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We study the Wilson line correlation function in Coulomb gauge on lattices in 2+1 flavor QCD
with the aim to determine the complex potential at non-zero temperature and present past results
on coarse lattices along with some preliminary results on newly generated fine lattices. From the
analysis of the Wilson line correlation function after the subtraction of a temperature independent
UV part we conclude that the corresponding spectral function is well described by a dominant
peak. If a potential interpretation is applicable, the peak position and effective width correspond
to the potential’s real and imaginary parts. We positively confirm this potential interpretation with
a peak position that is temperature independent and shows no sign of screening, while the peak
width shows a strong temperature dependence.
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1. Introduction

The bound states of quark and anti-quark pair (quarkonia) have been of great interest in heavy
ion collisions since the work by Matsui and Satz [1]. An understanding of these bound states holds
key to probing the existence of quark gluon plasma in heavy ion collisions.

There is a separation of scales 𝑀 ≫ 𝑀𝑣 ≫ 𝑀𝑣2 and 𝑀 ≫ Λ𝑄𝐶𝐷 (𝑀 is the heavy quark
mass and 𝑣 is the relative velocity) present, thus we can integrate out the hard scale M leading to a
theory of non-relativistic QCD (NRQCD). We can further restrict our focus on the ultrasoft scale
𝑀𝑣2. A new effective field theory called potential NRQCD (pNRQCD) now emerges, which is a
theory of colour singlet and octet heavy meson fields. The potential appears as a parameter (Wilson
coefficient) of this effective field theory. At zero temperature, applicability of a potential picture
has been confirmed [2], and affirmatively compared to perturbative predictions [3]. Our goal now
is to establish whether such a potential exists at 𝑇 ≠ 0 and if it does what is the form of such a
potential.

The real-time Wilson loop describes the time evolution of the static quark-antiquark pair. We
cannot directly access the real-time Wilson loop on the lattice since simulations in lattice QCD are
done in imaginary time. Thus we make use of the concept of the spectral function, which can be
interpreted as a link between the real and imaginary time physics of the spectral function [4]

𝑊□(𝑟, 𝑡) =
∫

𝑑𝜔𝑒−𝑖𝜔𝑡 𝜌□(𝑟, 𝜔) ↔
∫

𝑑𝜔𝑒−𝜔𝜏𝜌□(𝑟, 𝜔) = 𝑊□(𝑟, 𝜏). (1)

In order to extract the spectral function we must invert the right hand side of equation 1.
However, in practice the presence of only a few noisy data points renders the problem ill-posed. In
hard thermal loop perturbation theory we get a dominant peak in the spectral function [5], which
can be related to a potential with a screened real-part and a finite imaginary part [6].

The goal for this proceedings to compare results on the spectral structure of the Wilson loop
on coarse HISQ lattices and show some preliminary results on the newly generated fine lattices. A
previous comparison using a more restricted dataset on fine lattices, small differences in the UV
subtraction, and HYP smearing [7] instead of gradient flow [8, 9] had led to qualitatively similar
conclusions [10].

2. Results on coarse HISQ lattices

We performed calculations on Wilson loop and Wilson line correlators in Coulomb gauge from
(2+1)-flavour QCD configurations generated from HOTQCD and TUMQCD. The Highly Improved
Staggered Quark (HISQ) action was used to generate 2 − 6 × 104 configurations to make sure that
we have high enough statistics. We use the Wilson line correlator instead of Wilson loop because
it helps simplifying the analysis. While changing from the Wilson loop to Wilson line correlator
would introduce some changes in the amplitude of the spectral function, the position and width of
the dominant peak should remain unchanged. It has been argued in leading order HTL perturbation
theory that the position and lowest lying peak does not change when switching from Wilson loop
to Wilson line [5]. The Wilson line correlator is defined as,

𝑊 (𝑟, 𝜏, 𝑇) = 1
3
⟨𝑇𝑟 (𝐿 (0, 𝜏)𝐿†(𝑟, 𝜏))⟩𝑇 (2)
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where 𝐿 (𝑟, 𝜏) = exp(
∫ 𝜏

0 𝐴4(𝑟, 𝜏′)𝑑𝜏′). 𝑁𝜎 × 𝑁𝜏 lattices were used with 𝑁𝜏 = 10, 12, 16 keeping
the ratio 𝑁𝜎/𝑁𝜏 = 4 fixed. The fixed box approach was used spanning a temperature of 140 MeV
to 2 GeV. For high temperatures (𝑇 > 300 MeV) the light quark (u and d) mass was set for some
ensembles to 𝑚𝑠/5; otherwise it was set to 𝑚𝑠/20. We present four different methods of analysis in
this proceeding. For a more detailed overview of the methods refer to [11].

We first compute cumulants of the correlation function and compare it with HTL (hard thermal
loop) perturbation theory. We define the first cumulant as effective mass :

𝑚𝑒 𝑓 𝑓 (𝜏) = −𝜕𝜏 ln𝑊 (𝜏) (3)

We carried out the subtraction procedure as done in [12] where the UV part of the correlator
is subtracted using the 𝑇 = 0 correlator. In figure 1 we show the difference of effective masses of
the subtracted correlator and singlet free energies. We observed that HTL does not quantitatively
fit the data except for some specific temperature and some specific separation distance.
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Figure 1: The figure shows effective mass subtracted from free energies at 𝑇 = 667 The solid lines in red
show the HTL result for renormalisation scale 𝜇 = 2𝜋𝑇 and the dashed lines represent variation of the scale
by a factor of two.

From the cumulant analysis we found that we can only extract the first and the second cumulant
from the correlator data. The lattice data is sensitive only to the peak position Ω and the effective
width Γ. We can thus parameterise the UV subtracted correlator as :

𝐶𝑠𝑢𝑏 (𝑟, 𝑡) ≈ exp(−Ω𝜏 + 1
2
Γ2𝜏2 +𝑂 (𝜏3)) (4)

This results in a Gaussian spectral function plus an addition term

𝜌(𝜔,𝑇) = 𝐴(𝑇) exp(− |𝜔 −Ω(𝑇) |2
2Γ(𝑇)2 ) + 𝐴𝑐𝑢𝑡 (𝑇)𝛿(𝜔 − 𝜔𝑐𝑢𝑡 (𝑇)) (5)

This ansatz ignores the tail on the high 𝜔 side of the peak and therefore is not completely consistent.
However, the contribution of the high 𝜔 tail is exponentially suppressed by the kernel and therefore,
the corresponding contribution to the correlation functions is very small and can be neglected at
present level of statistical accuracy. The results after carrying out the Gaussian fits are shown in
fig. 2.

The second method of analysis was the Padé interpolation. Historically, the Padé interpolation
has not been used for spectral reconstruction as it requires high statistics. In this method we first
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Figure 2: The peak position of the spectral function (Ω) and the (effective) width (Γ) as function of the
separation obtained from Gaussian fits of the 𝑁𝜏 = 12 lattices.

transform the Euclidean correlator into Matsubara frequency space. We then implement Padé
interpolation in the form of continued fraction according to the Schlessinger prescription [13]. This
is interpolation and not fitting and it avoids the problem of costly minimisation. An example of
interpolated data is shown in fig. 3. Once we have the interpolated rational function we can obtain
the pole structure of the correlator. The peak position and width are the real and imaginary parts of
the dominant pole of the correlator. Results from Padé interpolation are shown in figure 4.
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Figure 3: Discrete Fourier transform of the 𝑇 > 0 Wilson line correlators at 𝑇 = 407MeV (𝛽 = 7.825,
𝑁𝜏 = 12) at spatial separation distances 𝑟 = 0.03872 fm, 𝑟 = 0.1758 fm and 𝑟 = 0.2964 fm. The figure on
the right shows the imaginary part and the one on the left shows the real part.

The third method applied was the Bayesian reconstruction using the BR method [14]. Unlike
the Padé, Bayesian methods are designed to reproduce the Euclidean data and rely on the positive
definiteness of the spectral function. However, for this study the Bayesian analysis fails at high
temperatures as we saw non-monotonic behaviour of effective masses at small 𝜏; which is manifes-
tation of a non-positive spectral function. Such non-monotonous behaviour of effective masses is a
feature of improved actions and has also been previously observed in [3]. We have thus only shown
results at low temperature for the BR method.

The last method employed was the hard thermal loop inspired fits. It uses symmetry properties
of thermal correlation functions of static quarkonia to extract a thermal potential for quarkonia using
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Figure 4: The peak position Ω and width Γ obtained from Padé interpolation for 𝑁𝜏 = 12 lattices as a
function of separation distance at different temperatures are shown in the figure above.

Euclidean Wilson loop data [15]. Results from this method are shown in fig 5.
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Figure 5: The peak position (Ω) and the width (Γ) from the HTL inspired method as function of separation
distance at different temperatures.

We show a comparison of all methods in fig 6. The results from the Padé and model fits suggest
that the peak position of the spectral function is independent of temperature. This result is indeed
puzzling.

3. Preliminary results on Fine Lattices

Wilson line correlators were measured from configurations generated using the SIMULATe-
QCD [16, 17] code, and HISQ action was used to generate the ensembles. The light quark mass
was set to 𝑚𝑠/5. 𝑁3

𝜎 × 𝑁𝜏 lattices were used with 𝑁𝜎 = 96 and 𝑁𝜏 = 20, 24, 28, 32, 56. The pion
mass is 310 MeV and lattice spacing 1/𝑎 = 7.1 GeV. While analysing the correlators we found that
the UV noise was very large at large 𝜏, which would make the analysis rather challenging. Gradient
flow [8, 9] was used as smearing to reduce this UV noise. More precisely we used Zeuthen flow
[18]. 4D smearing comes at the cost of affecting the correlator at small 𝜏 and small distances (see
fig. 7). Because we expect the small 𝜏 (large frequency) behavior to be temperature independent,
it provides access to the relevant IR physics without too many losses. However, we do expect there

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
8
8

Complex potential at 𝑇 > 0 from fine lattices Gaurang Parkar

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T = 151MeV

Ω
[G

eV
]

r[fm]

T = 0 Potential
Singlet Free Energy

Pade
Gaussian Fit

HTL Inspired Fit
BR

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T = 408MeV

Ω
[G

eV
]

r[fm]

T = 0 Potential
Singlet Free Energy

Pade
Gaussian Fit

HTL Inspired Fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

T = 151MeV

Γ
/T

r[fm]

Pade
Gaussian Fit

HTL Inspired Fit
BR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5

T = 408MeV

Γ
/T

r[fm]

Pade
Gaussian Fit

HTL Inspired Fit

Figure 6: A comparison of the peak position (Ω) and width (Γ) obtained from different methods as a
function of separation distance at temperatures 151 MeV and 408 MeV.

to be a significant change in the real part of the potential at small separation distances. These finer
lattices should help us in improving resolution for spectral reconstruction in different methods.

We show some preliminary results using Gaussian fits for the new lattices in figures 8. The
Gaussian fits show no significant change in the real part of the potential with changing temperature.
This is consistent with results from the previous study with 𝑁𝜎 = 48 lattices. As expected we also
see that smearing affects the peak position at small distances and it also shift it be a constant that
has been removed by setting Ω = 0 at 𝑟/𝑎 = 3. The effective width of the spectral function scales
linearly with the temperature and rises almost linearly with the distance.

4. Conclusions

We have seen that the lowest feature of spectral functions of thermal Wilson Line correlators
can be interpreted as encoding information about the real and imaginary part of a potential. From
the different methods of analysis we see that the peak position and width of the spectral function
highly depends on the method of analysis used since each of these methods is based on a different
set of assumptions. This shows that the data are susceptible to multiple hypotheses. Results from
Padé and Gaussian fits on coarse lattices and preliminary results on fine lattices show that the peak
position of the spectral function is independent of temperature. These results are very puzzling
indeed as they differ from some earlier studies in quenched QCD [15, 19] or even in full QCD [20].
Attempts to use Padé interpolation and improving Gaussian fits on fine lattices are still work in
progress.
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Figure 7: Effective masses for smeared vs unsmeared correlator for 𝑁𝜏 = 28 lattices. We can see that the
fluctuations at large 𝜏 diminish when smearing is applied.

Figure 8: Preliminary results of peak position (Ω) and width (Γ) as a function of separation distances at
different temperatures. The shifts introduced by different smearings at different temperatures are removed
by setting Ω = 0 for 𝑟/𝑎 = 3.
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