0 for ⌧ < 1. The couplings

multiplying the form factor are given by g� = �
mW

gm2
H±

g�H+H� with g�H+H� the tree

level coupling that arises from the 2HDM potential.

4.2.3 The Radion Field

For the background metric solution in the RS model, given by equation (4.1), any value

of the radius dimension yc is equally acceptable. Therefore a mechanism is needed

to fix the value yc ⇠ 37/k so that the EW hierarchy is explained and this must be

accomplished without severe fine tuning of parameters. Here we simply assume that

a GW bulk scalar is responsible for the stabilization and that the bulk and brane

potentials are chosen by applying the method of the superpotential of Ref.[116]. This

method has the advantage of reducing the coupled non-linear second order Einstein

equations to simple ordinary di↵erential equations for a simple choice of superpotential.

The backreaction of the background metric due to the scalar can be solved directly

using this method.

After the extra dimension is stabilized the radion field arises from the scalar

fluctuations of the metric given by the general ansatz [114, 115]

ds2 = e�2A�2F (x,y)⌘µ⌫dxµdx⌫ � (1 + G(x, y))2dy2, (4.31)

and since the background VEV for the bulk scalar also depends on the extra dimension

one also has to include the fluctuations in the GW scalar namely: �(x, y) = �0(y) +

'(x, y) where �0 is the background VEV and ' denotes the fluctuation. By evaluating

the linearized Einstein equations one is able to derive G = 2F . To solve the system

one linearizes the Einstein and scalar field equations to obtain coupled relations for '

and F . In particular, by integrating the (µ, 5) component of the linearized Einstein
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equations �Rµ5 = 2�Tµ5 with 2 = 1/2M3, one obtains

�00' =
3

2
(F 0

� 2A0F ) (4.32)

where the prime indicates d/dy and this equation implies that the fluctuations ' and

F will have the same KK eigenstates but with di↵erent profiles. Using the Einstein

equations together with (4.32) a single di↵erential equation in the bulk for F can be

obtained [114]:

F 00
� 2A0F 0

� 4A00F � 2
�00
0

�0
0

F 0 + 4A0�
00
0

�0
0

F = e2A⇤F (4.33)

supplemented by the boundary conditions

(F 0
� 2A0F )|y=0,yc = 0, (4.34)

where the boundary conditions are simplified in the limit of sti↵ boundary potentials

of the bulk stabilizer @2Vi/@�2 � 1 implying '|y=yi = 0. In the system there are

two integration constants and one mass eigenvalue ⇤Fn(x, y) = �m2
nFn(x, y). One

integration constant corresponds to an overall normalization while the other constant

and the mass eigenvalue are determined by the boundary conditions. In Ref [114]

this di↵erential equation was solved in a perturbative approach in the limit of small

backreaction of the metric due to the stabilizing scalar, and it was found to zero-order

in the backreaction that the KK zero-mode can be approximated by

F0(x, y) ⇡ e2k|y|R(x) + O(l2), (4.35)

where R(x) is the radion field. Using the boundary conditions the radion mass is [114]

mr ⇡ 0.1 l ke�kyc (4.36)

where l2 ⌘ �2P /4M3 is the backreaction and �P is the VEV of the bulk stabilizer
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field on the Planck brane. It should be noted that generically, the radion mass is

always proportional to the backreaction independently of the stabilization mechanism.

From the expression above, the radion mass is expected to be of O(TeV) scale. The

canonical normalization of the radion comes from integrating out the extra dimension

in the Einstein-Hilbert action

M3

Z
dy

p
gR(ḡ) ◆

6M3

k
e2kyc(@µR(x))2 (4.37)

therefore a canonically normalized radion is obtained by writing

R(x) = r(x)
e�kyc

p
6MP l

. (4.38)

It is explicitly proved in [114] that the normalization is dominated by the gravitational

contribution coming from the Einstein-Hilbert action against that coming from the

kinetic term of the bulk stabilizer.

We now proceed to present the radion interactions with the SM fields. The induced

metric on the TeV brane is given by

ḡindµ⌫ (x) = e�2A(yc)e�2e2kycR(x)⌘µ⌫ ⌘ e�2kyc⌦(r)2⌘µ⌫ , (4.39)

where we use ḡMN to denote the metric with scalar perturbations included. After

rescaling of the doublets �a ! ekyc�a, the radion couplings to the Higgs sector are

obtained from (including the possibility of adding extra scalars in the sum)

SH =

Z
d4x

2

4
X

a=1,2

⌘µ⌫
1

2
Tr[(DµMa)

†D⌫Ma]⌦(r)2 � V (M1, M2)⌦(r)4

3

5 , (4.40)

and all mass terms are redshifted accordingly. Expanding to linear order in the radion

field ⌦(r) ⇡ 1 � r �v , with � ⌘ v/⇤ and ⇤ ⌘
p

6MP le�kyc , a straightforward calculation
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yields the coupling of the radion with the trace of the energy-momentum tensor

�

v
r Tµ

µ ◆ �

X �

v
r
⇥
(@µ�)2 � 2m2

��
2
⇤
, (4.41)

with the sum performed over all physical scalars.

The couplings to the EW gauge sector are obtained from the kinetic terms of the

Higgs doublets expanding to linear order in the perturbations

SH ◆ �

Z
d4x

�

v
r(x) ⌘µ⌫

n
2m2

WW (0)+

µ (x)W (0)�
⌫ (x) + m2

ZZ(0)

µ (x)Z(0)

⌫ (x) + ...
o

(4.42)

where the dots represent higher KK excitations. In addition to the boundary terms

there are tree level couplings of the radion coming from the kinetic term of the bulk

gauge bosons [108]

Sgauge ◆ �

Z
d4x

�

v
r(x)

⇢
1

kyc

1

4
⌘µ⌫⌘↵�V (0)

µ↵ (x)V (0)

⌫� (x) +
m4

V

2k2
e2kyckyc⌘

µ⌫V (0)

µ (x)V (0)

⌫ (x)

�
.

(4.43)

where VMN = @MVN � @NVM is the usual field strength and V = {
p

2W±, Z, A} and

mV = {mW , mZ , 0}. The coupling to the field strengths above becomes significant for

momentum transfer much larger than the EW scale and the second term constitutes

a correction of about 20% to the dominant TeV-boundary coupling. In the case of

the photon only the first term is present. A similar expression for gluons should be

included.

Overall we can write

L
WW,ZZ
r =

�

v
r

⇢
2m2

W

✓
1 �

3m2

Wkyc
⇤2

◆
W+

µ Wµ� + m2

Z

✓
1 �

3m2

Zkyc
⇤2

◆
ZµZµ

�
.

(4.44)

For massless gauge bosons we have to include the contributions coming from the

localized trace anomaly and from loop triangle diagrams in which the W gauge boson

and fermions in the case of the photon and only fermions in case of the gluons that

induce couplings to the radion.
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All these contributions can be written as [108, 117, 124, 128] 4

L
gg,��
r = �

�

4v
r

⇢✓
1

kyc
+
↵sbrQCD

2⇡

◆
Gµ⌫G

µ⌫ +

✓
1

kyc
+
↵EMbrEM

2⇡

◆
Fµ⌫F

µ⌫

�
, (4.45)

with ↵s(↵EM ) being the strong (electroweak) coupling constant and

brQCD = 7 + Ff , (4.46)

brEM = �
11

3
+

8

3
Ff � FW , (4.47)

Ff = ⌧f (1 + (1 � ⌧f )f(⌧f )) , (4.48)

FW = 2 + 3⌧W + 3⌧W (2 � ⌧W )f(⌧W ), (4.49)

f(⌧) = Arcsin2(
1

p
⌧
) ⌧ � 1, (4.50)

f(⌧) = �
1

4

✓
log

1 +
p

1 � ⌧

1 �
p

1 � ⌧
� i⇡

◆2

, ⌧ < 1, (4.51)

and ⌧i = (2mi

mr
)2, mi is the mass of the particle going around the loop. An important

property of the kinematic functions is their saturation Ff ! 2/3, FW ! 7, ⌧f(⌧) ! 1

for ⌧ > 1 and Ff,W ! 0 for ⌧ < 1.

In this paper we do not consider the corrections to the couplings coming from

excited KK modes of the top and W boson in the loop and simply assume that the

above contributions are dominant. However we leave this issue for future work.

Fermions propagating in the bulk are characterized by a bulk mass parameter

c = m/k which specifies their location in the bulk. In addition, the boundary conditions

of their profiles at the location of the branes force either the left- or the right-handed

zero modes to be zero [99]. Therefore for each SM fermion we need to introduce

two di↵erent bulk fermions, one with bulk mass parameter cL and for which the

right-handed zero mode vanishes and the other with a bulk mass parameter cR and

4
The Lagrangian takes into account only the leading order mass e↵ects for the radion coupling to

exactly two gauge bosons.
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for which the left-handed zero mode vanishes.

The couplings of the radion to SM fermions can be simplfyfied as [128]

S ◆

Z
d4x

X

f=u,d,e

�

v
r(x)mf f̄f ⇥

8
>><

>>:

1 Planck

(cL � cR) TeV.

(4.52)

with the lower option if the zero-mode profile is peaked towards the TeV brane

cL < �1/2, cR > 1/2 otherwise the localization is in the Planck brane and the upper

option applies. Besides this couplings it seems that the boundary Yukawa couplings

will have a direct contribution to the radion couplings to fermions. However, as shown

in [108], these contributions get cancelled by induced wave function discontinuities

obtained by carefully treating the boundary conditions.

4.3 Two Higgs-radion Mixing

The most general term that will give rise to kinetic mixing between the Higgs doublets

and the radion field is given by

L⇠ =
p

ḡind⇠abR(ḡind)
1

2
Tr[M †

aMb] (4.53)

where the indices a, b = 1, 2 are summed so that we have, in principle, four di↵erent

mixing parameters. However the assumption of CP invariance forces ⇠12 = ⇠21 and

thus the pseudoscalar does not mix with the radion. Evaluation of the Ricci scalar is

straightforward and yields the following expression [114]

L⇠ = �6⇠ab⌦
2
⇥
⇤ ln⌦+ (r ln⌦)2

⇤ 1

2
Tr[M †

aMb] (4.54)

The warp factor disappears after we make the rescaling of the Higgs doublets. Using

the expression for the Higgs mass eigenstates (4.23) and expanding to linear order in
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the fields we can write

L⇠ ◆ �6


�
�

v
⇤r +

�2

v2
r⇤r

� 
v2

2
Kr +

v

2
Khh +

v

2
KHH

�
, (4.55)

where � ⌘ v/⇤ and we define the mixing parameters by

Kr = ⇠11c
2

� + ⇠22s
2

� + 2⇠21s�c� , (4.56)

Kh = 2(⇠22s�c↵ � ⇠11c�s↵) + 2⇠12 cos(↵+ �), (4.57)

KH = 2(⇠11c�c↵ + ⇠22s�s↵) + 2⇠12 sin(↵+ �). (4.58)

Adding the kinetic and mass terms of each field, the mixing Lagrangian can be expressed

as

L = �
1

2
(1 + 6�2Kr)r⇤r �

1

2
m2

rr
2 +

X

�=h,H

⇢
3�K��⇤r �

1

2
�(⇤ + m2

�)�

�
(4.59)

The kinetic terms can be diagonalized by performing the transformation

r !
r0

Z
, � ! �0 +

3�K�

Z
r0 (4.60)

with � = h, H and

Z2 = 1 + 6�2Kr � 9�2(K2

h + K2

H), (4.61)

is the determinant of the kinetic mixing matrix and therefore should always satisfy

Z2 > 0 to avoid the presence of ghosts fields. This condition allows us to impose our

first theoretical constraint on the mixing parameters after choosing appropriate values

for ↵, � and �. This transformation induces mixing in the mass terms. The mass
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matrix obtained can be written as

M =

0

BBBB@

!2
rr !2

rh !2

rH

!2

rh m2

h 0

!2

rH 0 m2

H

1

CCCCA
, (4.62)

where

!2

rr =
m2

r

Z2
+

9�2

Z2

�
K2

hm
2

h + K2

Hm2

H

�
, (4.63)

!2

r� =
3�

Z
K�m

2

�. (4.64)

The physical eigenstates are obtained by performing a three dimensional rotation

0

BBBB@

r0

h0

H 0

1

CCCCA
= U

0

BBBB@

rD

hD

HD

1

CCCCA
. (4.65)

The Higgs scalars-radion system is determined by the three mixing parameters of

equation (4.53), the two mixing angles of the Higgs sector, the scale � and the three

scalar masses, giving a total of nine parameters. However one of the physical masses

will be set to the Higgs mass value and only the set (⇠11, ⇠12, ⇠22,↵,�, �,�r,�H) needs

to be specified.

Another important parameter in the study of RS models with bulk gauge bosons

is the KK scale defined to be the mass of the first excited state of the gauge bosons.

Recall that this parameter is independent of the gauge symmetry and gauge couplings

and is universal for all gauge bosons that satisfy the same BCs. In particular, for

gauge bosons satisfying Neumann BCs at both branes it is given by [119]

mKK = 2.45
k

p
6MP l

⇤, (4.66)

so any bound on the KK scale will directly a↵ect the allowed values of the curvature

scale k and ⇤.
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In Higgs-radion mixing scenarios there is a particular point in the parameter

space called the “conformal point” [117, 120, 128], usually around ⇠ = 1/6 where

the conformal symmetry is minimally violated by the Higgs VEV. At this point the

tree-level couplings of the radion to the massive fermions and gauge bosons are very

suppressed and the gg decay mode dominates even in the large radion mass limit. We

do not attempt to calculate a conformal point due to the large number of parameters.

In what follows we will reduce the parameter space by assuming that the diagonal

elements of the curvature-scalar mixing matrix are equal to each other, ⇠11 = ⇠22 ⌘ ⇠1

and for simplicity we will refer to the o↵ diagonal as ⇠12 ⌘ ⇠2. Relaxing this constraint

will not radically alter the numerical results in the following sections.

From now on we will drop the subindex D for the diagonal eigenstates and simply

write them as r, h and H . Whenever we need to distinguish between the non-diagonal

and physical states a clarification will be made.

4.4 Model Predictions

4.4.1 Constraints From Current LHC Higgs Data

In the 2HDM the interactions of all the scalars to the SM fields are completely

determined by the two mixing angles of the scalar sector � and ↵. In addition, the

alignment limit is defined to be the limit in which one of the CP-even scalars has

exactly the same interactions as the SM Higgs and corresponds to cos(� � ↵) = 0.

In this section we perform an analysis on the e↵ects Higgs-radion mixing has on

the 2HDM parameter space, cos(� � ↵) and tan�. We use a chi-square test to fit

the model to the data presented in Appendix B.2 and find the region in the 2HDM

parameter space allowed by current LHC data on the SM-like Higgs boson, h. By

definition the chi-square function to be minimized is written as

�2 =
X

i

(Rp
i � Rm

i )2

(�i)2
, (4.67)
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where RP
i is the signal strength predicted by the model, Rm

i is the measured signal

strength and �i is the corresponding standard deviation of the measured signal strength.

Asymmetric uncertainties are averaged in quadrature � =

q
�2
++�2

�
2

. The expected

signal strengths are defined as the production cross section times branching ratio of a

particular decay channel ff normalized to the standard model prediction, i.e.,

Rp
f ⌘

�(pp ! h)BR(h ! ff)

�(pp ! hSM )BR(hSM ! ff)
. (4.68)

Directly obtaining analytical expressions for the mass eigenstates is challenging therefore

we resort to numerical techniques. The analysis was carried out using two benchmarks

for the radion vev, ⇤ = 3, 5 TeV. We generated random values for 2HDM mixing angles,

(↵,�), the curvature scalar couplings (⇠1, ⇠2) and the scalar mass parameters before

radion mixing (mh, mH , mr) amounting to seven degrees of freedom. By imposing the

field h has a mass of 125.09 ± 0.5 GeV one degree of freedom is removed leaving us

with six degrees of freedom in our chi-square analysis. We also constrained the radion

and heavy Higgs physical masses to lie in the range [200, 1000] GeV. We plot the

points allowed by the LHC data in Fig. 4.1 at a 95% confidence level for the type-I

and type-II models.

No signficant di↵erence can be observed between the ⇤ = 3 TeV and ⇤ = 5 TeV

plots for each type of model. Therefore it seems that a curvature-scalar mixing has

no significant e↵ect on the 2HDM parameter space. One can understand this by

looking at the o↵-diagonal elements of the mass matrix, equation (4.62), which are

3�K�/Z ⇠ 1/1000 times the diagonal elements. This is a reasonable approximation

since we assume natural values for the curvature-scalar mixing parameters, ⇠ ⇠ O(1)

and therefore the unitary matrix that diagonalizes (4.62) is nearly diagonal which

implies that the couplings of the SM-like Higgs to a pair of gauge bosons and fermions

receive very small corrections and are nearly given by the corresponding couplings in
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Figure 4.1: The top plots show the allowed regions for the type-I model and the
bottom plots show the allowed regions in the type-II model. The blue (red, black)
points shown are used for the ⇤ = 3(5, 100) TeV cases. Values of the curvature scalar
couplings, ⇠1, ⇠2 were allowed to range between [�4, 4]. We have varied the radion and
heavy Higgs masses over the range 200 to 1000 GeV.

the 2HDM, i.e.,

ghV V = U22 sin(� � ↵) + U32 cos(� � ↵) + U12�(1 � 3
m2

V kyc
⇤2

) ⇡ sin(� � ↵), (4.69)

ghff = U22⇠
f
h + U32⇠

f
h + U12�(cL � cR) ⇡ ⇠fh , (4.70)

where Uij are the elements of the unitary matrix. The general shape of the regions

is understood by looking at the behavior of the couplings. In the type-I model

⇠th = cos↵/ sin� and in the large tan� limit the production cross section is suppressed,
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allowing the parameter space to grow. For type-II model the coupling to a pair of b

quarks is ⇠bh = � sin↵/ cos� and therefore the production cross section is enhanced by

the b quark loop squeezing the parameter space.

Figure 4.2: Theoretically allowed ⇠1-⇠2 parameter space for di↵erent values of tan�.
The blue (red) region is for ⇤ = 3(5)TeV.

The allowed region of the curvature-scalar parameter space is constrained by the

requirement that the determinant of the kinetic mixing matrix, Eq. (4.61), be positive.

This depends only on tan� and � and is given, for ⇤ = 3, 5 TeV, in Figure 4.2. However,

large values of the ⇠i can require some fine-tuning, and we have found that the density

of points in a scatterplot drops substantially once ⇠i is greater than 4 and less than

-4. As a result, restricting the mixing parameters to the range between �4  ⇠i  4

will not substantially a↵ect our scatterplots below. In that range, the region of the

curvature-scalar parameter space allowed by the chi-square test is shown in Fig. 4.3.

The region shrinks by reducing the value of ⇤.

4.4.2 Collider Signals

Let us now consider some predictions of this model accessible to the LHC and how

one may distinguish this model from some other multi-Higgs model. One feature of

a multi-Higgs model is that the sum of the CP-even scalar couplings to Z bosons

in quadrature should total to the square of the SM Higgs coupling to the Z bosons,
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Figure 4.3: The parameter space of ⇠1 and ⇠2 allowed by the chi-square goodness of fit.
The blue and red points correspond to ⇤ = 3 TeV and ⇤ = 5 TeV respectively.

namely

g�2

hSMZZ

nX

i

g2�iZZ = 1. (4.71)

Due to the bulk couplings of the radion to the bulk gauge bosons we find that the sum

of the neutral scalar couplings in quadrature normalized to the hSMZZ coupling gives

1 + �2(1 � 3m2

Zkyc/⇤2)2 being bounded from below by 1 and setting it apart from

other multi-Higgs models. However, this deviation from unity may be quite small. For

⇤� = 3 TeV one finds Eq. 4.71 gives 1.0054 and the deviation from unity vanishes in

the limit ⇤� ! 1. It is unlikely that the LHC will be able to measure such a small

deviation, but such a measurement may be possible at the future ILC.

Another strategy to distinguish the heavy scalar state H from a radion is to measure

the ratio of the widths of the heavy scalars to bb̄ and ZZ pairs,

R�

bb/ZZ ⌘
�(� ! b̄b)

�(� ! ZZ)
, for � = r, H. (4.72)

The mass eigenstates, H and r are primarily aligned with the unmixed states. This

means that couplings of H to the Z boson and b quark should be dominated by the

corresponding expressions in a 2HDM . Then for H, RH
bb/ZZ should mostly scale like

⇣
sin↵
sin�

1

cos(��↵)

⌘
2

for the type-I model and
⇣
cos↵
cos�

1

cos(��↵)

⌘
2

for the type-II model. In
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either case this ratio becomes quite large in the neighborhood of cos(� � ↵) = 0. For

the radion, in the limit that its fully aligned with the unmixed radion, Rr
bb/ZZ /

(cL�cR)
2

✓
1�3

m
2
Z
kyc

⇤2

◆2 ⇡ (cL � cR)2. This is typically less than one and thus measurement of

this ratio might distinguish r from H.

As an example, consider the benchmark point with tan� = 1, cos(� � ↵) = 0.01,

⇤ = 5 TeV and moderate mixing ⇠1 = 2 and ⇠2 = �3. The values of the masses before

mixing are fixed to mr = 540 GeV, mh = 125 GeV and mH = 600 GeV which yield

the mass eigenvalues mr ⇡ mH ⇡ 600 GeV, mh = 125 GeV and Rr
bb/ZZ ⇡ 0.4 and

RH
bb/ZZ ⇡ 5540. This is a huge, five order of magnitude di↵erence and would be easily

detectable.

4.4.3 Constraints From Heavy Higgs searches

The radion interactions with the scalar sector come from the following sources:

1 The quartic interactions in the 2HDM potential

V (�1,�2) ◆
�1
2

(�†
1
�1)

2 +
�2
2

(�†
2
�2)

2 + �3�
†
1
�1�

†
2
�2 +

�4
2

(�†
1
�2 + �†

2
�1)

2.

(4.73)

2 The coupling of the radion with the trace of the energy momentum tensor

L ◆ �
r

⇤
((@µh)2 � 2m2

hh
2 + ...). (4.74)

3 The curvature-scalar mixing term L = �⇠abR�
†
a�b, where we expand the Ricci

scalar up to second order in �:

R ◆ �
�

v
⇤r + 2

�2

v2
r⇤r +

�2

v2
(@µr)2 + O(�3). (4.75)

4 There is a model dependent contribution coming from the potential of the GW

scalar field that one can consider however we will assume this interaction to be
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small as it is proven in [119] that addition of this extra term doesn’t a↵ect the

phenomenology.

5 Non-zero mixing will also induce tree-level interactions of the radion with a gauge

field and a scalar, namely rW±H⌥ and rZA coming from a direct expansion of

the kinetic term in equation (4.14).

In this model the amount of kinetic mixing between the Higgs field and the

radion is parametrized by the parameter Kh of equation (4.57). Similarly the amount

of kinetic mixing between the heavy Higgs state and the radion is encoded in the

parameter KH given in equation (4.58). We use the most recent LHC direct searches

for a heavy scalar decaying into a pair of SM Higgs bosons [145, 146], into WW

bosons [147] and into a pair of ZZ bosons [148] to find bounds on the amount

of mixing. The most relevant decay channels, when kinematically accesible, are

�i ! hh,�j�j , h�j , bb, tt, WW, ZZ, gg, AA, H+H�, ZA, W±H⌥ with �i = r, H. The

trilinear interactions coming from the 2HDM potential have a dependence on the

pseudoscalar mass mA and on the quartic coupling of the potential �4.
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Figure 4.4: Scatter plots of the amount of mixing between the Higgs and the radion,
Kh defined in equation (4.57), as function of the radion mass for the type-I 2HDM.
The black region is theoretically allowed and the points colored yellow, green and red
are excluded by heavy scalar searches in the WW , ZZ and hh channels respectively
at the 95% confidence level. The benchmark point ⇤ = 3(5)TeV was used on the left
(right). Due to the custodial symmetry, the charged scalar mass is identical to the
pseudoscalar mass, whose value is given above each figure. The heavy neutral Higgs
mass, mH , is varied from 200 to 1000 GeV.

We scanned over all the parameters and chose as benchmark values ⇤ = 3, 5 TeV,
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mA = 200, 500, 700 GeV and fixed �4 = 0.1. Changing the value of the quartic coupling

does not a↵ect significantly the results. The results are presented as scattered plots in

figures 4.4 and 4.5 where we show the allowed region in mr-Kh and mH -KH parameter

space for the type-I 2HDM (for the type-II the results are not dramatically di↵erent

and therefore we do not show them here). In those figures the background black

points correspond to the points that are both theoretically allowed and that survived

the chi-square analysis of the previous subsection while the points colored yellow,

green and red correspond to regions that are forbidden by LHC searches of a heavy

scalar decaying in the WW , ZZ and HH channels respectively. No bounds were

found from Higgs resonant production searches in [146]. One can immediately notice

that direct searches in the WW and ZZ channel forbid mainly the low mass region

mr = 200 � 400 GeV with the bounds from thee WW being weaker than those from

the ZZ channel and no bounds at all from the WW channel were found for the heavy

Higgs. The di-Higgs search channels put constraints mostly in the intermediate mass

region mr/H = 300 � 800 GeV.

From the figure we can notice that as the pseudoscalar mass increases the bounds

coming from the di-Higgs boson and ZZ channels become more stringent. This is

reasonable since an increase in the pseudoscalar mass corresponds, via the 2HDM

potential, to an increase in the trilinear coupling of the radion to a pair of SM Higgs

fields and the branching fraction becomes bigger.

The LHC has also searched for a CP-odd Higgs scalar in the processes pp ! H/A !

ZA/H [149–151] where the final state Z boson decays into two oppositely charged

electrons or muons and the scalar, either H or A, is assumed to decay into a pair of b

quarks. These final states were motivated by the large branching fractions predicted

in a 2HDM with type-II Yukawa structure and the benchmark values tan� = 0.5-1.5

and cos(� � ↵) = 0.01 are used in those references. In those papers, the charged Higgs

boson masses were kept equal to the highest mass involved in the benchmark signal,

namely m2

H± ⇡ m2

H for H ! ZA or m2

H± ⇡ m2

A for A ! ZH.

Due to the custodial symmetry imposed in the 2HDM potential we can only account
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for the latter triplet mass degeneracy but we can consider both decay topologies. To

the best of our knowledge there has been no search for the signal H ! ZA with

mH± ⇡ mA. If such a search appears in the literature we would expect more stringent

bounds since the branching fraction BR(H ! ZA) would be reduced by the opening

of the channels H+H� and W±H⌥.
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Figure 4.5: Scatter plots of the amount of mixing between the heavy Higgs and the
radion, KH defined in equation (4.58), as function of the heavy Higgs mass for the
type-I 2HDM. The black region is theoretically allowed and the points colored yellow,
green and red are forbidden by heavy scalar searches in the WW , ZZ and hh channels
respectively. The benchmark point ⇤ = 3(5)TeV was used on the left (right). Due to
the custodial symmetry, the charged scalar mass is identical to the pseudoscalar mass,
whose value is given above each figure. The radion mass, mr, is varied from 200 to
1000 GeV.

In Fig. 4.6 we show the production cross section, via gluon fusion, for A times
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the branching fractions BR(A ! ZX)BR(Z ! l+l�)BR(X ! bb̄) in the type-I (top)

and type-II model (bottom) as a function of the mass mX where X = H(red), r(blue).

The values mA = 700 GeV and �4 = 0.1 were fixed.

Figure 4.6: The observable �(gg ! A ! ZX)BR(Z ! l+l�)BR(X ! bb̄) as a
function of the resonance mass with X = H(red), r(blue) for type-I (top) and type-II
(bottom) models. We fixed ⇤ = 3 TeV, mA = 700 GeV and �4 = 0.1. Due to the
custodial symmetry, the charged scalar mass is identical to the pseudoscalar mass,
whose value is given above each figure. The heavy neutral Higgs (radion) mass is
varied from 200 to 1000 GeV in the right (left) figures and the values of ↵ and � are
chosen to be consistent with the constraints of Figure 4.1. The solid lines represent
current and future upper bounds at the LHC.

The 95% CL upper limits from ATLAS [151], after multiplying by BR(Z !

l+l�) ⇡ 0.0336 [152], for mA = 700 GeV are shown in Fig. 4.6. We have also shown

the expected limits for 300 fb�1 and 3000 fb�1 5. It is clear that the LHC will only

be able to cover a small range of parameter space, however discovery of the process

5
Since the limits are background limited, we are assuming in Figs. 4.6 and 4.7 that the bounds will

scale as 1/
p
N .
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for mH > 400 GeV in the near future would rule out the model. In any event the

hadronic decay mode (bb̄ or tt̄) will dominate the pseudoscalar decays.

In figure 4.7 we show the production cross section via gluon fusion of a heavy Higgs

boson (red) and a radion (blue) times the branching fractions BR(X ! ZA)BR(Z !

l+l�)BR(A ! bb̄) as a function of the mass mX and with X = H, r for the type-I

(top) and type-II (bottom) models. For type-I model we fixed mA = 200 GeV and in

the type-II, due to lower bounds on the charged Higgs [153], we fixed mA = 500 GeV.

Figure 4.7: The observable �(gg ! X ! ZA)BR(Z ! l+l�)BR(A ! bb̄) as a
function of the resonance mass with X = H(red), r(blue) in the type-I (top) and
type-II (bottom) models. We fixed ⇤ = 3TeV, mA = 200GeV(mA = 500GeV) on top
(bottom) and �4 = 0.1. Due to the custodial symmetry, the charged scalar mass is
identical to the pseudoscalar mass, whose value is given above each figure. The heavy
neutral Higgs (radion) mass is varied from 200 to 1000 GeV in the right (left) figures
and the values of ↵ and � are chosen to be consistent with the constraints of Figure
4.1. The solid lines represent future upper bounds at the LHC

Current upper limits from CMS [149, 150] are out of the range of the figures.
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Extrapolations of the expected reach for 300 fb�1 and 3000 fb�1 are given by the

brown and green lines, respectively, in figure 4.7.

We can see from figure 4.7 that for this decay our predictions are not in reach for

the LHC except at the very edge of the parameter space in the type-I 2HDM. Note

that discovery of this decay mode in the near future would rule out these models. The

primary decays of the radion would be into pairs of Higgs bosons or Z’s depending on

its mass and scalar trilinear coupling. The decays of H might also be into these final

states as well as bb̄ and tt̄ depending on its mass and scalar trilinear coupling.

4.5 Conclusions

In this chapter we considered two Higgs doublets coupling to the Ricci scalar in the

TeV-brane of an RS model. Assuming CP-conservation, the inclusion of this term

causes kinetic mixing between the CP-even scalars of the 2HDM and the radion field

of the RS model.

The most up to date LHC measurements of the signal strengths of the SM Higgs

boson were used to fit the model and the allowed cos(� � ↵)-tan� parameter space

for type-I and type-II 2HDM were presented.

We have discussed two possible ways to di↵erentiate this model from other scenarios

with similar scalar states. One possibility is to look at the sum of squared couplings

of the scalars to gauge bosons. This model predicts a small deviation of about 0.5%

from the SM value which could be measured at a future ILC. The other possibility

is to look at the ratio of decay widths to a pair of b quarks and Z bosons for both

scalars. Future experiments might distinguish the scalars by determining the value of

the mixing angles ↵ and �.

Throughout this chapter we have taken the mass of the extra scalars to be in

the range of 200-1000 GeV and we study the constraints that LHC searches of heavy

resonances impose on the amount of mixing. The most stringent bounds arise if

we take ⇤ = 3 TeV and mA = 700 GeV where a radion is disfavored in the mass
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range mr < 780 GeV while a heavy Higgs is disfavored in the mass range 300 GeV <

mH < 750 GeV and mH < 250 GeV and kinetic mixing for both, radion and Higgs, is

constrained to �4 < Kh, KH < 4. These constraints relax significantly by reducing

mA and increasing the value ⇤.

Finally we showed how improvements of the experimental analysis for the decay

topologies X ! ZA and A ! ZX where X = r or H could further constrain the

parameter space of, or possibly eliminate, the model
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Chapter 5

Higgs Radion Unification

5.1 Introduction

Recent work by M. Geller, et al. studied the possibility of a bulk scalar doublet in

a Randall-Sundrum(RS) model which can stabilize the radius of the warped extra

dimension and provide the source of electroweak symmetry breaking leading to a

unified Higgs-radion state[15]. This Higgs-radion serves as an intriguing alternative

to the the usual radius stabilization via the Goldberger-Wise (GW) mechanism[16].

However some of the phenomenological signatures predicted by this model are now at

odds with recent LHC data, particularly the combined ATLAS and CMS measurement

of BR(HSM ! ��)/BR(HSM ! ZZ)[154] provide a challenge for the model.

In this chapter, closely following the work presented in ref. [15], we give an

overview of the Higgs-radion model and demonstrate some of its shortcomings. We

then consider higher order corrections to model and discuss the implications they

have on experimental observables. We will conclude by discussing the possibility of

extending the model by an additional scalar doublet and how this may place the the

Higgs-radion model into alignment with experimental results.
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5.2 The Higgs-Radion Model

We will work in the context of an RS1 model[9] with the Planck and TeV branes

located at y = 0 and y = yc respectively. Using a 5D bulk SU(2)L scalar doublet, �

with a vev profile along the extra dimension, y, we aim to simultaneously stabilize the

brane spacing as to generate a su�cient hierarchy between the Planck and electroweak

scales and generate weak scale vev for �. As we will see, this requires an alternative

set of boundary conditions to those in the usual GW mechanism.

The 5D metric and background vev for the bulk SU(2)L scalar, �, are given by

ds2 = e�2Adxµdx⌫⌘µ⌫ � dy2 (5.1)

� =

0

B@
0

�0(y)

1

CA , (5.2)

where A is the metric field to be determined by by the Einstein equations. As in the

usual GW mechanism, the bulk scalar has both a bulk potential and potentials sourced

on each of the two branes. The actions of our bulk-brane system are,

SBulk =
1

2

Z
d4x

Z yc

0

dy
p

G

✓
Gab@a�@b�� V (�) + 6

k2

2

◆
, (5.3)

SBrane = �

Z
d4x

p
�giV

Brane
i (�) , (5.4)

where

V (�) = m2�2 , (5.5)

V Brane
i (�) = �i�

4 + m2

i�
2 + ⇤i , (5.6)

2 =
1

2M3

P l

. (5.7)

Here we use subscript i to denote each of the two branes, Gab to represent the 5D

metric tensor, and gµ⌫i to represent the induced metric on the branes.
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From the Einstein equations, Rab = 2T̃ab = 2
�
Tab �

1

3
gabgcdTcd

�
, we find

4A02
� A00 = 4k2

�
22

3
V (�0) �

22

3
V Brane
i (�0)�(y � yi) , (5.8)

A02 = k2 +
2�02

0

12
�
2

6
V (�0) , (5.9)

�000 = 4A0�00 +
@V (�0)

@�0
+
@V Brane

i (�0)

@�0
�(y � yi) , (5.10)

where primes denote @y. By matching the singular terms in the previous equations,

the following boundary conditions may be obtained:

⇥
�00
⇤
i
=
@V Brane

i (�0)

@�0
, (5.11)

⇥
A0⇤

i
=
2

3
V Brane
i (�0) . (5.12)

Let us now go over the boundary conditions and integration constants of what we

have just presented. By substituting Eq. 5.9 into Eq. 5.10 a second order di↵erential

equation in �0 is obtained giving two integration constants for �0. A0 is completely

specified by Eq. 5.9 and A is irrelevant since it doesn’t enter the Einstein equations.

Two of the boundary conditions above determine the integration constants leaving us

with another two boundary conditions. One of these will determine the radius of the

extra dimension and the other must fine-tuned which corresponds to the unavoidable

fine-tuning associated with the cosmological constant problem.

We must now solve the profile for the bulk scalar vev. Using the zero energy

condition, Eq. 5.9 with the boundary conditions on �0
0

we can rewrite the boundary

conditions on the metric field yielding a sole function of �0,

✓
2

6
V Brane
i (�0)

◆2

= k2 +
2

24

✓
@V Brane

i (�0)

@�0

◆2

�
2

6
V (�0) . (5.13)

This gives an equation for the value of the vev on the Planck and TeV branes. Assuming

no fine-tuning the natural value for �0 on the boundaries is ⇠ O(Mpl). This is a

problem phenomenologically as this would lead to the e↵ective vev of the bulk scalar
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to also be on order of the Planck scale.

To simplify some of our notation we will define the values of �0 on the branes as

�TeV ⌘ �0(y = yc) (5.14)

�P l ⌘ �0(y = 0) (5.15)

where �TeV/P l are solutions to Eq. 5.13 on the TeV/Planck branes.

Now in the limit of a small back-reaction, `, the metric field A = ky + O(`2). At

leading order Eq. 5.10 is

�000 = 4k�00 +
@V (�0)

@�0
, (5.16)

with the general solution

�0 = e2k(y�yc)
⇣
C1e

⌫k(y�yc) + C2e
�⌫k(y�yc)

⌘
, (5.17)

where ⌫ =
p

4 + m2/k2. As we discussed above, we cannot have �P l ⇠ �TeV ⇠ O(MP l)

as this will lead to a Planck scale 4D e↵ective vev. To see this recall the the 4D

e↵ective vev is given by

v2eff =

Z

y

dy�20e
�2ky. (5.18)

We can avoid a Planck scale e↵ective vev if the we have a parametrically small

value of the vev on the Planck brane, �P l/MP l ⌧ 1 but we must do this without

introducing additional fine-tunings such as C1 ⌧ C2. By having ⌫ < 1, the vev profile,

�0 ⇡ C2e(2�⌫)k(y�yc) near the Planck brane leading to small value of �P l as desired.

This is a notable di↵erence from the GW mechanism where ⌫ ⇠ 2 leading to Planck

order values for the vev on both branes which as we argued cannot work for a SU(2)L

stabilizer. This will lead us to choose an alternative set of boundary conditions from

those used for the GW bulk scalar. Namely instead of choosing the values of �0 on the

brane, we will place conditions on �0
0

on the brane and �TeV . The remaining boundary

condition on �P l will have the fine-tuning associated with the cosmological constant.
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From Eq. 5.14 and our general form for �0 we find,

C1 + C2 = �TeV . (5.19)

Using the boundary conditions in Eq. 5.11 we obtain two additional constrains,

k(C1(⌫ + 2) + C2(2 � ⌫)) = �
�
2�TeV �

3

TeV + m2

i�TeV
�

(5.20)

and

k(C1(⌫ + 2)ek(2+⌫)(�yc) + C2(2 � ⌫)ek(2�⌫)(yc)) = m2

P l�(y = 0) , (5.21)

where the approximation in Eq. 5.21 comes from treating �0(y = 0)/mP l ⌧ 1. With

this we can solve for the unknown coe�cients, C1 and C2, finding

C2 = ⌘1C1e
�2k⌫yc (5.22)

C1 = �TeV
1

1 + ⌘1e�2⌫kyc
(5.23)

with

⌘1 ⌘
(2 + ⌫ � m2

P l/k)

(�2 + ⌫ + m2

P l/k)
. (5.24)

The radius of the warped extra dimension, yc, is determined from the boundary

equation, Eq. 5.20. Solving for yc gives

yc =
1

2k⌫
log

✓
⌘1
⌘2

◆
, (5.25)

where we define

⌘2 ⌘
(2 + ⌫ + 2�TeV �2TeV + m2

TeV /k)

(�2 + ⌫ � 2�TeV �2TeV � m2

TeV /k)
(5.26)

⇡
(2 + ⌫ + m2

TeV /k)

(�2 + ⌫ � m2

TeV /k)
. (5.27)
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The last approximation above is valid in the limit of a small back-reaction. We are left

with one final boundary condition, �0(y = 0) = �P l, which apparently must be fine

tuned to be much smaller than the Planck scale. However, even if �0(y = 0) ⇠ O(MP l)

the equation still must be fine tuned in order to acquire a vanishing 4D cosmological

constant. The tuning involved to solve this is at the level of 1 part in 10122, which

is much more finely tuned than having �0(y = 0) < O(TeV). Thus, we have not

introduced any additional fine tunings to stabilize the radius of the extra dimension.

In ref. [15] a final assumption is made acquire a simple form for �0(y), namely

⌘1 � 1 which is satisfied when m2

P l ⇡ k(2 � ⌫). With this final assertion we find

�0(y) = �TeV e(2�⌫)k(y�yc) . (5.28)

With an expression for the vev profile and working in the limit of a small back-reaction

we can simply solve for metric field. From the zero-energy condition we find

A0 = k

✓
1 +

1

6
e�2uy`2

◆
, (5.29)

where

u ⌘ (⌫ � 2)k , (5.30)

`2 ⌘
1

4
e�(2�⌫)2kyc2�2TeV (20 � 4⌫ � 3⌫2) . (5.31)

In the next sections of this chapter, following the work in [15, 114], we will study

fluctuations of the metric and bulk scalar. This will allow us to demonstrate the the

radial excitations of the metric correspond to those of the bulk doublet, similar to the

usual GW mechanism. Following this, expressions for the Higgs-radion mass and 4D

e↵ective vev will be derived then expressions for the couplings will be obtained.
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5.2.1 The Higgs-Radion Mass

Using the Einstein equations we will be able to identify the radion degree of freedom

coming from the metric perturbations with the bulk scalar degree of freedom. In the

unitary gauge, the scalar and metric excitations are given by

� =

0

B@
0

�0(y) + '(y, x)

1

CA , (5.32)

ds2 = e�2A�2F (y,x)dxµdx⌫⌘µ⌫ � (1 + 2F (y, x))2dy2 . (5.33)

and Einstein equations are found to be

F 00
� 2A0F 0

� 4A00F � 2
�00
0

�0
0

F 0 + 4A0�
00
0

�0
0

= e2A⇤F , (5.34)

�00' =
3

2
�
F 0

� 2A0F
�

. (5.35)

As in the case of the traditional GW mechanism, these two equations imply that the

scalar degrees of freedom of F and � are one and the same.

One can then perform a KK expansion of the fluctuations as,

'(x, y) =
X

'n(y)hn(x) , (5.36)

F (x, y) =
X

Fn(y)hn(x) , (5.37)

such that each KK mode satisfies ⇤hn = �m2
nhn. With our expression for the scalar

vev profile we can rewrite Eq. 5.34 as

F 00
n � 2A0F 0

n � 4A00Fn + 2uF 0
n � 4uA0Fn + m2

ne2AFn = 0 , (5.38)

and upon solving for the KK zero mode, which corresponds to the Higgs-radion state
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we find,

F0 = e2ky(1 + `2f0(y)) , (5.39)

m2

hr
⌘ m2

0 = `2m̃2

0 , (5.40)

f 0
0(y) = Ce�2(k+u)y

�
m̃2

0

2(2k + u)
e2ky �

2(k � u)u

3k
e�2uy . (5.41)

The integration constantant, C, above is determined by the boundary conditions,

⇥
'0⇤

i
=
@2V Brane

i (�0)

@�2
'+ 2

@V Brane
i (�0)

@�
F . (5.42)

Finally using the condition on the radius stability, 2 � ⌫ < �m2

TeV /k < m2

P l/k <

2 + ⌫, and the necessity for adequately separating the weak and Planck scales, ⌫ ⌧ 1,

we find that

m2

P l/k ⇡ �m2

TeV /k ⇡ 2 . (5.43)

With this in mind, the following expressions for the Higgs-radion mass and e↵ective

vev may be obtained:

m2

hr
⇡ `2 52k2

15kyc
e2kyc , (5.44)

v2eff ⇡ `2 2

5k2 e2kyc . (5.45)

5.2.2 Higgs-Radion Interactions

Using our expressions for the metric and scalar fluctuations , Eqs. 5.39 and 5.32, and

working at leading order in the back-reaction we can rewrite them in terms of the

canonically normalized Higgs-radion field which we define as hr. We find

F0(x, y) = hr
e2k(y�yc)

⇤r
, (5.46)

'0(x, y) ⇡ hr
1

⇤re2kyc

0

@2
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5e4ky
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13e2ky+2kyc
q

1

2 y
p

5yc

1

A ` , (5.47)
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where ⇤r ⌘
p

6MP le�kyc . This leads to hr acquiring interaction terms through both

the gravitational couplings of Fx, y and gauge and Yukawa coupling of the bulk scalar

'(x, y). The details of calculating the Higgs-radion couplings may be found in[15]. We

summarize the results in Table 5.1 below.

hr Coupliings
hr t̄t

4mt

⇤r

hrf̄f for f 6= t
9mf

⇤r

hrV V �
9m2

V

⇤r

hrgg/�� 1

⇤r

�QCD/QED

2g

Table 5.1: Couplings of hr to gauge bosons and fermions.

The di↵erence in the numerical coe�cient of the top Yukawa coupling from the

other fermions comes from an approximation Geller et al. made in treating the top

quark fixed on the TeV brane while the other fermions were treated as having a flat

profile in the bulk. From here the branching fractions for the decays of the Higgs-radion

may be calculated. We give the results in Table 5.2.

SM (mh = 126 GeV ) Higgs-Radion (mhr
= 126 GeV )

Br(h ! WW ⇤) 0.231 0.204
Br(h ! ZZ⇤) 0.0289 0.0257
Br(h ! gg) 0.0848 0.13
Br(h ! ��) 2.28 · 10�3 3.8 · 10�3

Br(h ! bb̄) 0.561 0.545
Br(h ! ⌧ ⌧̄) 0.0615 0.063
Br(h ! cc̄) 0.0283 0.028
Total width [GeV] 4.21 · 10�3 2.2 · 10�3

Table 5.2: The Higgs-radion and the SM Higgs branching ratios and total width. The
SM values are taken from [155]

Comparing the predictions to those from the SM, the most striking discrepancies

are those associated with branching fractions of the higgs-radion to photons and gluons.

However, as mentioned in the original paper, this is a leading order calculation that

does not take into account the e↵ects of summing over the one-loop contributions of

the KK towers. Ref. [156] studied the e↵ects of including these e↵ects from the KK
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towers and for a low KK scale, MKK , there is a sizable suppression in the h ! ��

decay width.

Figure 5.1: Branching fraction of H ! �� as a function of the KK-scale given in ref.
[156], with one loop KK towers taken into consideration. The variable y⇤ corresponds
to di↵erent choices of Yukawa interactions in their paper. y⇤ = 3 corresponds to the
choice when the bulk Higgs is steeply peaked on the IR-brane thus closely resembling
the case of the Higgs-radion.

From direct search data, the Higgs-radion KK scale must be between 4.48 TeV <

MKK < 5.44 TeV. The results in Figure 5.1 indicate that the one-loop corrections

from KK towers corresponds to a suppression in the rate of hr ! �� by less than

5%. Similar results were obtained in [157]. Ref. [156] also found that the one-loop

correction from KK towers on BR(h ! WW ⇤) would correspond to a less than 1%

suppression. This alone is not su�cient to place the Higgs-radion into alignment with

LHC data.

5.3 Conclusions

Radius stabilization via an SU(2)L bulk scalar provides a very intriguing alternative

to the GW mechanism whereby the bulk scalar also provides the sources of electroweak

symmetry breaking and providing a unified Higgs-radion state. The Higgs-radion

model is however inconsistent with LHC data. The greatest challenge for the model

comes from its predictions in the photonic and gluonic decay modes of the Higgs.



87

Though considering one-loop e↵ects from KK towers slightly lowers this excess, due to

the large KK scale, MKK > 4.48, the suppression is very mild. Thus it appears that

the minimal Higgs-radion model is not phenomenologically viable.

Work is currently being done to salvage the possibility of a unified Higgs-radion

by considering a 2HDM extension of the model. With the additional heavy CP-even

scalar of the 2HDM, H , it may be possible to align the radion degree of freedom away

from the light CP-even scalar, h. This may shift away the enhanced couplings to the

massless gauge bosons coming from the gravitational coupling, F (x, y), such that it is

H which couples more strongly.
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Chapter 6

Lee-Wick 2HDM

6.1 Introduction

Fifty years ago, T.D. Lee and G.C. Wick [158, 159] proposed a model in an attempt to

soften the ultraviolet divergences of QED. This model added a quartic kinetic energy

term to the Lagrangian. The resulting propagator has two poles, resulting in two

physical states, the e↵ects of which cancel quadratic divergences. Using an auxiliary

field method, one can show that the e↵ective Lagrangian consists of only operators of

dimension less than or equal to four, with one of the fields having a negative kinetic

energy term, leading to apparent violations of causality. Lee and Wick showed, along

with Cutkosky et al.[160] and Coleman [161], that while microcausality is violated,

unitarity is preserved and at the macroscopic level there are no logical paradoxes.

Motivated by the cancelation of divergences, Grinstein, O’Connell and Wise [162]

constructed the Lee-Wick Standard Model (LWSM). As in the original Lee-Wick model,

all particle states come with Lee-Wick partners which have negative kinetic terms.

These Lee-Wick partners cancel the quadratic divergences in the scalar propagator,

thus solving the hierarchy problem in a manner similar to supersymmetry. Grinstein, et

al [163] also demonstrated that the scattering of longitudinally polarized massive vector

bosons satisfied perturbative unitarity. Explicitly, they later showed that unitarity

and Lorentz-invariance are preserved in the S-matrix to all orders and that causality
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arises as an emergent macroscopic phenomenon[164].

Since the Grinstein et al papers, there have been numerous phenomenological studies

of the LWSM, including, but not limited to the study the possibility of observing the

microcausality violation at colliders [165–170], the e↵ects of the LWSM on precision

electroweak measurements [171–176], and finite temperature e↵ects [177–179]. The

LW partners of the light quarks and gluons must be relatively heavy, O(10) TeV, in

order to avoid detection. However, the LW spectrum, as in the case of the Minimal

Super Symmetric Model(MSSM), is not degenerate. Thus one can have some states

relatively heavy while others, canceling quadratic divergences, can be lighter[180]. Just

as in the MSSM, one would expect the LW partners to the electroweak gauge bosons,

the Higgs, top quark, and left-handed bottom quark to be in the e↵ective low-energy

theory in order to avoid substantial fine-tuning of the hierarchy. The focus here is on

the Higgs sector.

The model consists of a Two Higgs Doublet with only one additional parameter

beyond the Standard Model. As a result, all additional scalar masses, the ratio of

vacuum expectation values and mixing angles are determined by this parameter. The

strongest bound on this parameter comes from B physics[173], and gives typical scalar

masses lower bounds of approximately 450 GeV.

Given an N-Higgs doublet model, the Lee-Wick extension will be a 2N-Higgs

doublet model. This article explores the simplest extension of the Higgs sector, the

Two Higgs Doublet Model (2HDM), with the simplest LW extension resulting in a

Four Higgs Doublet Model, with only one additional parameter beyond the 2HDM.

The new model, with only one additional parameter but eight additional Higgs fields

and their numerous couplings and mixings, will then be very tightly constrained. The

parameters of the 2HDM, in models with no tree-level flavor-changing neutral currents,

can be expressed in terms of the scalar masses and mixings. In addition to the type-I

2HDM, the charged Higgs can be light, close enough in mass to the top quark, and it

will be interesting to see if that can be maintained.

In the next section, the LWSM is presented, following earlier works. Section III
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contains the Lee-Wick 2HDM (LW2HDM), where the various constraints are presented.

The constraints from low-energy physics (primarily B physics) are in Section IV, and

the results at current and prospects at future colliders are discussed in Section V. Mass

matrices and coupling constant relations are given in the Appendix.

6.2 The Lee-Wick Standard Model Higgs Sector

The Higgs sector of the Lee-Wick Standard Model (LWSM) is given by a Lagrangian

with a higher derivative kinetic term [162]

LHD = (DµĤ)†(DµĤ) �
1

m2

h̃

(DµDµĤ)†(D⌫D
⌫Ĥ) � V (Ĥ). (6.1)

The potential takes the usual form

V (Ĥ) =
�

4

✓
Ĥ†Ĥ �

v2

2

◆2

. (6.2)

To eliminate the higher-derivative term, an auxiliary field H̃ is introduced, giving the

Lagrangian

LAF = (DµĤ)†(DµĤ) + (DµĤ)†(DµH̃) + (DµH̃)†(DµĤ) + m2

h̃
H̃†H̃ � V (Ĥ). (6.3)

The higher derivative Lagrangian is reproduced by substituting the equation of motion

for the auxiliary field. The kinetic terms are diagonlized by redefining Ĥ = H � H̃:

L = (DµH)†(DµH) � (DµH̃)†(DµH̃) + m2

h̃
H̃†H̃ � V (H � H̃). (6.4)

The higher derivative term has been eliminated by introducing the LW field H̃ which

has the opposite sign kinetic term of the usual particle.
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A gauge is chosen so that

H =

0

B@
0

v+hp
2

1

CA , H̃ =

0

B@
h̃+

h̃+iP̃p
2

1

CA . (6.5)

where v ⇡ 246 GeV, the Higgs vev.

The neutral scalar mass matrix must now be diagonalized. It is of the form

LM = �
1

2

0

B@
m2

h �m2

h

�m2

h �(m2

h̃
� m2

h)

1

CA (6.6)

Normally, when one chooses to diagonalize a scalar mass matrix, an orthogonal

representation is used since that will not a↵ect the structure of the kinetic terms. How-

ever, in this case, one of the kinetic terms has a negative coe�cient, and an orthogonal

transformation will not preserve this form. Instead, a symplectic transformation must

be used. 0

B@
h

h̃

1

CA =

0

B@
cosh ⌘ sinh ⌘

sinh ⌘ cosh ⌘

1

CA

0

B@
h0

h̃0

1

CA , (6.7)

where subscript 0 indicates a mass eigenstate. The mixing angle ⌘ satisfies

tanh 2⌘ =
�2m2

h/m2

h̃

1 � 2m2

h/m2

h̃

or tanh ⌘ = �
m2

h0

m2

h̃0

(6.8)

with mass eigenvalues

m2

h0
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m2

h̃

2
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s
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4m2

h

m2

h̃

!
and m2

h̃0
=

m2

h̃

2

 
1 +

s
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4m2

h

m2

h̃

!
. (6.9)

It is easy to see that the LW pseudoscalar P and the LW charged scalar h̃± have the

same mass and that the heavier of the neutral scalars has the negative kinetic energy

term. The masses of the neutral scalars are related to the mass of the charged scalar

by

m2

h0
+ m2

h̃0
= m2

h̃
. (6.10)
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The ratio of the couplings of the neutral Higgs bosons to their value in the Standard

Model, gXY , are [176]

gh0tt = gh0bb
= gh0⌧⌧ = e�⌘ , (6.11)

gh0WW = gh0ZZ = cosh ⌘ , (6.12)

gh̃0tt
= gh̃0bb

= gh̃0⌧⌧
= �e�⌘ , (6.13)

gh̃0WW = gh̃0ZZ = sinh ⌘ . (6.14)

An important property of these couplings is that the coupling of the light Higgs to the

SM gauge bosons is greater than those in the SM. In most extensions of the SM, the

couplings are suppressed, but this is an exception.

Note that this model is similar to a type-II 2HDM, with tan� = 1 and some minus

signs in the vertices and propagators. As a result, a single parameter, the Lee-Wick

scale, gives all mixing angles, Yukawa couplings, masses and interactions of the LW

Higgs bosons. This makes the model very predictive. In Ref.[173] and [176], bounds

on the model from B-meson and Z decays and LHC studies of the light Higgs boson

are examined. The strongest of these constraints comes from radiative B-decays and

gives a lower bound on the heavy neutral (charged) scalar of 445 (463) GeV.

The LW2HDM can be expected to have the same number of parameters as the

standard 2HDMs, with the addition of the Lee-Wick scale. Given the larger number

of states in this model, it will also be highly predictive.

6.3 The LW Two-Higgs Doublet Model

It is straightforward to generalize the LW higher derivative Lagrangian from the

previous section.

LHD = (DµĤ1)
†(DµĤ1) �

1

m2

h̃1

(DµDµĤ1)(D⌫D
⌫Ĥ1)

+ (DµĤ2)
†(DµĤ2) �

1

m2

h̃2

(DµDµĤ2)(D⌫D
⌫Ĥ2) � V (Ĥ1, Ĥ2)

(6.15)
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Here, V (Ĥ1, Ĥ2) is the standard Two-Higgs Doublet Model potential (see Ref. [31]),

where H1 and H2 are the Two-Higgs Doublets. The potential contains:

V (Ĥ1, Ĥ2) = m2

11Ĥ
†
1
Ĥ1 + m2

22Ĥ
†
1
Ĥ1 � m2

12(Ĥ
†
1
Ĥ2 + Ĥ†

2
Ĥ1) +

1

2
�1
⇣
Ĥ†

1
Ĥ1

⌘
2

+
1

2
�2
⇣
Ĥ†

2
Ĥ2

⌘
2

+ �3Ĥ
†
1
Ĥ1Ĥ

†
2
Ĥ2 + �4Ĥ

†
1
Ĥ2Ĥ

†
2
Ĥ1

+
1

2
�5

✓⇣
Ĥ†

1
Ĥ2

⌘
2

+
⇣
Ĥ†

2
Ĥ1

⌘
2
◆

.

(6.16)

where the �i terms are then the coupling constants between the Higgs fields

Note that there are two di↵erent Lee-Wick scales in this Lagrangian. As will be seen,

the mass matrices can easily be diagonalized if these scales are equal. This assumption

will be made here, and the possible consequences of relaxing the assumption will be

discussed later.

Following the same procedure as before, by introducing auxiliary fields, then

redefining the fields in order to diagonalize the kinetic energy terms, the new Lagrangian

is

L = (DµH1)
†(DµH1) � (DµH̃1)

†(DµH̃1) + (DµH2)
†(DµH2)

� (DµH̃2)
†(DµH̃2) + m2

h̃
(H̃†

1
H̃1 + H̃†

2
H̃2) � V (H1 � H̃1, H2 � H̃2)

(6.17)

Minimizing the potential, then evaluating the second derivatives with respect to each

field gives the mass matrices for this model. As expected, there are four neutral scalars,

four pseudoscalars and four charged scalars. The charged and pseudoscalars have a

zero diagonal element when they are diagonalized, corresponding to the Goldstone

bosons. These diagonal elements are not necessarily eigenvalues obtained from solving

the secular determinant, since a symplectic transformation does not preserve the form

of the kinetic terms.

To diagonalize the mass matrices, an orthogonal transformation is applied to the

upper 2 ⇥ 2 and lower 2 ⇥ 2 blocks. For the charged and pseudoscalar mass matrices,

these transformations are both just a rotation by � (as in the usual Two Higgs Doublet

Model). For the neutral scalar mass matrix, the rotation is defined as ↵. Upon
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performing these transformations, the charged Higgs mass matrix is

0

BBBBBBB@

0 0 0 0

0 �
(v21+v22)(v1v2(�4+�5)�2m2

12)
2v1v2

0
(v21+v22)(v1v2(�4+�5)�2m2

12)
2v1v2

0 0 �m2

h̃
0

0
(v21+v22)(v1v2(�4+�5)�2m2

12)
2v1v2

0
2m2

12(v21+v22)�v1v2
⇣
2m2

h̃
+(v21+v22)(�4+�5)

⌘

2v1v2

1

CCCCCCCA

(6.18)

Note the zero (indicating the presence of the Goldstone boson) on the diagonal.

One mass is the Lee-Wick scale (resulting from the negative kinetic term, and positive

mass-squared term). The remaining 2 ⇥ 2 submatrix is precisely of the form as Eq.

6.6, and thus can be diagonalized with a symplectic transformation, resulting in

diag(0, m2

H±
0

, �m2

H̃0±
0

, �m2

H̃±
0

) =

0

BBBBBBB@

0 0 0 0

0 �
1

2
m2

h̃
(A � 1) 0 0

0 0 �m2

h̃
0

0 0 0 �
1

2
m2

h̃
(A + 1)

1

CCCCCCCA

,

(6.19)

where A =

r
m2

h̃
+2(v2(�4+�5)�2M2

12)
m2

h̃

. The three masses clearly obey the relation m2

H±
0

�

m2

H̃±
0

= m2

H̃0±
0

. The pseudoscalar masses have precisely the same relationship. The

scalars obey a similar relationship, with masses m2

h0
� m2

h̃0
= m2

H0
� m2

H̃0
which are

given in the Appendix. These relations are absolute predictions of the model.

The symplectic transformation in each case, similar to the LWSM case, are given

by tanh = �m2

0
/m̃2

0
, where m0 and m̃0 are the physical masses. In the case of the

charged Higgs, for example, the mixing angle of the symplectic transformation that

diagonalizes the mass matrix is given by tanh ✓ = m2

H0±
0

/m2

H̃0±
0

. For the pseudoscalar

case, a similar result is found. For the neutral scalar case, there are two symplectic

rotations needed to diagonalize the mass matrix. The neutral scalar masses and scalar

couplings can be found in terms of the masses and mixing angles in the Appendix.

In the Two-Higgs Doublet model, the observed scalar at 125 GeV has couplings to
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the W± and Z which are sin(� � ↵) times that of the SM. The dual scalar, H, has

couplings which are cos(↵� �) times that of the SM. The pseudoscalar and charged

scalar have no tree-level couplings to gauge bosons. Similarly, in this model the

couplings to the gauge bosons are

h0ZZ = h0W
+W� = cosh ( 1) sin(� � ↵) (6.20)

h̃0ZZ = h0W
+W� = sinh ( 1) sin(� � ↵) (6.21)

H0ZZ = h0W
+W� = cosh ( 2) cos(↵� �) (6.22)

H̃0ZZ = h0W
+W� = sinh ( 2) cos(↵� �) (6.23)

where  1, 2 are the symplectic transformation angles for the neutral scalars.

The determination of the neutral scalars coupling to the weak gauge bosons allows

for the Yukawa couplings to be resolved. In the 2HDM, the Yukawa couplings are

dependent upon the type of 2HDM being studied. The Higgs doublets take the form

�j =

0

B@
�+j

vj+⇢j+i⌘jp
2

1

CA . (6.24)

In the type-I 2HDM, �2 couples to both ui
R and diR, while in the type-II model

�2 couples to ui
R and �1 couples to diR. Considering the LW extensions of these two

models, the Yukawa interactions take the form
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L
LW2HDM
Y ukawa � �

X

f=u,d

mf

v

0

BBB@
X

H=h0,h̃0,
H0,H̃0

⇠fH f̄fH � i
X

A=A0,

Ã0,Ã0
0

⇠fAf̄fA

1

CCCA

�

p
2

v

X

H+
=H+

0 ,

H̃+
0 ,H̃0+

0

h
Vudū

⇣
mu⇠

u
H+PL + md⇠

d
H+PR

⌘
dH+ + H.C.

i
(6.25)

where the expressions for the parameters ⇠f are found in Table 6.1. The Yukawa

couplings of the neutral scalar Higgs and associated LW neutral scalar Higgs to the

quarks only di↵ers by a sign. This same feature exists in the LWSM. In general, the

sign di↵erence is also present for the the pseudo-scalar and charged Higgs. When the

LW scale goes to infinity, one recovers usual 2HDM couplings.

For simplicity, it was assumed that the Lee-Wick scales in Eq. (15) were equal.

We know of no principle or symmetry that would lead to this equality, although one

would not expect qualitative di↵erences. Suppose this assumption is relaxed. Consider

the charged Higgs mass matrix. Applying orthogonal transformations to the upper

and lower 2 ⇥ 2 blocks gives the mass matrix

0

BBBBBBB@

0 0 0 0

0 M
2

12 0 �M
2

12

0 0 � cos2(�)m2

h̃1
� sin2(�)m2

h̃2
cos(�) sin(�)

⇣
m2

h̃1
� m2

h̃2

⌘

0 �M
2

12 cos(�) sin(�)
⇣
m2

h̃1
� m2

h̃2

⌘
M

2

12 � sin2(�)m2

h̃1
� cos2(�)m2

h̃2

1

CCCCCCCA

(6.26)

where

M
2

12 = M2

12 �
1

2
(�4 + �5) v2. (6.27)

One sees that in the limit in which the scales are equal, this reduces to the previous

result. There is no simple hyperbolic rotation that diagonalizes this mass matrix.

However, one can first consider the case in which the Lee-Wick scales are close

together, so that the 3-4 and 4-3 elements of the mass matrix are much smaller
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Type I Type II

⇠uh0
e� 1 cos(↵) csc(�) e� 1 cos(↵) csc(�)

⇠dh0
e� 1 cos(↵) csc(�) �e� 1 cos(↵) sec(�)

⇠u
h̃0

�e� 1 cos(↵) csc(�) �e� 1 cos(↵) csc(�)

⇠d
h̃0

�e� 1 cos(↵) csc(�) e� 1 cos(↵) sec(�)

⇠uH0
e� 2 sin(↵) csc(�) e� 2 sin(↵) csc(�)

⇠dH0
e� 2 sin(↵) csc(�) e� 2 sin(↵) sec(�)

⇠u
H̃0

�e� 2 sin(↵) csc(�) �e� 2 sin(↵) csc(�)

⇠d
H̃0

�e� 2 sin(↵) csc(�) �e� 2 sin(↵) sec(�)

⇠uA0
e�� cot(�) e�� cot(�)

⇠dA0
�e�� cot(�) e�� tan(�)

⇠u
Ã0

�e�� cot(�) �e�� cot(�)

⇠d
Ã0

e�� cot(�) �e�� tan(�)

⇠u
Ã0

0

-1 -1

⇠d
Ã0

0

1 1

⇠u
H±

0
e�✓ cot(�) e�✓ cot(�)

⇠d
H±

0
�e�✓ cot(�) e�✓ tan(�)

⇠u
˜H±
0

�e�✓ cot(�) �e�✓ cot(�)

⇠d
˜H±
0

e�✓ cot(�) �e�✓ tan(�)

⇠u
˜H0±
0

-1 -1

⇠d
˜H0±
0

1 1

Table 6.1: Yukawa couplings of the quarks to the Higgs bosons. Angles  1 and  2 are
the symplectic rotations needed to diagonalize the two neutral scalar mass matrix, �
is the rotation angle to diagonalize the pseudoscalar mass matrix and ✓ is the angle
which diagonalizes the charged scalar mass matrix. These angles are all determined in
terms of the physical particle masses, as described in the text.

than the other terms. In that case, one can find the masses explicitly and they are

given by (with, as before, the charged Higgs mass-squared being denoted m2

H±
0

) m2

H±
0

,

m2

h̃1
cos2 � + m2

h̃2
sin2 � and m2

H±
0

+ m2

h̃1
sin2 � + m2

h̃2
cos2 �.

Of course, long before these particles are discovered, it is likely that tan� will

have been determined, and thus the Lee-Wick charged scalar masses will determine

the two Lee-Wick scales. However, once those scales are determined, the masses and

mixings of the neutral LW scalars and pseudoscalars are completely determined. This

is not a surprise, since we have added an extra parameter, and thus the masses of
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the charged scalars no longer have the simple relationship from before. However, the

model remains highly predictive, since all of the other LW scalar masses and their

mixing angles are then determined. Note also that these facts are expected to be true

even when the mass splitting is not small, although then there is no simple analytic

expression for these masses and mixings.

6.4 Low Energy Constraints

In the analysis of the LWSM, Carone et al. [173] showed that constraints from B-

physics give the strongest bounds on the model. With the above Yukawa couplings, the

constraints can similarly be calculated. In this section, constraints from B+
�! ⌧+⌫⌧ ,

BdB̄d mixing, and B �! Xs� are explored, leading to lower bounds for the mass of

the charged Higgs, mH±
0

, and its Lee-Wick partners.

6.4.1 B
+

�! ⌧
+
⌫⌧

For large tan�, the strongest bounds come from the branching ratio of B+
�! ⌧+⌫⌧ .

In the 2HDM the rate is

B (B+
�! ⌧+⌫⌧ )

B (B+ �! ⌧+⌫⌧ )SM
=

0

@1 �
m2

BCi

m2

H±
0

1

A
2

(6.28)

where C1 = cot2 � is the coe�cient from the type-I 2HDM, and C2 = tan2 � is the

coe�cient from the type-II 2HDM. There are now two additional charged Higgs in the

model, making the 2HDM result have an additional two Feynman diagrams resulting

in,

B (B+
�! ⌧+⌫⌧ )

B (B+ �! ⌧+⌫⌧ )SM
=

0

@1 �
m2

Be�2✓Ci

m2

H±
0

+
m2

Be�2✓Ci

m2

H̃±
0

+
m2

B

m2

H̃0±
0

1

A
2

. (6.29)

Note the di↵erence in sign in the latter two terms on the left hand side of the above



99

equation. This is a result of the opposite sign in the propagators of the LW particles.

Taking the limit of the LW scale, mh̃ �! 1, recovers the 2HDM result. Plots of the

branching ratio for B+
�! ⌧+⌫⌧ for the type-II model are below in Figure 6.1.

Figure 6.1: Branching ratio, B (B+
�! ⌧+⌫), in the type-II LW2HDM normalized with

the standard model result for various LW scales. Left plot shows result for tan� = 2
and the right plot for tan� = 5.

The Heavy Flavour Averaging Group[181] combined the results from the experi-

ments BELLE[182, 183] and BABAR[184] to find the B (B+
�! ⌧+⌫) branching ratio

to be (1.64 ± 0.34) ⇥ 10�4. Dividing the HFAG experimental result by the Standard

Model predicted result [185] gives 1.37 ± 0.39. This lower bound on the mass of the

charged Higgs in the type-II LW2HDM was established at the 95% confidence level

and is shown in the summary plot at the end of this section, Figure 6.5.
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6.4.2 BdB̄d mixing

In the 2HDM, the result for the mass splitting between B and B̄ is identical for both

type-I and II 2HDMs. It has been shown that the mass splitting at LO in QCD is [186]

�mB2HDM
=

G2

F

6⇡2
m2

W |VtqV
⇤
tb|

2 f2

BB̂Bq
mB

�
IWW + cot2 � IWH + cot4 � IHH

�
,

(6.30)

where IWW is the contribution from a 2 W± exchange, IWH is the contribution from

a single charged Higgs exchange, and IHH is the contribution from a 2 charged Higgs

exchange. Explicitly,

IWW =
x

4

 
1 +

9

(1 � x)
�

6

(1 � x)2
�

6

x

✓
x

1 � x

◆
3

ln x

!
,

IWH =
xy

4


�

8 � 2x

(1 � x)(1 � y)
+

6x ln x

(1 � x)2(y � x)
+

(2x � 8y) ln y

(1 � y)2(y � x)

�
,

IHH =
xy

4


(1 + y)

(1 � y)2
+

2y ln y

(1 � y)3

�
, (6.31)

where x = m2
t /m2

W and y = m2
t /m2

H+ . Making the following modifications allows one

to accommodate the additional Higgs into the calculation of �mB.

cot2 � IWH �! e�2✓ cot2 � IWH(y ! y0) � e�2✓ cot2 � IWH(y ! ỹ0) � IWH(y ! ỹ00)

(6.32)

cot4 � IHH �! e�4✓ cot4 � IHH(y ! y0) + e�4✓ cot4 � IHH(y ! ỹ0) + IHH(y ! ỹ00)

(6.33)

where y0 = m2
t /m2

H+
0
, ỹ0 = m2

t /m2

H̃+
0
, and ỹ0

0
= m2

t /m2

H̃0+
0

.

From here, the only terms not accounted for are those from mixed charged Higgs
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exchanges. Making an approximation allows for solving of the mixed charged Higgs

exchanges. Averaging the masses gives

mH+
12

=
mH+

0
+ mH̃+

0

2
mH+

13
=

mH+
0

+ mH̃0+
0

2
mH+

23
=

mH̃+
0

+ mH̃0+
0

2
.

and three additional IHH terms are added where the intermediate Higgs are treated as

the averaged masses of the two Higgs being exchanged.The added terms take the form

� e�4✓ cot4 � IHH(y ! y12) � e�2✓ cot2 � IHH(y ! y13) + e�2✓ cot2 � IHH(y ! y23),

(6.34)

where yij = m2
t

m2

H
+
ij

. If the values for the averaged masses are varied between the two

masses being averaged, the change in �mBd
falls within the bounds of the uncertainty.

The same modifications were applied to the NLO amplitudes in Ref. [187].

The theoretical uncertainty in�mBd
, is primarily dominated by the QCD bag-factor

f2

BB̂Bq
, and is approximated by � = 0.14�mBd

. A �2 test,

�2

i =

�
O

th
i � O

exp
i

�2

�2i

was used to obtain bounds on the charged Higgs mass, mH+
0

, at the 95% confidence level,

corresponding to �2 = 3.84. An experimental value of �mBd
= (3.337± 0.033)⇥ 10�10

MeV [188] was used. Plots of �mBd
at NLO in QCD are given in Figure 6.2. Values

used in the numerical calculation are in the Appendix. Plots of the excluded region

for the charged Higgs mass are shown at the end of the section in Figure 6.5.
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Figure 6.2: Plots of �mBd
in GeV given for various LW scales for tan� = 1 on top

and tan� = 2 on bottom. Note that the plots all converge to the standard model
result in the limit of large mH±

0

6.4.3 B �! Xs�

Now considering B �! Xs�, the LO contribution of the B �! Xs� decay is [189]

B(B ! Xs�) = B(B ! Xce⌫̄e)

����
V ⇤
tsVtb

Vcb

����
2 6↵em

⇡f(m2
c/m2

b)

��C0

7,SM + C0

7,NP

��2 , (6.35)

where C0

7
are Wilson coe�cients. In the type II 2HDM, these coe�cients are given by

C0

7,SM =
x

24


�8x3 + 3x2 + 12x � 7 + (18x2

� 12x) ln(x)

(x � 1)4

�
, (6.36)
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C0

7,NP =
1

3
cot2(�) C0

7,SM (x ! y) +
1

12
y


�5y2 + y � 3 + (6y � 4) ln(y)

(y � 1)3

�
, (6.37)

where x = m2
t

m2
W

and y = m2
t

m2

H
+
0

. For the LW extension of the type-II 2HDM, this becomes

C0

7,NP =
1

3
e�2✓ cot2(�)C0

7,SM (x ! y) �
1

12
y


�5y2 + y � 3 + (6y � 4) ln(y)

(y � 1)3

�

�
1

3
e�2✓ cot2(�)C0

7,SM (x ! w) �
1

12
w


�5w2 + w � 3 + (6w � 4) ln(w)

(w � 1)3

�

�
1

3
C0

7,SM (x ! z) �
1

12
z


�5z2 + z � 3 + (6z � 4) ln(z)

(z � 1)3

�
,

(6.38)

where w = m2
t

m2

H̃
+
0

and z = m2
t

m2

H̃
0+
0

. The function f(⇠), a phase space suppression factor

from the semileptonic decay rate, is

f(⇠) = 1 � 8⇠ + 8⇠3 � ⇠4 � 12⇠2 ln(⇠). (6.39)

In order to compare to experimental data the calculation is carried out to NLO in

QCD. The modifications to the amplitude are exactly the same as above LO example.

The NLO amplitudes given in Ref. [190] are those used in the numerical analysis.

Numerical values used in the calculation are listed in the Appendix. Plots of the

branching ratio are shown in Figure 6.3 for various LW scales for the type-I and II

models.
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Figure 6.3: Branching ratio, B (B �! Xs�) shown for various LW scales. The upper
(lower) left and right plots are calculated with the type-II (type-I) LW2HDM for
tan� = 1 and tan� = 2 respectively.

The detected value for the branching ratio is B(B �! Xs�) = (3.52±0.23±0.09)⇥

10�4 [181]. As in the previous section, a �2 text was used to establish lower bounds for

the mass of the charged Higgs. Plots of these bounds are shown in Figure 6.5 for the

type-II model, and Figure 6.4 for the type-I model. The bounds in the type-I model

are qualitatively di↵erent in the LW2HDM as compared to the usual 2HDM result.

An asymptote occurs in the bounds of the model due to the couplings of the quarks

to H̃ 0
0

being independent of tan �. Below, plots of the lower bounds on the charged

Higgs mass are shown for various Lee-Wick scales.
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Figure 6.4: Lower bounds on the mass of the charged Higgs, mH+
0

(GeV ) from

B �! XS� in the type-I LW2HDM at various Lee-Wick scales.

Figure 6.5: Lower bounds placed on the charged Higgs mass, mH+
0

(GeV ) from B-

physics constraints in the type-II LW2HDM. The plots are calculated with the Lee-Wick
scales equal to 2 mH+

0
in the upper-left, 4mH+

0
in the upper-right, and 8mH+

0
on the

bottom.

These bounds all apply to the charged Higgs masses. Bounds on neutral Higgs

masses are much weaker. This is because all of the neutral scalars in the model couple

in a flavor-diagonal way, and thus charged Higgs processes are the only ones that
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change flavor. Bounds on flavor-changing processes are much stronger than those from

flavor-conserving processes. One potential low-energy e↵ect is on the ⇢-parameter,

which is sensitive to the mass splitting within a isospin multiplet. However, in this

model the charged and neutral Lee-Wick scalars have very similar masses, thus this

splitting is negligible.

6.5 Results and Future Prospects

From the B-physics results of the last section, the LW scale in the type-II model must

exceed 800 GeV. In the type-I model, the LW scale must exceed 400 GeV. Is there a

way to detect this at the LHC?

Two possibilities for determining the validity of this theory exist. The first involves

changing the branching ratios of the 125 GeV Higgs boson, and the other involves

direct detection of LW states.

Carone et al. [173] studied the e↵ects of the LWSM on the decays of the Higgs

boson and showed that current bounds are weak, with a lower bound of 255 GeV on

the LW scale. They also noted that the bound will only become competitive with the

B-decay bounds after 400 inverse femtobarns of integrated luminosity at the LHC.

Furthermore, the primary e↵ect would be a slight increase in the H ! ⌧⌧ branching

ratio, making it unlikely that this would be interpreted as evidence for a LW sector.

Reaching the bound of 800 GeV, as in the type-II version of the LW 2HDM above,

would require an integrated luminosity in excess of 4000 fb�1, which is unlikely to be

achieved in the next couple of decades.

Direct detection was discussed in detail by Figy and Zwicky [168]. They wrote that

the most likely discovery of the LW Higgs boson at the LHC would be if the mass was

below the top pair production threshold (singular, since its the LW model, not 2HDM).

In addition, Figy and Zwicky noted that the negative width gives a dip-peak structure,

instead of a peak-dip structure. In this model the LW states are all above the top pair

production threshold, making direct detection extremely di�cult. Detection of the
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LW states would require a substantially more energetic hadron collider or a multi-TeV

linear collider.

Perhaps the best near-term hope for an indication of the LW2HDM model would

be to discover the “normal” particles of the 2HDM and study their decays. The above

Yukawa couplings di↵er from the conventional 2HDM. As a result, analysis of the

Yukawa LW Higgs-coupled decays would provide evidence of the LW2HDM.
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Chapter 7

Conclusions

The work presented in this dissertation was motivated by the desire to understand the

phenomenological signatures associated with BSM physics. We primarily focused on

models with extended scalar sectors and their ensuing e↵ects on Higgs phenomenology.

For each of the models presented, we considered future search strategies to further

test these models at the LHC and future colliders. We review some of our key findings

below.

In chapter two we presented two classes of LFV 2HDMs to explain a slight excess

in the h ! µ⌧ channel reported by CMS. We found both classes of models could

accommodate the data from CMS, and discovered that the LFV couplings of the

heavier CP-even scalar Higgs, H, and pseudoscalar Higgs, A, could be substantially

larger than those of the light Higgs. Since this work was published, more recent data

was released by CMS finding that the branching fraction for h ! µ⌧ is consistent

with zero at the one-sigma level. However, there is still the possibility of large LFV

couplings for the other heavy Higgs states in these models. These exotic signals are

distinct in colliders, thus providing experimentalists with a promising search strategy

to test these models.

In chapter three we studied an orbifold Higgs model emerging from the orbifold

projection by the simplest non-abelian symmetry, S3. Like other models of neutral

naturalness, the lowest mass states associated with new physics predicted by the S3
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orbifold Higgs model carry no SM charge. This makes them quite di�cult to discover at

colliders. The best strategy for testing the model would rely on studying the properties

of the 125 GeV SM-like Higgs. There is universal suppression of the Higgs couplings

to SM fields proportional to cos(v/f) which leads to suppressed Higgs production and

decay rates. The results of the chapter suggest that LHC alone may not be able to

rule out S3 orbifold Higgs model as a natural model. However, the increased Higgs

production at a 100 TeV facility may su�ciently probe the natural parameter space.

In chapter four we considered the altered phenomenology of the type-I and type-II

2HDMs induced by scalar curvature mixing in an RS1 setup. In this model the CP-even

Higgs states become mixed with the radion degree of freedom. There were no strong

e↵ects on the cos(� � ↵)-tan� parameter space of the 2HDM. In the event two heavy

neutral scalars are discovered in the future, one avenue to identify them as, H and r of

this model is to study their decays to a pair of Z bosons. The sum of their couplings in

quadrature normalized by the coupling of the SM Higgs to ZZ will be slightly greater

than one. This is in contrast to the case of a typical N-Higgs doublet model. Future

searches for decays of r, H ! ZA or A ! Zr, ZH at the LHC would be beneficial in

reducing the size of the large parameter space of the model.

For the LW extension of the 2HDM studied in chapter six, the strongest bounds on

the model came from b-physics, which required the LW mass scale to exceed 800 GeV

(400 GeV) in a Type-II (Type-I) 2HDM. The model also predicts a slight excess in

decays of the 125 GeV Higgs to Z and ⌧ pairs. However, this will not be statistically

significant until the LHC has reached an integrated luminosity of 4000 fb�1 which is

many years away.
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Appendix A

S3 Orbifold Higgs Appendix

Scalar multiplets of the daughter theory in the Hermitian basis.

hA = 1p
2
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The scalar mass eigenstates given in terms of the fields of the Hermitian basis with

✓ = v/f and c✓ ⌘ cos ✓ s✓ ⌘ sin ✓.
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H3 = 1p
2

�
�1C1

� �1C2

�
H4 = 1p

2

�
�2C1
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Below we list the corresponding masses for the mass eigenstate given above.

m2

H1
⇡

2

5
�f2 cos2

✓
v

f

◆
(A.4)
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Functions appearing in the Higgs partial decay widths.
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Appendix B

Radion-Higgs Mixing in 2HDMs

Appendix

B.1 Scalar Couplings After Mixing

The interactions of the physical scalars to SM fields can be obtained by substituting

the transformation of equation (4.65) into the unmixed couplings. A summary is given

by

g�V V = U2� sin(� � ↵) + U3� cos(� � ↵) + U1��

✓
1 � 3

m2
vkyc
⇤2

◆
� = r, h, H, (B.1)

g�ff = U2�⇠
f
h + U3�⇠

f
H + U1��(c

f
L � cfR), � = r, h, H, (B.2)

g�gg =

✓
2⇡

↵skyc
+ 7

◆
U1�� +

X

q

Fq(⇠
q
hU2� + ⇠qHU3� + �U1�) � = r, h, H. (B.3)

The trilinear interactions between scalar eigenstates r, h, and H are given by

L ◆ y1r@
µh@µH + y2r⇤hH + y3rh⇤H + grhHrhH, (B.4)
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where

y1 =
2

v
� {�6� [⇠1 sin(� � ↵) + ⇠2 cos(↵+ �)] (U11U12U23 + U11U13U22 + U12U13U21)

� 6� [⇠1 cos(� � ↵) + ⇠2 sin(↵+ �)] (U11U12U33 + U11U13U32 + U12U13U31)

+ 6⇠2U11 [sin(2↵)(U32U33 � U22U23) + cos(2↵)(U22U33 + U23U32)] + 6⇠1U11(U22U23

+ U32U33) �U11U22U23 � U11U32U33 + U12U21U23 + U12U31U33 + U13U21U22

+ U13U31U32} , (B.5)

y2 =
2

v
� {3U11(U22U23 + U32U33)⇠1 + U13(U21U22 + U31U32)(1 + 3⇠1)

+ 3(U13U22U31 + U13U21U32 + U11U23U32 + U11U22U33)⇠2 cos(2↵)

� 6U13(U12U31 + 2U11U32)�⇠1 cos(↵� �) � 6U13(U12U21 + 2U11U22)�⇠2 cos(↵+ �)

+ 3(�U13U21U22 � U11U22U23 + U13U31U32 + U11U32U33)⇠2 sin(2↵)

+ 6U13(U12U21 + 2U11U22)�⇠1 sin(↵� �)

�6U13(U12U31 + 2U11U32)�⇠2 sin(↵+ �)} , (B.6)

y3 =
2�

v
(U12(U21U23 + U31U33) + 3(U13U21U22 + U11U22U23 + U13U31U32

+ U11U32U33)⇠1 + 3(U13U22U31 + U13U21U32 + U11U23U32

+ U11U22U33)⇠2 cos(2↵) � 6(U12U13U31 + U11U13U32

+ U11U12U33)�⇠1 cos(� � ↵) � 6(U12U13U21 + U11U13U22

+ U11U12U23)�⇠2 cos(↵+ �) + 3(�U13U21U22 � U11U22U23 + U13U31U32

+ U11U32U33)⇠2 sin(2↵) + 6(U12U13U21 + U11U13U22

+ U11U12U23)�⇠1 sin(↵� �) � 6(U12U13U31 + U11U13U32

+ U11U12U33)�⇠2 sin(↵+ �)). (B.7)
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The tree-level coupling has two contributions, one from the trace of the energy-

momentum tensor and another one from the 2HDM potential, i.e. grhH = gtracerhH +

g2HDM
rhH where

g2HDM
rhH =

1

2v
(cos�(U33 cos↵� U23 sin↵)(U21 cos↵+ U31 sin↵)(U22 cos↵

+ U32 sin↵)(m2

A � v2�4 � (m2

h � m2

H) cos↵ csc� sec� sin↵)

+ cos�(U32 cos↵� U22 sin↵)(U21 cos↵+ U31 sin↵)(U23 cos↵

+ U33 sin↵)(m2

A � v2�4 � (m2

h � m2

H) cos↵ csc� sec� sin↵)

+ cos�(U31 cos↵� U21 sin↵)(U22 cos↵+ U32 sin↵)(U23 cos↵

+ U33 sin↵)(m2

A � v2�4 � (m2

h � m2

H) cos↵ csc� sec� sin↵)

+ (U32 cos↵� U22 sin↵)(U33 cos↵� U23 sin↵)(U21 cos↵

+ U31 sin↵)(m2

A � v2�4 � (m2

h � m2

H) cos↵ csc� sec� sin↵) sin�

+ (U31 cos↵� U21 sin↵)(U33 cos↵� U23 sin↵)(U22 cos↵+ U32 sin↵)(m2

A

� v2�4 � (m2

h � m2

H) cos↵ csc� sec� sin↵) sin� + (U31 cos↵

� U21 sin↵)(U32 cos↵� U22 sin↵)(U23 cos↵+ U33 sin↵)(m2

A � v2�4

� (m2

h � m2

H) cos↵ csc� sec� sin↵) sin� � 6(U21 cos↵

+ U31 sin↵)(U22 cos↵+ U32 sin↵)(U23 cos↵+ U33 sin↵)((m2

A

+ v2�4) cot2 � � csc2 �(m2

h cos2 ↵+ m2

H sin2 ↵)) sin� + 6 sec�(U31 cos↵

� U21 sin↵)(U32 cos↵� U22 sin↵)(U33 cos↵� U23 sin↵)(m2

H cos↵2 + m2

h sin↵2

� (m2

A + v2�4) sin2 �) + 2v2�4((U23U32 + U22U33) cos(2↵) + (�U22U23

+ U32U33) sin(2↵))(U21 cos(↵+ �) + U31 sin(↵+ �)) + 2v2�4((U23U31

+ U21U33) cos(2↵) + (�U21U23 + U31U33) sin(2↵))(U22 cos(↵+ �)

+ U32 sin(↵+ �)) + 2v2�4((U22U31 + U21U32) cos(2↵)(�U21U22

+ U31U32) sin(2↵)(U23 cos(↵+ �) + U33 sin(↵+ �))), (B.8)
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gtracerhH =4
�

v
(m2

h(U13U21U22 + U12U21U23 + U11U22U23)

+ m2

H(U13U31U32 + U12U31U33 + U11U32U33)). (B.9)

The other interactions like rhh, rHH, etc. can be similarly obtained and are not

illustrated here.
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B.2 LHC Data

Decay Production Measured Signal Strength Rm

��

ggF+tth

VBF +Vh

ggF

VBF

Vh

1.19+0.20
�0.18 [CMS] [191]

1.01+0.57
�0.51 [CMS] [191]

0.8+0.19
�0.18 [ATLAS] [192]

2.1+0.6
�0.6 [ATLAS] [192]

0.7+0.9
�0.8 [ATLAS] [192]

WW*

ggF

VBF

ggF

VBF

Wh

1.02+0.29
�0.26 [ATLAS] [193]

1.27+0.53
�0.45 [ATLAS] [193]

0.76 ± 0.21 [CMS] [194]

1.7+1.1
�0.9 [ATLAS] [195]

3.2+4.4
�4.2 [ATLAS] [195]

ZZ*

ggF

VBF + Vh

ggF

VBF

1.7+0.5
�0.4 [ATLAS] [196]

0.3+1.6
�0.9 [ATLAS] [196]

1.20+0.35
�0.31 [CMS] [197]

0.00+1.37
�0.00 [CMS] [197]

bb

VBF

Vh

Vh

�3.7+2.4
�2.5 [CMS] [198]

1.20+0.42
�0.36 [ATLAS] [199]

1.2 ± 0.4 [CMS] [200]

⌧⌧

VBF

ggF

VBF + Vh

WH

tth

1.2 ± 0.4 [ATLAS] [201]

2.0+1.5
�1.2 [ATLAS] [202]

1.24+0.59
�0.54 [ATLAS] [202]

2.3 ± 1.6 [ATLAS] [203]

1.5+1.2
�1.0 [ATLAS] [204]

Table B.1: Measured Higgs Signal Strengths
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Appendix C

Lee-Wick Extension of the

Two-Higgs Doublet Model

Appendix

The mass matrices in the Lee-Wick Two Higgs doublet model

v1 = v cos(�) v2 = v sin(�) m2

12 =
1

2
M2

12 sin(2�);

Diagonalized pseudoscalar Higgs mass matrix
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The diagonal elements the neutral scalar Higgs mass matrix

K =

q
�2M2

12v
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where �345 = �3 + �4 + �5. The scalar self-couplings are

�1 =
sec

2
(�)
⇣
sin

2
(↵)m2
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(↵)m2

H0

⌘
�M2

12 tan
2
(�)

v2

�
sec

2
(�)
⇣
sin

2
(↵)m4

h0
+cos

2
(↵)m4

H0

⌘

v2m2
h̃

(C.8)

�2 =
csc

2
(�)
⇣
cos

2
(↵)m2

h0
+sin

2
(↵)m2
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12 cot
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�345 =
sin(↵) cos(↵) csc(�) sec(�)

⇣
m4

h0
�m4

H0

⌘

v2m2
h̃

+
sin(2↵) csc(2�)

⇣
m2

H0
�m2

h0

⌘
+M2

12

v2 (C.10)

�4 =
m2

A0
� 2m2

H±
0

+ M2

12

v2
�

m4

A0
� 2m4

H±
0

v2m2

h̃

(C.11)

�5 =
m4

A0

v2m2

h̃

+
M2

12
� m2

A0

v2
(C.12)

where mh0 , mH0 , mA0 , mH±
0

and the two scalar masses, the pseudoscalar mass and

the charged Higgs mass, respectively.

Values used in calculations without explicit citation are from take from [188].

mt = 171.2 ± 2.1GeV GF = 1.16637 ⇥ 10�5 GeV�2

m̄b(m̄b) = 4.2+0.17
�0.07 GeV ↵s(mZ) = 0.1176±0.0020

m̄c(m̄c) = 1.27+0.07
�0.11 GeV mBd

= 5279.53 ± 0.33 MeV

ms = 104+26

�34
MeV fB

q
B̂Bd

= 216 ± 15 MeV [205]

mW = 80.398 ± 0.025 GeV ↵�1
em = 137.03599967

mZ = 91.1876 ± 0.021 GeV B(B ! Xce⌫̄e) = (10.74 ± 0.16)% [181]
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