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Abstract We investigate the precessing motion around the
the regular black hole with an asymptotically Minkowski
core which has a suppression parameter �. We obtain the
third-order post-Newtonian quasi-Keplerian motion of a test
particle in this spacetime and find its relativistic periastron
advance. Then, we test this model with the precessing motion
of the star S2 and of OJ 287 and determine the upper limits
of the dimensionless suppression parameter as �/m ∼ 10−3,
where m is the mass of the black hole. Compared with the
bound given by the shadow of Sgr A*, our bound on �/m is
reduced by 2 orders of magnitude, although our upper limit
of � still needs further improvement.

1 Introduction

The detection of gravitational waves [1–9] and the direct
images of supermassive black holes in the center of both
galaxy M87 [10–15] and the galaxy Sgr A* [16–21] indi-
cates the widespread existence of black holes [22,23] in the
Universe, serving as a compelling testament to the correct-
ness of General Relativity (GR), which has been thought to be
the best gravitation theory at present, though there exist some
unsolved questions [24,25]. As the simplest object predicted
by GR [26], black holes possess distinctive features, such as
the event horizon and the central singularity [27,28], both of
which give rise to specific challenges, including information
loss and the breakdown of GR. To circumvent the spacetime
singularities, various approaches have been proposed, such
as bouncing by quantum pressure [29–31], considering a reg-
ular core [32–40], and building a quasi-black hole [41–44].
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In recent years, considerable attention has been devoted
to the family of regular black holes, which typically have a
de Sitter core with finite central energy density and an equal-
but-opposite central pressure [32–40]. The properties of these
regular black holes have been widely investigated [45–64].
A de Sitter core implies the far region which has posi-
tive curvature and accelerated expansion due to dark energy
including cosmological constant, whereas a Minkowski core
implies the far region which has a flat spacetime. In this
work, we focus on a new kind of regular black hole which
has an asymptotically Minkowski core instead of a de Sitter
one [65]. It is realized through an exponential reduction of the
Misner–Sharp quasi-local mass with a suppression parame-
ter � and exhibits finite curvature everywhere. This model
offers the potential for greatly simplifying the physics in the
deep core by replacing high-order polynomial modifications
of the metric coefficients with more elegant special functions,
such as an exponential function [65]. Its geometric proper-
ties were thoroughly examined [66–68], and a discussion on
the thin-shell traversable wormholes derived from it was also
conducted [69]. Extensive investigations have been carried
out on the circular time-like and null orbits around it [70,71],
while comprehensive tests of such a black hole at the horizon
scale were also undertaken [72–75]. In particular, an upper
bound of the suppression parameter � was determined to be
108 m based on observations of the shadow of Sgr A* [75].

However, little attention has been paid in testing this model
by the motion of a celestial body. Therefore, in the present
work, we will consider the bound orbits around the regu-
lar black hole with an asymptotically Minkowski core and
test such a spacetime with the precessing motion. Since the
advance of the perihelion of Mercury becomes one of the
strongest evidences of the GR [76], precessing orbits have
been a useful tool for understanding properties of space-
times. In principle, the advance of the mean anomaly at epoch
may be fruitfully adopted together with relativistic periastron
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advance in tests of GR and several modified models of grav-
ity [77]. Especially, the potential of a possible use of the
mean anomaly at epoch in the ongoing tests with the satel-
lites LAGEOS and LAGEOS II is discussed in Ref. [78]. In
GR, ones usually employ the post-Newtonian (PN) approx-
imation method to study the precessing motion of bodies.
Several analytical formulas have been derived that account
for first and higher-order corrections, which are proportional
to the mass of a central body [79–92] and its spin [93–
103]. The research on the precessing motion of test parti-
cles has been extended to include the effects of the charge
in Reissner–Nordström spacetime [104–106], as well as the
second-order post-Newtonian (2PN) corrections due to the
spin-induced quadrupole on the equatorial motion in Kerr
spacetime [107,108]. Additionally, the next-to-leading spin-
orbit coupling effects on the generally inclined motions in
Kerr spacetime have been investigated [109]. The 2PN pre-
cessing motion [110] around the regular Bardeen black hole
has also been studied [111]. On the other hand, the precess-
ing motion have been proved to a powerful way for test-
ing alternative theories of gravity by the planets around the
Sun [112–127], by the exoplanets around other stars [128–
137], by the binary pulsars [138–149], and by the stars around
Sgr A* [150–165].

Inspired by the regular black hole with an asymptotically
Minkowski core [65], we take this model as the description of
a black hole, whose deviation from the Schwarzschild space-
time is characterized by the suppression parameter �. We will
derive the 3PN solution for the quasi-Keplerian motion of a
test particle in this spacetime, as well as its relativistic peri-
astron advance. Then we will test this model with the star S2
around Sgr A* [166] and with OJ 287 [167], and determine
the upper limit of �. Our analysis will show that, compared
with the bound on �/m ∼ 10−1 based on the shadow of Sgr
A* [75] where m is the mass of the black hole, our upper
limit would be improved by 2 orders of magnitude.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review the metric of the regular black hole with an
asymptotically Minkowski core and give the 3PN Lagrangian
for a test particle on this black hole background, including the
particle’s orbital energy and angular momentum. In Sect. 3,
we provides the 3PN solution for the quasi-Keplerian motion
of the particle and derives its advance of periastron with the
effects of the suppression parameter �. In Sect. 4, we esti-
mate the upper bounds for � based on the detection of the
precession of the star S2 around Sgr A* and of OJ 287.
Finally, Sect. 5 is devoted to the summary and discussion
on our work. In Appendix A, we gives the standard pertur-
bative calculation of the relativistic periastron advance and
the mean anomaly at epoch.

2 3PN Lagrangian of a test particle in the spacetime

The spacetime of the regular black hole with an asymptoti-
cally Minkowski core reads (c = G = 1) [65]

ds2 = −
(

1 − 2m e−�/r

r

)
dt2 + dr2

1 − 2m e−�/r

r

+r2dθ2 + r2 sin θ2dφ2, (1)

wherem denotes the standard gravitational mass. As the sup-
pression parameter � → 0, the spacetime asymptotically
approaches the Schwarzschild spacetime in standard coordi-
nates. Thus, � can be seen as a measure of the deviation from
Schwarzschild spacetime.

Using the Cartesian coordinates

x0 = t, x1 = r sin θ cos φ,

x2 = r sin θ sin φ, x3 = r cos θ, (2)

we can transform the metric (1) into

ds2 = −
(

1 − 2m e−�/r

r

)
dt2 +

[(
1 − 2m e−�/r

r

)−1

− 1

]

×
(
x · dx
r

)2

+ dx2, (3)

where x = (x0, x1, x2, x3). In accordance with the PN
approximation method, the metric (3) can be expanded in
powers of m/r where r = |x|.

In the harmonic coordinates, the metric of the regular
black hole with an asymptotically Minkowski core in the
3PN approximation can be written as

g00 = −1 + 2m

r
− 2m2

r2

(
1 + �

m

)
+ 2m3

r3 − 2m4

r4 , (4)

g0i = 0, (5)

gi j = δi j

(
1 + 2m

r
+ m2

r2

)
+

(
1 + 2m

r

)m2

r2

xi x j

r2 , (6)

where i and j range from 1 to 3 and εi jk represents the Levi-
Civita symbol. In the above metric, we only retain the leading
contribution of �, since we expect its effects on the orbital
motion would be significantly smaller than those from GR
and very hard to detect with the current observational capa-
bilities.

Therefore, we can find the Lagrangian for the test particle
as

L = 1

2
v2 + m

r
+ 1

8
v4 + 3

2

m

r
v2 − m2

2r2

(
1 + 2�

m

)

+ 1

16
v6 + 7

8

m

r
v4 + 7

4

m2

r2 v2 + m2(v · x)2

2r4 + m3

2r3

+ 5

128
v8 + 11

16

m

r
v6 + 45

16

m2

r2 v4 + 5

4

m3

r3 v2
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+3m3(v · x)2

2r5
+ m2(v · x)2

4r4 v2 − 3

8

m4

r4 , (7)

where v is the velocity of the test particle, and the energy E
and the angular momentum J for this particle in the equato-
rial plane as

E = 1

2
v2 − m

r
+ 3

8
v4 + 3

2

m

r
v2 + 1

2

m2

r2

(
1 + 2�

m

)

+ 5

16
v6 + 21

8

m

r
v4 + 7

4

m2

r2 v2 + m2(v · x)2

2r4 − m3

2r3

+ 35

128
v8 + 55

16

m

r
v6 + 135

16

m2

r2 v4 + 5

4

m3

r3 v2

+3m3(v · x)2

2r5
+ 3m2(v · x)2

4r4 v2 + 3

8

m4

r4 , (8)

J = |x × v|
[
1 + 1

2
v2 + 3m

r
+ 3

8
v4 + 7

2

m

r
v2 + 7

2

m2

r2

+ 5

16
v6 + 33

8

m

r
v4 + 45

4

m2

r2 v2 + 5

2

m3

r3 + m2(v · x)2

2r4

]
.

(9)

It is evident that when � = 0, the the Lagrangian, the energy
and the angular momentum of the particle revert to those for
the Schwarzschild spacetime. In the following section, we
will use them to derive the analytical solution for the quasi-
Keplerian motion of the particle, including its advance of
periastron affected by the suppression parameter.

3 3PN solution for quasi-Keplerian motion

The trajectory of the test particle in the equatorial plane of
the regular black hole with an asymptotically Minkowski
core can be written as

x = r(cos φ ex + sin φ ey), (10)

where φ represents the azimuthal angle, and ex and ey denote
the unit vectors along the x-axis and y-axis, respectively.

By using the procedure given by Ref. [79], we can obtain
the 3PN solution for the quasi-Keplerian motion of this par-
ticle as

x = r(cos φ ex + sin φ ey), (11)

r = ar (1 − er cos u), (12)

φ
(2π

�

)
= υ + N1 sin 2υ, (13)

υ = 2 arctan
(√

1 + eφ

1 − eφ

tan
u

2

)
, (14)

n t = u − et sin u + N2(υ − u) + N3 sin υ, (15)

with

ar = m

−2E
[
1 + 7

2
E + 1

4
E2 + 8

m2

J 2 E

−1

8
E3 + 16

m2

J 2 E2 + 64
m4

J 4 E
]
, (16)

e2
r = 1 + 2EJ 2

m2 − E
[
12

(
1 − �

3m

)
+ 15

EJ 2

m2

]

+ E2
[
30 + 80

EJ 2

m2 − 32
m2

EJ 2

]

+ E3
[
4 − 372

EJ 2

m2 − 48
m2

EJ 2 − 256
m4

E2J 4

]
, (17)

et = er
[
1 + 8 E + E2

(
36 + 8

m2

EJ 2 − 30m√−2EJ 2

)

+E3
(

160 + 52
m2

EJ 2 + 64
m4

E2J 4

− 765m

2
√−2EJ 2

+ 420m3
√

(−2EJ 2)3

)]
, (18)

eφ = er
[
1 − m2

J 2 E
(

10 − 11E + 92
m2

J 2

)]
, (19)

� = 2π
[
1 + 3

m2

J 2

(
1 − �

3m

)
+ 15

2

m2

J 2 E + 105

4

m4

J 4

+15

4

m2

J 2 E2 + 315

2

m4

J 4 E + 1155

4

m6

J 6

]
, (20)

N1 = 1

8

m4

J 4

[
1 + 2EJ 2

m2 + E
(

36 + EJ 2

m2

)
+ 20

m2

J 2

]
, (21)

N2 = 30m E2

√−2 EJ 2

[
1 + E

(19

4
+ 7

m2

EJ 2

)]
, (22)

N3 = 40 E2 m
2

J 2

m√−2 EJ 2

(
1 + 2 EJ 2

m

) 1
2
, (23)

n = (−2E)
3
2

m

[
1 + 15

4
E + 555

32
E2 + 9795

128
E3

− 30mE2

√−2EJ 2

(
1 + 17

2
E + 7

m2

J 2

)]
, (24)

where ar , er , et , eφ , u and υ denote the semi-major axis, the
radial eccentricity, the time eccentricity, the angular eccen-
tricity, the eccentric anomaly and the true anomaly of the
quasi-Keplerian motion in the 3PN approximation, respec-
tively. n denotes the unperturbed mean motion, given by
n = 2π/P , P being the radial period.

Then, we find its 3PN periastron advance as


φ ≡ � − 2π

= 2π

[
3
m2

J 2

(
1 − �

3m

)
+ 15

2

m2

J 2 E + 105

4

m4

J 4

+15

4

m2

J 2 E2 + 315

2

m4

J 4 E + 1155

4

m6

J 6

]
. (25)

As the suppression parameter � approaches zero, Eq. (25)
reduces to the 3PN periastron advance of the binary system
in the extreme-mass-ratio limit given by Refs. [87,88]. For
practical purposes, it would be useful to express the above
equation in terms of the the orbital elements, we can obtain
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the periastron advance as follows:


φ = 
φGR + 
φ�, (26)

where the advance due to GR has three components 
φGR =

φ1PN + 
φ2PN + 
φ3PN [87,88], and we have


φ1PN = 3 ξ(1 − e2
t )

−1, (27)


φ2PN = ξ2(1 − e2
t )

−2(78 + 51e2
t )/4, (28)


φ3PN = ξ3(1 − e2
t )

−3[18240 + 28128e2
t + 2496e4

t

+(1920 + 3840e2
t )

√
1 − e2

t ]/128, (29)


φ� = −� ξ (G m)−1c2(1 − e2
t )

−1, (30)

where ξ = (G m n/c3)2/3 and m = m1 +m2. We restore the
speed of light c and the gravitational constant G in the above
equations for later convenience.

4 Confrontation of the suppression parameter with
observational data sets

In this section, we will estimate the upper bounds for the
suppression parameter �, based on the detected precession of
the star S2 [166] and of OJ 287 [167].

4.1 Star S2

The detection of the Schwarzschild precession in the orbit
of S2 around the supermassive black hole at the Galactic
Center, Sgr A*, was reported in [166]. This detection was
achieved through a combination of astrometric and spectro-
scopic measurements, with a particular focus on the astrom-
etry conducted by the four-VLT-telescope interferometric
beam combiner instrument GRAVITY. The inferred preces-
sion was found to be in agreement with the predicted preces-
sion, as indicated by [166]

fSP = 
φS2


φGR
= 1.10 ± 0.19. (31)

Assuming Sgr A* is a regular black hole with an asymptot-
ically Minkowski core, the precession of S2 can be modeled
as


φS2 = 
φ1PN + 
φ�, (32)

where the 1PN term and the suppression parameter one are,
respectively, Eqs. (27) and (30). Here, we only retain the 1PN
term of periastron advance in GR, neglect the 2PN and 3PN
terms in Eq. (26), since these higher-order effects on the orbit
of S2 are beyond the ability of the current technology.

Utilizing the best-fit orbit parameters of S2 as detailed in
Appendix E of Ref. [166], we obtain

� = (−1.89 ± 3.58) × 1011 m, (33)

Table 1 Upper bounds on �

� (m) �• Data

This work (−1.89 ± 3.58) × 1011 −0.30 ± 0.57 S2

(−4.87 ± 2.75) × 1010 −0.0018 ± 0.0010 OJ 287

[75] [1.07, 12.25] × 108 [0.0168, 0.1926] Sgr A*

or

�• = �

mSgrA∗
= −0.30 ± 0.57. (34)

4.2 OJ 287

Blazar OJ 287 is one of the first candidates with the assumed
compact system of two supermassive black holes in the cen-
ter, which is discussed as a new precision testing ground
for GR and alternate gravity theories. By analyzing the accu-
rately extracted (observed) starting epochs of ten optical out-
bursts of OJ 287 to track the binary orbit, the independent
and dependent parameters of the binary black hole system in
OJ 287 have been determined [167].

By including the leading terms associated with the
suppression parameter, the precession of OJ 287 can be
expressed as follows:


φOJ287 = 
φ1PN + 
φ2PN + 
φ3PN + 
φ�, (35)

where the 1PN, 2PN, 3PN and suppression parameter terms
of periastron advance are, respectively, Eqs. (27)-(30). Using
the independent and dependent parameters of the binary
black hole system in OJ 287 of Table 2 in Ref. [167],
including the precession rate of the major axis per period

φ = 38.62 ± 0.01 deg, the eccentricity e = 0.657, the
present (redshifted) orbital period P2017

orb = 12.062 year etc,
we obtain

� = (−4.87 ± 2.75) × 1010 m, (36)

or

�• = �

mOJ287
= −0.0018 ± 0.0010. (37)

A summary of our results is presented in Table 1. It is antic-
ipated that, as observational accuracy and precision continue
to improve in the future, tests in the star S2 and in OJ 287
will yield more stringent upper bounds on the the suppression
parameter �.

4.3 Discussion

The Ghosh–Culetu black hole [168,169] is a rotating non-
singular black hole characterized by a charge g. When its
spin vanishes, its metric might reduce to the one of the reg-
ular black hole with an asymptotically Minkowski core so
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that we can find the relation � = g2/(2m). With the Event
Horizon Telescope observations of the black hole shadow in
Sgr A*, the authors of Ref. [75] obtained the constraint on
the charge as 0.18345 mSgrA∗ � g � 0.62058 mSgrA∗. Since
the combined effects of the spin of Sgr A* and its inclination
on the size of the shadow and the circularity of its shape are
no more than 4 and 7% [170], we might ignore its spin at
least for the leading order and roughly estimate its resulting
bounds on � as 1.08 × 108 m � � � 1.23 × 109 m from the
constraints on g, i.e., 0.0168 � �• ≡ �/mSgrA∗ � 0.1926.
Although our bounds on � are less competitive with the one
of Ref. [75], the bound on �• from OJ 287 is reduced by 2
orders of magnitude than it, see Table 1 for a comparison.

5 Conclusion and discussion

Inspired by the regular black hole with an asymptotically
Minkowski core, we take this model as a description of Sgr
A* and OJ 287, whose deviation from the Schwarzschild
spacetime is characterized by the suppression parameter �.
We obtain the 3PN quasi-Keplerian motion of a test particle
in this spacetime and find its relativistic periastron advance
affected by �. Using the data sets of the star S2 and of OJ 287,
we find the bounds on �/m ∼ 10−3, which is improved by 2
orders of magnitude than the one from the shadow of Sgr A*,
although our upper limit of � still needs further improvement.
With the continuous progress in techniques of interferome-
try, such as GRAVITY+, we could expect that the orbit of
S2 would be considerably improved and its bound on the
suppression parameter would be tightened further. The pre-
cessing motion we focus on in this work is more or less in the
regime of the weak gravitational field, which may reduce the
manifestation of the suppression parameter. Therefore, we
believe periodic orbits [171–177] in the strong field of the
regular black hole with an asymptotically Minkowski core
would also provide new insights.

And the other thing to point out, the constraints we
obtained are only preliminary constraints strictly speaking.
It is so because we compared theoretical prediction for extra
precession with the measured S2 precession obtained without
modeling the exotic effects. A genuine constraint could be
obtained only by explicitly modeling the exotic effect one is
interested in and estimating some dedicated solve-for param-
eter(s). Thus, our results is just a-nonethless important-guess
about what could be possible obtain in real, dedicated data
analysis. Such kind of issue was tackled, in the context of
Solar System, in [178].
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Appendix A: Applying the Gauss equations to calculate
the periastron advance and the mean anomaly at epoch

Several approaches have been used to derive the rela-
tivistic precession per orbit beyond the 1PN approxima-
tion [84,85,179–182]. Damour and Schäfer [84] applied the
Hamilton-Jacobi method to derived a secular advance of the
orbital pericenter in the 2PN approximation of the two-body
problem. Kopeikin and Potapov [85] used the Gauss method,
i.e., ‘osculating orbit elements’ [78–85,179–186], for analyz-
ing the 2PN secular shift of the periastron of a binary system
in GR. Their results were found to be in exact agreement
with those of Damour and Schäfer [84]. However, various
complexities in the calculations have led to discrepancies
among results reported by different authors. Initial contro-
versies between the 2PN results presented in [85,181] were
resolved in a subsequent correction [182]. More recently,
direct calculation have demonstrated that the 2PN secular
periastron shift from the osculating elements technique yields
exactly the same result as the one obtained by the Hamilton-
Jacobi method [180].

The derivation of the 3PN periastron advance in GR has
been previously studied [87,88] using the Hamilton-Jacobi
method, with consistent results reported in both references.
We have chosen to utilize these results due to their estab-
lished use in the literature for modeling OJ287’s precession
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formula [167]. In contrast, Tucker and Will [179] described
the orbit using osculating orbit elements, and analyzed the
‘Lagrange planetary equations’ to obtain the 3PN pericen-
ter advance in GR. Through the transformation connecting
these two kinds of orbital elements [179,187], we have con-
firmed that the 3PN precession obtained using the Gauss
method [179] is consistent with the result derived from the
Hamilton-Jacobi method [87,88] presented in our main text.

Therefore, with the help of the previous works on the con-
sistency among various methods of deriving the 3PN secu-
lar pericenter advance in GR, we assume that the leading
contribution of � to periastron advance is linearly combined
with the 3PN contribution from GR which are taken from
Refs. [87,88], and we will focus on re-deriving the term
involving � using the standard perturbative calculation with
the Gauss equations here. Additionally, we will incorporate
the effect of � on the rate of the mean anomaly at epoch, while
the GR contribution has been discussed by Iorio [77,78].

From the Lagrangian (7) and the Euler–Lagrange equa-
tion

d

dt

∂L

∂v
= ∂L

∂x
, (A.1)

we can obtain the 3PN geodesic equations for test particle as
follows

dv

dt
= −mx

r3

[
1 + v2 − 4

m

r

(
1 + �

2m

)
+ 9

m2

r2 − 16
m3

r3

]

+ 2
m2(v · x)2 x

r6

(
1 − m

2r

)

+ 4
m(v · x) v

r3

(
1 − m

2r
+ m2

r2

)
. (A.2)

Starting from here, we will only retain the term containing
� for convenience. We write (A.2) in the form

a = −mx
r3 + a�, (A.3)

i.e., we interpret (A.2) as the standard equation of motion
of a perturbed Keplerian problem that we can treat with the
means of classical perturbation theory. We decompose it as

a� = AR N + AT T, (A.4)

where

AR = 2
m �

r3 , (A.5)

AT = 0, (A.6)

here AR is the component of perturbing acceleration along the
unit vector N in the direction of the instantaneous radius vec-
tor x, and where AT is the component of perturbing accelera-
tion along the unit vectorT in the instantaneous orbital plane,
perpendicular to the radius vector in the sense of motion.

The Gauss equation for the rate of change of the longitude
of periastron is

dω

dt
=

√
1 − e2

nae

[
− AR cos φ + sin φ(2 + e cos φ)

1 + e cos φ
AT

]
.

(A.7)

Substituting (A.5) and (A.6) into the above equation, we can
average the fast changing variable over one orbital revolution,
and obtain

ω̇ ≡
〈dω

dt

〉
= −n �

p
, (A.8)

where the operator 〈·〉 means calculating the average value
during one Keplerian period and p = a(1 − e2) being
the semi-latus rectum. Making use of the relations 
ω ≡
2π ω̇/n and n2a3 = Gm, we obtain that the contribution of
� to the periastron advance is consistent with Eq. (30).

The mean anomaly at epoch η is one of the standard six
Keplerian orbital elements. The Gauss equation for its rate
of change is

dη

dt
= − 2

na
AR

( r
a

)

− (1 − e2)

nae

[
− AR cos φ + AT

(
1 + r

p

)
sin φ

]
.

(A.9)

Substituting (A.5) and (A.6) into the above equation, we can
straightforwardly work out its secular rates of change which
turn out to be

η̇ ≡
〈dη

dt

〉
= −3

G � n

c2 a
√

1 − e2
, (A.10)

here, we restore the speed of light c and the gravitational
constant G in the above equation. The effect of this model
on the mean anomaly at epoch is characterized by the term
containing �. The 1PN rate of change of the mean anomaly
at epoch η over one orbital revolution in GR is given by
Refs. [77,78].
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