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Quantum Neural Networks for a Supply Chain Logistics
Application

Randall Correll,* Sean J. Weinberg, Fabio Sanches, Takanori Ide, and Takafumi Suzuki

Problem instances of a size suitable for practical applications are not likely to
be addressed during the noisy intermediate-scale quantum (NISQ) period
with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms
have potential, however, to achieve good performance on much larger
problem instances. One such hybrid algorithm on a problem of substantial
importance: vehicle routing for supply chain logistics with multiple trucks and
complex demand structure is investigated. Reinforcement learning with
neural networks with embedded quantum circuits is used. In such neural
networks, projecting high-dimensional feature vectors down to smaller
vectors is necessary to accommodate restrictions on the number of qubits of
NISQ hardware. However, a multi-head attention mechanism is used where,
even in classical machine learning, such projections are natural and desirable.
Data from the truck routing logistics of a company in the automotive sector is
considered, and the methodology is applied by decomposing into small teams
of trucks and results are found comparable to human truck assignment.

1. Introduction

In this work, we take explore a hybrid quantum-classical orthog-
onal neural network implemented in a reinforcement learning
(RL) scheme to develop agents that can obtain good solutions in
complex supply chain problems. In the setting of commercial op-
erations, computational problems of substantial theoretical and
practical difficulty regularly arise. Even a small improvement on
the quality of solutions to such problems can translate to a very
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substantial benefit. One such problem,
heavily studied in operations research, is
the vehicle routing problem.[1,2]

In a previous effort,[3] we build on the
work of ref. [4] by adding new techniques al-
lowing for multiple trucks and for far more
general requirements for trucks. While our
model is specially designed with Aisin
Corporation’s vehicle routing problems in
mind, our techniques for applying rein-
forcement learning to a very general class
of routing problems apply widely.
Vehicle routing problems are NP-hard

combinatorial optimization problems for
which there are numerous heuristic algo-
rithms which yield approximate solutions.
Relatively recently, there has been inter-
est in solving such routing problems us-
ing reinforcement learning.[5] In this con-
text, a truck driving between nodes can
be thought of as an agent performing

actions (selecting its next node to drive to) in the environment of
the supply chain.
The advent of quantum computing promises potential

speedups in computation for a variety of problems.Howwell they
apply to heuristic algorithms such as machine learning is an ac-
tive area of research. Here we adapt quantum orthogonal neural
networks as part of an attention head mechanism in a reinforce-
ment learning scheme. The quantum circuit at the heart of the
orthogonal neural network implemented in a supply chain logis-
tics workflow is tested both using classical emulation and imple-
mentation on real quantum hardware. The experiments yields
results which are preliminary but promising for the implications
for quantum-boosted algorithms and applications as the underly-
ing quantum algorithms and quantum computing hardware ma-
ture.

2. Quantum Orthogonal Neural Networks

There has been significant recent development in quantum al-
gorithms for neural networks—so-called quantum neural net-
works (QNNs). This includes the theoretical[6] and experimental
study[7,8] of how to best embed the data into the quantum cir-
cuit and maximize the separation of input data in Hilbert space.
It also includes efforts to improve the training of QNNs, espe-
cially to avoid barren plateaus of parameterized circuits.[9,10] And
aside from these abstract studies, QNNs have been applied to
commercial and industrial applications to compare their perfor-
mance against classical neural networks, assess their suitability
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for eventual use, and estimate their scalability in terms of prob-
lem size versus quantum computing hardware resources. Such
efforts have explored QNNs for finance,[11] drug discovery and
response,[12,13] automotive,[14] and medical imaging.[15] The last
of these works explored the use of a quantum version of an or-
thogonal neural network.
Orthogonal neural networks (ONNs) are a type of neural

network where linear layers are constrained to be orthogonal
matrices.[16] Such neural networks have important advantages
over neural networks with unconstrained weight matrices, espe-
cially in the case of deep neural networks; in this context, ONNs
can avoid issues with generalization and small gradients.[16]

However, classically computing the orthogonal layers is compu-
tationally expensive, so there is a trade-off of more work for bet-
ter return.
Recently, quantum algorithms have been developed which per-

form the same computation as ONNs.[17] The unitary nature of
quantum circuits naturally allow the computation of orthogonal
layers with fewer computational steps than the classical compu-
tation. We briefly review the aspects of this work related to our
models in this section.
The quantum ONN (QONN) algorithm of ref. [17] takes as

input a normalized x ∈ Rn with
∑n

i=1 x
2
i = 1 and determines, to

arbitrary precision, the result of applying a matrix W ∈ SO(n)
acting on x. Put differently, the algorithm rotates vectors on the
n − 1 sphere Sn−1. Because SO(n) is a Lie group of dimension
n(n − 1)∕2, we require this number of parameters 𝜽 to specify
W, and these parameters are considered to be an input for the
quantum algorithm.
The algorithm for computing Wx has three steps which we

explain the subsections that follows:

1) Construct a quantum circuit that loads x with a unary encod-
ing,

2) Append to the circuit a pyramidal quantum circuit with n(n −
1)∕2 gates parameterized by 𝜽, and

3) Perform a tomography algorithm to recover the components
ofWx.

Before explaining these steps further, we describe the two-
qubit gate used throughout as a building block: the recon-
figurable beam-splitter (RBS) gate. RBS gates are specified
by one parameter 𝜃. In the computational basis ordered as
|00⟩, |01⟩, |10⟩, |11⟩, the RBS gate for a given 𝜃 is

RBS(𝜃) =

⎛⎜⎜⎜⎜⎝

1 0 0 0

0 cos 𝜃 sin 𝜃 0

0 − sin 𝜃 cos 𝜃 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
. (1)

In a quantum circuit diagram, we will use the notation

to denote RBS gates with parameter 𝜃.

2.1. Unary Vector Encoding

Consider a vector x = (x1,… , xn) ∈ Rn. If x is normalized, we can
consider the quantum state

|x⟩ = x1|100⋯ 00⟩ + x2|010⋯ 00⟩ +⋯ + xn|000⋯ 01⟩. (2)

This state encodes x in a simple way. The encoding is ex-
tremely sparse, involving only an n-dimensional subspace of the
Hilbert space.
A key property of the RBS gate representing Equation (1) is

that they map unary states to unary states. By a unary state, we
mean any state which has the form of Equation (2). To see this,
consider the action of an RBS gate on a unary basis vector 𝜓i =|0… 010… 0⟩. (We are using 𝜓i to denote a computational basis
vector which is 0 for all qubits except for the one in position i.)
If the RBS gate acts on a pair of qubits a, b that does not include
i, then it acts as the identity on 𝜓i. On the other hand, if a = i
then the RBS gate results in a superposition of 𝜓a and 𝜓b, both
of which are unary states.
In fact, we can make a stronger statement. An RBS gate, when

acting on any unary state with the form of Equation (2) results
in a new unary state |x⟩′ which is obtained by applying an SO(2)
operation on the 2-dimensional subspace corresponding to the
qubits on which the RBS gate acts. From this it follows that any
combination of RBS gates implements an orthogonal matrix in
the unary encoding.
An explicit construction using only RBS gates for this encod-

ing can be found in.[17] The procedure is to begin with the state
|100… 00⟩ and use a diagonal stack of n − 2 RBS gates:

By an O(n) classical computation, we can determine
𝛼0,… , 𝛼n−2 which construct the desired loaded vector.

2.2. Pyramidal RBS Construction

In this section, we review the construction of[17] to explain how
the state |x⟩ of Equation (2) can be fed into a simple quantum
circuit, built entirely with RBS gates, to yield the state |Wx⟩where
W is an orthogonal matrix and the notation, once again, implies
a unary encoding of the resulting vector.
The circuit is a pyramid of RBS gates as follows in the n = 4

case:
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As we explained in Section 2.1, RBS gates apply orthogonal
matrices to unary states (in the unary encoding). Thus, we are
guaranteed that this pyramidal circuit maps a unary state |x⟩ to
another unary encoded state |Wx⟩ where W ∈ O(n). Moreover,
the pyramidal construction applies precisely n(n − 1)∕2 gates
which matches the Lie group dimension of O(n). This strongly
suggests that all matricesW in SO(n), the connected component
of the identity of O(n), can be obtained by appropriately selecting
𝜽. Construction of parameters to represent a desired matrix are
given in.[17]

2.3. Tomography

With the state |Wx⟩ constructed, we still need to determine the
final output via tomography.[17] provides multiple approaches for
this. In the experiments of this work, we adopted one of their
techniques which we briefly review here for convenience.
Consider a unary-encoded state |x⟩. By measuring repeatedly,

we obtain p1,… , pn, the probabilities of measuring 𝜓1,… ,𝜓n re-
spectively. These are estimates of x21 ,… , x2n respectively.
The only information that we are missing is signs of x1,… , xn.

It is not possible to determine an overall sign, but if we assume
x1 > 0, the following procedure can be used to find all other signs.
We append RBS gates with 𝜃 = 𝜋∕4 acting on qubits 1-2, qubits
3-4, 5-6, and so on until (n − 1) − n if n is even or (n − 2) − (n − 1)
otherwise. With this construction, measuring p1 and p2 corre-
spond to (x1 + x2)

2 and (x1 − x2)
2. Thus, p1 > p2 if and only if x1

and x2 have different signs. We can then do the same construc-
tion with the RBS gates offset by one to determine if x2 and x3
have the same signs, and so on.

3. Vehicle Routing Problems

This section describes the mathematical problem to which we
apply a hybrid classical-quantum machine learning model. The
problem is a very general version of a vehicle routing problem.
This routing problem was described in ref. [18] and, particularly,
in ref. [3]. In this section, we give a succinct description of this
general vehicle routing problem, and we refer the reader to ref.
[3] for a detailed explanation.
The goal of the general vehicle routing problem is to give a

problem statement which is very closely related to an actual sup-
ply chain logistics problem encountered by Aisin Corporation, a
Japanese automotive component manufacturing company. The
routing problem of Aisin Corp. is enormously complicated, in-
volving many trucks and complex routing requirements for a

large number of boxes. Our general vehicle routing problem in-
cludes the salient features of the Aisin Corp. logistics problem
but makes small simplifications to make it possible to attack the
problem with efficient machine learning techniques.

3.1. Basic Vehicle Routing Problem

Vehicle routing problems (VRPs)[1,2] come in many forms. One
of the most basic problems starts with the following input:

• A collection of locations (nodes) and driving times between all
nodes,

• one special node called a depot,
• a specified amount of demand to be picked up from each loca-
tion and brought to the depot, and

• the capacity of a truck (i.e., the amount of demand that a truck
can carry).

The routing problem then asks to find the minimal driving time
path for a truck which starts at the depot and fulfills all de-
mand requirements.

3.2. General Vehicle Routing Problem

There are two major features of the logistics problems of Aisin
Corp that are not captured with basic vehicle routing problems:
multiple trucks and tensor demand structure. The presence of
multiple trucks is an obvious challenge that requires little expla-
nation: solutions to multi-truck vehicle routing problems can in-
volve subtle collaboration among trucks. Tensor demand struc-
ture is a concept described in refs.[3,18] which we now recount
and expand upon.
In standard VRPs, there is a special depot node to which all

demand must be brought. However, in a more realistic problem,
requirements are more general. For example, we could have the
requirement of bringing demand d from node 2 to node 3. Such
a requirement can be stored as a component of a tensor: D2 3 We
could also have a requirement like bringing demand first from
node 5 to node 2 and then from node 2 to node 3. This can be
stored as a component of a rank-3 tensor D5 2 3.
Demand tensors can be off-board or on-board. The exam-

ples above are off-board demand because they describe material
which is not on any truck and is waiting to be picked up. On-
board demand refers to demand currently on a truck. For exam-
ple, truck numberm can have demandwhich needs to be dropped
off at node i as its final stop. We can store this demand as con-
tributing to a tensor Em

i . If truck m has demand which needs to
go to node i but then will need to go to node j (after being picked
up again, perhaps by a different truck), then we can store this as
a component to a rank 2 tensor as in Em

ij .
Another situation that arises in realistic situations is cyclic off-

board demand. This means, for example, that demand needs to
go from node i to node j and then back to i. This can arise in sev-
eral logistical setting. For Aisin Corp., this is a ubiquitousmatter:
boxes used to transport parts must be returned to their original
departure location. Cyclic demand can also have higher rank: a
box may need to go from node i to j, then j to k, and finally back to
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Table 1. The table shows examples of demand structures with different
indicial notation and explains how they should be interpreted in terms of
where demand is picked up and/or dropped off.

Component Description of most recent event

Dcyclic
3 7 4 Initial material at node 3 waiting to be picked up

Em=2
7 4 3 Picked up from node 3 by truck 2, next stop node 7

D7 4 3 Dropped off at node 7 by truck 2

Em=1
4 3 Picked up from node 7 by truck 1, next stop node 4

D4 3 Dropped off at node 4 by truck 1

Em=3
3 Picked up from node 4 by truck 3, next stop node 3

0 Dropped off at node 3 by truck 3, requirements fulfilled

i. In situations where we have cyclic demand, we use the term di-
rect demand to refer to demand which is not cyclic and we use no-
tation like Dcyclic

ijk and Ddirect
ijk to describe cyclic and direct demand

tensors. Note that we could describe cyclic demand with a direct
demand tensor of higher rank, but this is more computationally
expensive in practice.
Various types of demands convert between each other as trucks

pick up and drop off material. This can be understood through
the following example shown in Table 1 adapted from ref. [3]
which gives events for cyclic initial demand starting at node 3
that must go to node 7 and then node 4 before returning to
node 3.
An instance of the general vehicle routing problem is specified

by providing an initial off-board demand tensors D, a collection
of nodes z1,… , zn, the number of trucks N, a matrix of driving
times between nodes Tij, and the capacities of trucks C1,… , CN .
An important construction that we will use in this work is the

concept of myopic demand vectors, given by

𝜖mi =
∑
i2 ,…,ir

Em
i,i2 ,…,ir

(3)

and

𝛿outi =
∑
i2 ,…,ir

Dtotal
i,i2 ,…,ir

(4)

where Dtotal is the sum of cyclic and direct demand. In words, 𝜖mi
is the total material on truck m which needs to be dropped off at
node i for its next stop, and 𝛿outi is the total material at node i that
is waiting to be picked up. We will also define an ingoing myopic
off-board demand

𝛿ini =
∑

i1 ,i3 ,…,ir

Dtotal
i1 ,i,i3 ,…,ir

(5)

Of course, we could repeat this construction for any of the in-
dices, but the further we go to the right in index, the less “myopic”
the quantity is.

3.3. Relationship with Aisin Corp. Logistics

The general VRP that we described in Section 3.2 is inspired
directly by the operations of Aisin Corp. in Japan. They are re-

quired, on a daily basis, to ship 340 000 boxes among 21 loca-
tions around Aichi Prefecture. These boxes have either rank-2 or
rank-3 cyclic demand requirements: all boxes must be returned,
and some have required intermediate stops (related to the need
to hold at warehouses due to space limitations).
Despite the very large number of boxes, there is substantial

redundancy. There are approximately 15 000 unique boxes, with
the 340 000 including repetitions of identical boxes. Moreover,
among the 15 000 boxes, many have identical routing require-
ments: there are only 107 unique routing requirements. We re-
fer to the collection of all boxes with a specific routing require-
ment as a “box group.” By summing over the volumes of all boxes
within a box group, we can obtain a contribution to the initial
cyclic rank-2 or rank-3 demand tensor. In this way, an instance
of the general VRP can approximate an instance of the realis-
tic logistics problem. Aisin typically requires about 150 trucks
to complete the daily logistics assignments in the 16-h work
day. These daily logistics assignments are produced by logistics
experts with significant experience and using spreadsheet soft-
ware to make a first estimate of routes, compute drive times, as-
sess pick-up/drop-off assignments at each factory or depot node,
and then iterate through that process until satisfactory solutions
are obtained.

4. Hybrid Quantum-Classical Attention
Mechanisms

In this section, we present a variation on multi-head attention
mechanisms that incorporates the QONN algorithm described
in Section 2. Our model is closely based on the encoder-decoder
of ref. [4] as well the generalization of ref. [3]. In these works, an
attention model is used to compute the policy of a reinforcement
learning agent that learns to solve combinatorial optimization
problem instances. We will use our model to solve the general
vehicle routing problem discussed in Section 3.2.

4.1. Standard Attention Mechanism

The encoder and decoder of ref. [4] relies on a multi-head atten-
tion mechanism which we briefly review in this section. The en-
coder and decoder of ref. [3] modify this structure somewhat, and
we review that modification here as well.
Starting with encoded nodes h1,… ,hn ∈ Rd, we compute vec-

tors known as queries, keys, and values. The queries and keys
have a dimension 𝛼 which is an arbitrary hyperparameter. In a
single-head attention mechanism, we compute a single query,
key, and value vector for each encoded node hi:

qi = Mquery hi ∈ R𝛼 (6)

ki = Mkey hi ∈ R𝛼 (7)

vi = Mvalue hi ∈ Rd (8)

Here, eachM is a matrix mapping Rd to either Rd or R𝛼 .
For the multi-head attention mechanism, we have a positive

integer nheads. For each s ∈ {1,… nheads}, we have a corresponding
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query, key, and value map and thus different queries, keys, and
values computed:

qs i = Mquery
s hi ∈ R𝛼 , (9)

ks i = Mkey
s hi ∈ R𝛼 , (10)

vs i = Mvalue
s hi ∈ R𝛽 . (11)

All of the linear mapsM are learned during training.
An important feature of this mechanism is that the node in-

dex i behaves as batch index: the same linear maps are applied
to all of the nodes (although different maps are used for differ-
ent attention heads s). This structure allows sequences to have
arbitrary length rather than hard coding the sequence length.
An important reason that multi-head attention is used is to

effectively reduce the dimensions of keys, queries, and values.
When using a single attention head, we generally take 𝛼 = d or
at least 𝛼 ≈ d. However, with multi-head attention we can used
𝛼, 𝛽 ≈ d∕nheads. As we will discuss in Section 4.2, having a smaller
𝛼, 𝛽 makes it possible to integrate the QONNs of Section 2 in
a way that can feasibly be executed on noisy intermediate-scale
quantum (NISQ) hardware.
The next step is to compute a compatibility for every query-key

pair (for each head). We define

us ia =
1√
𝛼
qs i ⋅ ks a (12)

with ⋅ denoting a standard dot product. After this, we compute

𝜌s ia =
exp(us ia)∑
b exp(us ib)

∈ R (13)

which is used to weight a sum over values

h′
s i =

∑
a

𝜌s iavs a. (14)

The only remaining step to tomerge the data from the nheads at-
tention heads. To do this, we simply concatenate the output from
each head,

h′
1 i ⊕…⊕ h′

nheads i
(15)

and use a learned linear map with bias on this vector, from di-
mension nheads𝛽 to dimension d to recover a vector h′

i ∈ Rd. Here,
the symbol⊕ denotes direct sum, which is equivalent to concate-
nation in this context.
We use the symbol MHA to denote the function which starts

with encoded vectors hi ∈ Rd, and returns the output sequence
h′
i ∈ Rd. MHA computes queries, keys, and values following
Equations (9)-(11), then computes compatibility and new en-
coded vectors for each head, and finally maps to the original en-
coding dimension.
An important technique used in both refs. [[4] and[3]] is the

concept of source terms. Source terms allow us to modify key,
query, and values in a way that depends on some other quantity,

a “source”. Roughly speaking, the idea is to modify, for example,
keys from ki = Mhi to

ki = Mhi + 𝜙iu (16)

where 𝜙i is a real number for each i and u is a learned vector with
dimension 𝛼, the dimension of keys. The quantity 𝜙i is referred
to as a vector source because it has one index i. In general, we
can also have an arbitrary number of sources by summing over
different learned vectors.
As a more concrete of sources, consider the myopic demands

𝛿outi , 𝛿ini of Equations (4) and (5).We can use them tomodify Equa-
tions (10) and (11)

ks i = Mkey
s hi + ukey,outs 𝛿outi + ukey,ins 𝛿ini , (17)

vs i = Mvalue
s hi + uval,outs 𝛿outi + uval,ins 𝛿ini . (18)

Here, s is an index for attention heads, and various us are learned
vectors with the same dimension as the left hand side of the equa-
tions they appear in; for example, ukey,outs is a vector with the same
dimension as keys which is 𝛼 as specified in Equation (10). Note
that in this example, two sources are used for both keys and val-
ues.

4.2. Attention With Quantum Layers

There are a variety of ways that quantum neural circuits can play
a role in attention mechanisms. One approach, developed in,ref.
[19] is to associate a quantum state for each key and query, and to
then apply a unitary operation for each key-query pair and to per-
form a measurement to obtain a quantum version of key-query
compatibility, replacing Equation (12).
In this work, we consider instead a QONN construction. Con-

sider keys, queries, and values obtained through Equation (10)-
(11). For definiteness, we focus on keys ks i which we take to have
dimension 𝛼 for each head s and each node index i.
Now we can apply the QONN algorithm of Section 2 to ks i.

The particular ONN construction relies on parameters 𝜃 which
specify the quantum circuit. We will use different parameters for
different attention heads s, but, as usual, the parameters do not
depend on i. Let Ls denote the operator which takes as input ks i
(for fixed s and i), applies the algorithm described in Section 2, in-
cluding loading and tomography, and outputs the resulting clas-
sical vector found through tomography. Note that Ls constructs
an 𝛼-qubit quantum circuit.
The usage of quantum circuits in individual attention heads

is very well-suited for NISQ quantum hardware. As discussed
above, when we use nheads attention heads, it is most natural to
use

𝛼, 𝛽 ≈ d
nheads

(19)

The circuit construction uses 𝛼 (or 𝛽 for values) qubits, and the
reduction in the number of qubits allows for implementation on
hardware with limited size while not sacrificing the encoding di-
mension d. For example, with d = 128 and 16 attention heads, we
require only 8 qubit circuits.

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (5 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Additionally, in a model with nheads attention heads, we have
a the versatility of being able to select only a subset of heads in
which to include QONNs. Thus, we can have non-negative inte-
gers nclassical and nquantum with nclassical + nquantum = nheads. In gen-
eral, we have the freedom of choosing these integers differently
for every key, query, and value in all attention heads throughout
the encoder or decoder.
Tuning the number of quantum heads in various attention lay-

ers is of critical importance when attempting experiments involv-
ing near-term quantum hardware. The reason for this is not only
limitations due to noisy hardware. Another major reason relates
to access availability andmonetary cost. When submitting jobs to
quantum hardware, time delays can occur due to jobs queuing.
Themore separate quantum circuits that need to be prepared in a
workflow, themore serious this consideration is. To execute an in-
stance of the general VRP with a trained encoder–decoder model
including quantum attention heads, the number of quantum cir-
cuits that must be prepared and measured can be very large.

4.3. Incorporating Tensor Structure

We now turn to an element of our attention mechanism which
is unrelated to quantum algorithms. A major challenge for at-
tention mechanisms is the incorporation of tensor structure like
the tensor demand structure discussed in Section 3.2. The issue
can be seen through Equation (16): we can convey to an attention
mechanism vector quantities which are associated with a single
node (𝜙i is associated with node i in Equation (16)), but we cannot
convey tensor quantities that are associated with multiple nodes.
In ref. [3], two approaches for incorporating tensor demand

structure were provided. The most powerful method is a tensor
attention mechanism where a single query qi is used to probe a se-
quence of nodes, like (j, k, l). From the sequence (j, k, l), we obtain
a key tensorKjkl, which is, for each (j, k, l), a vector with dimension
𝛼, so we can compute a compatibility between node i and nodes
(j, k, l). By also constructing value tensors, we essentially follow
Equations (10) through (14). The power of the tensor attention
mechanism is that it allows for tensor sources. However, to con-
struct keys and value for sequences of tensors, we are forced to
map not from hi but instead from hi ⊕ hj ⊕ hk, incurring a sub-
stantial memory cost in practice.
While we maintain that a tensor attention mechanism is the

natural approach when dealing with combinatorial optimization
problems with tensor structure, we can often get away with only
including myopic data, such as Equations (4)-(5). One step fur-
ther is to consider matrix myopic off-board demand. In the case
where we have rank 2 and rank 3 cyclic and direct off-board de-
mand, this means

Dij = Dtotal
ij +

∑
k

Dtotal
ijk (20)

where Dtotal is the sum of cyclic and direct off-board demand.
We can incorporate this matrix into the attention mechanism

by using it to modify compatibility. We replace the dot product
with

1√
𝛼
Gij qi ⋅ kj (21)

where G is some tensor determined by D. This approach can ex-
aggerate query-key compatibility in cases where Dij is large and
suppress compatibility when the demand is small.
There are a few reasonable choices for G. The first is Gij = 1,

which reduces to a basic dot product compatibility. Next is Gij =
Mij where M is the mask defined as Mij = 1 when Dij > 0 and
Mij = −∞ otherwise. Both of these are within themethodology of
ref. [4]. A third and more novel choice of G is Gij = logDij. This
last form has several virtues: it reduces to a mask in the sense
that it approaches −∞ as Dij → 0+. Moreover, it can exaggerate
compatibility when Dij is large. A simple additional adjustment
is to use

Gij = ADij + B logDij, (22)

which is more sensitive to changes in Dij for larger values.
Rather than having to pick from these various choices, we can

choose all of them by taking advantage of the multiple heads. In
other words, for a given head s ∈ {1,… , nheads}, we can put

Gs
ij = As

basic + As
maskMij + As

log logDij + As
linDij (23)

5. Reinforcement Learning and the General VRP

We now describe how the ideas of the previous sections can be
put together to construct a reinforcement learning policy.
Reinforcement learning concerns Markov decision processes

where an agent performs an action when presented with the state
of its environment and, as a stochastic result of the action, the
state changes and the agent receives a reward. The action per-
formed by the agent is determined by the agent’s policy which is
a function 𝜋 that, given the state s, gives the probability 𝜋(a | s) of
performing a given action a .
In the context of combinatorial routing problems like the trav-

eling salesman problem, the action of an agent would be the
choice of which node to travel to next and the environment state
would be the prior route. For a vehicle routing problemwith a sin-
gle truck, the situation is quite similar except that we also need
to include in the state all prior information about the current de-
mand structure:

𝜋
(
z | (𝜉0,… , 𝜉t−1), Dt−1

)
(24)

where 𝜉 denotes the prior route and z is a proposed node to drive
to next. Note that we are using Dt−1 loosely to include all relevant
information about demand.
For problems like this, the probability of choosing an entire

route 𝜉 is a product of probabilities at each step as long as the
policy is fixed during the episode

𝜋(𝜉 |D0) =
k∏
t=1

𝜋
(
𝜉t | (𝜉0,… , 𝜉t−1), Dt−1

)
(25)

This structure is important because we will use the REINFORCE
algorithm[20] which depends on the logarithm of the probability
of choosing an action. The multiplication in Equation (25) con-
verts to a summation, allowing us to deal with the probability of
the entire route without it being too small to work with in prac-
tice.

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (6 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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In addition, the general VRP expands beyond a policy for a
single truck and must account for other trucks as part of the en-
vironment, thus enabling the policy benefit from cooperation be-
tweenmultiple trucks.We have implemented such a general VRP
model by devising a scheme that applies to teams of trucks in
which at any given moment in time one truck is the active truck
and the other passive trucks are part of the environment. The
training proceeds through epochs of time in which the effects
of the other trucks come into play. The overarching approach is
described below.

5.1. Encoder–Decoder Policy

The machine learning model that we use as a model for 𝜋 is an
encoder-decoder attention model closely based on refs. [[3,4]]. In
fact, we use almost the exact model of ref. [3] except for the role
of quantum circuits. We therefore refer the reader to ref. [3] for
the details of the encoder and decoder layers and only highlight
the hyperparameters and the use of QONNs here.
The basic idea of the policy model is that the nodes z1,… , zn

along with information about the initial demand can be thought
of as a sequence of data. We start with coordinates of the nodes,
xi ∈ R2, which we take to lie in the unit square. We append infor-
mation about initial demand structure

xi = xi ⊕
(
𝛿
in,init
i , 𝛿out,initi

)
(26)

and use the sequence (x1,… xn) as the input to an encoder. The
encoder treats i, the node index, as a batch dimension.
Encoding proceeds through layers, and each encoder layer con-

tains an attention sub-layer (Equation (27)) followed by a feed-
forward sub-layer (Equation (28))

h̃l−1i = BN
(
hl−1i +MHA

(
hl−1i

))
(27)

hli = BN
(
h̃l−1i + FF

(
h̃l−1i

))
(28)

In these equations, BN is a batch normalization layer,[21] FF
is a feed-forward network, and MHA is a multi-head attention
layer as described in Section 4.1 along with dynamical masking
from 4.3. The feed-forward layers have a single hidden dimen-
sion dff and consist of a linear layer with bias mapping Rd → Rdff

followed by a ReLU activation function, a dropout layer, and fi-
nally a linear map with bias back to Rd.
The output of the final encoder layer gives encoded nodes

hi ∈ Rd. These nodes, along with contextual information about
the current environment state, are then decoded. Decoding yields
a probability distribution over possible nodes for the active truck
to select as its next destination.
Our encoder and decoder structure are identical to that of ref.

[3] other than the usage of quantum circuits. The encoder con-
sists of three attention layers. As in ref. [3] we use dynamical
masking (Equation (23)) rather than the tensor attention mecha-
nism due to memory limitations.
Regarding the inclusion of quantum circuits, we use two dif-

ferent models:

1) Simulation-only model: A quantum orthogonal neural network
is used for every key, query, and value in the encoder and de-

Algorithm 1 REINFORCE variant for VRP.

Input: Parameterized policy 𝜋

Input: Integers num_epochs, batch_size, batches_per_epoch

Input: Initial parameter 𝜃

𝜃BL ← 𝜃

for e = 1,…, num_epochs do

for b = 1,…, batches_per_epoch do

𝜉 ← (batch_sizemany episodes from 𝜋(𝜃))

𝜉BL ← (batch_sizemany episodes from 𝜋(𝜃BL))

∇J ← batch_mean((L(𝜉) − L(𝜉BL)∇𝜃 log(
∑k

i=1 𝜋(𝜉
i , 𝜃)))

𝜃 ← descent(𝜃,∇J(𝜃))

end for

if baseline_test() then

𝜃BL ← 𝜃

end if

end for

coder including all three encoding layers. We use d = 128 for
encoding and 8 attention heads. There are 16 qubits for cir-
cuits with 𝛼 = d∕8.

2) Hardware experiment model: We only use a quantum orthog-
onal neural network for queries and keys in the encoder. We
do not use quantum circuits for the decoder. We use d = 64
and eight attention heads with 8 qubits per head.

5.2. Training and Simulation

For the purposes of training, our model was written entirely
in PyTorch. In particular, quantum circuits are also emulated
through PyTorch. The quantum circuit emulation approach is
direct state vector manipulation: we load a unary state by hand,
stored as a PyTorch Tensor, and we apply gates through matrix
multiplication on appropriate subsystems. The final readout is
also done in an nonphysical fashion: we simply read the unary
components final state vector.
This approach has a major advantage of being easy to run effi-

ciently for fewer than≈ 30 qubits (beyond which point, themem-
ory cost of storing state vectors becomes problematic). One disad-
vantage, however, is that we do not account for stochastic behav-
ior of quantum computing, either due to error or simply because
of the probabilistic aspect of measurement.

5.3. Learning Algorithm

Following refs. [[4] and[22]] we implemented a variant of
REINFORCE[20] but now adapted for quantum circuits. Our RE-
INFORCE variant is given in algorithm 1 below and is more fully
described in ref. [3]. Note that this algorithm is broken up into
epochs and batches.
For our purposes we take a variant of REINFORCE adapted to

our vehicle routing problem as follows. First, for the purposes of
the algorithm, we take the entire episode to be defined by a sin-
gle action. In other words, the episode is just a0, r1. The action
a0 is the entire route specification a0 = (𝜉1, 𝜉2,… 𝜉k) where each

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (7 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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𝜉i are nodes. The reward r1 is simply the negation of the route
length (or time)−L(𝜉) which is computed by summing the appro-
priate distances between nodes based on a metric or on known
travel times.
The second important aspect of our variant is the baseline

methodology. This idea is roughly adapted directly from ref. [4].
This essentially means that some function b of states (but not of
actions) is constructed with each episode and the return G in the
algorithm is replaced by G − b(s). This algorithm still converges
to the optimal policy theoretically and, with a well-chosen base-
line, does so much faster. In this work, we maintain a “baseline
agent” which uses the same parameterized policy but does con-
stantly update its parameter 𝜃. Instead, the baseline agent uses an
outdated parameter 𝜃BL which is occasionally updated to match
the primary agent’s 𝜃, but only when the agent substantially and
consistently outperforms the baseline.
The summation

∑k
i=1 𝜋(𝜉

i, 𝜃) is a sum over the probabilities
computed by the encoder/decoder network at each stage of the
route. k refers to the number of steps in the route and the index
i runs over steps in the route, not over batch entries. The entire
computation is performed for each batch entry and averaged over.

6. Supply Chain Management Workflow

While the experimental approach of Section 5.1 is restricted to
a modest system size, we can use the simulation-only model of
Section 5.1 to test our model at a more ambitious scale. In fact,
through a decomposition technique of breaking the full supply
chain problem into subsets of a few trucks at a time, we can de-
ploy our model on a full-scale problem to meet the demands of a
commercial supply chain.
We thus turn to the problem of finding solutions to the Aisin

Corp. vehicle routing problem instance (which we refer to as the
AVRP).

6.1. Node Subset Search

Consider an instance of the general VRP with n nodes and de-
mand structure Dinit. Given the demand structure, the time ma-
trix, and the driving window Tmax, we can estimate the number
of trucks N that will be necessary to fulfill all requirements.
Suppose that we have an algorithm to find solutions to gen-

eral VRPs with a smaller number of nodes and trucks and with
smaller demand structure. Our algorithmworks for n′ < n nodes
and N′ < N trucks.
This situation arises in our context naturally: we can train, for

instance, an agent to solve general VRP instances with ten nodes
and three trucks, a scale smaller than the AVRP with its 21 nodes
and over 100 trucks.
We should be able to use our smaller-scale algorithm to solve

the larger problem by applying it repeatedly to different subsets
to nodes to gradually fulfill all demand requirements. This raises
a question of how to find good subsets.
We begin by looking at the demand structureDinit. For simplic-

ity, assume that this consists only of rank-3 cyclic demand (other
cases are very similar and we describe the necessarily modifica-
tions below). FromDinit we can identify the nonzero components.

These are tuples of nodes

i1,j1, k1

i2,j2, k2

⋮

iu,ju, ku

(29)

where u is some integer (which happens to be 107 for the AVRP,
corresponding to the 107 unique routing requirements). We can
begin our node search by uniformly randomly selecting one of
these triples of nodes from the list. (In cases where demand also
includes rank 2 or another rank, we include tuples of appropriate
length in the list for nonzero demand cases and we allow such tu-
ples to be selected as well.) After drawing a tuple from the list, we
remove it from the list. Suppose that we select the tuple (i3, j3, k3).
We define a starting subset of nodes as A = {i3, j3, k3}. If 3 < n′,
we continue to draw nodes. Suppose that we next draw (i5, j5, k5).
We now consider the set A = {i3, j3, k3, i5, j5, k5}. If any node re-
peats (for instance, if i3 = j5), that entry is only counted once in
the set. There will now be between 4 and 6 elements in A. If
|A| < n′, we continue and otherwise we stop. Continuing in this
way, we can either eventually run out of tuples or we can reach
|A| ≥ n′. If we reach |A| = n′, we stop and useA as our first guess
of a node subset. If |A| exceeds n′, we remove the most recently
added subset. If we run out of tuples, we stop.
After this process, wemight have |A| < n′. In this case, we sim-

ply randomly add additional nodes outside of |A| until reaching
|A| = n′.
At this point, we have obtained a random node subset A. We

repeat this process K times to obtain knode draws different random
subsets, and we apply our algorithm ksubset attempts times for each
of the knode draws subsets. We compute the mean demand fulfilled
for the ksubset attempts trials, and we select the node subset with the
highest mean demand coverage.

6.2. Execution Loop

With a technique for selecting node subsets, we are now in a
position to describe the execution procedure. This begins with
the initial demand structure Dinit which is determined by the
AVRP’s requirements. Next, a node subset is selected through
the node search technique of Section 6.1. We identify the portion
of Dinit that is supported by the subset and we map it onto a de-
mand structure D′ for n′ nodes. To regulate the policy input, we
clip D′ at some maximum value C. We then apply the trained
agent kexecution trials times and select the trial with the highest per-
centage of covered demand. This trial has a specific routing for
N′ trucks and corresponds to a certain demand fulfillment. The
route as well as the on-board and off-board demand at each step
is saved and the initial demand Dinit is modified: it is reduced by
the amount of demand satisfied by the route.
This process is repeated, each timefirst performing node selec-

tion and then finding the best route out of kexecution trials attempts.
We repeat until all demand is satisfied. The total number of itera-
tions of this procedure multiplied by N′ will be the total number
of trucks needed for our solution.

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (8 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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6.3. Simulated Execution

The result of the execution loop yields approximate solutions to
the general VRP. We obtain a collection of routes for various
trucks xm 𝜏 where m ranges over trucks and 𝜏 over time steps for
each truck. However, we still need a way to convert such routes
to candidate solutions to the overall AVRP.
Our strategy is to interpret the routes x as “suggested routes”

and to attempt to use them in a full-scale supply chain simulation.
We make use of the simulation of ref. [3]. Every box is individu-
ally tracked, has rank-2 or rank-3 requirements, and we require
that demand is cyclic—boxes must be returned to their origin
node. Each box has a specific individual volume. The simulation
is designed to be as similar as possible to the actual commercial
routing problem of Aisin Corporation.
Trucks follow along the routes xm,𝜏 that they are assigned from

the execution algorithm and they pick up boxes as is appropriate
for their route. Boxes are picked up according to the algorithmde-
scribed in ref. [18] and we carefully ensure that trucks only drive
within the allowed drive time windows (two 8-h shifts). The re-
sult of full-scale simulation is that, rather than having a list of
suggested truck routes, we obtain a precise statement about what
each truck in the supply chain is doing at all times, including
exactly which boxes must be picked up and dropped off at vari-
ous nodes.

7. Results: Experiment With Ion Trap Quantum
Hardware

In ref. [3] we implemented the entire supply chain manage-
ment workflow classically using standard machine learning al-
gorithms. In this work, we implement and test the workflow us-
ing quantum circuits of theONNs implemented on real quantum
computing hardware. First, we return our focus to the discussion
of the quantum circuits in Section 2 and discuss the essential ex-
periments needed to test their performance. Then we discuss the
implementation of the neural network and attentions heads. And
finally we discuss the performance of the quantum circuit in gen-
erating solutions when used as part of the overall workflow.

7.1. Hardware Experiment for QONN Accuracy

Current quantum hardware is limited by noise and the precision
of the gates they can implement. We have a variety of quantum
hardware to choose from and all have different strengths. There
are different qubit technologies, and of these, superconducting
and trapped ion are currently the most readily available and ma-
ture in the sense of implementing a universal gate set that would
be appropriate for our quantum circuit. The number of available
qubits is not themost relevant attribute asmost experiments con-
ducted to date by various researchers have been limited to 20
qubits or less due to limitations in noise and error in the quan-
tum processor. Superconducting quantum processors have the
advantage of much faster gate speeds (on the order of GHz) com-
pared to trapped ion quantum processors (on the order of KHz to
MHz). However, trapped ion processors have all-to-all connectiv-
ity which facilitates shorter depth circuits than the superconduct-
ing processors, which are limited to nearest neighbor connectiv-
ity.

The IonQ device was chosen because it has relatively good
noise levels and the inherent full-connectivity of the qubits sim-
plifies the embedding of the algorithmic circuit onto the hard-
ware graph, thereby avoiding the need for additional gates op-
erations to implement gate interactions between qubits that
are not directly connected physically. Additionally, the IonQ de-
vice is commercially available on Amazon Web Services Braket
cloud-based quantum platform, and this makes it available to
access by the authors and other researchers via a straightfor-
ward subscription service.[23] Its main downside at this point
is relatively slow gate speeds. That affects the prefactor in the
scaling of the circuit computation and is readily accounted
for when considering future hardware requirements and in
comparison to superconducting qubits. Despite the emerging
commercial availability to quantum computing hardware, it is
still an expensive resource, so users must be careful to tune
their algorithms to get the best performance for an affordable
cost.
Having chosen IonQ to run the experiment, there is still an im-

portant question: how accurate is the QONN algorithmwhen run
on IonQ? To answer this, we performed the following experiment
using the 11-qubit IonQ device (this experiment could easily be
replicated on other quantum hardware to test suitability for use
in the full experiment).
For various number of qubits (4, 5, 6, 7, 8, 9, and 10 qubits),

we constructed the pyramidal RBS circuit of Section 2.2. We used
QCWare’s commercially available implementation of unary data
loader circuits, and we used the tomographymethod described in
Section 2.3. We used randomly selected RBS parameters and also
randomly selected input vectors. All parameters and vectors were
randomly drawn from a normal distribution with mean 1 and
variance 1. For each fixed number of qubits (4, 5, 6, 7, 8, 9, and
10), we selected ten different randomly drawn parameter sets.
We performed 500 measurements on each of the three circuits
required for unary tomography. We therefore ran 210 quantum
circuits with 500 measurements for each, a total of 105 000 mea-
surements.
A sample of our results are shown in Figures 1–4 for the cases

of 4, 6, 8, and 10 qubits. In figure displays a montage of four
runs selected to show the variety of results returned from each to-
mography measurement accomplished according to the parame-
ters described in the preceding paragraph. Since the circuits are
random, each of the four tomography results will look different.
However the error is revealed in comparing the hardware (blue)
and classically emulated (orange) pairs for each qubit. For an N-
qubit tomography experiment, you will see N pairs of bars. In
each pair we compare the hardware results against the classically
computed emulation of the circuit. Where the hardware results
(blue) differ from the emulation results (orange), the hardware
results are in error.
In Figure 1, the 4-qubit case, there is generally good agreement

between all pairs with an occasional sign discrepancy. As we in-
clude more qubits in the ONN, one can see evermore degraded
performance as the noise and imprecision accumulate to corrupt
the result, so that by the 10-qubit case, the hardware results have
become almost completely random, averaging to zero.
Our insights are as follows:

• For up to 6 qubits, the performance of IonQ is quite good.

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (9 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 1. Results of 4-qubit QONN tomography.

Figure 2. Results of 6-qubit QONN tomography.

• For up to 8 qubits, the performance of IonQ is sufficient to
capture aspects of the desired QONN behavior.

• At and beyond 9 qubits, we found that QONNs are not appro-
priately captured by IonQ with its current capabilities.

• Occasionally signs out outputs can be flipped. This is a tomog-
raphy error. Such errors can cause a cascade of errors: if the
wrong sign for qubit 3 is selected, then we get the wrong signs
for qubits 4, 5, 6, … unless another error corrects the original
error.

• We emphasize that the errors in quantum computing we are
seeing here are not surprising and reflect the early state of
quantum hardware.

7.2. Results: AVRP Training with Ion Trap Quantum Hardware

After testing and diagnosing the maximum number of qubits
that could be reliably used in the QONN, we then tested how

well the QONN can support a hybrid the entire AVRP workflow.
First we needed to select a problem size suitable for the quantum
hardware. We selected eight of the most active nodes from actual
Aisin Group data. Specifically, we selected the following nodes:

1. Nishio cross-docking
2. No.1 and 2 plant
3. Okazaki and electric plant
4. Okazaki east plant
5. Tahara plant
6. GamagoriI plant
7. Kira plant
8. Meiko

These nodes actually have cyclic rank-2 and 3 demand that
flows between them.Due to limitations of current quantumhard-
ware, we need to keep the problem fairly small for the eventual

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (10 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 3. Results of 8-qubit QONN tomography.

Figure 4. Results of 10-qubit QONN tomography.

hardware runs, so we choose to only consider direct rank-2 de-
mand even for the classical neural network or the emulated quan-
tum circuits. We sum over all demand and use the summation as
a contribution to an effective rank-2 demand. We then drop the
box return constraint. When hardware becomes more advanced,
we should be able to include more constraints.
We know from the results of Section 7.1 that at the 8 qubit

scale, we are pushing the limits of current hardware for QONN
implementation. For this 8-node problem scenario, we trained a
variety ofmodels, classically or with our classical quantum circuit
emulator, with slightly different problemparameters to study and
compare the performance.
In the following examples in this section, keep in mind that

classically refers to a completely classical neural network or layer,
and quantum refers to a quantum circuit or neural network layer
that we compute using our classical emulator. So, all examples in

this section are computed on classical hardware, whether they are
computing a traditional classical neural network or computing a
quantum circuit via an emulator. And since the emulator does not
mimic noise or randomness of the quantum circuit, the results of
the classical and quantum computations for the same input data
are the same.[17]

Now we show a series of examples with different parameters
for number of trucks, nodes, demand structure, and box return
constraints to illustrate the performance of the neural network
and identify where the computational challenges lie.
First we show the result from a classical training run to demon-

strate training on relatively large problem (more trucks and the
most complicated constraints). Figure 5 shows the classical train-
ing results versus training epoch for an 8-node, 3-truck, including
rank 2 and rank 3 demand structure, and with cyclic box-return
constraint. The cost is a dimensionless cost function, the cover-

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (11 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Classical training run. Highly realistic 3 truck, rank 2 and 3 de-
mand, with cyclic box-return constraint. Uses 8 nodes.

Figure 6. Quantum training run. 2 truck, rank 2 demand, with no cyclic
box-return constraint. Uses 8 nodes.

age is a normalized variable of the total demand (1.00 = 100%),
and the Times represent how much time in seconds was used
to complete the problem (must be less than the 16 h = 57 600 s
constraint).
Next we contrast that with two quantum circuit training runs

but on slightly simpler problems (quantum circuits but still us-
ing our classical quantum circuit emulator to compute their re-
sult). Figure 6 shows the quantum training results versus train-
ing epoch for a simplified 8-node, 2-truck, including rank 2 only
demand structure, and with no cyclic box-return constraint.
Figure 7 shows the quantum training results versus training

epoch for the same problem as before, but now with the more
realistic rank 2 and rank 3 demand structure. It shows that adding
the more realistic rank 3 demand structure significantly hinders
the training performance.
Next we compare a simple scenario (similar to Quantum Run

1 in Figure 6) when including the cyclic demand structure or
not. First, without the cyclic demand, Figure 8 shows similar

Figure 7. Quantum training run. 2 truck, rank 2 and rank 3 demand, with
no cyclic box-return constraint. Uses 8 nodes.

Figure 8. Quantum training run. 2 truck, rank 2 and rank 3 demand, with
no cyclic box-return constraint. Uses 8 nodes.

results as before for the quantum training results versus train-
ing epoch. And then we see that adding the more realistic cyclic
demand structure degrades the training performance. Figure 9
shows the quantum training results versus training epoch for the
same problem as before, but now with the more realistic cyclic
rank 2 demand structure.
These results show that the quantum training is challenged

to include the more realistic problem features, such as rank 3
demand structure and the cyclic box return constraint. This will
limit what we can implement in quantum hardware at this time
regarding quantum training.

7.3. Results: AVRP Solutions with Ion Trap Quantum Hardware

And finally we test how well the quantum circuit computes solu-
tion inferences using classical, quantum emulator, and quantum
hardware (IonQ) solvers in a hybrid scheme. The approach for
executing on IonQ is to use a previously trained reinforcement

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (12 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 9. Quantum training run. 2 truck, rank 2 cyclic demand. Uses 8
nodes.

Figure 10. Classical training run. 2 truck, rank 2 only demand, with no
cyclic box-return constraint. Uses 8 nodes.

learning agent that was trained classically to capture more of the
complexity of the problem (see Figure 10). The agent was trained
using QCWare’s quantum circuit emulator, but for inference we
now use IonQ to compute the quantum layer of the neural net-
work. For every key in two encoder layers, there are eight atten-
tion heads. We use an encoding dimension of 64, meaning that
each of the eight attention head keys has a dimension of eight it-
self. We pass each key through an 8 qubit quantum ONN. More-
over, there are eight nodes. This means that we have

8
nodes

× 8
heads

× 2
encoding layers

× 3
tomography steps

= 384 circuits (30)

Each of these circuits is run with 500 measurements.

7.3.1. Results of IonQ Run

Our two-truck IonQ execution on eight nodes with simplified de-
mand resulted in the following route selection:

Figure 11. Demand share for IonQ truck assignments versus departure
node events. The total initial rank 2 direct demand was 179, so we see that
the truck successfully satisfy 49% of demand.

Truck departure time Departure node

0 Truck 0 0 Kira plant

1 Truck 1 0 Meiko

2 Truck 0 3960 No.1 and 2 plant

3 Truck 1 6300 Nishio cross-docking

4 Truck 0 7200 Nishio cross-docking

5 Truck 1 11 280 Okazaki East plant

6 Truck 0 15 120 Tahara plant

7 Truck 1 16 380 NO.1 AND 2 plant

8 Truck 1 19 620 Nishio cross-docking

9 Truck 0 23 040 Nishio cross-docking

10 Truck 1 25 860 Meiko

11 Truck 0 28 020 Okazaki East plant

12 Truck 1 31 500 Okazaki East plant

13 Truck 0 33 060 Nishio cross-docking

14 Truck 1 36 540 Nishio cross-docking

15 Truck 0 37 560 Okazaki and electric plant

16 Truck 1 41 040 Okazaki and electric plant

17 Truck 0 42 600 Gamagori plant

18 Truck 1 48 420 Tahara plant

19 Truck 0 49 140 Tahara plant

20 Truck 1 55 020 Gamagori plant

21 Truck 0 55 740 Gamagori plant

The quality of the route found is illustrated by Figure 11. This
figure shows the volume carried by two trucks at various times as-
sociated with departure node events, as well as the total satisfied
demand. While the initial demand of 179 is only 49% satisfied,
this percentage is actually much better than it sounds. The train-
ing data in Figure 10 was done with data that was clipped to very
small demand tomake trainingmanageable. However, the actual
inference run used a much higher demand scale so there is no
reason to regard 49% as low coverage.

Adv. Quantum Technol. 2023, 6, 2200183 2200183 (13 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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In principle, we could cover the full Aisin supply chain with
multiple teams of two trucks, each computed with IonQ. How-
ever, the financial cost of this would be enormous. The run we
discuss in this section alone incurred over USD 2000 to run, and
this does not account for costs of additional experiments for ob-
taining improved data. In a related study accomplished by the au-
thors using the same attention head reinforcement learning neu-
ral network (but not orthogonal and not quantum) on problems
of similar limited size and complexity, the results yielded trained
models that are able to satisfy about 75% of the full daily demand
met by logistics experts using heuristics and spreadsheets. What
would be needed to improve overall performance of the QONN is
to use more trucks, the full 2 and 3 rank demand in training, and
larger quantum layers. This will be demanding for classical and
emulator versions of the QONN and cost prohibitive for runs on
quantum hardware.
A key part of future studies on the QONN approach will be

the ability of future quantum hardware to compute larger circuits
with less error. The benchmarking method in Subsection 7.1 will
be critical in determining how many qubits and how deep the
circuits can be to still give reliablemeasurements of the quantum
layers of the QONN.

7.3.2. Scaling of IonQ Run

In discussing the scaling of the QONN for AVRP solutions there
are two aspects to consider: 1) the scaling of the quantum cir-
cuit layer solutions and 2) the scaling of the overall reinforcement
learning algorithm.
First, let us consider the scaling of the quantum circuit mea-

surements. In theory, the more nodes (and qubits) in the quan-
tum layer of the neural network the better in terms of providing
computational benefit, but this is difficult to quantify. As the re-
sults in Figures 1–4 show, the performance of the circuit is quite
sensitive to the noise and imprecision inherent in today’s state of
the art quantum processor technology. Again, qualitatively, the
6-qubit results look good, the 10-qubit results look bad, and the
8-qubit results look questionable. But after a bit of empirical test-
ing in the QONN training, we decided to execute the full exper-
iment using an 8-qubit quantum layer. This gave us a little bit
more quantum power at the cost of additional noise. In this ap-
plication, the QONN is slightly forgiving in slight computational
variations and in some sense these even help prevent over fitting.
However, we hesitate to make a virtue out of a vice.
As quantumhardware improves, practitioners will always seek

to get the most performance as possible out of the processor and
will always be empirically pushing against the wall of degraded
results from accumulated error, at least until we reach an error-
corrected level of maturity. For this study, comparing AVRP runs
using different numbers of qubits in the quantum layer would
be dominated by noise in the circuit. An interesting study could
be done in the future when quantum hardware has improved, for
example, to compare a reliably computed 16-qubit quantum layer
to a reliably computed 8-qubit quantum layer in our QONN.
Second, what is the scaling behavior of the trained agent from

the neural network itself, whether trained classically or quan-
tumly? This can be an open question in terms of quality of so-
lution desired and computational resources available. However,

this aspect we have not fully studied in this and related work .[3]

Much additional work could be done in improving the classical
version of this ONN—larger neural network architectures, larger
attention head layers, better tuned meta-parameters, and more.
The key question comes in combining the two. For example,

improving the classical structure of the ONN and then adding
the quantum layer, and running the experiment for two differ-
ent sizes of quantum layer, such as 8 qubits and 16 qubits dis-
cussed above. That would allow a much better quantitative as-
sessment of the benefit versus cost of the quantum layer in the
overall AVRP solution.
And finally, we must observe that we are still a long way from

solving truly large problems of industrial scale. Training teams
of two or three trucks on 21 nodes with training times on the
order of 10 min (classical and emulated) are still relatively small
machine learning problems. These small problems parameters
were chosen as they enabled runs on the quantum hardware that
were reliable and affordable. How long it will take for quantum
hardware tomature to handlemuch larger problems is unknown.
However, we find this experiment to be one of the largest indus-
trial problems to have been addressed by quantum hardware, al-
beit in a classical-quantum hybrid approach.

8. Conclusions

While there is much additional work to do in exploring algo-
rithmic and workflow improvements, these first results demon-
strate that quantum circuits can successfully train a reinforce-
ment model comprised of ONNs to solve the logistics problem.
While the quantum versions of ONNs, QONNs, have theoreti-
cally provable speedups, it remains to be seen how much of that
theoretical advantage can be realized in practice.
To that end, this work demonstrated the successful implemen-

tation of QONNs applied to a practical problem of real world im-
portance and developed several methods of tuning and measur-
ing performance, both of the quantum circuit primitives used in
the QONN and in the overall meta-parameters used in construct-
ing the training and inference workflows.
We were only able to study a few approaches of implementing

theQONN, quantum circuits, attention heads, layering depth, de-
mand structure, and constraints during the course of this project.
Further work would likely findmore efficient circuits and QONN
implementations along with more effective training approaches.
We emphasize that the errors in quantum computing we are

seeing here are not surprising and reflect the early state of quan-
tum hardware. So it will be important in the future to continue
monitoring the improvements in quantumhardware and the per-
formance on algorithmic primitives to discern when they might
improve computational workflows.
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