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ABSTRACT

The Standard Model is regarded as one of the most successful scientific theories,
but there is compelling evidence that it is an incomplete theory of particle
physics. There is currently no understanding of the observed baryon asymmetry,
the nature of dark matter, and dark energy. Field theoretic considerations
indicate parameters in the Standard Model are extremely fine-tuned. This
suggests the existence of new physics, accessible at higher energies, to explain
these seemingly unnatural tunings. To solve these puzzles, and others not
addressed by the Standard Model, many extensions of the Standard Model have
been proposed. It is of great importance that we fully understand the effects
these models have on Standard Model physics and how these theories can be
tested. In this dissertation we explore the phenomenology associated with
beyond the Standard Model physics, specifically focusing on models with
extended Higgs sectors. In chapter 2, we study two classes of lepton flavor
violating two Higgs doublet models. Chapter 3 explores a model where the
Higgs is a pseudo-Goldstone boson of a non-abelian orbifold projection and all
other low energy states carry no Standard Model charges. Chapters 4 and 5
study Higgs phenomenology in the context of a warped five dimensional
space-time. The former analyzes the effects of Higgs-radion mixing in two Higgs
doublet models. The latter reviews a previous proposal where the Higgs doublet
takes the role of a bulk stabilizer. The result is a model containing a single
Higgs-radion state. In the final chapter, we present a higher derivative extension
of the type-I and II two Higgs doublet models. The resulting theory gives rise to
unusual partner states containing negative kinetic energy terms.
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Chapter 1

Introduction

The Standard Model (SM) encapsulates our current understanding of particle physics
and its predictions have been tested to remarkable precision. It amounts to an effective
theory containing all of the known elementary particles and three of the four known
forces governing their interactions. In spite of the success of the SM it is not believed

to be a complete description of particle physics. Alone, the SM does not explain:
e the observed baryon asymmetry in the universe
e massive neutrinos

dark matter

dark energy

the strong CP problem of quantum chromodynamics

the large hierarchy between the electroweak (EW) and Planck scales.

These problems have generated interest among physicists and have motivated many
of the recent developments in particle phenomenology research. The last bullet point
will be of particular interest in this dissertation. The puzzle as to why the EW scale is
so far separated from the Planck scale is often referred to as the hierarchy problem.

Many of the chapters in this dissertation study the phenomenology of theories that



address the hierarchy problem, so in what follows we will review the Higgs sector of

the SM and explain the hierarchy problem in greater detail.

1.1 The Standard Model Higgs

Let us begin with a complex scalar doublet, H, called the Higgs doublet which
transforms as {2,1/2} under the gauge group SU(2)r x U(1)y. Temporarily setting

aside gauge and Yukawa interactions, the Higgs potential is given by
Vg = —p? |H* + N |H|*. (1.1)

For 2 > 0, H acquires a non-zero vacuum expectation value (vev), v = 4/ “72 ~
246 GeV. Without loss of generality we may suppose the vev is aligned with the lower

real component of the Higgs doublet,

g L b1 + i . (1.2)

V2 (et h) i
We will identify the real degree of freedom, h, with the SM Higgs boson. The
three remaining degrees of freedom are Goldstone bosons resulting from spontaneous
symmetry breaking.

Let us now consider the Higgs Lagrangian including gauge interactions

1 1
EH — T W _ ZBMVB/W 4 (DMH)T(DNH) — VH; (13)

4 M

where B, denotes the U(1)y hypercharge gauge boson, Wy denote the SU(2), gauge
bosons and By, and W}, are their respective field strengths. The covariant derivative
is given by

1
Dy =0, —igWyt" — Qig/Bu’ (1.4)

where g is the SU(2), coupling, ¢’ is the U(1)y coupling, and 7@ are the canonically



normalized generators for SU(2) in the fundamental representation.
By applying a gauge transformation to Eq. 1.2 we may work in the unitary gauge
where the Goldstone bosons left behind from the spontaneous symmetry breaking

vanish,

H — L 0 . (1.5)
V2| (wth)

Due to the gauge boson-Higgs doublet interactions coming from the covariant derivative
in the Lagrangian, three of the four gauge bosons from SU(2); x U(1)y eat the

Goldstone bosons and acquire a mass proportional to the Higgs vev. Explicitly, we find

D H|? = M3 W, W+ + %M%Z#Z“ ... (1.6)
where,
W WEW e (17)
Zh — —g’B‘;i 92/3“ (1.8)
Vg T4g
and
M2, = 2 80 GeV , M2 = v?949% ~ 90 GeV, (1.9)
Finally there is one surviving massless gauge boson, the photon,
A* = cos Oy B* + sin Oy W3H (1.10)

which accounts for all four gauge bosons we started off with initially.
The quarks and charged leptons also acquire their masses though the Yukawa

interactions with the Higgs,

Ly = QrLHdR+ Qric®H*ug + Ly Hep (1.11)

where @7, and Ly, are the left handed quark and lepton doublets and ug, dg, and e are



the right handed up-type quarks, down-type quarks, and charged leptons respectively.

1.2 The Hierarchy Problem

With an understanding of how the weak gauge bosons acquire their masses through
their interactions with the Higgs, we can see how the electroweak scale is determined
by the magnitude of the Higgs vev. To see this let us examine the Feynman diagram

contributing to the weak decay of the muon given in Figure 1.1a.

H v v
4 e jz - - e
v v
(a) Feynman diagram for the weak de- (b) Feynman diagram for the weak
cay of the muon in the full electroweak decay of the muon in the effective four
theory Fermi theory

Figure 1.1: Feynman diagrams representing weak decays of the muon.

The propagator of the W~ boson, D(W™) is dominated by the mass

i
T
term, therefore we can work in the low energy effective theory by integrating out the W
gauge boson. This reduces the theory to a four-Fermi theory. The Feynman diagram

describing the weak decay of the muon in the four-Fermi theory is given by Figure

1.1b and corresponds to the following interaction term in the effective Lagrangian,

Gp - _
ﬁ — Ml 1% e ’ul Ve 112

where the Fermi constant, Gp = g/ng o v~2. This shows that the strength of the weak
w

interaction is proportional to the squared inverse of the Higgs vev. If, for instance, v
were to be on the order of the Planck scale we would expect that the strength of the
weak interaction to be suppressed to that of gravity.

Up to this point, there does not seem to be any inherent problem with having a weak



Figure 1.2: Feynman diagrams contributing to quadratic divergences of the Higgs mass
parameter.

scale vev. However, when considering quantum corrections to the mass term of the
Higgs potential, these corrections would apparently destabilize the weak scale without
fine-tuning the fundamental parameters of the theory. The dominant corrections to
the Higgs mass parameter come from the top quark, weak gauge-bosons, and Higgs
self interactions given in Figure 1.2.

Regularizing the ultra-violet (UV) divergences with a hard cutoff, A, that we use as
a stand in for the scale at which new physics appears, we find these one loop diagram

contribute the following corrections to the Higgs mass term,

A2
om? = 15 <—6y2 + 292 + 3)\> +O(log A). (1.13)

Taking the cutoff to be on the order of the Planck scale, where quantum gravity
becomes important, the magnitude of the quantum corrections becomes much larger
than the pole mass of the Higgs. Then the bare mass of the Higgs, m = v2Av, which

appears in the fundamental theory is
’I?’L2 ~ O(A%lanck) + miQL (114)

where my, ~ 125 GeV is the pole mass of the Higgs. Thus the squared bare mass of
the Higgs boson would need to be tuned to one part in 103 to get the right pole mass
of the Higgs boson. Such a tuning is referred to as a fine-tuning and is at odds with f
Hooft’s definition of naturalness[1] which dictates that parameters of the theory should
be of order one, unless a symmetry emerges in the limit the parameter is set to zero.

There is no symmetry that emerges as m — 0, so naive expectations coming from



theory would suggest that mp ~ v ~ O(Apjanck)-

There are many theories which address the hierarchy problem by incorporating
extra symmetries that act non-trivially on the Higgs to protect the Higgs mass. Popular
symmetry based approaches include supersymmetry[2], Little Higgs[3, 4], Twin Higgs[5],
and orbifold Higgs[6, 7] thories. To illustrate a symmetry based solution to the hierarchy
problem let us consider supersymmetry (SUSY). SUSY adds an additional symmetry
to the SM fields where all bosons of the SM have a fermion partner and visa versa.
Take for instance the top quark of the standard model which contributes the most
severe quadratic divergences to the Higgs mass. The SUSY partners to the top quark,
or stops, are two color triplet complex scalars, ¢;, i = 1,2. The stops also couple to

the Higgs boson

t;
/’\
t ' \
/
_____ O- NS
t

Figure 1.3: Top quark and top squark contributions to the Higgs mass.

As it happens, the symmetries of SUSY enforce the couplings to match in way
that sum of the diagrams in Fig. 1.3 are identically zero, thus removing the quadratic
sensitivity of the Higgs mass to contributions from the top quark. Following this
prescription, supersymmetric partners can be added to rest of the SM fields and a
natural value for the Higgs mass can be obtained. Since we do not see supersymmetric
partners of the SM states with degenerate masses, SUSY must be broken. In order
to not introduce any more fine-tunings, the lightest supersymmetric partner states
should have masses on the order of 1 TeV. Collider results are beginning to rule out the
natural parameter space of supersymmetric extensions of the SM[8]. The fine-tuning
necessary to explain the null search results of partner states that are required for
natural EW symmetry breaking has been referred to as the little hierarchy problem.

Other solutions have included theories of warped extra dimensions which remove



sensitivity of the Higgs mass to the cutoff of the theory. The Randall-Sundrum model[9]
is a 5D theory of space time where the extra spatial dimension is compact with a
warped geometry. Gravity propagates in the 5D bulk of the theory where the geometry
is anti-deSitter (AdS). AdS space is a space with negative constant curvature. The 5D

metric for this theory in the bulk is given by
ds? = ey, datdz” — dy? (1.15)

where the metric field, A = k|y|, comes from solving the Einstein equations and k is
the AdS curvature scale. At y = 0, y. there are 3-Branes which define the boundaries
of the extra dimension. In a simple version of the model the SM fields are taken to be
localized on the brane located at y = y., often referred to as the IR or TeV brane. See

Fig. 1.4 for a depiction of the model.

graviton

T

warp factor

Figure 1.4: A cartoon depiction of the Randall-Sundrum model barowed from Ref. [10]

As a consequence of this setup the Higgs vev in the 5D theory gets exponentially

suppressed by the warp factor. To see this, consider the 5D action of the Higgs,

Sy = /dyd4x\/§ [gabaaﬂabH - A (|H|2 - v2)2] 0(y — ye) (1.16)

— / d*2\/Gina [g;;jdauHayH ~A(|H? - v2)2} (1.17)



where g;,q is the induced metric on the IR brane. Using the expression for the metric

the action becomes
Sy = /d4me4ky° [e%ycn“”auH@VH —A(HP - 1)2)2:| (1.18)

which leaves us with Higgs kinetic terms that are not canonically normalized. Rescaling

the field to achieve canonically normalized kinetic terms gives
Sy = / dix [n’“’aﬂH&,H ) <\H\2 - e—%yw?f] : (1.19)
Thus the Higgs vev of the 5D theory is exponentially suppressed and the effective vev,
vgff = v2e 2R¥e, (1.20)

may naturally assume a value around the weak scale given adequate separation between
the two 3-branes, which requires ky. ~ 35.

With many solutions to the hierarchy problem additional Higgs multiplets are
introduced to the theory, or at the very least additional scalars become mixed with the
Higgs state leading to altered couplings and phenomenology. In the case of SUSY the
Higgs sector is extended by an additional doublet which is necessary to give masses to
both up and down type quarks. In Randall-Sundrum models there is an additional
scalar degree of freedom corresponding to radial excitations of of the extra dimension
that become mixed with the Higgs. To assist current experimental searches for BSM
physics, it is imperative that we understand the phenomenological signatures of these

models.

1.3 Thesis Contents

In what follows we explore the phenomenology of BSM theories with augmented

Higgs sectors. Chapter 2 explores lepton flavor violating decays of two classes of



two-Higgs doublet models (2HDMs), namely the type-IIT [11] models and Branco-
Grimus-Lavourna (BGL)[12] models. The work presented was motivated by a non-zero
signal in the h — p7 decay channel by both CMS[13] and ATLAS[14]. We demonstrate
the ability of 2HDMs to describe the anomalous signal and suggest strategies to discover
the additional scalars of the theory.

In Chapter 3 an orbifold Higgs model emerges from the orbifold projection by
the simplest non-abelian symmetry, S3. The resulting model produces two additional
sectors uncharged under the SM. With a modest amount of tree level tuning to the
theory, a phenomenologically viable SM-like Higgs was obtained. Like the Twin Higgs,
this model leads to suppression in the production cross-sections and branching fractions
of the 125 GeV Higgs.

Chapters 4 and 5 explore the phenomenology of models with warped extra-
dimensions. The former studies the effects of Higgs-radion mixing on collider phe-
nomenology in two classes of brane localized 2HDMs. Using bounds from the Large
Hadron Collider (LHC) we study the effects of Higgs-radion mixing on the usual four
dimensional 2HDM parameter space and place bounds on the Higgs-radion mixing
parameters. The latter reviews previous work by Geller et. al. [15] which proposed an
alternative approach to Goldberger-Wise mechanism[16] where the extra dimension
is stabilized via the SU(2) Higgs doublet. We find that this model is now at odds
with current LHC data but discuss the possibility of improving the model by placing a
2HDM in the bulk of the 5D model.

Chapter 6 studies a Lee-Wick extension of the type-I and type-1I 2HDMSs. Lee-Wick
theories introduce higher-derivative operators which may be rewritten as an additional
scalar degree of freedom by use of an auxiliary field. The additional scalar degree of
freedom however is unusual in the fact that it carries a negative kinetic energy term.
We found that direct detection of the Lee-Wick partner states may be difficult in the
near term future of the LHC and the best near term hope to probe the model may
be achieve through discovery of the standard 2HDM scalar states and studying their

decays.



10

Chapter 2

Lepton Flavor Violating Higgs

Decays

2.1 Introduction

Recently, CMS reported[13] a slight excess in the Higgs decay h(125) — ur at a
2.40 level, with a branching ratio of 0.84 4+ 0.38 percent. Subsequently, ATLAS [14]
reported a signal with a similar central value but larger errors, with a branching ratio
of 0.77+0.62 percent. Though the excess has since disappeared from data, the models
presented here are still consistent with LHC data[17]. Such a signal, if confirmed in
Run 2, would clearly indicate physics beyond the Standard Model (BSM).

Naturally, this has led to a large number of papers explaining the signal in various
BSM scenarios. Some of these include leptoquarks[18, 19], the 331 model[20], a
leptonic dark matter model[21], an axion model[22], flavor symmetry models[23, 24]
and supersymmetric models[25-28]. Some leave the mechanism arbitrary, but explore
other ramifications, such as a possible ttH excess[29] or an anomaly in b — su™u~[30].

The simplest explanation for a flavor-changing Higgs decay is the general Two Higgs
Doublet Model (2HDM) (see Ref. [31] for an extensive review and list of references).
Several authors have compared, in the context of this model, the expected values for

T — 1, (9 — 2), and other lepton number violating processes[29, 32-40]. A general
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2HDM has been proposed[41] as an explanation for both A — u7 and the recent
diphoton excess[42], although this model does have additional fields.

The general 2HDM consists of two SU(2), doublets with eight scalar degrees of
freedom. After electroweak symmetry breaking, three of these will be eaten by the
W# and Z leaving behind five degrees of freedom. Each doublet carries a non-zero
vev such that

0 0
(@) = (®g) = ; (2.1)

'Ul/\/§ ’Ug/ﬁ

with v? + v = v where, v is the SM Higgs vev. Performing a rotation of the doublets
by 8 = arctan(vy/v;) aligns the vev in a single doublet and diagonalizes the mass
matrices of the charged Higgs, H*, and pseudo-scalar Higgs, A. In this rotated basis,

after gauging away the Goldstone boson, the doublets are given by

0
H - (2.2)
5 (v + p1cos 5 + pasin 3)
H+
Hy — , (2.3)

%(—pl sin B + pacos B+ iA)

where p; are the neutral scalar components of the Higgs doublets. The physical CP

even scalars are obtained by an additional rotation

1 cosa —sinao H
= , (2.4)
P2 sina  cosa h
where h is the lighter of the two scalars and usually associated with the SM-like Higgs.
In variations of the 2HDM different choices for the couplings of the doublets to the
right handed fermions are made. In the type-I model it is only the ®o doublet that

couples to the right handed fermions while in the type-1I 2HDM &5 couples to ur and

®; couples to dg and er. Having only one doublet couple to each of the right handed
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fermions prevents generation tree level FCNCs in the Higgs sector.

The general 2HDM does have a large number of parameters, and it would be useful
to study flavor-changing processes in a more specific context. In a version of the general
2HDM called Model III, a ansatz motivated by the desire to avoid fine-tuning[11] gives
flavor-changing couplings in terms of parameters expected to be O(1). In an even more
specific model, by Branco, Grimus and Lavoura (BGL) [12], symmetries are used to
directly relate the flavor-changing couplings to either the CKM or PMNS matrices,
which are measured. The h(125) — u7 process was studied in Model III in Ref. [38],
where it was shown that the ansatz does give the correct order of magnitude for the
decay. The process, along with many other flavor-changing processes, in the BGL
model was studied in Ref. [43].

2HDMSs have two heavy neutral scalars, H and A. If CP is conserved, the H is
a scalar and the A is a pseduoscalar. If the h — u7 signal is confirmed, then one
would expect H and A to also decay into ur. There are two reasons to expect that
the branching ratio of the heavy neutral scalars could be unexpectedly large. In the
alignment (or decoupling) limit of 2HDMs, the gauge boson and fermion couplings of
the light Higgs are the same as their SM values. Thus the mixing parameter cos(a — 3)
must be small, and yet flavor-changing couplings of the light Higgs will most naturally
be proportional to this parameter. Conversely, flavor-changing couplings of the heavy
scalars will be proportional to sin(a— ) and this will not be suppressed. This fact was
pointed out by Altunkaynak, et al.[44] in a very detailed analysis of flavor-changing
heavy Higgs decays in the hadronic sector. They briefly mention that H/A — ur would
be interesting to study since it is unsuppressed by the cos(a — ) factor. The second
reason to expect that the branching ratio might be large is that the flavor-changing
interactions in the BGL model will be proportional to the PMNS matrix elements.
Large neutrino oscillations show that 2-3 mixing is maximal, so the 2-3 element of the
PMNS matrix is large. Thus, in the BGL model in particular, one might expect very
large rates for H/A — ur.

Until very recently, there were no published bounds on H/A — ur. A paper by
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Buschmann, Kopp, Liu and Wang [45] appeared in which LHC bounds on H — ur
from Run 1 are calculated based on the original CMS h — u7 analysis. They give
results in terms of a generic flavor-changing coupling 7,,-, but don’t look at any specific
models. Their work is complementary to ours. We have not looked at experimental
details, but instead will focus on specific models, whereas they do a detailed analysis
of the experimental situation.

Shortly after the discovery of the Higgs, Harnik, Kopp and Zupan[46] showed that
one could extract a bound on h(125) — p7 from existing bounds on h(125) — 77. The
bound was O(10)%, but that still gave a better bound on an hur vertex at the time
than rare 7 decays. A similar bound could be derived from H/A — 77 searches. While
such searches have been carried out, they have all been in the context of a specific
supersymmetric model. In order to have any hope of seeing a signal, it was necessary
to enhance the 7 Yukawa coupling with a large tan 8. The bounds from CMS[47] and
ATLAS[48] typically give an upper bound on tan /3 of 10 — 20 over the mass range for
H or A from 150 GeV to 400 GeV. Extraction of a bound for H/A — p7 would thus
be very weak. This will improve with Run 2 data, but a direct search for H/A — pr
would be simpler and more reliable.

In the next section, we look at H/A — pur in the Type III model, and in the
following section study the BGL model. As noted above, the rate in the latter model
can be expected to be large, and we find that to be the case. The last section contains

our conclusion.

2.2 The Type III model

The requirement that there be no tree-level flavor-changing neutral currents, the
Paschos-Glashow-Weinberg theorem[49, 50], is that all fermions of a given charge must
couple to a single Higgs multiplet. This is generally implemented in a 2HDM by use of

a Zo symmetry. Without such a symmetry, the Yukawa Lagrangian (involving leptons
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only) is
Ly = —mLpLp® — 2Ly Lp®; (2.5)

where the 7; are real 3 x 3 matrices. ®; is given a vacuum expectation value (vev) of
(3) /v/2, and tan § is defined as vy /v1. An alternative basis, rotated by an angle f3,
has one Higgs, Hi getting a vev and the other Hs not. In such a basis, tan 5 doesn’t
have the usual meaning. Finally, the third basis is the physical, or mass, basis, in
which the scalar mass matrices are diagonalized; this basis is rotated by the angle a
relative to the above. A very detailed description of the various bases was discussed
by Davidson and Haber[51].

A nice description of the Yukawa couplings in the type III model was provided by

Mahmoudi and Stal[52]. They noted that the above Yukawa Lagrangian gives a mass

matrix of
v
M = —(n1 cos 8 + n9 sin 2.6
\/5(771 B+ npsin 3) (2.6)
and then define
Kk =mnpcos B+ nesin 8 (2.7)
and
p = —ny1sin B 4 ny cos S. (2.8)

Thus, p does not participate in generating mass for the fermions. In the Higgs basis,

in which only one field gets a nonzero vev, the Lagrangian is
,Cy == —I{I/LLRHl - pELLRHQ (29)

By construction, « is flavor-diagonal, but the p matrix is arbitrary.
Moving to the mass eigenstate basis, they show that the Lagrangian, expanded in

terms of neutral fields, becomes

_ 1 - 1 =
— Ly = —=LI[K sga + p cga] Lh + \EL [k cga — p Sga] LH + ﬁLyg,pLA (2.10)
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where g = sin(ff — a), cgq = cos(8 — «), h is the 125 GeV Higgs, and H and A are
the heavy neutral Higgs. If the couplings of the h are SM-like, then cg, must be small.
This Lagrangian shows that the FCNC couplings of the h will be thus suppressed by
CBa» Whereas those of the heavy scalars will not be.

The flavor-changing couplings are in the p matrix, which, since they have nothing
to do with the fermion masses, are arbitrary. Cheng and Sher[11] argued that the
most conspicuous feature of the fermion mass matrix is the hierarchical structure, and
showed that fine tuning in the Yukawa matrices could be avoided with an ansatz that

has become known as the Cheng-Sher ansatz
(2.11)

where the A;; are O(1). In other words, the flavor-changing couplings are of the order of
the geometric mean of the individual Yukawa couplings. This ansatz has been studied
extensively in recent years, and several of the bounds on the \;; are now somewhat
less than one. However, some have argued that the relevant vev is the smaller of the
two, leading to a factor of tan 3 in the effective value of the );;. Others include an
extra factor of v/2. In any event, the type III model is generally defined by use of
the ansatz, with the A;; of O(1), with the understanding that this is just an order of
magnitude estimate.

One can now look at decays of the light Higgs. The width of the decay into ur+ 7u

is given by
mumymy,

32 2
L(h = put) = A, Cq Tro?

(2.12)

Plugging in the numerical values and dividing by the width of the light Higgs yields
B(h — pr) = 0.0076X% 3, (2.13)

which is consistent with the CMS central value of 0.0084 4 0.0038 if the product of A,

and cg, is not too different from 1. Note that studies of the type I model, for example,
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allow cg, to be as large as 0.4, so this is not unreasonable. This is also consistent with
current reports from CMS[17] which measures the h — p7 branching fraction to be
0.0025 £ 0.0025. This is consistent with the alignment limit of the 2HDM.

For the light Higgs decay into 77, one finds
B(h — 77) = 0.0633(580 + A\rrCga)? (2.14)

In the alignment limit of cg, = 0, this reduces to the Standard Model result. Note
that there are currently large uncertainties in the h — 77 experimentally measured
branching ratios, and a 20 — 30% deviation could easily be accommodated as long as
Arr is not too large. Thus, keeping in mind that the A;; are order of magnitude, one
sees that this model can account for the observed results in light Higgs decays.

But we are interested in heavy Higgs decays, and ratios of branching ratios can be
calculated. For the moment, consider the alignment limit (the results will then apply
to the pseudoscalar as well). In this case, one finds

B(H — p1)  myu \pr

—_— = . 2.1
B(H —771)  m; A2, (2.15)

Since the ratio of A\, to A;; must be somewhat larger than one, this is at least 6% and
could be substantially higher. In the alignment limit, there is no coupling to vector
bosons, thus the only other substantial decay is H — bb, and

B(H —717)  m, )\727
B(H —bb)  3mp A2,

(2.16)

If the A’s are equal, this will be the same as the ratio of branching ratios for the light
Higgs, or approximately 11%, although this number will have large uncertainties. This
will not be qualitatively changed by moving away from the alignment limit. For the
heavy Higgs in the model, we thus see that it is unlikely that the ur decay mode will
dominate, However, it will likely be substantially higher than the branching ratio for

the light Higgs.
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It was noted earlier that very recent results from Buschmann, Kopp, Liu and Wang
[45] are complementary to ours in that they look at experimental bounds. They give
bounds from the 8 TeV LHC run on a possible flavor-changing coupling. and consider
both LHC constraints from H/A decays as well as constraints from 7 — py. In our
notation, they show that the preferred values of p,, are between 0.004 and 0.02. From
Equation 7, this gives a value of A between 2 and 12. However, their technique will be
very valuable in LHC Run 2, where much tighter bounds can be obtained.

The BGL model is a very different model with much less uncertainty in the results,

since the mixing is directly related to the PMNS matrix. We now turn to that model.

2.3 The BGL Model

In a general 2HDM the Yukawa Lagrangian involving only quark fields takes the form
,Cy = —Qi(l)/ [Fl (pl + FQ q)z} d(}]g - a% [Al (il + A2 (i)Q] u(l)% + H'C‘v (217)

where T'; and A; are the Yukawa coupling of the quarks. BGL showed[12] by imposing

a discrete symmetry on the fields,
QY — exp (i1) QY. , Ul > exp (127) u%y, Dy — exp (i1) Pg, (2.18)

where 7 # 0, m, with all other quark fields transforming trivially under the symmetry,
one could have the Yukawa interactions completely determined by the CKM matrix V.
The index j can be fixed as either 1,2 or 3. An alternative symmetry can be chosen

where the fields transform as
QY — exp (i1) QY , dhy — exp (i27) dby,, P2 > exp (—iT) Oa. (2.19)

The set of symmetry transformations given in Eq. (2.18) leads to FCNC contained only

in the down sector, while the transformation in Eq.(2.19) gives rise to FCNC in the up
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sector. This leads, depending on the value of k, to six possible models. Similarly, one
can have the same possibilities applied in the lepton sector, leading to FCNC in the
charged lepton sector. These models are referred to as v; models.

The Yukawa couplings of the light Higgs can be derived following Refs. [12] and

[43]. Their result for the Yukawa coupling to ur is
M _
Y, = —U;jUTjTTcﬂa(tﬁ +i5') (2.20)

where there is no sum on j and the values of j = 1,2, 3 correspond to three possible
models. Here we see the attractive feature of BGL models. The flavor-changing
couplings are given by the elements of the PMNS matrix, and thus are determined
only by the usual mixing angles in 2HDMs.

The decay width of h — fiT 4 Tp in the v; type model is then,

_ 2 -1 2 2
T(h = pr) = Ty (b — 77) 3o (tﬁ +15 ) Ui Ul (2.21)

mzmh
8mv? °

where Iy, (h — 77) =

From the measured decay width (using CMS results) one can now plot the allowed
region in the g — cg, plane. This is done in the left figure of Figure 2.1 using limits
from run one data, with one and two standard deviation bands plotted. Note that the
alignment limit of cg, = 0 is excluded since the CMS branching ratio is more than 2o
away from zero. Considering the most recent data this is no longer the case.

Of course, the LHC data from Run 1 does not allow the properties of the Standard
Model Higgs to deviate too much from the alignment limit. There have been many
studies of the allowed range in 2HDM models (see Ref. [53] for an extensive list of
references). Since the quark and gauge boson sectors of this model are very similar
to the Type I 2HDM, the parameter-space can be restricted by this data. In right
plot of Figure 2.1, we have shown the region allowed by the LHC Runl data in the
Type 1 model. This will be slightly modified in the BGL model. The couplings of the

vector bosons in the Type 1 and BGL models are the same. The coupling to quarks
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in the BGL model is the same as in the Type 1 model times sin? 3 + sin 3 cos? 3. For
tan 8 > 2, this gives a discrepancy of a few percent, which is negligible. As a result,
the full analysis in the BGL model will be virtually indistinguishable from the bounds
on the right side of Figure 2.1. To a good approximation, for most values of tan 3, one
requires (at 20) only that |cosg, | < 0.4 and we will thus restrict our discussion to

those values.
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Figure 2.1: (Left) Plot of allowed region for tanf as a function of cos(8 — «) for
h — p7 in the (v3,t)-type BGL model using 1o and 20 confidence intervals. (Right)
Bounds placed on tan 8 and cos(8 — «) for the Type-I 2HDM using data from LHC
Runl.

We now turn to the couplings of the heavy Higgs. It is straightforward to calculate
the width of the heavy Higgs bosons in the model. We are choosing a value for the
heavy Higgs mass of 350 GeV. If it is heavier, the decay into top quark pairs will
dominate the decays, leading to very small branching ratios. Below 350 GeV, the
masses cancel in branching ratios, except for phase space in decays to pairs of gauge
bosons. However, these decays are suppressed by c% ., for H and vanish for A, and thus
the results are not very sensitive to the mass chosen. The results are in Table 2.1 and
Table 2.2.

Not surprisingly, the flavor-changing decays are proportional to the leptonic mixing
angles and 326 o» Which are not small. From these widths, one can calculate the branching
ratio of H/A — pr. Note that the branching ratio of the A is independent of cg,. The

results in Tables 2.1 and 2.2 depend on the model chosen - one can set 5 = 1,2,3 and
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k =1,2,3 independently. Note that for k = 1,2, the b-quark coupling scales as tan 8
(instead of 1/tan 3 for k = 3). Thus, the b-quark coupling will not be suppressed, and
the branching ratio to u7r for either H or A will be very similar to that of Model III in
the last section. It will never be particularly large. We will thus focus on the k = 3
models.

The most interesting cases are when j = 2,3. For j = 1, the PMNS mixing angles
are smaller. The value of |U;;| and |U,;| are between 0.45 and 0.77 for j = 2,3. Since
Vi is very close to one, the b-quark coupling is very small for large tan 8. Thus, for
example, the width for A — bb becomes small for large tan 3 (in the & = 3 model),
leading to very large branching ratios for A — pur. We are not including a possible
decay of the H into two Higgs bosons since it depends on unknown scalar self-couplings
(there is no such coupling for the A).

In the left side of Figure 2.2, we plot the branching ratio for H — p7 and A — ur
in the j = k = 3 model. The solid (dashed) lines correspond to H (A) decays. One can
see that huge branching ratios for H — p7 will occur for a large part of the allowed
parameter-space, and for virtually all of the parameter-space, the branching ratio
for A — pr will be very large. In the right side of Figure 2.2, we plot the same for
j =2,k = 3. Here the branching ratios are a little smaller because the (3,2) element
of the PMNS matrix is smaller than the (3, 3) element.

Thus, in one version of the BGL model, the branching ratios to u7 in the allowed
parameter space can be quite large, over 60%. This will certainly have a substantial

impact on the experimental searches for these states.

2.4 Results

Should the CMS indications for a nonzero branching ratio for h — u7 be confirmed in
Run 2, the most likely culprit will be a Two-Higgs Doublet Model. This would imply a
nonzero branching ratio for the heavy neutral scalars in the model. The recent analysis

of Buschmann, et al. [45] shows that one can extract some bounds on H — ur from
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Table 2.1: Decay widths of for the heavy scalar Higgs , H in the (v}, ux)-type BGL
models.
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Table 2.2: Decay widths of for the pseudoscalar Higgs A in the (v}, uy)-type BGL
models.

the CMS search, but a dedicated search for the decay mode in Run 2 could be quite
valuable. In general, the flavor-changing neutral couplings can be arbitrary, but can be
tightly constrained in particular models, although one would expect the suppression
by cgo in h decay to be absent in H and A decays.

We have examined two such models, Model III and the BGL model. Are there
any other models that might have a large rate? In the conventional 2HDMs, there are
no tree level FCNC and thus flavor-changing decays can only occur through a loop.
This will cause a substantial suppression in the branching ratios. It has been noted
that supersymmetric models with large smuon-stau mixing can at large tan g yield a
relatively large rate for [54] 7 — 3p and for [55] 7 — nu, due to a tan® 3 dependence
but the rates are still quite small and also go through a loop. We know of no other

models which are predictive and can yield a large branching fraction for H/A — ur.
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Figure 2.2: Composite of plots of the bounds for h/H/A — pr. The left plot shows
bounds on tan 8 and cos(8 — «) in the (v3,t)-type BGL model. The right plot show
bounds in the (v, t)-type BGL model. Green and yellow bands are bounds at 1o and
20 level from h — p7 using CMS data. Solid (Dashed) lines are contours for H — ur
(A — pr) at the various branching fractions labeled in the plots. In each case the
Higgs masses m 4 and mp were chosen to be 350 GeV.

In Model III, the ratio of H — u7 to H — 77 will be at least 6% and could be
much higher, and the latter will have a branching ratio of roughly 10%. In the BGL
model, there is an additional enhancement since the flavor-changing couplings are
proportional to the PMNS matrix, which has very large mixing in the 2-3 sector. We

have seen that branching ratios for H — ur and A — u7 can be as large as 60%.
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Chapter 3

S3 Orbifold Higgs

3.1 Introduction

The discovery of the Higgs boson[56, 57] has provided us with the last piece needed
to complete the Standard Model (SM). Due to radiative corrections to the Higgs
mass term, the SM requires an extreme fine tuning in order to keep the weak scale
much smaller than the Planck scale. With the belief that such a tuning in nature
is unnatural, many solutions have been proposed to eliminate the large quadratic
corrections to the Higgs mass, thus eliminating the hierarchy problem. Supersymmetry
and compositeness are prime examples of such theories, but current null search results
for SM partners are now forcing many of these models into finely tuned territory [8].
The fine tuning that is necessary to create a hierarchy between the weak scale and the
scale which new physics appears is called the little-hierarchy problem][58].

The Twin Higgs[5, 59] is a solution to the little-hierarchy problem where the SM
Higgs is played by the role of a pseudo-Goldstone boson. The SM fields are joined
by a set of partners called “twin” states. These SM partners differ in comparison to
those in supersymmetry in that they carry no SM charge. This would make current
searches for partner states to the SM especially challenging and may explain current
null search results at the LHC. A discrete Zs symmetry that interchanges the SM fields

with the twin states then ensures gauge, Yukawa, and scalar self interactions must
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be equivalent in the SM and twin sectors. This protects the pseudo-Goldstone Higgs
against the quadratic corrections the Higgs mass term receives in the SM. Typically
for cutoff scales A ~ 5 — 10 TeV these models do not suffer from any major fine tuning.
At higher scales a stronger mechanism such as compositeness or SUSY may keep the
weak scale natural to the Planck scale as demonstrated in UV completions of the Twin
Higgs[60-68].

Other theories of neutral naturalness have since been introduced[69-73], including
recent work which has demonstrated that the Twin Higgs is only the simplest example
in a large class of orbifold Higgs models[6, 7]. In orbifold Higgs models, the Higgs is
protected by an accidental symmetry resulting from an orbifold reduction of a larger
symmetry via some discrete group. These models also generically give rise to states
that are uncharged under the SM. The orbifold interpretation also lends itself nicely in
creating UV complete models as geometric orbifolds of some higher dimensional space.

In this chapter we explore one of these orbifold Higgs models arising from a non-
abelian orbifold pattern, namely S3. Like the Twin Higgs this produces hidden sectors,
one SM-like in structure and another exotic sector with an SU(6) color group, SU(4)
weak isospin group, and an SU(2) flavor symmetry among the Higgs and top partners.
Though the model has been specified in the original orbifold Higgs papers, the details
of the experimental signatures have yet to be carried out. In this chapter we explore
the phenomenology of the 125 GeV SM-like Higgs generated by the model and compare
results to the signatures predicted in the Twin Higgs.

In the next section we will review the features of the Twin Higgs. Following this the
formalism behind field theory orbifolds will be given as a necessity to understand how
orbifold Higgs models are constructed. The Ss-orbifold Higgs will then be presented
and we will demonstrate how a natural SM-like Higgs emerges from the model. Section
3.5 will analyze some of the phenomenology and compare the results to the Twin Higgs

and section 3.6 will contain our conclusions.
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3.2 Twin Higgs Review

We will now take a moment to review the Mirror Twin Higgs[5]. We begin with a
complex scalar, H, which transforms as a fundamental of a global SU(4) symmetry.

The scalar potential is given by,
V = -—m?H|?> + \H|* (3.1)

where m? > 0. H picks up a vacuum expectation value (vev), |(H)| = %, and the

global symmetry is broken to SU(4) — SU(3) yielding 7 massless Goldstone bosons.

We now explicitly break the global SU(4) by gauging the subgroup SU(2)4 X
SU(2)p C SU(4) such that H transforms as H' = (H4 Hp). After gauging this
symmetry the global SU(4) symmetry is still an accidental symmetry of the tree level
potential. In general, radiative corrections to the potential will not be invariant under
the accidental SU(4). For instance the Higgs gauge interactions generate terms such
as

2

9A
AV ~
v 1672

(GAIHal* + g% Hp) (3.2)

where we have used a uniform hard cutoff to regulate the integrals. This introduces
mass terms for the Goldstones that are quadratically sensitive to the cutoff. We
can eliminate this by introducing a discrete Zo symmetry, dubbed twin-parity. This
symmetry exchanges the gauge fields and H4 <> Hp which enforces that the gauge
couplings are equal, g = g4 = gp. Now,

9g%A?
1672

9g%A?

A
v 1672

(1H?) (3.3)

(1Hal* + |Hp|?) =

which is an SU(4) invariant. Thus the quadratic divergences do not contribute to the
masses of the Goldstone bosons. From here we can create twin copies of the fermions
and gluons and extend twin parity to the twin gluons and fermions. This will eliminate
the quadratic divergences due to the Yukawa interactions. The Higgs mass term and

quartic interactions arise from SU(4) breaking terms stemming from the one-loop
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effective potential.

Without additional soft terms added to the potential neither sector is suited to be
identified with the SM sector as the Higgs would be equally aligned with both A and
B sectors. This would lead to a 1/+/2 suppression in the couplings of the Higgs to the
SM which is not consistent with experiment. To identify the A-sector with the SM
we can add Vsope = p|Ha|? to the potential which softly break twin parity. Tuning
the soft term, p, against the SU(4) breaking order parameter, f, will suppress the
A-sector Higgs couplings to B-sector states by sin(v/f) where v is the vev of the SM
Higgs. For v <« f this provides a phenomenologically viable scenario where the SM
is associated with the A-sector. We will see in the following sections how the Twin
Higgs paradigm can be generalized by way of the orbifold Higgs and how the quadratic

divergences are eliminated (or at least suppressed) in general orbifold Higgs theories.

3.3 Building an Orbifold Higgs Model

In this section we will briefly review field theory orbifolds which will be vital to
understanding orbifold Higgs models. For a more detailed approach of what follows

we refer the reader to ref. [6, 74].

3.3.1 Field Theory Orbifolds

Let us begin with some initial field theory, called the parent theory, which has some
global or gauge symmetry, G. To orbifold the parent symmetry by some discrete group,
G, we must study the action of G on G. This requires that we first embed G into the
parent theory which we will do through the regular representation embedding. The
fields in the parent theory that are left invariant under the action under G will be
those that comprise the daughter theory and all other states are projected out.

As an example, consider a parent theory consisting of a scalar, H, which transforms
as a bifundamental of a gauged SU(I'N) and global SU(T'F'), where F, N € IN, as

shown in Figure 3.1 . We will then take our discrete group, G, to be of order, |G| =T.
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We now need to determine the orbifold of the parent theory by G. First, we express G

| SUTN) SU(TF)

H| O O

Figure 3.1: Transformation properties of the scalar field H in the parent theory.

in the regular representation which has the following well known decomposition,
ng
=@ 14, @1 sel.I. (3.4)
a=1

Here, s labels the elements of the group, r, denotes the irreducible representations of
G with relative dimension d,, and « sums over the ng irreducible representations. To
embed G into SU(NT') we take the direct product of the N-dimensional identity and

regular representation yielding,

’Y}gVE]lN@)'Yf%:@]lNda@Tg- (35)

«

We can now study the transformation properties of the fields in the parent theory
under action of yx and project out all fields not invariant under the action. For fields

transforming in the adjoint representation, the invariant states are those satisfying,

A=A ()] (3.6)

for all s € {1...'}.The orbifold of SU(I'V) by G reduces the symmetry to a direct

product of smaller symmetry groups in the daughter theory, namely

ng

SU('N) — (H SU(daN)) ® (U(1))"e. (3.7)

a=1

To find the invariant components of fields transforming in the fundamental represen-

tation it is convenient to construct projection operators. For the field H transforming
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as a bifundamental of SU(I'N) x SU(I'F) the projection operator takes the form,

T
1 .
thzlwggvﬁz®(7%), (3.8)

where Pgr acts on the left of H. This procedure will in general leave us with a daughter
theory with non-canonically normalized kinetic terms with rescaling related to the
dimension of the representation, d,. Requiring normalized kinetic terms in the orbifold
daughter theory induces a rescaling of the interactions of the daughter theory. Scalar
masses, m, and double-trace quartic interactions A in the parent theory do not get
rescaled in the daughter, gauge couplings, g, and yukawas, y, of the parent get rescaled

by 1/v/dq, and single trace quartics get rescaled by 1/d,.

3.3.2 Orbifold Higgs

We can now construct orbifold Higgs models. We begin with a parent theory consisting
of a complex scalar, H and fermions, () and U which transform as bifundamentals of
a gauged SU(2I") x SU(3I') and global SU(I") flavor symmetry. As before, I" will be
taken to be the order of the discrete group, G, used to construct the daughter theory.

The matter content is shown in Table 3.1 and a quiver diagram in Figure 3.2 .

SU(2r) H
| SU@I) SU(2r) | SU(T)
Q [wo | 1 0 ]
‘ Q O O 1
s -
U vl O 1 0
Figure 3.2: Quiver diagram of the parent Table 3.1: Matter fields in the par-
theory. Circular nodes are identified with ent theory.

gauge symmetries and square nodes with
flavor symmetries.

The scalar potential of the parent theory including the Yukawa interactions is given
by
Vp > —m?H|> + A (|H?)? + yQHU. (3.9)
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h
SU(2dy) h(l) sU@d)) ' (ng)
q(1 su@)| - -+ Q(ng) SU(dng)
g
5U(3d1) SU(3dn,
“a) () U ng)

Figure 3.3: Quiver diagram of the daughter theory resulting from the orbifold
reduction of the parent theory.

From here we follow the orbifold procedure sketched out above to project out the
invariant states of the parent theory. The parent theory will descend to a daughter
theory which can be described by a quiver diagram with ng sets of disconnected nodes,
each of which resemble the original structure of parent theory as seen in Figure 3.3.
Each disconnected diagram corresponds to a distinct sector charged only under the
gauge fields in its own sector 1.

The potential of the daughter theory takes the form,

ng ng 2 ng
VgD —m? Z |ha|2 + A (Z |ha’2> + Z \/%qahaua. (3.10)
a=1 @

a=1 a=1

The scalar quartic interactions in the daughter theory allows interactions between
fields in each sector, not unlike in the Twin Higgs. Note the tree level scalar potential
inherits an accidental SU(2I") symmetry. There is also a residual discrete symmetry in
the scalar sector equivalent to the symmetry group leaving the tuple {di,da, ..., dn; }
invariant. These accidental symmetries may however be broken by radiative corrections

due the gauge and Yukawa interactions.

!This true up to U(1)s in the daughter theory which will in general charge multiple sectors. We
will address consequences of the residual U(1) factors in section 4.
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Solving for the leading order radiative corrections to the scalar potential we find,

A2 o
1 2 2 a)|2
v o o3 (—6y* + 395 + (4T + 2)A) <a§_1|h( )| ) (3.11)
39% 1 a)(2 2
- o <§ :d—2|h( )12 ] A2, (3.12)
a=1 ¢

The hard cutoff, A, should be thought of as the scale at which the heavier UV states in
the theory appear in a viable UV completion of the daughter theory. If the orbifold is
realized geometrically, this scale is proportional to the inverse of the compactification
length of the extra dimension. Note the corrections in the first line share the accidental
SU(2T") symmetry of the tree level potential. One may have naively expected the
quark yukawas to spoil this accidental symmetry but there is a fortunate cancelation
of the rescaled couplings with the extra color factors. It is only the gauge interactions
at leading order which spoil the accidental SU(2I') symmetry and can contribute to
the masses of the would be Goldstones.

The most simple example of an orbifold Higgs is to take the discrete group G = Zo.
We would then begin with a parent theory with fields transforming under SU(6) x SU (4)
gauge groups and a SU(2) global symmetry. Upon orbifolding this theory by Zs the
parent theory would descend to a daughter theory with two sectors, each charged
under a copy of SU(3) x SU(2) . This is nothing more but the Twin Higgs! The
tree level potential of the daughter theory has the desired accidental SU(4) global
symmetry and a discrete symmetry of Zsy which arises as a consequence of the orbifold
reduction of the parent theory whereas in the Twin Higgs it was posited as a means to

eliminate quadratic divergences.
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3.4 S3-Orbifold Higgs

With the formalism developed we are now equipped to build up the S3 orbifold Higgs

model. We begin with the potential of the parent theory
Ve = —m?HP?+X(H]?) +yQHU (3.13)

where the fields transform as bifundamentals under a SU(18)® SU(12) gauge symmetry
and a global SU(6) flavor symmetry.

We will now construct the daughter theory using G = S3 which has 3 irreducible
representations: one dimensional trivial and sign representations, and a single two
dimensional representation. It follows that we expect three different sectors each
charged under its own gauge groups, two of which will look standard model like in
structure, and a third exotic sector with larger gauge groups and a residual flavor
symmetry. The quivers of the parent and daughter theories are given in Figure 3.4.
The invariant combinations of the parent fields that survive the orbifold projection
and comprise the daughter theory of the S3-orbifold Higgs model were worked out and

are given in ref. [6].

suaz) H SU2) hA SU@2) hB SU4) hC

Q sue| — qga sum| gp sum| qc SU2)

SU(18) U SUG) Y 44 SUB) Y g SUG) ) 4

Figure 3.4: Quiver diagram of the parent and daughter theory resulting
from the Ss-orbifold reduction. The trivial SU(1) nodes are drawn only to
demonstrate the connection to the parent theory.
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The tree level Higgs potential of the daughter theory is then

0
Vi" = —m® (Jhal + ksl + |he, P + b, ) (3.14)
2
£ Al + hal? + ey ? + [he, ) (315)
_ _ Yy _ Yy
+ ygahaua +ygphpup + chhcl uc, + chhCQUCQ' (3.16)
We use the subscripts C7 and Cj to distinguish the residual SU(2) flavor symmetry.
Note the factors of 1/ /2 in the c-sector Yukawa interactions. This comes from the
rescaling of terms related to the relative dimension of the irreducible representation.
We now need to include the radiative corrections which will allow us to study the
vacuum alignment. The dominant contribution to the one-loop effective potential

comes from the top loops,

4 2 2
(1) 3y 4 A A A
Vv h 1 _ h 1 _ 3.17
o5 W [| Al °g<yz|hA|2>+' 5 og(y2|h3|2 (3.17)
1 A? 1 A2
+ ZlheyPlog | ——— | + =|hey[flog | ——— | | - (3.18)
gt L he, |2 e L |he,|?

Adding this contribution to the tree level scalar potential we find that [(h)|?> =

[(hB)? = 2[{hey)|? = 2(he,))? = %GT; = L f2. At this point none of sectors can
be identified with the SM-like sector due to the fact that the weak scales are not
adequately separated causing this Higgs to be not well aligned with the SM sector.

To remedy this we add a soft term of the form,

1 1 1
Vsoft = /72 <|hA|2 - 5|h3|2 - g’h01|2 - 5‘hC2|2> (319)

+ 0 (he, — hey)' (hey — hey) (3.20)

which will allow us to identify the A-sector with the SM-like sector. The first piece is
used to break the residual So symmetry of the daughter theory. The specific form is
chosen only to simplify future expressions for the vevs and masses. A more general

expression would alter the alignment between the B and C-sectors, but this plays a
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modest role in determining the phenomenology of the SM-like Higgs. The second term
is added to allow the would be Goldstones in the C-sector to acquire mass.

The addition of a soft term makes it difficult to gain analytic expressions for these
quantities so we introduce the following approximation. We approximate

3yt A? 3y A?
1 ~ 1 =4, f =A,B,Cq,Cy. (3.21
16 °g<32ha|2> 62 8 i) 0 T e T AB GG B2

This does remove the dynamics of the fields within the logarithm but those have a
much smaller effect compared to the dynamics in the multiplicative factor of |hy|*
in determining the vacuum alignment. The approximation is reasonable for f <
few x |(ha)].

Working from the approximate potential of the daughter theory,

Va o —m?([hal® + |hs[* + [hey |* + |he, ) (3.22)
+ A(hal? + ksl + [hey [ + hey ) (3.23)
1 1 1
2 2 2 2 2

hal® = <|hB|* — <|h ——lh .24

+ (Il = S1hal = Slne, P - Slnc, ) (3.24)

+ 0% (he, — hey)' (hey — hey) (3.25)

1 1
+ 5(\hA]4+]hB]4+2\hcll4+2\h02]4> (3.26)

we find the following expressions for the vevs,

_ 2 2 _ _
= 2[(ha)|* = GT—&-(S - %v Up = 6,\+5 +£ 5sv Ve, =V, T 6ato

(3.27)

Tumng agamst 5 allows us to achieve a vacuum alignment that is consistent with

6)\+
the A—sector being associated with the SM like sector in the theory. This corresponds
to a tree-level tuning on the order of 6v?/f2.

Upon diagonalization of the mass matrix we find the SM-like Higgs, h = cos(v/ f)$3 —
% sin(v/ f) (QSSB + ﬂgz%l + \/igbéz) where the ¢, fields are the components h,, in the

hermitian basis given in Eq. (A.1) of the Appendix. The corresponding mass of h is
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found to be m}% R~ %5 f?sin? (%) The remaining mass eigenstates are listed in the

Appendix.

3.4.1 U(1) Daughter Gauge Fields

Up to now we have set aside the residual U(1) factors of the daughter theory as
they play little importance in the determining the vacuum alignment. We willl
now take a moment to discuss some possibilities for handling these extra fields. A
simple option would be to set them aside or lift the U(1) fields via the Stueckelberg
mechanism[75, 76], leaving behind no massless gauge fields that interact with multiple
sectors. Hypercharge assignments, at least the SM sector, can then be added in that
would break the orbifold correspondence to the mother theory and will contribute
additional radiative corrections to the Higgs effective potential. This will be the path
we take in analyzing the collider signatures of the model in section 3.5.

Another interesting possibility is to take a linear combination of the U(1)s and
identify it with the hypercharge generator and lifting the remaining U(1)s through the
Stueckelberg mechanism. In this case the hypercharge generator will charge the SM and
C-sector which places additional constraints from precision electroweak measurements

and charged dark matter searches on this scenario.

3.5 Phenomenology

In this section we apply a similar analysis to[77], whereby we calculate the modificatio